Mathematics and Mechanics of Complex Systems

Vincenzo Grecchi

Quantum Mechanics: Some Basic Techniques for Some Basic Models
II: The Techniques
QUANTUM MECHANICS:
SOME BASIC TECHNIQUES FOR SOME BASIC MODELS
II: THE TECHNIQUES

VINCENZO GRECCHI

This paper is a continuation of the previous one: “Quantum mechanics: some basic techniques for some basic models, I: The models”. The main subject is the perturbation theory in quantum mechanics giving diverging perturbation series for the energy levels of the oscillators. Thus, a short historical introduction on the methods of the sum of diverging power series is given.

1. Introduction and some techniques

This is the second part of an article in honor of Professor Lucio Russo. In Section 2 there is a short history of the regular methods of the sum of divergent series. It starts with the formal series $S(a) = \sum_n a_n$, where $a = a_0, a_1, \ldots$ is considered a vector of components $a_n = (-1)^n$, with a possible sum $S(a) = \frac{1}{2}$ as suggested by Guido Grandi. The best proof of the value of this sum, if existent, is based on the assumption that $S(a)$ is a linear functional. The same linearity was used by Pietro Mengoli for the sum of some convergent series.

1a. Quadratic estimates. A family of analytic operators of type A should have constant domain [Kato 1966; Reed and Simon 1975; 1978]. For the control on the domain, the quadratic estimates can be used. We consider the simple closed PT operator $H := O_3(0) = p^2 + ix^3$, and we want to prove that $D(H) = D(p^2) \cap D(x^3)$, knowing that $D(p^2) \cap D(x^3) \subset D(H)$. We consider the quadratic norm as a quadratic form

$$\|H \psi\|^2 = \langle \psi, H^*H \psi \rangle \quad \text{for} \quad \psi \in D(p^2) \cap D(x^3),$$

where

$$H^*H = p^4 + x^6 + 3[x^2, p]_+ = p^4 + x^6 + 3[(p + x^2)^2 - p^2 - x^4].$$

Communicated by Francesco dell’Isola.
PACS2010: 03.65.-w.
Keywords: confinement of the nodes and exact quantization condition, Stokes lines, Stokes sectors, generalized change of representation, Riccati equation and semiclassical series, divergent perturbation series, sum of divergent series.
We have the exact quantization condition
\[\| H \psi \|^2 \geq \| p^2 \psi \|^2 - 3 \| p \psi \|^2 + \| x^3 \psi \|^2 - 3 \| x^2 \psi \|^2 \]
\[> (1 - \epsilon)(\| p^2 \psi \|^2 + \| x^3 \psi \|^2) - \frac{C}{\epsilon} \| \psi \|^2, \quad \epsilon > 0, \quad (1-\epsilon) > 0, \quad C > 0, \]
so that \(D(H) \) cannot be extended and \(D(H) = D(p^2) \cap D(x^3) \).

1b. The method of Loeffel and Martin for the confinement of the zeros. We explain the Loeffel–Martin method [Loeffel et al. 1969] with a useful example. We consider a positive level \(E = \hat{E}_m(0) \) with state \(\psi(z) = \hat{\psi}_m(z) \), of the operator \(O_3(0) = K(0) \) [Giachetti and Grecchi 2016a] transformed by the analytic translation \(x \to x + iy \):
\[O_3(y, 0) = p^2 + i(x + iy)^3 = p^2 + i(x^2 - 3y^2)x + y^3 - 3yx^2 = p^2 + V_y(x). \]
Then
\[-\Im[\overline{\psi}(x + iy) \partial_x \psi(x + iy)] = \int_x^\infty \Im(V_y(s) - E)|\psi(s + iy)|^2 ds \]
\[= \int_x^\infty (s^2 - 3y^2)s|\psi(s + iy)|^2 ds = - \int_{-\infty}^x (s^2 - 3y^2)s|\psi(s + iy)|^2 ds \neq 0 \quad (1-1) \]
for \(|x| \geq \sqrt{3}|y|, \; y \in \mathbb{R} \). In this case we have a rigorous confinement of the nodes in the region
\[\mathbb{C}_\sigma = \{ z = x + iy : y < 0, \; |x| < -\sqrt{3}y \} \subset \mathbb{C}_- = \{ z \in \mathbb{C} : \Im z < 0 \}. \]

Now we extend the Loeffel–Martin method to the case \(\Im E \neq 0, \; x = 0 \), obtaining the equation
\[\Im(h^2 \phi(y) \partial_y \phi(y)) = -\Im E \int_y^\infty |\phi(s)|^2 ds \quad \text{for all } y \in \mathbb{R}, \quad (1-2) \]
where \(\phi(y) = \psi(iy) \), if the integral in \((1-2) \) exists and is bounded. Thus, the state of a nonreal level is free of imaginary zeros.

1c. The exact quantization condition [Giachetti and Grecchi 2016b]. We consider the semiclassical Hamiltonian
\[H_h = h^2 p^2 + V(x), \quad V(x) = i(x^3 - x), \quad p^2 = -\frac{d^2}{dx^2}, \; h > 0. \quad (1-3) \]
Let us fix \(h > 0 \) small, the level \(E = E_n^+(h) \in \mathbb{C}_- \) (the case \(E_n^-(h) \) is perfectly analogous) and the state \(\psi_E(z) = \psi_n^+(h, z) \) with \(n \) nodes in \(\mathbb{C}_+ = \{ z \in \mathbb{C} : \Re z > 0 \} \). We have the exact quantization condition
\[J(E, h) := \frac{h}{2i\pi} \oint y \frac{\psi_E^*(z)}{\psi_E(z)} dz + \frac{h}{2} = h(n + \frac{1}{2}), \quad (1-4) \]
where \(\gamma = \partial \Omega \subset \mathbb{C}^+ \) and \(\Omega \) is a connected domain large enough to contain all the nodes. The fixed number \(n \) and the isolation of the nodes allow us to bound the energy value.

In particular, for small \(\bar{\hbar} > 0 \), and fixed \(n \in \mathbb{N} \), the quantization rules (1-4) become the semiclassical quantization conditions for \(E = E_n^+(\bar{\hbar}) \)

\[
J(E, \bar{\hbar}) = \frac{1}{2i\pi} \oint_{\gamma} p_0(E, z) \, dz + O(\bar{\hbar}^2) = \hbar(n + \frac{1}{2}),
\]

where \(p_0(E, z) = \sqrt{V(z)} - E \), and the path \(\gamma \) shrinks around the short Stokes line.

1d. The generalized changes of representation [Aguilar and Combes 1971]. A change of representation is given by a unitary transform \(U_\delta \neq U_0 = I \), where \(\delta \) is any nonzero real number and \(I \) is the identity operator, giving a new Hamiltonian \(H_\delta = U_\delta H U_\delta^* \) unitarily equivalent to the original one. In this case, a level of the Hamiltonian is the same as that of the original one, \(E_n(\delta) = E_n(0) \), and the state is transformed into \(\psi_n(\delta) = U_\delta \psi_n \). Let \(H_\delta \) be an analytic family of operators of type A in the parameter \(\delta \in \Omega \subset \mathbb{C} \), with \(\mathbb{R} \subset \Omega \), and let \(H \) have discrete spectrum \(\{ E_n \}_n \). Then the operator \(H_\delta, \delta \in \Omega \subset \mathbb{C} \), is isospectral to \(H := H_0 \) so that

\[
E_n(\delta) = E_n,
\]

and the vector \(\psi_n(\delta) = U_\delta \psi_n, \delta \in \Omega \) and \(\delta = i\theta, \theta \in \mathbb{R} \), is the state \(\psi_n \) in a generalized representation.

