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In many applications, it is of great importance to handle random closed sets
of different (even though integer) Hausdorff dimensions, including local infor-
mation about initial conditions and growth parameters. Following a standard
approach in geometric measure theory, such sets may be described in terms of
suitable measures. For a random closed set of lower dimension with respect to
the environment space, the relevant measures induced by its realizations are sin-
gular with respect to the Lebesgue measure, and so their usual Radon–Nikodym
derivatives are zero almost everywhere. In this paper, how to cope with these
difficulties has been suggested by introducing random generalized densities (dis-
tributions) á la Dirac–Schwarz, for both the deterministic case and the stochastic
case. For the last one, mean generalized densities are analyzed, and they have
been related to densities of the expected values of the relevant measures. Ac-
tually, distributions are a subclass of the larger class of currents; in the usual
Euclidean space of dimension d, currents of any order k ∈ {0, 1, . . . , d} or k-
currents may be introduced. In this paper, the cases of 0-currents (distributions),
1-currents, and their stochastic counterparts are analyzed. Of particular interest
in applications is the case in which a 1-current is associated with a path (curve).
The existence of mean values has been discussed for currents too. In the case
of 1-currents associated with random paths, two cases are of interest: when the
path is differentiable, and also when it is the path of a Brownian motion or (more
generally) of a diffusion. Differences between the two cases have been discussed,
and nontrivial problems are mentioned which arise in the case of diffusions. Two
significant applications to real problems have been presented too: tumor driven
angiogenesis, and turbulence.

1. Introduction: preliminaries and notation

Many real phenomena may be modeled as random closed sets in Rd, and in several
situations as evolving random closed sets. Application areas include crystallization
processes: Figures 1 and 2 (see [Capasso 2003; Capasso and Micheletti 2006], and
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Figure 1. The final tessellation in a real experiment of a crystal-
lization process of a polymer [MONTELL-Italy].

references therein; see also [Ubukata 2003] for the crystallization processes on sea
shells, and [Callister Jr. 2007, p. 92; Hochrainer et al. 2007; Kassner et al. 2000]
for dislocations: Figure 3); tumor growth [Anderson 2003]; angiogenesis: Figure 6
[Carmeliet and Jain 2000]; patterns in biology: Figure 4; the spread of a pollutant
in an environment; etc.

All quoted processes may be described by time dependent random closed sets at
different Hausdorff dimensions (for instance, crystallization processes are modeled
in general by full dimensional growing sets and lower dimensional interfaces, while
angiogenesis by systems of random curves). In many cases, because of the coupling
with suitable underlying fields (such as temperature, nutrients, etc.), these kinds of
phenomena may be modeled as space-time structured stochastic processes, whose
geometric structure is of great relevance, as discussed in [Capasso et al. 2013].

A rigorous definition of the relevant geometric quantities in a stochastic setting
of the above systems (fibers for angiogenesis, dislocations for crystalline materials,
etc.) is very important for statistical applications (see, e.g., [Ambrosio et al. 2009;
Camerlenghi et al. 2014]), and in mean field approximations (see, e.g., [Bonilla
et al. 2017; Hochrainer et al. 2007; Bessaih et al. 2017]).

A presentation of an angiogenesis model will be offered later in Section 4.1.
For definitions and basic properties of Hausdorff measure and Hausdorff dimen-

sion see, e.g., [Ambrosio et al. 2000; Falconer 1986; Federer 1996; Morgan 1998].
We remind here the concepts and results of current literature which are relevant

for our analysis. Actually, the subject of stochastic geometry, considered here in
the direction of geometric measure theory, does have a nontrivial intersection with
the literature on convex geometry for which the reader may refer to [Baddeley et al.
2007] and references therein.
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Figure 2. The final tessellation in a simulated experiment of a
crystallization process of a polymer. This picture, together with
the real one, shows the relevance of components at all integer
Hausdorff dimensions for describing the final morphology [Burger
et al. 2002].

1µm

Figure 3. Dislocations in copper crystals [M. Kassner; private collection].

Figure 4. Pattern formation in a lichen colony [V. Capasso; pri-
vate collection].
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Figure 5. Angiogenesis on a rat cornea [Dejana, personal collection].

Figure 6. Vascularization of an allantoid. [Dejana, personal col-
lection]. An important example of a fiber process of Hausdorff
dimension 1 in a 3D space.

Let us consider the space Rd for d > 1, and denote by νd the usual d-dimensional
Lebesgue measure, and by BRd the Borel σ -algebra of Rd.

We know that every positive Radon measure µ on Rd can be represented as

µ= µ�+µ⊥,

where µ� and µ⊥ are the absolutely continuous part with respect to νd and the
singular part of µ, respectively. We shall denote by Br (x) the d-dimensional closed
ball centered in x with radius r .

Let us denote by Hs the s-dimensional Hausdorff measure.
We will consider a class of subsets of Rd with integer Hausdorff dimension.

Definition 1. Given an integer n ∈ [0, d], we say that a closed subset A of Rd is
n-regular if it satisfies the following conditions:

(i) Hn(A∩ BR(0)) <∞ for any R > 0;



ON STOCHASTIC DISTRIBUTIONS AND CURRENTS 377

(ii) lim
r→0

Hn(A∩ Br (x))
bnrn = 1 for Hn-a.e. x ∈ A.

We recall that when n is integer, then b(n)= bn , which is the volume of the unit
ball in Rn.

