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I: THE MODELS

VINCENZO GRECCHI

This is a short review of the main results on the oscillators considered basic
models in quantum mechanics. Since the potential is polynomial, it is possible
to extend the stationary states to entire functions on the complex plane where the
semiclassical theory works better. The control on the energy levels is based on
the isolation of the nodes, the zeros stable at the unperturbed limit. A new and
simple model for the process of racemization of chiral molecules is added.

1. Introduction

For me it is a great pleasure to contribute to a deserved homage to Professor Lucio
Russo. I have to offer only this flower from my garden, a review of results on the
spectrum of basic operators in quantum mechanics.

I remember conversations with Lucio about the existence of gambling experts
(κυβευτικοί) in Roman times, as reported by Plotinus (204–270 AD), who regarded
them as professional scientists.1 Does this mean there were probabilist mathe-
maticians in those times? In any case, it seems that only discrete probability was
known, since Plotinus apparently rejected the possibility of anything like what we
call statistical mechanics:

πῶς γὰρ επὶ τοῖς ατάκτοις τέχνη

(what science can operate where there is no order?)2

This memory is appropriate as an introduction, since probability theory was Lucio’s
first interest and it is one of the bases of quantum mechanics.

The reason for this review is the difficulty of reading all the single papers con-
sidered here. The problems considered in such papers are not unrelated and need
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1Enneads, III, 1, 6, lines 9–10.
2Enneads, III, 1, 3, line 15.
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the same techniques to be solved. In particular, I recall the methods for summing
divergent series, going back to Guido Grandi [1710].

This review is almost entirely restricted to one-dimensional problems with poly-
nomial potentials (oscillators), with a focus on the cubic case.

Among the points of interest in such research is the meaning of perturbation
series in quantum field theory, where the summability test for perturbation series
is relevant.

Also of interest from the viewpoint of rigorous atomic and molecular physics are
the possible models for molecular structures. In some quantum models presented
here there are resonances and associated metastable states. The notion of resonance
in quantum mechanics is similar to the same notion in acoustics as discussed by
Pietro Mengoli [1670] (see also [Martinez and Nédélec 2012]).

I recall that Lucio has studied Mengoli’s contribution to the beginnings of mod-
ern mathematical analysis.

All the molecules with a structure [Woolley 1982] and the atoms in an external
uniform electric field (the Stark effect) are in a metastable state [Graffi and Grecchi
1978].

In the case of an analytic potential, a resonance is a complex eigenvalue of a
non-self-adjoint operator related in a definite way to the original Hamiltonian of
the model [Aguilar and Combes 1971].

A particular kind of non-self-adjoint operator is known as PT or PT-symmetric.
An operator H is PT if (PT )H(PT )−1

= H , where P and T , the parity and time-
reversal operators, are defined in (2) below. New interest in such problems started
from a collaboration with the late professor Vladimir Buslaev of Saint Petersburg.
In [Buslaev and Grecchi 1993] we solved a conjecture of Zinn-Justin about the
coincidence of two perturbation series: one in a double-well problem and the other
in an unstable single-well problem (where there are expected resonances). We
proved the isospectrality of the Hamiltonian (coincidence of the eigenvalues) of
the first problem with a PT extension of the formal Hamiltonian of the other one.

Actually also the operator for the resonances of the linear potential (free Stark
effect), previously considered by Herbst and Simon [1978], and an analytic con-
tinuation of the operator for the resonances in the sense of Gamow [Caliceti and
Maioli 1983] of the cubic potential, previously considered by Caliceti, Graffi and
Maioli [Caliceti et al. 1980], are PT operators.

I have considered analytic continuations of the resonances of the cubic oscillator
in collaboration with André Martinez and Marco Maioli [Grecchi and Martinez
2013; Grecchi et al. 2009; 2010] and with Riccardo Giachetti [Giachetti and Grec-
chi 2011]. In this last study, we proved the existence of level crossings in a double-
well problem. During the crossing process, the corresponding states pass from the
bilocalization in both the wells to the localization in a single well (not the same
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for the two states). This is the proof of the existence of singularities (similar to
the Bender–Wu singularities of the levels of the quartic oscillator [Bender and Wu
1969; Harrell and Simon 1980; Benassi and Grecchi 1980; Alvarez 1995]) of the
resonances as analytic functions of the parameter.