Actually, there are more general changes of representation with definite transformations of the eigenvalues

\[
E_n(\delta) = f_\delta(E_n).
\]

1e. The Stokes sectors, the asymptotic behavior, the Riccati equation [1761] and the semiclassical series expansion. We recall the asymptotic behavior of the states at infinity, the Stokes sectors and the Carlini semiclassical series expansion [Plana 1832; Fröman and Fröman 1965].

Let us fix a direction in the complex plane of the variable \(\arg(z) = \alpha \). The asymptotic behavior of a fundamental solution of \(H_\hbar \) (see (1-3)) at infinity in this direction is given by [Sibuya 1975]

\[
\hbar \lim_{|z| \to \infty, \arg z = \alpha} \int_{z}^{\infty} \frac{\ln \psi_n(z)}{\sqrt{V(w)}} \, dw = \pm 1.
\]

The Stokes directions \(\alpha_j \) are defined by the oscillatory condition of the fundamental solutions at infinity:

\[
\lim_{|z| \to \infty} \arg(\ln \psi_n(z)) = \pi/2 + j\pi, \quad j = -2, -1, 0, 1, 2.
\]
A Stokes sector of the complex plane is a minimal sector between two Stokes directions. In the case of the cubic oscillator $H_{\bar{\hbar}}$, the Stokes directions $\arg(z) = \alpha_j$ are

$$\lim_{|z| \to \infty} \arg(\ln \psi_n(z)) = 5 \arg(iz)/2 = \pi/2 + j\pi, \quad j = -2, -1, 0, 1, 2,$$

and the Stokes sectors

$$S_j = \{ z \in \mathbb{C} : |\arg(iz) - 2j\pi/5| < \pi/5 \}, \quad j = -2, -1, 0, 1, 2. \quad (1-7)$$

A state $\psi_n(h)$ of the Hamiltonian $H_{\bar{\hbar}}$ is exponentially decreasing at infinity in the sectors $S_{\pm 1}$ and exponentially increasing in the sectors S_{0} and $S_{\pm 2}$.

This state has large zeros only in the imaginary asymptotic direction. If we label the zeros Z_j such that $|Z_j| \to \infty$ for $j \to \infty$,

$$\arg(Z_j) \to \alpha_{\pm 2} = \pi/2 \quad \text{as} \quad j \to \infty. \quad (1-8)$$

Remark. In the case of a double-well cubic oscillator, this result is not sufficient for our purposes. We have proven that in the case of positive levels E_m the large zeros of ψ_m are exactly imaginary. Moreover, we have $\mp \Im E_n^\pm > 0$ and the large zeros of ψ_n^\pm are in \mathbb{C}^\mp.

We express two fundamental solutions, in a given sector S_j, of the Schrödinger equation

$$(\hbar^2 p^2 + p_0^2(z))\psi(z) = 0, \quad p^2 = -\frac{d^2}{dz^2}, \quad p_0^2(z) = V(z) - E,$$

in the form

$$\psi_{\pm}(z) = \exp\left(\pm \frac{1}{\hbar} \int_0^z p_h(w) \, dw \right),$$

where $p_h(z)$ satisfies the Riccati equation

$$p_h^2(z) + \hbar p_h'(z) = p_0^2(z), \quad p_0^2(z) = V(z) - E. \quad (1-9)$$

We formally solve by the Carlini series

$$p_h(z) \sim \sum_n p_n(z)\hbar^n,$$

where the coefficients are computed recursively starting from the positive definition of the classical momentum: $p_0(z) = \sqrt{V(z) - E}$ and

$$p_1(z) = \frac{ip_0'(z)}{2p_0(z)}, \quad p_n(z) = -\frac{1}{2p_0(z)} \left(\sum_{j=1}^{n-1} p_{n-j}(z)p_j(z) + ip_{n-1}'(z) \right), \quad n = 2, 3, \ldots. \quad (1-10)$$
Defining
\[p_h(z) = P_\chi(z) + \hbar Q_\chi(z), \quad \chi = \hbar^2, \]
we get the equation for \(P_\chi(z) \)
\[P_\chi^2(z) - p_0^2(z) = -\chi(Q_\chi^2(z) + Q'_\chi(z)), \quad (1-11) \]
where
\[Q_\chi(z) = -\frac{P'_\chi(z)}{2P_\chi(z)}. \]

We thus have the equivalent expression of the solutions
\[\psi_{\pm}(z) = \frac{1}{\sqrt{P_\chi(z)}} \exp\left(\pm \frac{1}{\hbar} \int_0^z P_\chi(w) \, dw \right), \quad (1-12) \]
where the Riccati solution \(P_\chi(z) \) has the even part of the Carlini expansion:
\[P_\chi(z) \sim \sum_{j \in \mathbb{N}} \chi^j p_{2j}(z) \quad \text{with truncations} \quad P_\chi^N(z) \sim \sum_{j \in \mathbb{N}} \chi^j p_{2j}(z). \quad (1-13) \]

Thus, the semiclassical momentum \(P_\chi(z) \) is an asymptotic notion, and the coefficients of the Carlini series are singular near the turning points. In certain cases, the exact momentum \(P_\chi(z) \) is the Borel sum of the series in (1-13) [Voros 1994; Delabaere et al. 1997]. Notice that the behaviors of the fundamental solutions, for large \(|z| \) in a Stokes sector, are given by (1-12) at a zeroth order of approximation with \(p_0(z) \) in place of \(P_\chi(z) \) [Sibuya 1975].

If. The Stokes lines and the classical trajectories. Here we also examine the critical energies at the semiclassical limit \(\hbar = 0 \).

Let us consider the real cubic oscillator
\[H_r(\hbar) := \hbar^2 p^2 + V_r(x), \quad V_r(x) = x^3 - x, \quad \hbar > 0, \]
and the energy range \(R_0 = [-E_0, E_0] \), where \(E_0 = 2/3\sqrt{3} \). The union of the trajectories of the classical motion \(M(E) \) consists of the oscillation range \(\sigma(E) := [I_-, I_+] \) and the escape route \(B(E) := (-\infty, I_0], I_0 < -1/\sqrt{3} < I_- < I_+ \). We recall the definition of the Stokes lines at energy \(E \). A Stokes line is tangent at each one of its points \(z \) to the direction \(dz^2(z) \), where \(p(z)^2 \, dz^2(z) < 0, \quad p(z)^2 = V'_r(z) - E \), and starts from a turning point \(I \). From the complex semiclassical point of view, \(\sigma(E) \) is the internal Stokes line and \(B(E) \) is the exceptional Stokes line [Giller 2011].