Note that condition (ii) is related to a characterization of the Hn-rectifiability of
the set A [Falconer 1986, p.256, 267; Ambrosio et al. 2000, p.83].

Remark 2. We may observe that if 2 is an n-regular closed set in Rd, we have

lim
r→0

Hn(2∩ Br (x))
bnrn =

{
1 Hn-a.e. x ∈2,
0 for x 6∈2.

(1-1)

In fact, since 2C is open, for all x 6∈2 there exists r0 > 0 such that for all r ≤ r0,
we have Br (x)⊂2C, that is Hn(2∩ Br (x))= 0 for all r ≤ r0; thus the limit equals
0 for all x ∈2C.

For a general set A, problems about “Hn-a.e.” and “for all” may arise when we
consider a point x ∈ ∂A where the boundary is not a regular manifold. For example,
if A is a closed square in R2, for all points x on the edges,

lim
r→0

H2(A∩ Br (x))
b2r2 =

1
2
,

while for each of the four vertices the limit equals 1
4 .

Observe that in both cases the set of such points has H2-measure zero.

From now on we shall consider n-regular closed sets 2 in Rd, with 0≤ n ≤ d.
As a consequence, for n < d (by assuming 0 ·∞ = 0) by (1-1) we also have

lim
r→0

Hn(2∩ Br (x))
bdrd = lim

r→0

Hn(2∩ Br (x))
bnrn

bnrn

bdrd =

{
∞ Hn-a.e. x ∈2,
0 for x 6∈2.

Note that in the particular case n = 0, with 2 = X0 point in Rd (X0 is indeed a
0-regular closed set),

lim
r→0

H0(X0 ∩ Br (x))
bdrd =

{
∞ if x = X0,

0 if x 6= X0.

Note that if 2 is an n-regular closed set in Rd with n < d , then the Radon measure

µ2(·) :=Hn(2∩ ·)

is a singular measure with respect to νd.
It is then clear that the quantity

δ2(x) := lim
r→0

Hn(2∩ Br (x))
bdrd , x ∈ Rd,
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associated with 2 cannot be considered as a classical function. But, analogously
to the Dirac delta function δX0(x) associated with a point X0 ∈ Rd, we may refer
to it as a generalized density (or the generalized Radon–Nikodym derivative of
the measure µ2 with respect to νd), or better as a distribution á la Schwarz (see
Section 2).

We may notice that in the case 2= X0, the generalized density δX0(x) coincides
with the well-known Dirac delta function at a point X0 that is the (generalized)
density of the singular Dirac measure εX0 [Kolmogorov and Fomin 1970].

The usefulness of introducing these generalized functions associated with sets
of any dimension n ∈ {0, . . . , d}, in particular in the stochastic case, has been
discussed in various papers [Matheron 1965; Ambrosio et al. 2009; Burger et al.
2002; Capasso and Villa 2006; 2007; Vladimirov 1979].

The previous ideas extend to another framework, the one of currents. First, let us
restrict ourselves to the so-called 1-currents, which heuristically are distributional
generalizations of the concept of vector fields. In the smooth case, a 1-current in Rd

is simply a smooth vector field ξ : Rd
→ Rd. A smooth vector field ξ(x) acts on

test functions (above we have introduced objects using the language of measures,
but here it is more natural to use directly the language of test functions) as

(ξ, θ)=

∫
Rd
〈ξ(x), θ(x)〉 dx,

for all smooth test vector fields θ : Rd
→ Rd. But, similarly to the case of measures

concentrated on lower-dimensional subsets 2 of Rd, we may consider vector fields
concentrated on lower-dimensional subsets. Let us restrict further our discussion
of 1-currents to the case of currents associated with curves. Given a smooth curve
γ : [a, b] → Rd, the concept of current associates to it a distribution vector field
concentrated along the curve, and having the direction tangent to the curve. The
action on smooth test vector fields θ : Rd

→ Rd is

(ξ, θ)=

∫ b

a
〈θ(γ (t)), γ ′(t)〉 dt,

or, in the more intuitive language that we shall explain in the sequel,

ξ(x)=
∫ b

a
δγ (t)(x)γ ′(t) dt,

which emphasizes the fact that the vector field is localized on the curve, with the
direction of the tangent.

In Section 2 we present densities of measures as linear functionals for both the
deterministic and the stochastic case; special emphasis is given to random function-
als associated with random closed sets and their mean values. Section 3 is devoted
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to 1-currents with their stochastic counterparts. Finally Section 4 presents exam-
ples of significant applications of real interest, such as tumor driven angiogenesis
and turbulence.

2. Densities as linear functionals

2.1. The deterministic case. We know that the Dirac delta δX0 at a point X0 ∈ Rd

can be defined as a linear functional associated with a finite Borel measure, the
well-known Dirac measure εX0 , concentrated at X0; as such it is the (generalized)
density of εX0 . In fact, we recall that, according to the Riesz representation theorem
(see, e.g., [Folland 1999, p. 212]), Radon measures in Rd (i.e., nonnegative and σ -
additive set functions defined on the Borel σ -algebra BRd that are finite on bounded
sets) can be canonically identified with linear and order preserving functionals on
Cc(R

d,R), the space of continuous functions with compact support in Rd. The
identification is provided by the integral operator, i.e.,

(µ, f )=
∫

Rd
f dµ ∀ f ∈ Cc(R

d,R).