Section 2 recaps the essentials of quantum mechanics to fix some notions. In
Section 3 we discuss solvable oscillators as examples. In Section 4 is a short
exposition on the quartic oscillator. Section 5 briefly cover PT oscillators. Section 6
is devoted to the cubic oscillator with a single well. In Section 7 is the cubic PT
oscillator with a double well. In Section 8 a simple model for the racemization
effect is discussed.

2. Essentials of quantum mechanics

Sir William Rowan Hamilton [1834; 1835] laid the basis for the understanding tht
classical mechanics, in the Hamilton–Jacobi formalism, is a short-wavelength limit
of a possible theory of matter waves. Actually, he obtained the Hamilton–Jacobi
method in mechanics by analogy with the eikonal approximation of the equations
of electromagnetic waves.

Schrödinger (1926) formalized this theory, quantum mechanics, by his famous
equation.

In d-dimensional quantum mechanics, the Hamiltonian of a particle of mass
m = 1

2 is a linear operator in H= L2(Rd) of the kind

H = p2
+ V, where p2

=−∇
2 (1)

and where the Planck constant h̄ = h/2π is unitary and V is the formal multipli-
cation operator by the real function V (x) defined by (Vψ)(x) = V (x)ψ(x) for
a vector ψ ∈ H represented by a function ψ(x). In the sequel the multiplication
operator V is identified with its corresponding function V (x). We call unstable a
model with a potential not bounded below at infinity. The basic operators of interest
are self-adjoint (s.a.) (observables) restricted to their domains [Kato 1966]. The
possible eigenvalues of a self-adjoint operator are necessarily real. We call D(A)
the domain of the operator A, and the domain of the Hamiltonian H , defined as a
sum of two operators by (1), satisfies the condition

D(V )∩ D(p2)⊂ D(H)⊂H.

The spectral theorem [Kato 1966; Reed and Simon 1975; 1978] allows one to
associate the self-adjoint Hamiltonian with the real energy spectrum. A state is a
class of equivalence of vectors ψ ∈H of unitary norm, with ψ ∼ λψ , |λ| = 1. At
any t ∈ R the vector becomes ψ(t) = Utψ , where Ut := exp(−i t H) is a unitary
operator conserving the norm. We define a (energy) level to be an eigenvalue E
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and a stationary state, the class of equivalence of eigenvectors ψ of H , where the
stationarity is characterized by the behavior ψ(t)= exp(−i Et)ψ ∼ ψ .

The parity P and the time-reversal T operators are defined respectively by

Pψ(x)= ψ(−x) and Tψ(x)= ψ(x) for all ψ ∈H. (2)

Since the operator H is real, we have T Ut T−1
=U−t , justifying the name of time

reversal for the operator T .
Given a unitary operator U , we get the change of representation of the states

ψ → Uψ for all ψ ∈ H. In this representation the Hamiltonian becomes the
unitarily equivalent Hamiltonian HU =U HU−1, with the same spectrum. In the
case of the Fourier transform, F=U , we pass from the position to the momentum
representation. For the continuation of the resonances in the complex plane of the
parameter, we use generalized changes of representation (see Section 1d of the
sequel).

In the case of the hydrogen atom we are in 3D (d = 3):

H0 = p2
+ V (x), x ∈ R3, p2

=−∇
2, V (x)=−K/|x |,

where K > 0 is fixed and

D(H0)= D(p2)⊂H= L2(R3).

There are infinite eigenvalues of H0, (energy) levels En < 0, where the eigen-
functions are the stationary states ψn , since ψn(t) = exp(−i Ent)ψn ∼ ψn . The
absolute continuous spectrum R+ is related to the range of the mean energies
((ψ, Hψ)= E ≥ 0) of the unstable (scattering) states ψ ∈ D(H).

Now we consider the hydrogen Stark effect, with a perturbed hydrogen Hamil-
tonian

Hε = H0+ εx1, ε > 0.

In this case there are resonances, complex numbers En(ε), such that En(ε)→ En

as ε→ 0. As introduced above, the corresponding states ψn(ε) /∈H, if suitably cut
at infinity, become metastable states. This fact was proven by the complex scaling
of the variables [Aguilar and Combes 1971] x→ λx and p→ (1/λ)p, λ /∈ R and
= ln(λ) > 0, getting the non-s.a. operators

Hε(λ)= λ−2(p2
− λ(K/|x |)+ ελ3x1) and D(Hε)= D(p2)∩ D(x1),

with complex eigenvalues En(ε), invariant for 0< = ln(λ) < π/6, representing the
resonances of the Stark effect [Graffi and Grecchi 1978; Herbst and Simon 1978].
Notice that, by the use of the parabolic coordinates, the Stark effect in hydrogen
can be decomposed into two anharmonic oscillators, one stable and the other one
unstable. The perturbation series in ε of the resonances are divergent but summable
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by the distributional Borel method [Caliceti et al. 1986] to the real part of the
resonances. Also the mean life of the metastable states is given by the same method.