The fundamental state \(\psi^0_E(\hbar, x), E \in R_0 \), subdominant in the positive semiaxis,
\[\psi^0_E(\hbar, x) \sim \frac{1}{\sqrt{p(x)}} \exp\left(-\frac{1}{\hbar} \int_{I_+}^x p(w) \, dw \right). \]
for large $x > 0$, can be continued onto the complex plane cut along $\sigma(E)$ and $B(E)$. We extend the approximate fundamental state by setting $\psi_E^0(h, x) = (\psi_E^0(h, x+i0) + \psi_E^0(h, x-i0))/2$ for all $x \in M(E)$. This approximation oscillates in $M(E)$ as the exact fundamental state. In the limit $\hbar \to 0$ all the zeros of the exact fundamental state $\psi_E(\hbar)$ tend to $M(E)$ as $\hbar \to 0$ [Giller 2011]. The union of the trajectories of the classical motion $M(E)$ is singular at $E = E_0 = 2/3\sqrt{3}$, where the escape route $B(E)$ touches the oscillation range $\sigma(E)$.

Now we consider the PT-symmetric double well with Hamiltonian $H_\hbar = h^2 p^2 + i(x^3 - x)$, for $h > 0$. For $E > 0$ large, the escape route is part of the imaginary axis, while the oscillation range should be computed numerically.

The union of the trajectories of the classical motion $M(E)$ has the singular point $E^c = 0.352268 \ldots$ where the escape route touches the oscillation range at its middle point. For larger $E > E^c$ the escape route and the oscillation range are separated. The energy levels $E_n(h)$ are positive for large $h > 0$ and are imaginary at the limit $h \to 0$. This means the existence of (at least) a singularity and a crossing at $h_n > 0$ for each pair of functions $E^\pm_n(h)$, $0 < h < h_n$. The crossing parameters $h_n > 0$ and the energy crossings $E^c_n > 0$ have the limits $h_n \to 0$ and $E^c_n = E^\pm_n(h_n) \to E^c$ as $n \to \infty$. The approximate actions around the oscillation range defined at the crossing, $J_n := n\hbar_n$, have limit $J(E^c, 0)$ as $n \to \infty$ (see (1-5)), the action integral around the oscillation range $\sigma(E)$.

We now consider the two cases denoted by the signs \pm together. At energies $E^\mp_n(0) = \pm i E_0$, the oscillation range $\sigma(E)$ reduces to the points $I_- = I_+ = \mp 1/\sqrt{3}$, respectively. It is possible to prove that the escape route $B(E)$ starts at $I_0 = \pm 2/\sqrt{3}$ and goes toward $+i \infty$ staying in the half-plane \mathbb{C}^\pm. Moreover, the levels $E^\pm_n(h)$ are nonreal for $h < h_n$ and the zeros of $\psi^\pm_n(h)$ cannot be on the imaginary axis. Thus, the n nodes of $\psi^\pm_n(h)$ are stable in \mathbb{C}^\mp for $0 < h < h_n$.

1g. The theory of the regular perturbations. Let H_0 be a self-adjoint operator on the Hilbert space \mathcal{H} with compact resolvent, so that the spectral theorem takes the expression

$$H_0 = \sum_n E_n P_n, \quad 1 = \sum_n P_n, \quad P_n P_k = \delta_{nk} P_n, \quad P_n^* = P_n,$$

where the set of real eigenvalues $(E_n)_n$ (the spectrum of H_0: $\sigma(H_0)$) have no accumulation points in \mathbb{R} and the orthogonal projectors P_n have a finite-dimensional image: $m_n = \dim(P_n \mathcal{H}) \in \mathbb{N}$.

Resolvent. For $z \in \mathbb{C} - \sigma(H_0)$ the resolvent of H_0 with parameter z,

$$R_0(z) = (H_0 - z)^{-1} = \sum_n (E_n - z)^{-1} P_n,$$ \hspace{1cm} (1-14)
is a compact operator, with norm
\[\| R_0(z)u \|^2 \leq \max_n |E_n - z|^2 \sum_n \| P_n u \|^2 = \| u \|^2 / \rho(z, \sigma(H_0))^2, \]
where \(\rho(z, \sigma(H_0)) \) is the distance of \(z \) from the spectrum of \(H_0 \). In particular, if \(u = P_j u \), we have
\[\| R_0(z)u \| = 1 / \rho(z, E_j). \]

Operator \(V \) relatively bounded with respect to \(H_0 \) (Kato). Let \(V \) be another operator on \(\mathcal{H} \) such that \(D(H_0) \subset D(V) \) and
\[\| Vu \| \leq a \| H_0 u \| + b \| u \| \quad \text{for all } u \in D(H_0) \]
for positive constants \(a \) and \(b \). We use the notation \(V < H_0 \).

Theorem. With \(V \) as above, the operator
\[A := A(z) := VR_0(z) \]
for \(z \notin \sigma(H_0) \) is a bounded operator.

Proof. Let us consider any \(v \in \mathcal{H} \); then \(Av = V u \), where \(u = R_0(z)v \), with norm \(\| u \| \leq \| R_0(z)v \| \equiv c \| v \| \). For the relative boundedness we have \(\| Vu \| \leq a \| H_0 u \| + b \| u \| \), where \(\| H_0 u \| = \| H_0 R_0(z)v \| = \| v + zu \| \leq \| v \| + |z| \| u \| \); hence, \(\| Av \| \leq (a(1 + |z|c) + bc) \| v \| \), whence \(A \) is a bounded operator with norm
\[\| A \| \leq a(1 + |z|c) + bc. \]

Analytic family of operators. Let us consider the analytic family of operators \(H_\epsilon = H_0 + \epsilon V \) for \(\epsilon \in \mathbb{C} \).

Theorem. The resolvent of \(H_\epsilon \), \(R_\epsilon(z) = B_\epsilon \) for a fixed \(z \notin \sigma(H_\epsilon) \), is an analytic family of bounded operators on the domain \(|\beta| < b_0 \).

Proof. We have
\[B_\epsilon = R_\epsilon(z) = ((H_0 - z) + \epsilon V)^{-1} = R_0(z)(1 + \epsilon A)^{-1} = R_0(z) \sum_n (-\epsilon A)^n, \]
where \(A \) is defined in (1-15) and the series of powers of operators converges in norm for \(|\epsilon| < b_0 = 1 / \| A \| \).

Norm convergence of the resolvents. We have that
\[\| B_\epsilon - B_0 \| \leq \| R_0(z) \| \sum_{n=1}^\infty (|\epsilon| \| A \|)^n \]
vanishes as \(\epsilon \to 0 \). Analogously, for \(b_1 > 0 \) small and \(|\epsilon_1| < b_1 \), \(\| B_\epsilon - B_{\epsilon_1} \| \to 0 \) as \(\epsilon \to \epsilon_1 \).
Perturbation not relatively bounded.

Quadratic estimate 1. For any \(u \in D(H_0) \cap D(V) \), there exist \(a, b > 0 \) such that
\[
\|H_0 u\|^2 + |\epsilon|^2 \|Vu\|^2 \leq a\|H_\epsilon u\|^2 + b\|u\|^2.
\]

Let \(V = V_0 V' \) such that \(V' < H \) and \(V_0 = V_0^* < H_0 \).