If µ� νd, it admits (as a Radon–Nikodym density) a classical function δµ defined
almost everywhere in Rd , so that

(µ, f )=
∫

Rd
f (x)δµ(x) dx ∀ f ∈ Cc(R

d,R),

in the usual sense of a Lebesgue integral.
If µ ⊥ νd, we may speak of a density δµ only in the sense of distributions

(formally, it is almost everywhere trivial, but it is∞ on a set of νd -measure zero).
In this case, the symbol ∫

Rd
f (x)δµ(x) dx := (µ, f )

can still be adopted, provided the integral on the left-hand side is understood in a
generalized sense, and not as a Lebesgue integral.

In either case, from now on, we may denote by (δµ, f ) the quantity (µ, f ).
Accordingly, we say that a sequence of measures µn weakly∗ converges to a Radon
measure µ if (δµn , f ) converges to (δµ, f ) for any f ∈ Cc(R

d,R). A classical
criterion (see, for instance, [Evans and Gariepy 1992, p. 54; Ambrosio et al. 2000])
states that µn weakly∗ converge to µ if and only if µn(A)→µ(A) for any bounded
open set A with µ(∂A)= 0.

By the common integral representation for generalized functions,∫
A
δX0(x) dx := εX0(A)=H0(X0 ∩ A),
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we have

(δX0, f )=
∫

Rd
δX0(x) f (x) dx = f (X0), f ∈ Cc(R

d ,R).

Now we are ready to introduce the delta function of an n-regular set 2 as the
linear functional (the generalized function) δ2 in a similar way.

Consider the measure defined on the Borel σ -algebra of Rd, as follows:

µ2(A) :=Hn(2∩ A), A ∈ BRd . (2-1)

The linear functional associated with it is

(µ2, f ) :=
∫

Rd
f (x)µ2 dx (2-2)

for f ∈ Cc(R
d ,R).

In accordance with what we have said in the Introduction, the following holds.

Proposition 3. If n is an integer strictly less than dp the measure µ2 is a singular
measure with respect to the usual Lebesgue measure on Rd.

In accordance with the usual representation of distributions in the theory of
generalized functions, we formally write∫

Rd
f (x)µ2 dx =

∫
Rd

f (x)δ2(x) dx =: (δ2, f ). (2-3)

Remark 4. We may notice that the classical Dirac delta δX0(x) associated to a
point X0 is now a particular case corresponding to n = 0. If 2 is a piecewise
smooth surface S in Rd (and so 2-regular), then by the definition in (2-2), it follows
that for any test function f,

(δS, f )=
∫

S
f (x) dS,

which is the definition of δS in [Vladimirov 1979, p. 33].

In terms of the above arguments, we may state that δ2(x) is the (generalized)
density of the measure µ2, defined by (2-1), with respect to the usual Lebesgue
measure νd on Rd. Note that if n= d , then µ2 is absolutely continuous with respect
to νd, so that δ2 is its classical Radon–Nikodym derivative [Kolmogorov 1956].

2.1.1. Paths: 1-dimensional sets.

Definition 5. A path (or curve or line) in Rd is a continuous mapping γ : [a, b] ⊂
R→ Rd. The point γ (a) is called the initial point, and the point γ (b) is called the
final point. The image of the path γ ([a, b]) is called the arc or the support of γ . A
path γ is closed if its end points coincide; it is simple if it has no multiple points
(apart from possibly the end points for a closed path).
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If we denote by e j : j = 1, . . . , d the canonical basis of Rd, we may introduce
the components of the vector function γ as

γ j = 〈e j , γ 〉 : [a, b] → R.

For t ∈ (a, b), we put

γ ′(t) := lim
h→t;h∈[a,b]

γ (h)− γ (t)
h− t

whenever the limit exists. This is equivalent to state that all derivatives

γ ′j (t) := lim
h→t;h∈[a,b]

γ j (h)− γ j (t)
h− t

, j = 1, . . . , d,

exist in t .

Definition 6. A path γ : [a, b]→Rd is said to be smooth if it is a function of class
C1([a, b]) and γ ′(t) 6= 0 for any t ∈ (a, b).

An additional piece of information related to the regularity of a path regards the
evaluation of its arc length.

Definition 7. Let γ : [a, b] → Rd be a path and let 5 the set of all finite partitions
π := {a = t1 < · · ·< tk = b} of the interval [a, b]. Denote by

L(γ, π) :=
k−1∑
i=1

‖γ (ti+1)− γ (ti )‖.

The path γ is said rectifiable or of bounded variation if

L(γ ) := sup
π∈5

L(γ, π) <+∞;

this quantity is referred to as the length of γ .

The following theorem holds [Galbis and Maestre 2012, p. 24].

Theorem 8. If γ is a smooth curve whose domain is an interval [a, b] ⊂ R, then it
is rectifiable and its length is given by

L(γ )=
∫ b

a
‖γ ′(t)‖ dt.

Remark 9. The above theorem can be easily extended to a piecewise smooth path
[Galbis and Maestre 2012, p. 26].

Example 10. The following are examples of smooth simple curves:

1. A segment in Rd with end points xini and xfin ∈ Rd :

0 =
{

xini · t + xfin · (1− t) : t ∈ [0, 1]
}
.
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2. A circle in R2:
0 =

{
(cos t, sin t) : t ∈ [0, 2π ]

}
.

These sets are 1-regular, according to Definition 1.