3. Some solvable models

As basic solvable models, we consider the linear and the quadratic potentials.
We start with the Hamiltonian with linear potential

H1(λ)= λ
−2(p2

+ λ3x), λ 6= 0, = ln(λ)= θ.

In the case of λ= 1, we have the self-adjoint Hamiltonian H1(1) with continuous
spectrum σc = R [Kato 1966]. The resonances are given by the eigenvalues of
the operators H1(λ) for 0< θ < π/3 and domain D(H1(λ))= D(p2)∩ D(x). In
particular, for θ = π/6, we have H1(exp(iπ/6))= exp(−iπ/3)O1 where

O1 = p2
+ i x

is a PT operator with discrete spectrum [Herbst and Simon 1978]. Actually, be-
cause of the invariance of the spectrum to any translation x → x + ε, ε ∈ R, an
eigenvalue En should satisfy the impossible condition that there exists m =m(n, ε)
such that En = Em + iε. Thus, there are no resonances in this problem H1(1), as
can be understood by the absence of wells or traps of the potential.

The other solvable Hamiltonians are

H±2 (λ)= λ
−2(p2

± λ4x2), λ 6= 0. (3)

In particular,

H+2 (1) := O2 = p2
+ x2

is the harmonic oscillator with simple levels En = 2n+ 1, n ∈ N, and states ψn(x).
For E = En , the interval [−

√
E,
√

E] is the internal Stokes line [Giller 2011]
(oscillatory range) where all the zeros (nodes) of ψn(x) lie.

In the case of H−2 (1)= p2
− x2, we have the repulsive harmonic oscillator with

continuous spectrum σc = R. The eigenvalues En(λ) of the operator

H−2 (λ)= λ
−2(p2

− λ4x2), λ 6= 0,

are independent of λ for 0<= ln(λ) < π/2. Moreover, the eigenfunctions ψn(λ, z),
extended as entire functions in z, are simple dilations [Aguilar and Combes 1971]
of ψn(1, z): ψn(λ, z) = λ1/2ψn(1, λz). In particular, the spectrum of H−2 (

√
i) =

−i(p2
+ x2) is the set of the top resonances of H−2 (1):

σd = {−i(2n+ 1)}n∈N.
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Associated with these resonances are metastable states trapped about the top of the
potential at x = 0. Remark that the top of the potential is an unstable equilibrium
point in classical mechanics.

Translations in the complex plane x→ x +α allow one to extend the family of
operators. In particular, for λ= 1, α = i ,

H+2 (1, i)= p2
+ (x + i)2 = p2

+ x2
+ 2i x − 1∼ H+2 (1) (4)

is a nontrivial PT operator with real levels En = 2n+ 1.
Now we consider some nonsolvable oscillators.

4. The quartic oscillator

The quartic oscillator is the first of the nonsolvable oscillators to be studied rigor-
ously. It is defined by the family of Hamiltonians

H1(β)= p2
+ V (x), V (x)= x2

+βx4, x ∈ R, p2
=−

d2

dx2 ,

where β is in the cut plane

Cc = {z ∈ C : z 6= 0, z = |z| exp(iθ), |θ |< π},

with domain D(H1)= D(p2)∩ D(x4).
For β positive, H1 is self-adjoint and the potential has a single well on the real

axis. Actually, on the real axis the force −V ′(x)=−2x(1+ 4βx2) vanishes only
at the origin.

For the corresponding levels En(β), the Stieltjes or Padé summability of the
perturbation series was proven in [Loeffel et al. 1969]. The main technique used
was the Loeffel–Martin method of control of the zeros of the states in the complex
plane. Later, the Borel summability of the perturbation series was proven in [Graffi
et al. 1970]. Analytic continuations of the levels En(β) beyond Cc suggested the
existence of crossings (the Bender–Wu singularities [1969]).