Quadratic estimate 2. For any \(u \in D(H_0) \cap D(V) \), there exist positive constants \(a \) and \(b \) such that
\[
\|V' u\|^2 \leq a\|H_\epsilon u\|^2 + b\|u\|^2.
\]

We have
\[
R_\epsilon - R_0 = \epsilon R_0 V R_\epsilon = \epsilon A_0 A',
\]
where the \(z \notin \sigma(H_0) \) dependence is omitted. Both the operators \(A_0 = R_0 V_0 \) and \(A' = V' R_\epsilon \) are uniformly bounded as \(\epsilon \to 0 \). Thus, we have the norm resolvent convergence
\[
\|R_\epsilon - R_0\| \leq |\epsilon|\|A\|\|A'\| \to 0
\]
as \(\epsilon \to 0 \).

In our case, we have \(H_0 = p^2 + \alpha x^2 \), \(|\alpha| = 1 \), \(V_0 = x \), \(V' = i x^2 \) and \(\epsilon = \sqrt{b} \geq 0 \).

Projector on an isolated part of the spectrum. Let \(\gamma = \partial \Gamma \) be a regular closed positively oriented curve in \(\mathbb{C} \) encompassing a simple isolated eigenvalue of \(H_0 \) once:
\[
\sigma_\Gamma := E_j = \Gamma \cap \sigma(H_0), \quad \gamma \cap \sigma(H_0) = \emptyset.
\]
For instance, let \(\gamma \) be the circle \(|z - E_j| = d/2 \), where \(d > 0 \) is the isolation distance of \(E_j \). We have
\[
P_j = -\left(1/2\pi i \right) \int_\gamma R_0(z) \, dz,
\]
because of (1-14) and the residue theorem. Because of the norm convergence of the resolvents and \(\gamma \) being a compact set, we have the norm convergence of the projectors \(P_j(\epsilon) := P_\epsilon \),
\[
\|P_\epsilon - P_j\| \to 0
\]
for \(|\epsilon| \to 0 \), and there exists \(b_0 > 0 \) such that
\[
P_j \epsilon = -\left(1/2\pi i \right) \int_\gamma R_\epsilon(z) \, dz,
\]
for \(0 < \epsilon < b_0 \).
Perturbation expansion of P_ϵ. The set of projectors P_ϵ is an analytic family of projectors, and its power series expansion is

$$P_\epsilon = \sum_n \epsilon^n Q_n,$$

where

$$Q_n = -(2\pi i)^{-1} \int_{\gamma} R_0(z)(-VR_0(z))^n \, dz.$$

Continuity and stability of the spectrum. Let $m_\epsilon = \dim(P_\epsilon \mathcal{H}) \in \mathbb{N}$ be the total multiplicity of the eigenvalues of H_ϵ contained in Γ. This is a continued function for $0 < \epsilon \leq \epsilon_0$ and, being discrete-valued, is constant. This means that in Γ we always have the only eigenvalue $E_j(\epsilon)$ near E_j, for ϵ small, and we can compute this analytic eigenvalue by the perturbation method.

1h. Perturbation expansion of a simple isolated eigenvalue. Let $E(0)$ be a simple isolated eigenvalue of H_0, with normalized eigenvector u_0 and projector P_0, so that $H_0u_0 = E(0)u_0$ and $P_0u_0 = u_0$. We have $\|P_\epsilon - P_0\| \to 0$ as $\epsilon \to 0$ so that $u_\epsilon = P_\epsilon u_0 \to u_0$ as $\epsilon \to 0$ is an eigenvector: $H_\epsilon u_\epsilon = E(\epsilon)u_\epsilon$, $\|u_\epsilon\| > 0$. Thus, $\langle u_0, P_\epsilon u_0 \rangle = \langle P_\epsilon u_0, P_\epsilon u_0 \rangle \to 1$ as $\epsilon \to 0$. We can compute $E(\epsilon)$ by the expression

$$E(\epsilon) = \langle u_0, H_\epsilon P_\epsilon u_0 \rangle / \langle u_0, P_\epsilon u_0 \rangle = E(0) + \epsilon \langle u_0, V P_\epsilon u_0 \rangle / \langle u_0, P_\epsilon u_0 \rangle = E(0) + \epsilon \sum_n \epsilon^n \langle u_0, V Q_n u_0 \rangle / \sum_n \epsilon^n \langle u_0, Q_n u_0 \rangle = E(0) + \epsilon \langle u_0, Vu_0 \rangle + O(\epsilon^2) = \sum_n \epsilon^n c_n,$$

where the $\{c_n\}_n$ are the coefficients of the power series expansion given by the perturbation theory as a ratio of two power series. Since the two series are geometric, it is possible to evaluate the remainder, and it turns out to be of the same order as the next perturbation coefficient.

1i. Divergent perturbation series. If V is not bounded with respect to H_0, but any vector $V Q_n u_0$ or $Q_n u_0$, $n \in \mathbb{N}$, is bounded, we have bounded coefficients of a divergent perturbation series. We do not use the estimates of the growing of the coefficients and the remainders made with the perturbation theory because we have the exact behavior from the Stieltjes property and the behavior of the imaginary part of the “resonances”.

Now it is useful to recall the method of summing the divergent perturbation series.
2. Divergent power series regular sum: a short story

The formal series [Akhiezer 1965] as a vector function with specified terms

\[\tilde{S}(a) := \sum_{k=0}^{\infty} a_k := \sum a_k, \quad a = \{a_k\}_{k \in \mathbb{N}}, \quad a_k \in \mathbb{C}, \]

(2-1)

is convergent (Cauchy) with sum \(S(a) \), if there exists

\[S(a) = \lim_{n \to \infty} S_n(a) \in \mathbb{C}, \quad S_n(a) = \sum_{k=0}^{n} a_k. \]

Actually Pietro Mengoli’s [1650] idea of a convergent series was not so different.

For the simple formal series \(\tilde{S}(a) \) as a function of the sequence of its terms

\[a = \{a_k = (-1)^k\}_{k \in \mathbb{N}}, \]

(2-2)

Guido Grandi [1703], obviously unaware of the Cauchy condition, suggested that the only possible sum of the series \(S(a) \) is \(\frac{1}{2} \).

Let us recall a possible proof.

We assume that the sum \(S(a) \) is a linear functional of the vector \(a \). Now we recall some obvious facts.

The sum of a series with only one nonzero term must exist:

\[\text{if } b = b_0, 0, 0, 0, \ldots, \quad S(b) = b_0. \]

(2-3)

The invariance of the series by translation of the indexes is obvious:

\[\tilde{S}(Ta) = \tilde{S}(a), \quad a = a_0, a_1, \ldots, \quad Ta = 0, a_0, a_1, \ldots. \]

So we must admit the same invariance for the sum

\[S(Ta) = S(a). \]

(2-4)

The proof that \(S(a) \), for \(a \) as in (2-2), if it exists, must be equal to \(\frac{1}{2} \), is based on the extension of the linearity of the sum used by Pietro Mengoli for convergent series.