If γ : [a, b] → Rd is a smooth path, denote by 0 := γ ([a, b])⊂ Rd its support;
we may associate to 0 the Radon measure defined as

µ0 : A ∈ BRd 7→ µ0(A) :=H1(0 ∩ A). (2-4)

The following theorem shows the action of the measure µ0 on test functions
f ∈ Cc(R

d ,Rd) (see, e.g., [Evans and Gariepy 1992]).

Theorem 11. If γ : [a, b] → Rd is a C1([a, b]) simple curve such that 0 =
γ ([a, b]), then for all f ∈ Cc(R

d ,Rd),∫
f (x)µ0 dx =

∫ b

a
f (γ (t))‖γ ′(t)‖ dt. (2-5)

Similarly, for every A ∈ B(Rd),

µ0(A)=
∫ b

a
εγ (t)(A)‖γ ′(t)‖ dt. (2-6)

2.2. The stochastic case.

2.2.1. Random Radon measures. Consider the space Cc(R
d ,R) of continuous func-

tions with compact support. This space is the union of the separable Banach spaces
C(K,R) over all compact sets K ∈ Rd ; let us write ‖ · ‖K for the norm on C(K ):

‖ f ‖K = sup
x∈K
| f (x)|.

The space Cc(R
d ,R) can be endowed with the direct limit topology associated

to a family C(Kn,R) with Kn increasing to Rd ; we do not need the details of
this definition but we need to know the following useful fact: a linear functional
I : Cc(R

d ,R)→ R is continuous if and only if for every compact K ∈ Rd there is
CK > 0 such that

|I ( f )| ≤ CK‖ f ‖K for every f ∈ C(K ,R).

Moreover, the dual of Cc(R
d ,R) is the space of signed Radon measures, which we

shall denote by M.

Definition 12. Given a probability space (�,F, P), a random Radon measure is
a map µ : �→M such that for every f ∈ Cc(R

d ,R), the function (µ, f ) :=∫
Rd f (x)µ dx : �→ R is measurable. We shall write (µω, f ) to emphasize the

dependence on ω when µ is random.
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Proposition 13 (expected value of a random Radon measure). Let µ :�→M be
a random Radon measure. Assume that for every compact K ∈ Rd there is CK > 0
such that ∫

�

|(µω, f )|P dω ≤ CK‖ f ‖K ,

for every f ∈ C(K ,R). Then there exists an element µ̂ ∈M such that

(µ̂, f )=
∫
�

(µω, f )P dω = E[(µ, f )],

for every f ∈ Cc(R
d ,R).

Proof. Define the number (µ̂, f ) by the previous identity; for every f ∈ Cc(R
d ,R),

since f ∈ C(K ,R) for some compact set K , we have
∫
�
|(µω, f )|P dω <∞ by

assumption, hence
∫
�
(µω, f )P dω is well-defined.

Denote by 8 : f ∈ Cc(R
d ,R) 7→ 8( f ) := (µ, f ) ∈ L1(�). We have to show

that, as a function of f, the number (µ̂, f ) is linear continuous on Cc(R
d). Taking

f, g∈Cc(R
d ,R) and α, β ∈R, since8 is linear, we have8ω(α f +βg)=α8ω( f )+

β8ω(g), hence∫
�

8ω(α f +βg)P dω = α
∫
�

8ω( f )P dω+β
∫
�

8ω(g)P dω,

which implies the linearity. For the continuity, for every compact set K and f ∈
C(K ,R), we have

|(µ̂, f )| ≤
∫
�

|8ω( f )(ω)|P dω ≤ CK‖ f ‖K

by assumption, hence µ̂ is a continuous functional. �

Under the assumptions of Proposition 13, the measure µ̂ ∈M, which satisfies
the equality

(µ̂, f )= E[(µ, f )] (2-7)

for every f ∈ Cc(R
d ,R) will be called the expected value of the measure µ and

will be denoted by E[µ].

2.2.2. Random linear functionals. Let S be a separable linear metric space of test
functions, for instance, Cc(R

d,R) or C∞c (R
d,R) or L2(0, T ). Denote by S′ the

space of continuous linear functionals on S. Let (�,F, P) be a probability space.
The following definition generalizes Definition 12.

Definition 14. We call random functional in the strict sense any map φ :�→ S′

such that (φ, f ) is measurable for every f ∈ S.
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Remark 15. The definition above is analogous to the well-known definition for
Banach valued random variables (see, e.g., [Araujo and Giné 1980; Bharucha-Reid
1972; Bosq 2000]).

Later we will consider random functionals in a broad sense.

2.3. Random functionals associated with random closed sets. We recall that a
random closed set 4 in Rd is a measurable map

4 : (�,F,P)−→ (F, σF),

where F denotes the class of the closed subsets in Rd, and σF is the σ -algebra
generated by the so-called hit-or-miss topology (see [Matheron 1975]).

Definition 16. Given an integer n with 0 ≤ n ≤ d, we say that a random closed
set 2 in Rd is n-regular if it satisfies the following conditions:

(i) for almost all ω ∈�, the set 2(ω) is an n-regular closed set in Rd ; and

(ii) E[Hn(2∩ BR(0))]<∞ for any R > 0.

Suppose now that 2 is a random n-regular closed set in Rd. Thanks to the
assumptions on the random set 2, it can be shown that the random measure µ2 is
P-a.s. a Radon measure on BRd ; it can be further shown that, as a map µ2 : ω ∈
� 7→ µ2(ω) ∈M, it is a random Radon measure according to Definition 12 (see,
e.g., [Baddeley and Molchanov 1997; Matheron 1965; Zähle 1982]).