We consider also the two-dimensional quartic oscillator by the reduction of the
Hamiltonian to the radial operators:

H2(β, j)= p2
r +

j2
− 1

4r2 + r2
+βr4, r ∈ R+, p2

r =−
d2

dr2 , (5)

for β ∈ Cc and j ≥ 0. The level En(β, j), at the limit of the rim of the cut
defined by arg(β)= π−, |β| = b > 0, is the resonance in the sense of the bound-
ary conditions of Gamow [Caliceti and Maioli 1983] of the formal Hamiltonian
H2(β, j) at β = −b. Since the hydrogen Stark effect can be decomposed by the
parabolic coordinates in two operators of this kind, the existence of the resonances
of the hydrogen Stark effect was also proven [Graffi and Grecchi 1978]. Moreover,
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the Borel distributional summability of the perturbation series of the same Stark
resonances was proven in [Caliceti et al. 1993].

Of great interest is the double-well quartic oscillator defined by the families of
self-adjoint Hamiltonians

Q(β, j)= p2
+ x2(βx − 1)2− j (βx − 1

2), x ∈ R, β ∈ R+, (6)

for a fixed j ∈ R. In particular, for j = 0 we have the case of a symmetric double
well. The states are of even or odd parity, and the levels are classified in doublets
of opposite parity with a splitting of exponential order. The perturbation series are
the same for both levels of a doublet so that the distributional sum of the series
cannot give both the levels and in fact neither. In [Caliceti et al. 1988; 1996] a
sequence of approximants to the levels up to the first exponential order was given
by the distributional Borel sum [Caliceti et al. 1986] of the perturbation series.

5. PT operators: a short story

For the study of the resonances in the case of analytic potential, the introduction of
non-self-adjoint Hamiltonians [Aguilar and Combes 1971] is useful. Sometimes
the resonance Hamiltonian can be put in PT -symmetric form [Herbst and Simon
1978]. A PT operator is a real operator in the momentum representation, and its
spectrum can be real.

I recall that some numerical investigations by Zinn-Justin suggested the coinci-
dence of the perturbation series of the levels of two different problems: the unstable,
rotationally symmetric, anharmonic oscillator in 2D and the double-well oscillator.
Since usually a coincidence is not causal, the people of the scientific world looked
for a stronger fact: the isospectrality of two Hamiltonian families. Many attempts
were made without a full success. Eventually Buslaev and Grecchi [1993] proved
the isospectrality of the self-adjoint double-well Hamiltonian Q(β, j) of (6) and
the radial reduction of the unstable anharmonic operator defined by a complex
translation on the full axis as a PT operator:

Hε(β, j)=
1
2

(
p2

r +
j2
− 1

4r2
ε

+ r2
ε

)
−β2r4

ε , r ∈ R,

where pr = −i∂r and rε = r − iε, for an ε > 0. By some transformations on the
variable and on the wave function, and also by the Fourier transform, it was proven
that the two operators are isospectral, or equivalent in our terminology (the notion
of equivalence in this case is not standard but was shared by others).

Scaling the variable, we also proved the isospectrality of the PT Hamiltonian

O4(ε, α, j)=
1
2

(
p2

r +
j2
− 1

4r2
ε

+αr2
ε

)
− r4

ε , r ∈ R, rε = r − iε, (7)
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for an ε > 0, and the double-well one,

Q(α, j)= p2
+ (x2

−
1
4α

2)2− j x

self-adjoint for α and j real. As a consequence, we have proven the realness of the
spectrum of families of PT Hamiltonians.

Our proofs are rigorous and obviously independent of the Zinn-Justin conjecture.
For people interested in the paper [Benassi and Grecchi 1980], let me say that
it is synthetic and very precise in the operatorial implementation of the analytic
transforms.

Later, Bender and Boettcher [1998] discussed and Shin [2002] proved the real-
ness of the spectrum of a class ON of PT -symmetric operators, containing our (7)
only in the case of j = 1.

6. The cubic single-well Hamiltonian

The cubic resonance problem is one of the simplest, not explicitly solvable ones
in quantum mechanics [Caliceti et al. 1980; Grecchi and Martinez 2013; Grecchi
et al. 2009; 2010; Caliceti 2000]. We consider the single (real) well Hamiltonian

H(β)= p2
+ x2
+ i
√
βx3, β ∈ Cc. (8)

We define nodes to be the n zeros of state ψn(β) stable at the unperturbed limit
β→ 0.

Remark. The stability of the nodes at β = 0 is equivalent to the stability of the
levels because of the Cauchy theorem.

Also our results on the analyticity of the levels for large |β| depend on the
stability and isolation of the nodes.

(a) The first thing to prove is the absence of the essential spectrum. Thus, we
prove the compactness of the resolvent.