Hypothesis 1. The sum of a series \(S(a) \) is a linear function of the vector of its elements \(a \):

\[S(a) = S(b) + \lambda S(c), \quad a = b + \lambda c, \]

(2-5)

if all the sums exist.

Proposition. Assuming the existence of the sum \(S(a) \) of the formal series (2-2),

\[S(a) = \frac{1}{2}. \]

(2-6)
Proof. We decompose the vector \(a \) as \(a = b + a_0' \), where \(b = a_0, 0, 0, \ldots \) and \(a_0' = 0, a_1, a_2, \ldots = -Ta \). Thus, since \(a = b + \lambda Ta \) where \(\lambda = -1 \), by Hypothesis 1,

\[
S(c) = S(b) + \lambda S(Ta) = b_0 + \lambda S(a),
\]

(2-7)

if \(\lambda \in \mathbb{C}, c = b + \lambda Ta \) and \(b \) is as above in (2-3). The sum of the series satisfies a linear equation

\[
S(a) = S(b) - S(Ta) = a_0 - S(a) = 1 - S(a),
\]

with the unique solution \(S(a) = \frac{1}{2} \). □

Notice that Mangione [1971] says that the statement of the existence of the sum of the series \(\tilde{S}(a) \) is a mistake (obviously it is, assuming the Cauchy definition of the sum).

Later Cesaro proposed his method of the sum (1894–1897). The partial sums of \(\tilde{S}(a) \) are

\[
S_n(a) = \frac{1}{2} + \frac{1}{2} (-1)^n, \quad n = 0, 1, 2, \ldots,
\]

so that the mean values of the first sums are

\[
S_N^c(a) = \sum_{n=0}^{N-1} \frac{S_n(a)}{N} = \frac{1}{2} + \frac{1}{2N} (-1)^{N-1}, \quad N = 1, 2, \ldots
\]

The Cesaro sum of the series, \(\lim_{N \to \infty} S_N^c(a) \), exists and coincides with Grandi’s.

2a. The Taylor expansion of a function. An analytic function is the sum of its power series expansion on a disk:

\[
f(z) = \sum_{k=0}^{\infty} c_k z^k, \quad c_k = \frac{f^{(k)}(0)}{k!}, \quad |c_k| = \frac{1}{r_k}, \quad |z| < r,
\]

(2-8)

where \(r = \lim r_k > 0 \).

Example 1. We have the expansion

\[
f(z) = \frac{1}{1+z} = \sum_{k=0}^{\infty} c_k z^k = \sum_{k=0}^{\infty} c_k z^{-k-1}, \quad c_k = (-1)^k,
\]

(2-9)

on the open disk \(|z| < 1 \). Extending the sum by continuity to the point \(z = 1 \), we get the Grandi proof of the Grandi sum of the Grandi series.

We now state some definitions and results.
2b. A divergent power series asymptotic to a function (Poincaré). A divergent power series is asymptotic to a function f when

$$\left| f(x) - \sum_{n=0}^{N-1} c_n x^n \right| \leq C_N x^N, \quad 0 < x < X.$$ \hfill (2.10)

The astronomer approximants. Let $C_N = a^N N!$, where $a > 0$. For any x as above, we fix $N(x) = [1/ax]$ and we take the approximant

$$\sum_{n=0}^{N(x)-1} c_n x^n,$$

with an error exponentially small as $x \to 0$.

Remark. The asymptotic function $f(x)$ in (2.10) is not unique; there is also the family of functions $f_\epsilon(x) = f(x) + \epsilon \exp(-1/ax)$ for $\epsilon \neq 0$ with $|\epsilon|$ small enough.

2c. Strong asymptotics and uniqueness of the function (Carleman). Consider the formal power series $\sum_{n}^{\infty} c_n z^n$ and the function $f(z)$. If there exist $X, C_N > 0$ such that

$$\sum_{N} \frac{1}{\sqrt[N]{C_N}} = \infty$$

and $f(z)$ is analytic on

$$D_X = \{ z : |z| \leq X, \ |\arg(z)| \leq \pi/2 \}$$

with

$$\left| f(z) - \sum_{n=0}^{N-1} c_n z^n \right| \leq C_N |z|^N$$

uniformly for $N \in \mathbb{N}$ and $z \in D_X$, then the function $f(z)$ is uniquely defined on D_X by the formal series and is called the sum of the series.

2d. Direct methods of sum. We define more general approximants of the series (2.8), not only the polynomials $S_n(z) = \sum_{k=0}^{n} c_k z^k$ but also the rational functions called diagonal Padé approximants:

$$\frac{Q_j(z)}{P_j(z)} = S_{2j}(z) + O(z^{2j+1})$$

where $P_j(z)$ and $Q_j(z)$ are polynomials of degree j, with $P_j(0) = 1$. If they converge, we say that the series is summable, and the limit is called the Padé sum. Let us notice that in the case (2.9) the approximants are exact:

$$\frac{Q_j(z)}{P_j(z)} = f(z), \quad z \neq -1,$$

for all $j \geq 1$.

Another regular method of sum is the Borel one.
For the series of Example 1, we call the Borel transform the entire function defined by the convergent series

\[f^B(z) = \sum_{k=0}^{\infty} \frac{c_k}{k!} z^k = \sum_{k=0}^{\infty} \frac{1}{k!} (-z)^k = \exp(-z), \]

and we get the sum of the original series by the integral

\[f(z) = \int_0^\infty f^B(tz) \exp(-t) \, dt = \int_0^\infty \exp(-t(1+z)) \, dt \]
on the half-plane \(\Re z > -1 \).

Example 2 (Euler function (1770)). We may take

\[f(z) = \int_0^\infty \frac{1}{1+zt} \exp(-t) \, dt = \sum_{k=0}^{\infty} c_k z^k, \quad c_k = (-1)^k k!. \]

In this case, the power series converges nowhere, but we understand by inspection that it is the Borel sum of the Borel transform, \(f^B(z) = (1+z)^{-1} \), on the half-plane \(\Re z > 0 \).

Remark. In this case, the Borel transform is not entire, and the analytic continuation of the Borel transform on the half-axis is not automatic. In any case, the Borel summability does not directly give convergent approximants, but it is not difficult to find them by mapping the region of analyticity of the Borel transform on a disk containing the origin.

Criterion of Borel summability of a series to a function (Nevanlinna) [Caliceti et al. 1986]. Let us consider the formal power series \(\sum_{n=0}^{\infty} c_n z^n \) and the function \(f(z) \). If there exist \(X, C_N > 0 \) such that

\[C_N = O(A^N N!) \]

and the function is analytic and

\[\left| f(z) - \sum_{n=0}^{N-1} c_n z^n \right| \leq C_N |z|^N, \quad D_X = \{ z : |z - X| < X \} \]

uniformly for \(N \) and \(z \), then the function is uniquely defined as the Borel sum of the formal series.