In this case it makes sense to define, for any ω ∈�, the linear functional δ2(ω)
such that, for any f ∈ Cc(R

d ,R):

(δ2, f ) :=
∫

Rd
f (x)µ2(x) dx, P-a.s. (2-8)

According to Definition 14, δ2 is then a random linear functional in the strict sense.
By recollecting all of the above, we may finally state the following.

Proposition 17. Let2 be a random closed n-regular set in Rd. Then the associated
random Radon measure µ2 satisfies the assumption of Proposition 13, and there-
fore the expected value E[µ2] is well-defined. We therefore define the expected
value of the generalized density δ2 by the following identities:

(E[δ2], f )=
∫

Rd
f (x)E[δ2](x) dx

:=
∫

Rd
f (x)E[µ2] dx = E

[∫
Rd

f (x)µ2(x) dx
]

= E

[∫
Rd

f (x)δ2 dx
]
= E[(δ2, f )], (2-9)

for any f ∈ Cc(R
d ,R).
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Proof. Let K be a compact in Rd and f ∈ Cc(K ,R). We have∫
�

|(µ2(ω), f )|P dω =
∫
�

∣∣∣∣∫
Rd

f (x)µ2(ω) dx
∣∣∣∣P dω

≤

∫
�

∫
Rd
| f (x)|µ2(ω) dx P dω

=

∫
�

∫
K
| f (x)|µ2(ω) dx P dω,

because f has support in K , and∫
�

|(µ2(ω), f )|P dω ≤ ‖ f ‖K

∫
�

∫
K
µ2(ω) dx P dω

= ‖ f ‖K

∫
�

µ2(ω)(K )P dω

= ‖ f ‖K E[Hn(2∩ K )]

≤ CK‖ f ‖K ,

by (ii) of the previous definition (the set K is included in a ball BR(0)). Hence we
may apply Proposition 13 for the existence of the expected value E[µ2]. �

2.3.1. Absolutely continuous (in mean) random sets.

Remark 18. When n= d , the integral and expectation in (2-9) can be exchanged by
Fubini’s theorem, since in this case both µ2 and E[µ2] are absolutely continuous
with respect to νd and δ2(x)= 12(x), νd -a.s.

In particular, δ2(x)= 12(x), νd -a.s. implies that

E[δ2](x)= P(x ∈2), νd -a.s.,

and the following chain of equalities are well-known (according to our definition
of E[δ2] [Kolmogorov 1956, p. 46]):

E[νd(2∩ A)] = E

(∫
Rd

12∩A(x) dx
)
= E

(∫
A

12(x) dx
)

=

∫
A

E(12(x)) dx =

∫
A

P(x ∈2) dx . (2-10)

In materials science, the density

ρ(x) := E[δ2](x)= P(x ∈2)

is known as the (degree of) crystallinity.

If2 is not a pathological set, i.e., if Hn(2)(ω)> 0 with P-a.e. for ω ∈� (n< d),
we may notice that, even though for a.e. realization 2 of 2 the measure µ2 is
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positive and singular (and so it is not absolutely continuous), and the expected
measure E[µ2] may be absolutely continuous with respect to νd .

Example. Consider the case n = 0. Let 2= X0 be a random point in Rd ; in this
case, H0(X0 ∩ A)= 1A(X0), and so

E[H0(X0 ∩ A)] = P(X0 ∈ A).

If X0 is a continuous random point with the pdf pX0 , then E[H0(X0 ∩ · )] is abso-
lutely continuous and, in this case, E[δX0](x) is just the probability density function
pX0(x), so

∫
A E[δX0](x)ν

d dx is the usual Lebesgue integral. Note that we formally
have

E[δX0](x)=
∫

Rd
δy(x)pX0(y)ν

d dy =
∫

Rd
δx(y)pX0(y)ν

d dy = pX0(x);

and in accordance with Proposition 17,∫
A

E[δX0](x)ν
d dx =

∫
A

pX0(x)ν
d dx = P(X0 ∈ A)

= E[H0(X0 ∩ A)] = E

[∫
A
δX0(x)ν

d dx
]
. (2-11)

If X0 is discrete, i.e., X0 = xi with probability pi , only for an at most countable
set of points xi ∈ Rd , then E[H0(X0 ∩ · )] is singular and, as in the previous case,
we have that E[δX0](x) coincides with the probability distribution pX0 of X0.

In fact, in this case pX0(x) =
∑

i piδxi (x), and by computing the expectation
of δX0 , we formally obtain

E[δX0](x)= δx1(x)p1+ δx2(x)p2+ · · · =
∑

i

piδxi (x)= pX0(x).

Remark 19. By Remark 18 and the considerations in the above example, we may
claim that, in the cases n = d and n = 0 with X0 being continuous, the expected
linear functionals E[δ2] and E[δX0] are defined by the function ρ(x) := P(x ∈2)
and by the pdf pX0 of X0, respectively, in the following way:

(E[δ2], f ) :=
∫

Rd
f (x)ρ(x) dx

and

(E[δX0], f ) :=
∫

Rd
f (x)pX0(x) dx .