Let us consider the Hamiltonian H(β), for any fixed β ∈Cc. For any fixed E ∈C,
the semiclassical behavior of the fundamental states [Sibuya 1975] implies that the
Green’s function G(x, y) behaves as |G(x, y)| ∼ |xy|−3/4 for both |x |, |y| →∞
and is exponentially small if only one of the coordinates (x, y) diverges, so that is
in L2(R2). The corresponding integral operator, the inverse of H(β), is Hilbert–
Schmidt.

(b) The second thing to prove is the isolation of the nodes or the confinement
and the stability of the nodes for the parameter on the cut plane.

(b1) The first part of the proof regards the existence of a no-vanishing zone [De-
labaere and Trinh 2000].
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The proof is based on the method of Loeffel and Martin [Loeffel et al. 1969] for
the confinement of the zeros (9).

We consider the stripe of the complex plane of the variable β

A(β)=
{

z = x + iy ∈ C : x, y ∈ R, 0≤ y ≤
2

3
√

b
cos

θ

2

}
,

where β = b exp(iθ).

Proposition. For all β ∈�, the eigenfunction ψβ does not admit any zeros on the
stripe A(β).

Let Vβ(z)= z2
+ i
√
βz3, z = x + iy [Loeffel et al. 1969]. Then

=ψ ′β(x + iy)ψβ(x + iy)=
∫ x

−∞

=(Vβ(r + iy)− E(β))|ψβ(r + iy)|2 dr

=−

∫
∞

x
=(Vβ(r + iy)− E(β))|ψβ(r + iy)|2 dr. (9)

It is enough to prove that the integrand changes sign at most once in R for any
z ∈ A(β). In this case at least one, and thus both, of the integrals in (9) are nonzero.
Since |ψβ(z)|2 ≥ 0 and positive almost everywhere, we look for the monotonicity
of the factor of the integrand

=(Vβ(r + iy)− E(β))= 2r y+ r3
√

bc− 3r2 y
√

b− 3r y2c−=(E(β)),

where c = cos(θ/2) and s = sin(θ/2), or the nonvanishing of the derivative

d
dr
=(Vβ(r + iy))= 3

√
bcr2
− 6
√

bysr + 2y− 3y2
√

bc

= 3
√

bc
(

r2
− 2yr tan+

2y− 3y2
√

bc

3
√

bc

)
,

where c = cos(θ/2), s = sin(θ/2) and tan= tan(θ/2). The reduced discriminant is

1= 9yb
(

y−
2

3
√

b
cos

θ

2

)
.

(b2) The second part of the proof regards the absence of zeros far from the origin
in a large sector.

The eigenfunctions are L2 on the real axis so that they are vanishing at infinity
in two Stokes sectors

S±(β)=
{

x ∈ C :

∣∣∣∣arg(i x)+
θ

10
∓

2π
5

∣∣∣∣< π

5

}
.
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This means that [Sibuya 1975] they are free of zeros (for large |x |) on two extended
sectors

S±(β)=
{

x ∈ C :

∣∣∣∣arg(i x)+
θ

10
∓

2π
5

∣∣∣∣< 3π
5

}
.

Thus, the sequence of zeros N j of ψn(x, β) have the asymptotic phase π/2+ θ/10,
as |N j | →∞.

(c) The third thing to prove is the absence of nonperturbative levels.
It is worth recalling this proof since it looks difficult but needs only a careful

analysis.
Let E(β) be an eigenvalue defined as a multiple-valued analytic function on Cc,

with normalized eigenfunction ψβ , and let En(β) be a perturbative eigenvalue for
b small.

Proposition. Let Ẽ(β) be a determination of E(β); then on a disk |β|< b0, β ∈Cc,
Ẽ(β)= En(β) for a b0 > 0 and n ∈ N.

Remark. A consequence of this proposition is that the branch points of Ẽ(β) in Cc

do not accumulate at 0.

Proof. Let γ be a simple path in Cc ∪ {0} such that Ẽ(β) is analytic in a neighbor-
hood of γ in Cc, bypassing the possible sequence of positive branch points on γ ,
with βk ∈ γ and βk→ 0 as k→∞.

Let us distinguish two cases.

Case 1. The sequence (|Ẽ(βk)|)k is bounded. In this case, we have a subsequence
converging to a limit Ẽ(βk)→ En , where En = En(0) is an eigenvalue of the
unperturbed Hamiltonian because of the stability. Moreover, for the stability and
the perturbation theory, we have Ẽ(β)= En(β) for β ∈ γ , |β|< b0, for a b0 > 0.