Returning to the problem, is it possible for the Padé approximants to do better? Yes! Stieltjes (1894) proved the convergence of the Padé approximants on all of the cut plane \(\mathbb{C}_c = \{ z \in \mathbb{C} : z \neq 0, |\arg(z)| < \pi \} \). Our function can be written

\[f(z) = yg(y) = y \int_0^\infty \frac{1}{y+t} \exp(-t) \, dt = \int_0^\infty \frac{1}{1+tz} \exp(-t) \, dt = \sum_j (-1)^j c_j z^j, \]
where \(y = 1/z \) and \(g(y) \) is a Stieltjes function with the associated continued fraction (Laguerre) [Wall 1948]

\[
g(y) = 1/(y + 1/(1 + 1/(y + 2/(1 + 2/(y + 3/(\cdots)))))).
\]

The approximants of the continued fraction are the Padé approximants of the series.

Definition. A Stieltjes function is a bounded analytic function on the cut plane, real for \(z > 0 \), with \(g(z) = g(\bar{z}) \), which satisfies the Herglotz property [Shohat and Tamarkin 1943, Lemma 2.2],

\[
\Im g(z) < 0, \quad \Im z \neq 0,
\]

vanishing at \(\infty \). In this case, by the Stieltjes–Stone inversion formula, the nondecreasing measure \(\mu(t) \) with \(\mu(-\infty) = \mu(0) = 0 \) and \(\mu(t) = (\mu(t-0) + \mu(t+0))/2 \) is defined by

\[
\mu(b) - \mu(a) = \lim_{\epsilon \to 0} -\frac{1}{2i\pi} \int_a^b (g(t+i\epsilon) - g(t-i\epsilon)) \, dt,
\]

for any \(a \) and \(b \) with \(0 \leq a < b \), such that

\[
g(z) = \int_0^\infty \frac{1}{z+t} \, d\mu(t) := S\left(\frac{1}{z+t}\right).
\]

Definition of the series of Hamburger (more general than the Stieltjes one) and the Hamburger moment problem. Let us consider the real sequence \(c := \{c_n\}_{n \in \mathbb{N}} \). There exists a nondecreasing function \(\mu \), taking on infinitely many values in the interval \([-\infty, \infty)\), such that the sequence \(c \) is the sequence of the moments of the measure \(d\mu \):

\[
c_n = \int_{-\infty}^{\infty} t^n \, d\mu(t) := S(t^n) \in \mathbb{R} \quad \text{for all } n \in \mathbb{N}.
\]

The existence of a measure is proved if and only if we have the positivity of the sequence of \(n \times n \) matrices

\[
(A_n)_{j,k} = c_{j+k}
\]

so that the determinants

\[
D_n = \det A_n > 0 \quad \text{for all } n \in \mathbb{N}.
\]

We can set \(c_0 = D_0 = D_{-1} = 1 \).
2e. The Stieltjes series and the Stieltjes moment problem. Let us consider the real sequence \(c := \{c_n\}_{n \in \mathbb{N}} \). There exists a nondecreasing function \(\mu \), taking on infinitely many values in the interval \([0, \infty)\), such that the sequence \(c \) is the sequence of the moments of the measure \(d\mu \):

\[
c_n = \int_0^\infty t^n \, d\mu(t) := S(t^n) \in \mathbb{R} \quad \text{for all } n \in \mathbb{N}.
\]

The existence is proved if and only if we have the positivity of the two sequences of \(n \times n \) matrices \((A_n)_{j,k} = c_{j+k}\), \((B_n)_{j,k} = c_{j+k+1}\) so that we have

\[
D_n = \det A_n > 0 \quad \text{for all } n \in \mathbb{N}.
\]

We can set \(c_0 = D_0 = D_{-1} = 1 \).

2f. Definition of orthonormal polynomials. The orthonormal polynomials \(P_n(t) \) for the measure \(d\mu \) and the mean \(S \),

\[
S(P_n P_m) = \delta^n_m,
\]

have an explicit expression:

\[
P_n(t) = \frac{1}{\sqrt{D_{n-1}D_n}} \det \begin{pmatrix}
 c_0 & c_1 & \cdots & c_n \\
 c_1 & c_2 & \cdots & c_{n+1} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{n-1} & c_n & \cdots & c_{2n-1} \\
 1 & t & \cdots & t^n
\end{pmatrix} = \sqrt{\frac{D_{n-1}}{D_n}} t^n + R_{n-1}(t).
\]

It is easy to prove that

\[
S(P_n(t)t^m) = \sqrt{(D_n/D_{n-1})} \delta^n_m
\]

if \(m \leq n \). Let us expand

\[
t P_n(t) = a_{n,n+1} P_{n+1}(t) + a_{n,n} P_n(t) + a_{n,n-1} P_{n-1}(t) + \cdots.
\]

Comparing the leading coefficients, we get

\[
a_{n,n+1} = \frac{\sqrt{D_{n-1}D_{n+1}}}{D_n}.
\]

Multiplying by \(P_m(t) \) and taking the mean, we get

\[
a_{n,n-j} = S(t P_n(t) P_{n-j}(t)) = 0 \quad \text{for all } j > 1, \quad a_{n,n-1} = a_{n-1,n}.
\]
Setting \(b_n = a_{n,n+1} \) and \(a_n = a_{n,n} \), we get the difference equation

\[
t P_n(t) = b_n P_{n+1}(t) + a_n P_n(t) + b_{n-1} P_{n-1}(t), \quad n \in \mathbb{N},
\]

with the boundary conditions given by \(b_{-1} = 0 \) and \(P_0(t) \equiv 1 \).

2g. The determination of the moment problem and the essential self-adjointness of an operator! The determination of the Stieltjes moment problem can be seen as the essential self-adjointness of a positive operator \(B \) in \(\mathcal{H} \). Let us consider a generating vector \(e_0 \) on the domain of all the operators \(D = \bigcap_n B^n \) and the linear space \(L = L(B, e_0) \) generated by the vectors \(\{ e'_n : B^n e_0 \}_{n} \) and the Hilbert subspace \(\mathcal{H}(B, e_0) \), the closure of \(L(B, e_0) \) in \(\mathcal{H} \). \(\hat{A} \) is \(B \) restricted to \(L \). If \(\hat{A} \) is essentially self-adjoint, we call \(A \) its positive self-adjoint closure in \(\mathcal{H}(A, e_0) \) with spectral function \(E(x), x \geq 0 \). In this case, the unique measure \(\mu(x) \) is the mean value of the spectral function on the generating vector \(e_0 \), \(\langle e_0, E(x) e_0 \rangle \), and the Stieltjes function given by the mean value of the resolvent for \(-z \in \mathbb{C}_c\),

\[
g(z) = -\left\langle e_0, \frac{1}{A-z} e_0 \right\rangle = \int_0^\infty \frac{1}{z-x} d\mu(x)
= \frac{c_0}{z} + \frac{c_1}{z^2} + \cdots + \frac{c_{2n-1}}{z^{2n}} + O(1/z^{2n+1}),
\]

(2-11)

for \(|z| \) large, is the Stieltjes sum of its asymptotic series. Let us consider the infinite real Jacobian matrix as the representation of the linear operator \(\hat{A} \) on the canonical basis \(\{ e_n = P_n(\hat{A}) e_0 \}_{n} \) so that

\[
\hat{A} e_k = b_{k-1} e_{k-1} + a_k e_k + b_k e_{k+1}, \quad b_k > 0, \quad k \in \mathbb{N}, \quad b_{-1} = 0.
\]