In fact, let us consider the random point X0; in accordance with Proposition 17,

(E[δX0], f ) :=
∫

Rd
f (x)pX0(x) dx = E[ f (X0)] = E[(δX0, f )].
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Of particular interest is the case of fiber processes, i.e., 1-dimensional random
sets that occur in medicine as models for vessels, nerves, etc., and in materials sci-
ence as models for line dislocations (defects in a crystalline material) [Hochrainer
et al. 2007], etc. In these cases, an empirical definition of line density is given as
the total length of dislocation lines per unit volume (see, e.g., [Callister Jr. 2007,
p. 177]). This has given a strong motivation for a rigorous definition of the mean
density of random sets of any Hausdorff dimension; for a discussion about conti-
nuity and absolute continuity of random closed sets, we refer to [Capasso and Villa
2006; 2007].

2.3.2. Example: an absolutely continuous 1-regular random set. Let (X t , Vt) be
the solution of the stochastic differential system in Rd :

dX t = Vt dt,

dVt = b(X t , Vt) dt + dWt ,

where b is Lipschitz continuous and Wt is a Brownian motion in Rd. If the initial
condition (X0, V0) of the above system has a smooth density p0(x, v) with respect
to the usual Lebesgue measure on Rd , thanks to hypoellipticity, (X t , Vt) has (for
every t > 0) a smooth density pt(x, v) with respect to the Lebesgue measure; it is
a solution to the Fokker–Planck equation:

∂p
∂t
=1v p− v · ∇x p− divv(bp),

p|t=0 = p0.

Given T > 0, consider the random path in Rd given by t ∈ [0, T ] 7→ X t ∈ Rd (not
necessarily simple); in accordance with Theorem 11, the associated random Radon
measure µX is such that∫

f (x)µX dx =
∫ T

0
f (X t)‖Vt‖ dt, f ∈ Cc(R

d ,R).

This formula defines a random generalized density δX (x) by the identity

(δX , f )=
∫ T

0
f (X t)‖Vt‖ dt, f ∈ Cc(R

d ,R).

It can be checked that we have

δX (x)=
∫ T

0
δX t (x)‖Vt‖ dt =

∫ T

0
δX t (x)‖X

′

t‖ dt.

Proposition 20. Assume E[‖X0‖+‖V0‖]<∞. Then the random generalized den-
sity δX , which is a.s. concentrated on the random curve X , has a smooth average
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density E[δX ](x) given by

E[δX ](x)=
∫ T

0

∫
Rd
‖v‖pt(x, v) dv dt.

Proof. We only sketch the proof. We have, with 21 equal to the support of the
curve X ,

E
[
H1(21 ∩ BR(0))

]
= E

[∫ T

0
1BR(0)(X t)‖Vt‖ dt

]
≤ E

[∫ T

0
‖Vt‖ dt

]
=

∫ T

0
E[‖Vt‖] dt.

We continue the proof under the additional assumption that b is bounded, otherwise
it is sufficient to use a Gronwall-type argument (it is here that we use E[‖X0‖]<∞).
We have

Vt = V0+

∫ t

0
b(Xs, Vs) ds+Wt ,

hence

‖Vt‖ ≤ ‖V0‖+ T ‖b‖∞+‖Wt‖,

which implies supt∈[0,T ] E[‖Vt‖]<∞ (because E[‖V0‖]<∞), hence∫ T

0
E[‖Vt‖] dt <∞

and therefore E[H1(21∩ BR(0))]<∞. By the general criterion above, this implies
that E[δX ] exists and

(E[δX ], f )=
∫ T

0
E[ f (X t)‖Vt‖] dt.

It follows that

(E[δX ], f )=
∫ T

0

∫
Rd

∫
Rd

f (x)‖v‖pt(x, v) dx dv dt

=

∫
Rd

(∫ T

0

∫
Rd
‖v‖pt(x, v) dv dt

)
f (x) dx .

The arbitrarity of f gives us the existence of the average density E[δX ](x) and its
formula. �

Hence we may claim that the path X is a 1-dimensional absolutely continuous
(in mean) random set in Rd .
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2.4. More on random functionals. Given a probability space (�,F, P), we de-
note by L0(�) the space of P-equivalence classes of random variables X :�→ R,
endowed with the Ky Fan topology, i.e., the topology of the convergence in prob-
ability.

In the previous sections, we defined as random functionals all measurable map-
pings from � to the dual space Cc(R

d ,R)′ (we continue to restrict ourselves to
functionals on Cc(R

d,R)). However, there exist examples of random objects which
are natural to call random functionals, but do not enter in the previous definition.
Let us then introduce a broader concept.

Definition 21. We use random functional in the broad sense of any continuous
linear map 8 : Cc(R

d ,R)→ L0(�). When there exists a random functional in the
strict sense φ :�→ Cc(R

d ,R)′ such that

8( f )(ω)= (φω, f )

for all f ∈ Cc(R
d ,R) and for a.a. ω ∈�, we say that φω is a pathwise realization

of 8.

Example 22. Let W be a Brownian motion on (�,F, P) and let d = 1. To any
function f ∈ Cc(R,R), we associate the random variable

8( f )=
∫ T

0
f (Wt) dWt .

It is known that there is no simple pathwise meaning for this integral: we cannot
fix ω ∈ � and consider it as a map from Cc(R,R) to R. This is an example of a
random functional in the broad sense which has no pathwise realization.