Case 2. |Ẽ(βk)| →∞ as k→∞.
Let us split B := (βk)k into

B± = {β ∈ B : ±|Ẽ(β)| ≤ ±β−1
}.

(2a) When β ∈ B− we make the change of variable x = λy, with λ :=
√
|Ẽ(β)|,

and we set

φ(y)=
√
λψβ(λy), h :=

1
λ2 , b′ = λ2

√
β ∈ (0, 1] and u := Ẽ(β)/|Ẽ(β)|

so that we have

(Hh(b′)− u)φ(y)=−h2φ′′(y)+ (y2
+ i
√

b′y3
− u)φ(y)= 0, (10)

and we can use the complex semiclassical method for α and h̄ small [Voros 1994].
Since b′ > 0, the numerical range of Hh(b′) and u are in the half-plane <z ≥ 1.
Thus, arg(u) < π/2 and two turning points y±(b′, u) of (10) are located in the
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half-plane =y ≤ 1/
√

2, while the third one is in =y ≥ 1. In this case there are no
zeros of φ for 0≤ =y ≤ 3/2α and thus for 0≤ =y ≤ 1. The number of zeros in a
disk of fixed radius |y+(b′, u)− y| ≤ δ diverges as O(1/h) in contradiction with
the finite constant number of the nodes.

(2b) When β ∈ B+, with λ := (|Ẽ(β)|/
√
β)1/3, we make the change of variable

x = λy, and we define the new function

φ(y)=
√
λψβ(λy)

to be the solution of the equation

−h2φ′′(y)+ (αy2
+ iy3

− u)φ(y)= 0,

with u=E(β)/|E(β)|, h=1/λ
√
|E(β)|→0 as β→0 and 0<α= (β|Ẽ(β)|)−1/3

≤

1 as β→ 0.
In this case, where β ∈ B+, we prove the same contradiction as in the case B−.

In particular, if α→ 0 both =y± become negative as in the β→∞ case.

(d) Now we prove that the levels are Stieltjes functions.
The proof that

f (β) := −
En(β)− En(0)

β
, n ∈ N, (11)

is a Stieltjes function is based on its analyticity and boundedness on Cc and the
definite sign of the imaginary part of =En(−b− i0)≤ 0. The sign of =En(−b− i0)
comes from the Gamow condition of the corresponding state φ(x) at −∞. The
state φ(x) and φ′(x) have no zeros on the real axis. The level is a generalized
resonance, or a limit of ordinary resonances, and its imaginary part, with changed
sign, is related to the inverse mean life of the associated metastable states. The
resonance eigenfunction satisfies the Gamow condition for −x > 0 large, and by
the semiclassical behavior [Sibuya 1975], we have

h̄
φ′(x)

φ(x)
√

E − V (x)
→−i,

√
E − V (x)|φ(x)|2→ |c|2 > 0,

−=E =−
h̄2∫

∞

x |φ(y)|
2 dy
=

(
φ′(x)
φ(x)
|φ(x)|2

)
→ h̄|c|2. �

7. The cubic PT -symmetric double well

The single-well cubic oscillator discussed above can be analytically continued by
generalized changes of representation [Aguilar and Combes 1971; Graffi and Grec-
chi 1978], obtaining the family of PT Hamiltonians

Hh̄ = h̄2 p2
+ V (x), V (x)= i(x3

− x), h̄ > 0. (12)
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Since V ′(x)= 0 at the two points x± =±1/
√

3 ∈R (wells), we have a double-well
PT Hamiltonian, whose states possibly localize about one of the wells (localization)
or about both (delocalization or bilocalization). The transition from one to the other
kind of state is singular and happens at the level crossing.

Also in the case of the unstable double-well Stark effect, varying the field param-
eter, there is a double level crossing and the states are localized for large negative
and large positive parameter, but not for small parameter [Grecchi et al. 1996].

The existence of the level crossings is the main issue of the research on this
model. The levels at the crossings are near a critical energy, usually the top of
the internal barrier. In our PT case the internal barrier doesn’t exist and the critical
energy is a singularity of the Stokes graph [Giller 2011; Delabaere and Trinh 2000].

The localization is a typical semiclassical effect, since the classical particles, at
low energy, are localized in one of the wells.

Actually, in usual quantum mechanics with a family of self-adjoint Hamiltoni-
ans for all real parameters, the delocalization of the states is stable and the level
crossings are forbidden [Kato 1966; Reed and Simon 1975; 1978]. Also in the case
of single-well PT Hamiltonians [Shin 2002; Caliceti 2000; Grecchi and Martinez
2013; Grecchi et al. 2009; 2010] the states are always localized about the well and
the crossings are absent.