The operator \(\hat{A} \) is defined as a symmetric operator on the dense set of finite vectors, \(g_N = \sum^N x_k e_k \). We define the adjoint operator \(\hat{A}^* \) by the condition \(g = \sum x_k e_k \in D(\hat{A}^*) \) if there exists \(g^* = \sum y_k e_k \) such that

\[
\langle \hat{A} e_k, g \rangle = \langle e_k, g^* \rangle \quad \text{for all } k \in \mathbb{N} \text{ with } g^* := \hat{A}^* g
\]

or

\[
b_{k-1} x_{k-1} + a_k x_k + b_k x_{k+1} = y_k \quad \text{for all } k \in \mathbb{N}.
\]

Thus, the vector \(g \in D(\hat{A}^*) \) if \(g^* \) is in the space \(l^2 \):

\[
\sum_k \left| b_{k-1} x_{k-1} + a_k x_k + b_k x_{k+1} \right|^2 < \infty.
\]

The deficiency index of the operator \(\hat{A} \) is \((0, 0)\) or \((1, 1)\). We look for complex eigenvalues of \(\hat{A}^* \):

\[
\hat{A}^* g = \sum (b_{k-1} x_{k-1} + a_k x_k + b_k x_{k+1}) e_k
= \sum x_k (b_{k-1} e_{k-1} + a_k e_k + b_k e_{k+1}) = \lambda \sum x_k e_k := \lambda g
\]
so that
\[\lambda x_k = b_{k-1}x_{k-1} + a_k x_k + b_k x_{k+1}, \quad k \in \mathbb{Z}_+, \] (2-12)
with boundary conditions \(\lambda x_0 = a_0 x_0 + b_0 x_1 \) or \(x_1 = (\lambda - a_0)x_0/b_0, \) \(x_0 = c \neq 0, \) so that \(x_k = c P_k(\lambda). \) The same recurrence relation (2-12), with initial conditions \(Q_0(\lambda) = 0 \) and \(Q_1(\lambda) = 1/b_0, \) defines the polynomials \(Q_k(\lambda). \)

It is equivalent to consider the relation
\[zY_{k+1}(z) = (z - a_k)Y_k(z) - b_{k-1}^2 Y_{k-1}(z), \quad k \in \mathbb{Z}_+, \] (2-13)
with solutions \(N_k \) and \(M_k \) for boundary conditions \(N_0 = Q_0 = 0, \) \(N_1 = 1, \) \(M_0 = P_0 = 1 \) and \(M_1 = z - a_0: \)
\[M_k(z) = b_0 b_1 \cdots b_{k-1} P_k(z), \quad N_k(z) = b_0 b_1 \cdots b_{k-1} Q_k(z), \quad k > 0, \]
\[g(z) = 1/(z - a_0 - b_0^2/(z - a_1 - b_1^2/(z - a_2 - b_2^2/(z - a_3 - \cdots)))) \]
\[= \frac{Q_k(z)}{P_k(z)} + O(1/z^{2k+1}). \]

In the determined case the sequence of diagonal Padé approximants converge for \(z \in \mathbb{C}_c \) to the function
\[g(z) = \lim_{k \to \infty} \left(\frac{N_k(z)}{M_k(z)} = \frac{Q_k(z)}{P_k(z)} \right). \]
Thus, we have deficiency index \((0, 0)\) if and only if
\[\sum_k |P_k(\lambda)|^2 = \infty. \] (2-14)

We have the analogue of the Liouville–Ostrogradskii formula for \(k \in \mathbb{Z}_+: \)
\[b_{k-1} P_{k-1} Q_k - P_k b_{k-1} Q_{k-1} = -b_k P_{k+1} Q_k + P_k b_k Q_{k+1} = b_0 P_0 Q_1 - P_1 b_0 Q_0 = 1 \]
or
\[P_{k-1} Q_k - P_k Q_{k-1} = P_{k-1} Q_{k-1}' - P_{k-1}' Q_{k-1} = \frac{1}{b_{k-1}}, \] (2-15)
where
\[Q_{k-1}' = Q_k - Q_{k-1}, \quad P_{k-1}' = P_k - P_{k-1}. \]

Theorem (Hellinger). Let us fix \(z, n \in \mathbb{Z}_+ \) and
\[w_n(t) := w_n(z, t) = -\frac{Q_n(z) - t Q_{n-1}(z)}{P_n(z) - t P_{n-1}(z)}, \quad \Im(z) \neq 0, \]
where \(w_n(z, \infty) = w_{n-1}(z, 0). \) The images of \(w_n : \mathbb{R} \to \mathbb{C} \) are nested circles of \(n \)-decreasing radii
\[r = r(n, z) = \frac{1}{|\Im(z)| \sum_{k=0}^{n-1} |P_k(z)|^2}. \]
In the case of zero deficiency index, we have the limit point case: \(r(n, z) \to 0 \), as \(n \to \infty \), and \(w_n(z, t) \) have a \(t \)-independent limit as \(n \to \infty \).

Theorem (criterion). Let

\[
\sum_n \frac{1}{b_n} = \infty.
\]

The \(J \)-matrix is determinate: we have a unique solution of the moment problem and convergence of the continued fraction.

Proof. Use the formula (2-15):

\[
\sum_{k=1}^{n} \frac{1}{b_{k-1}} = \left| \sum_{k=1}^{n} (P_{k-1} Q_k - P_k Q_{k-1})(\lambda) \right| \\
\leq 2 \left(\sum_{k=0}^{n} |Q_k^2(\lambda)| \sum_{k=0}^{n} |P_k^2(\lambda)| \right).
\]

\(\square \)

Theorem (Carleman criterion). If

\[
\sum_n \frac{1}{\sqrt{2n c_n}} = \infty,
\]

then the Hamburger moment problem

\[
c_k = \int_{-\infty}^{\infty} x^k d\mu(x),
\]

is determinate.

Proof. From (2-12) we have

\[
b_0 b_1 \cdots b_{n-1} P_n(\lambda) = \lambda^n + O(\lambda^{n-1})
\]

for \(\lambda \) large. Hence,

\[
b_0 \cdots b_{n-1} S(P_n^2) = \int_{-\infty}^{\infty} x^n P_n(x) d\mu(x) \leq \sqrt{c_{2n}} \sqrt{S(P_n^2)},
\]

or since \(S(P_n^2) = 1 \),

\[
b_0 \cdots b_{n-1} \leq \sqrt{c_{2n}},
\]

and

\[
\infty = \sum_n \frac{1}{\sqrt{2n c_{2n}}} \leq \sum_n \frac{1}{\sqrt{b_0 \cdots b_{n-1}}} < e \sum_n \frac{1}{b_n}
\]

for a general inequality of Carleman.
The determined Hamburger moment problem corresponds to a determined Stieltjes one:

\[c'_n = \int_0^\infty y^n \, d\mu'(y) \]

where \(c'_n = c_{2n} \), \(y = x^2 \) and

\[d\mu'(y) := d\mu(\sqrt{y}) + d\mu(-\sqrt{y}) \]

is the unique solution. □

References

Received 29 Sep 2016. Accepted 31 Oct 2016.