Example 23. Referring to the above example, a pathwise realization exists if we
restrict ourselves to more regular test functions f . Indeed, if f ∈ C1

c (R,R), and
F ′ = f , by Itô’s formula we have

F(WT )= F(W0)+

∫ T

0
f (Wt) dWt +

1
2

∫ T

0
f ′(Wt) dt,

and therefore the random functional in the strict sense φω, defined as

(φω, f )= F(WT (ω))− F(W0(ω))−
1
2

∫ T

0
f ′(Wt(ω)) dt

(these expressions are all well-defined path by path) satisfies

(φ·, f )=
∫ T

0
f (Wt) dWt =8( f ), P-a.s.,

hence φω is a pathwise realization of 8; but only on f ∈ C1
c (R,R).
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Example 24. If we allow ourselves to use L2(0, T ) as a set of test functions in
place of Cc(R

d ,R), the classical Wiener integral

8( f )=
∫ T

0
ft dWt

is another example of random functional in the broad sense which has no path-
wise realization. Again, if we change the set of test functions and we take f ∈
W 1,2(0, T ), the pathwise realization exists, given by

(φω, f )= fT WT −

∫ T

0
f ′t Wt dt.

The previous examples have mainly an academic character, so we do not insist
on this notion here. However, in the context of random currents, there are examples
of great potential interest for applications, so we shall enter in more detail.

3. Currents

In this section we wish to extend our analysis to vector fields in Rd, hence to random
currents. Motivations for the study of random currents are the same as anticipated
in Section 2.3 for 1-dimensional random sets, i.e., fiber processes.

We will start by defining line integrals of differential forms (see, e.g., [Giaquinta
et al. 1998; Giaquinta and Modica 2009; Galbis and Maestre 2012, p. 21; Buck
1956]).

3.1. Differential forms. Let g :U ⊂ Rd
→ R be a real function of class C1 in the

open set U , i.e., it has all partial derivatives of the first order continuous in U . The
differential of g at a point x ∈U is the linear function dg(x) : Rd

→ R such that

h = (h1, . . . , hd) ∈ Rd
7→ dg(x)(h)=

d∑
j=1

∂g
∂x j

(x)h j . (3-1)

It is usually suggestive to denote the partial increments h j = 〈e j , h〉 by dx j , so
that the expression (3-1) is usually written as

dx = (dx1, . . . , dxd) ∈ Rd
7→ dg(x) (dx)=

d∑
j=1

∂g
∂x j

(x) dx j . (3-2)

Expressions (3-1) or (3-2) are a particular case of a more general mathematical
entity called differential form of degree one, or simply 1-form, defined below.

Definition 25. Let U ⊂ Rd be an open set. A differential form of degree one or
simply a 1-form on U is a mapping

ω :U → L(Rd ,R)= (Rd)′,
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where L(Rd ,R) denotes the space of all real valued linear functions on Rd , i.e.,
the dual space (Rd)′ of Rd.

Given a 1-form ω, a point x ∈U , and an integer j = 1, . . . , d, we will denote
the scalar ω(x)(e j ) ∈ R by f j (x). Evidently f j : U → R; by the linearity of
ω(x) ∈ (Rd)′, for any h = (h1, . . . , hd) ∈ Rd we have

ω(x)(h)=
d∑

j=1

f j (x)h j , (3-3)

or

ω(x) (dx)=
d∑

j=1

f j (x) dx j . (3-4)

This expression is usually abbreviated into

ω =

d∑
j=1

f j dx j . (3-5)

The functions f j , where j = 1, . . . d , are called the component functions of the
differential form ω. We will usually assume that the component functions of a
1-form are continuous; in such a case we say that the form is continuous.

Remark 26. The above discussion shows that the study of a 1-form is essentially
equivalent to the study of a vector field, say

F(x)= ( f1(x), . . . , fd(x)); x ∈U.

3.2. Line integrals of differential forms. The line integral of a differential form
was originally motivated by the calculation of the work done by a force field along
a path.

Consider a smooth path γ : [a, b] → R3 all contained in an open set U ⊂ R3;
and let F :U → R3 be a force field acting on a point object. The work done by the
force field F along the path γ can be obtained by taking into account two facts:

1. The work done by a force field along a path depends only upon the component
of the force along the tangent direction of the path at each point.

2. The work done by a constant field F0 to move an object along a line segment
in its direction is given by the product of ‖F0‖ and the length of the line
segment.

Consider a very fine partition π = {a = t1 < · · ·< tk = b} of the interval [a, b],
so that the arc length of γ |[t j ,t j+1], according to Theorem 8, can be approximated by

‖γ ′(t j )‖(t j+1− t j ).
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We know that the unit vector which is tangent to a smooth path at γ (t), t ∈ [a, b]
is given by

T (t)=
γ ′(t)
‖γ ′(t)‖

,

so that we may assume, at a good approximation, that along the path γ |[t j ,t j+1] the
force field has a constant value F(γ (t j )). Consequently, the work done by the
force field F along γ |[t j ,t j+1] can be approximated by

〈F(γ (t j )), T (t j )〉‖γ
′(t j‖(t j+1− t j )= 〈F(γ (t j )), γ

′(t j )〉(t j+1− t j ),

where j = 1, . . . , k− 1. Summing up a good approximation of the work done in
moving the object along γ is given by

k−1∑
k=1

〈F(γ (t j )), γ
′(t j )〉(t j+1− t j );

the usual theorem of existence of the Riemann integral of a continuous function
along a finite interval leads to the following proposition.