The semiclassical theory provides good qualitative and quantitative results on
the levels En(h̄) for lower parameter h̄ up to the crossing value [Bender and Wu
1969; Benassi and Grecchi 1980; Harrell and Simon 1980; Alvarez 1995]. The
complex semiclassical method [Voros 1994; Delabaere et al. 1997] has extended
the results to larger, but not very large, values of the parameter [Delabaere and Trinh
2000; Delabaere and Pham 1997]. Recently, rigorous results were also obtained
in [Eremenko and Gabrielov 2011] by different techniques. Such approaches are
useful and complementary to our rigorous treatment based on the nodal analysis
[Giachetti and Grecchi 2015; 2016a; 2016b]. The nodal analysis is found also in
other papers [Grecchi and Martinez 2013; Grecchi et al. 2009; 2010; Eremenko
et al. 2008a; 2008b; Shanley 1988a; 1988b; Eremenko and Gabrielov 2009].

As proven above, all the states ψ̃n(β), with corresponding levels Ẽn(β), are
perturbative and their subscripts n are the numbers of their zeros stable at β = 0
(nodes). The result is relevant to our present context, as we may observe that the
Hamiltonians (12) and (8) are related by a generalized change of representation
(with a definite law of transformation of the levels). Indeed, making the unitary
translations x = x±+ y, we obtain

H±h̄ = h̄2 p2
+ i(y3

±
√

3y2)∓ i E0, E0 =
2

3
√

3
. (13)
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In order to connect H±h̄ with H(β) in the sectors π <∓ arg(β)< 3π/2, respectively,
we consider the analytic dilations [Aguilar and Combes 1971]

y = λ±(h̄)z, λ±(h̄)= 3−1/8√h̄ exp(∓iπ/8), (14)

conserving the spectrum. Letting c± = 31/4√
±i we find from (8)

H(β±(h̄))∼ (1/h̄c±)H±h̄ ±i E0 and En(β
±(h̄))= (1/h̄c±)E±n (h̄)±i E0, (15)

where
β±(h̄)= exp(∓i5π/4)3−5/4h̄. (16)

Notice that

E±n (h̄)= h̄6/5 Ên(α
∓), n ∈ N, and α± = exp(±iπ)h̄−4/5, h̄ > 0. (17)

We see that levels E±n (h̄) are complex conjugates and are different for small h̄ > 0,
since their semiclassical behaviors are

E±n (h̄)=∓i E0+
√
±i 4
√

3(2n+ 1)h̄+ O(h̄2) ∈ C∓ = {z ∈ C : ∓=z > 0}. (18)

The zeros of ψ±n (h̄, z) for large |z| are contained respectively in

C± = {z ∈ C : ±<z > 0}. (19)

The large-h̄ behavior of the levels Em(h̄) is studied by using a different repre-
sentation with the Hamiltonians

O3(α)= p2
+W (α, x), W (α, x)= i(x3

+αx), α ∈ C. (20)

The eigenvalue Êm(α) of O3(α) is holomorphic in a neighborhood of the origin.
Thus, for large positive h̄ the levels Em(h̄) are defined by

h̄−6/5 Em(h̄)= Êm(α), α =−h̄−4/5
≤ 0, (21)

and they are connected with the eigenvalues of H(β) by the relation

Êm(α(β))= β
−1/5 Ẽm(β)+

2β−1/5

27β
, α(β)=

1
3β4/5 ≥ 0, (22)

at α = 0. The level functions Êm(α) are real-analytic for α ∈ R, |α| small. Thus,
all such levels Em(h̄) are given by analytic continuations of the perturbative levels
Ẽm(β) through (21) and (22), and are extensible as many-valued functions (taking
different names), to the sector

C0
= {z ∈ C : z 6= 0, |arg(z)|< π/4}

of the h̄ complex plane. The corresponding states ψm(h̄) are delocalized (or bilo-
calized about both wells).
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The crossing selection rule is given in simple terms: the two positive levels
E2n+(1/2)±(1/2)(h̄)with delocalized statesψ2n+(1/2)±(1/2)(h̄), h̄> h̄n , cross at h̄n >0
and become the two complex levels E±n (h̄) with localized states ψ±n (h̄) for h̄ < h̄n .
This selection rule completely describes the full crossing process.