VINCENZO GRECCHI: vincenzo.grecchi@unibo.it
Dipartimento di Matematica, Università di Bologna, I-40126 Bologna, Italy
and
Gruppo Nazionale di Fisica Matematica, Istituto Nazionale di Alta Matematica Francesco Severi, I-00185 Roma, Italy
MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS

msp.org/memocs

EDITORIAL BOARD
ANTONIO CARCATERA Università di Roma “La Sapienza”, Italy
ERIC A. CARLENE Rutgers University, USA
FRANCESCO DELL’ISOLA (CO-CHAIR) Università di Roma “La Sapienza”, Italy
RAFAELLE ESPOSTO (TREASURER) Università dell’Aquila, Italy
ALBERT FANNING University of California at Davis, USA
GILLES A. FRANCORT (CO-CHAIR) Université Paris-Nord, France
PIERANGELO MARCATI Università dell’Aquila, Italy
JEAN-JACQUES MARIGO École Polytechnique, France
PIETER A. MARKOWICH DAMTP Cambridge, UK, and University of Vienna, Austria
MARTIN OSTIOA-STARZEWITZ (CHAIR MANAGING EDITOR) Univ. of Illinois at Urbana-Champaign, USA
PIERRE SEPPECHER Université du Sud Toulon-Var, France
DAVID J. STEIGMANN University of California at Berkeley, USA
PAUL STEINMANN Universität Erlangen-Nürnberg, Germany
PIERRE M. SUQUET LMA CNRS Marseille, France

MANAGING EDITORS
MICUL AMAR Università di Roma “La Sapienza”, Italy
CORRADO LATTANZIO Università dell’Aquila, Italy
ANGELA MADEO Université de Lyon–INSA (Institut National des Sciences Appliquées), France
MARTIN OSTIOA-STARZEWITZ (CHAIR MANAGING EDITOR) Univ. of Illinois at Urbana-Champaign, USA

ADVISORY BOARD
ADNAN AKAY Carnegie Mellon University, USA, and Bilkent University, Turkey
HOLM ALTENBACH Otto-von-Guericke-Universität Magdeburg, Germany
MICUL AMAR Università di Roma “La Sapienza”, Italy
HARM ASKES University of Sheffield, UK
TEODOR ATANACKOVIC University of Novi Sad, Serbia
VICTOR BEREZICHIEVSKY Wayne State University, USA
GUY BOUCHITTE Université du Sud Toulon-Var, France
ANDREA BRAIDES Università di Roma Tor Vergata, Italy
ROBERTO CAMASSA University of North Carolina at Chapel Hill, USA
MAURO CARFORE Università di Pavia, Italy
ERIC DARVE Stanford University, USA
FÉLIX DARVE Institut Polytechnique de Grenoble, France
ANNA DE MASI Università dell’Aquila, Italy
GIANPIETRO DEL PIERO Università di Ferrara and International Research Center MEMOCS, Italy
EMMANUELE DI BENEDETTO Vanderbilt University, USA
BERNOLD FIEDLER Freie Universität Berlin, Germany
IRENE M. GAMBA University of Texas at Austin, USA
DAVID Y. GAO Federation University and Australian National University, Australia
SERGEY GAVRILYUK Université Aix-Marseille, France
TIMOTHY J. HEALEY Cornell University, USA
DOMINIQUE JUILIN École des Mines, France
ROGER E. KHAYAT University of Western Ontario, Canada
CORRADO LATTANZIO Università dell’Aquila, Italy
ROBERT P. LIPTON Louisiana State University, USA
ANGELO LUONGO Università dell’Aquila, Italy
ANGELA MADEO Université de Lyon–INSA (Institut National des Sciences Appliquées), France
JUAN J. MANFREDI University of Pittsburgh, USA
CARLO MARCHIORO Università di Roma “La Sapienza”, Italy
GÉRARD A. MAUGIN Université Paris VI, France
ROBERTO NATALINI Istituto per le Applicazioni del Calcolo “M. Picone”, Italy
PATRIZIO NIEF Universität Duisburg-Essen, Germany
ANDREY PIATNITSKI Narvik University College, Norway, Russia
ERRECO PRESUTTI Università di Roma Tor Vergata, Italy
MARIO PULVIRENTI Università di Roma “La Sapienza”, Italy
LUCIO RUSSO Università di Roma “Tor Vergata”, Italy
MIGUEL A. F. SANJUAN Universidad Rey Juan Carlos, Madrid, Spain
PATRICK SELVADURAI McGill University, Canada
ALEXANDER P. SEVRANIAN Moscow State Lomonosov University, Russia
MIROSLAV ŠILHÁVY Academy of Sciences of the Czech Republic
GUIDO SWEERS Universität zu Köln, Germany
ANTOINETTE TORDESILLAS University of Melbourne, Australia
LEV TRUSKINSKOVY École Polytechnique, France
JUAN J. L. VELÁZQUEZ Bonn University, Germany
vincenzo vesprri Università di Firenze, Italy
ANGELO VULPIANI Università di Roma La Sapienza, Italy

MEMOCS (ISSN 2325-3444 electronic, 2326-7186 printed) is a journal of the International Research Center for the Mathematics and Mechanics of Complex Systems at the Università dell’Aquila, Italy.

Cover image: “Tangle” by © John Horigan; produced using the Context Free program (contextfreeart.org).

PUBLISHED BY
mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2016 Mathematical Sciences Publishers
Mathematics and Mechanics of Complex Systems
vol. 4 no. 3-4 2016

Special issue in honor of Lucio Russo

Lucio Russo: A multifaceted life
Raffaele Esposito and Francesco dell’Isola 197

The work of Lucio Russo on percolation
Geoffrey R. Grimmett 199

“Mathematics” and “physics” in the science of harmonics
Stefano Isola 213

From quantum to classical world: emergence of trajectories in a quantum system
Rodolfo Figari and Alessandro Teta 235

Propagation of chaos and effective equations in kinetic theory: a brief survey
Mario Pulvirenti and Sergio Simonella 255

What decides the direction of a current?
Christian Maes 275

A remark on eigenvalue perturbation theory at vanishing isolation distance
Fiorella Barone and Sandro Graffi 297

Some results on the asymptotic behavior of finite connection probabilities in percolation
Massimo Campanino and Michele Gianfelice 311

Correlation inequalities for the Potts model
Geoffrey R. Grimmett 327

Quantum mechanics: some basic techniques for some basic models, I: The models
Vincenzo Grecchi 335

Quantum mechanics: some basic techniques for some basic models, II: The techniques
Vincenzo Grecchi 353

On stochastic distributions and currents
Vincenzo Capasso and Franco Flandoli 373

A note on Gibbs and Markov random fields with constraints and their moments
Alberto Gandolfi and Pietro Lenarda 407

Quantum mechanics: light and shadows (ontological problems and epistemic solutions)
Gianfausto Dell’Antonio 423

Lucio Russo: probability theory and current interests
Giovanni Gallavotti 461

An attempt to let the “two cultures” meet: relationship between science and architecture in the design of Greek temples.
Claudio D’Amato 471

MEMOCS is a journal of the International Research Center for the Mathematics and Mechanics of Complex Systems at the Università dell’Aquila, Italy.