The two levels E±n (h̄) of (15) and (17) are complex-conjugated, and the two
states ψ±n (h̄) are PT -conjugated and concentrated about the wells x±, respectively.

This process is possible because of the instability of the delocalization of both
the states ψ2n+(1/2)±(1/2)(h̄) for decreasing h̄ > 0.

Conclusion. The nodes of the states ψ2n+(1±1)/2(h̄) for large h̄ > 0, with positive
levels E2n+(1±1)/2(h̄), are in the half-plane C−. Only the state ψ2n+1(h̄) has an
unstable imaginary node. The number of nonimaginary nodes of both the states
ψ2n+(1±1)/2(h̄) are 2n, n of them in C±.

The nodes of the states ψ±n (h̄) for hb < h̄n are in C±, respectively.

8. A simple model for the racemization

Many years ago Friedrich Hund proposed a model [Dennison and Uhlenbeck 1932]
for the ammonia molecule NH3. Supposing the hydrogen atoms lie in a plane, he
considered the motion of the nitrogen atom along an orthogonal axis. The forces
acting on the N atom should correspond to a double-well potential because of the
symmetry and the typical interatomic forces. In this quantum model the N atom
state is delocalized or localized about both the wells. Actually, we know that the
molecule in a dense gas has a structure and the N atom is localized. It is possible
to represent this effect by a nonlinear model [Grecchi and Martinez 1995].

A molecule with a structure is a metastable state of its system [Woolley 1982].
Here we consider a linear model with a PT Hamiltonian in order to define the
resonant state related to the metastable one. The delocalized state of the N atom
for low density of the gas can be represented by our PT states ψ2n+(1±1)/2(h̄)
of (12) for large h̄ > 0. The splitting 1E = E2n+1(h̄)− E2n(h̄) gives the pulsation
of the inversion line ω=1E/h̄ and the beating effect. The dynamics of the packet

ψ = C(ψ2n+1(h̄)+ψ2n(h̄)),

is
ψ(t)= C(t) exp(−i Et/h̄)(ψ2n+1(h̄)+ exp(−iωt)ψ2n(h̄)),

where E = E2n+1(h̄), showing the beating effect with the pulsation of the so-called
inversion line.

For large density of the gas, we expect a localization of the nitrogen atom in
one side of the plane of the hydrogen atoms, so that the structure of the molecule
is pyramidal. If two of the hydrogen atoms are substituted by different isotopes
NH3→ NHDT, the pyramidal structure of the molecule gets a definite chirality.
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Actually, the model is not complete since there exists the racemization effect: a
slow change of chirality.

In our model we can represent the state by one of the eigenfunctions ψ(0) =
ψ±n (h̄), h̄ < h̄n , localized about one of the wells x±, respectively. This state is
stationary:

ψ(t)= C(t) exp(−i Et/h̄)ψ(0), E = E±n (h̄),

where the coefficient C(t) > 0 is given by the unitary normalization ‖ψ(t)‖ = 1.
But it is also possible to represent the racemization.
The dynamics of a state is given by ψ(t)=C(t) exp(−i Hh̄ t)ψ(0), where C(t)>

0 is given by the unitary normalization ‖ψ(t)‖ = 1. Let us consider the PT state
as a wave packet at t = 0,

ψ(0)= C(0)(ψ−n (h̄)+ψ
+

n (h̄)),

with unitary norm, for h̄> 0 small. This packet is PT -symmetric and is delocalized,
or better, it is bilocalized about both the wells. The dynamics of the packet is

ψ(t)= C(t)(exp(−i Et/h̄)ψ−n (h̄)+ exp(−i Et/h̄)ψ+n (h̄)),

where E= E+n (h̄). Since =E<0, we have |ψ(t)|→|ψ∓n (h̄)| as t→±∞. Thus, we
have a process of localization of the packet about the well x∓ in the limit t→±∞,
respectively. The full process for t going from −∞ to ∞ is a slow change of
localization of the N atom from a well to the other one. This corresponds to a
change of chirality of the molecule or a racemization [Streitwieser and Heathcock
1985, p. 122–124].

In this case it is evident that the P and T symmetry of the process breaks, con-
serving the PT symmetry. If h̄n − h̄ is small enough, the time of the racemization
process is much longer than the period of the beating effect.

I don’t attempt to justify the model from a physical point of view. As a physical
comment, I would say that, in general, time symmetry breaking is a consequence of
space symmetry breaking. A rigid body is not a system in a stationary state since
it breaks the space symmetry of the potential [Woolley 1982]. Thus, it breaks
translational time symmetry.
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