Proposition 27. The work done by a continuous force field F : U → R3 along a
piecewise smooth path γ : [a, b]→R3 all contained in an open set U ⊂R3 is given
by ∫

γ

F =
∫ b

a
〈F(γ (t)), γ ′(t)〉 dt. (3-6)

The following definition is then meaningful.

Definition 28. Let F : U → Rd be a continuous vector field along a piecewise
smooth path γ : [a, b] → Rd all contained in an open set U ⊂ Rd. The line integral
of F along γ is given by∫

γ

F :=
∫ b

a
〈F(γ (t)), γ ′(t)〉 dt. (3-7)

It is clear that the line integral of a vector field depends upon the orientation of
the path, i.e., ∫

γ [a,b]
F := −

∫
γ [b,a]

F. (3-8)

Thanks to the correspondence between 1-forms and vector fields, the following
definition is appropriate.

Definition 29. Let U ⊂ Rd be an open set, let ω be a continuous 1-form on U,
and let γ : [a, b] → Rd be a piecewise smooth path, all contained in U . If F(x)=
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( f1(x), . . . , fd(x)), for x ∈U , is the vector field associated with ω, the line integral
of ω along γ is given by∫

γ

ω :=

∫ b

a
ω(γ (t))γ ′(t) dt =

∫ b

a
〈F(γ (t)), γ ′(t)〉 dt

=

d∑
j=1

∫ b

a
f j (γ (t))γ ′j (t) dt.

(3-9)

3.3. 1-currents. In the sequel, a 1-current will be a continuous linear functional on
Cc(R

d ,Rd) (more generally the literature considers a continuous linear functional
on C∞c (R

d ,Rd)).
Typical examples of 1-currents are those induced by regular curves in Rd. Let

γ : [a, b] ⊂ R→ Rd be a smooth curve in Rd ; the linear functional ξ defined by

θ ∈ Cc(R
d ,Rd) 7→ (ξ, θ)=

∫ b

a
〈θ(γ (t)), γ ′(t)〉 dt

=

d∑
j=1

∫ b

a
θ j (γ (t))γ ′j (t) dt ∈ R

(3-10)

is a 1-current.
Another case is one in which the 1-current is induced by a vector field. By an

abuse of notation, let ξ : Rd
→ Rd be a vector field; the associated current is

θ ∈ Cc(R
d ,Rd) 7→ (ξ, θ)=

∫
Rd
〈θ(x), ξ(x)〉 dx =

d∑
j=1

∫
Rd
θ j (x)ξ j (x) dx . (3-11)

We may recover the case (3-10) as a particular case of (3-11) by the localization
on the regular path {γ (t), t ∈ [a, b]} made by a usual Dirac delta distribution

ξ(x)=
∫ b

a
δγ (t)(x)γ ′(t) dt, x ∈ Rd

; (3-12)

i.e.,

ξ =

∫ b

a
δγ (t)(·)γ

′(t) dt. (3-13)

3.4. Random 1-currents and their mean densities. We have said above that a de-
terministic 1-current is a linear continuous functional on C∞c (R

d ,Rd). Since it is
sufficient for our purposes, in order to stress the analogy with Radon measures,
we consider afterwards only 1-currents which are linear continuous functionals
on Cc(R

d ,Rd). There are two definitions of random 1-currents, as in the case of
random functionals (see Section 2.2.2).

The most natural one is the following [Flandoli et al. 2009; Bessaih et al. 2017].
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Definition 30. Given a probability space (�,F, P), consider the space Cc(R
d ,Rd)

of compact support continuous vector fields endowed with the topology of con-
vergence on compact sets and let Cc(R

d ,Rd)′ be the space of 1-currents on Rd,
endowed with the dual topology, and the corresponding Borel sigma algebra. We
call a random 1-current in the strict sense any measurable map

ξ : ω ∈� 7→ ξω ∈ Cc(R
d ,Rd)′. (3-14)

The second, a weaker one, relates to the real value obtained when applying the
current to a test vector field.

Definition 31. Given a probability space (�,F, P), consider the space L0(�) of
real-valued random variables endowed with the Ky Fan topology, i.e., the topol-
ogy of the convergence in probability, and the corresponding Borel sigma alge-
bra. We call a random 1-current in the broad sense any continuous linear map
4 : Cc(R

d ,Rd)→ L0(�). When there exists a random 1-current in the strict sense
ξ :�→ Cc(R

d ,R)′ such that

4( f )(ω)= (ξω, f )

for all f ∈ Cc(R
d ,Rd) and a.a. ω ∈�, we say ξω is a pathwise realization of 4.

One can show, as in the case of random functionals, that strict sense implies
broad sense, but the opposite is not true. Below we provide a typical example for
each category and compute the corresponding mean densities.

3.4.1. The mean of a 1-current. Consider a random 1-current in the strict sense
ξω ∈ Cc(R

d ,Rd)′, and ω ∈ �. We say that it admits a mean value if a 1-current
ξ̂ ∈ Cc(R

d ,Rd)′ exists such that, for any θ ∈ Cc(R
d ,Rd),

(ξ̂ , θ)= E[(ξ, θ)]. (3-15)

Whenever this happens, we will identify the current E[ξ ] := ξ̂ as the mean value
of the current ξ .

We will say that the mean current E[ξ ] is induced by a vector field if a locally
integrable vector field u : Rd

→ Rd exists such that

(E[ξ ], θ)=

∫
Rd
〈θ(x), u(x)〉 dx . (3-16)

3.5. Example of a random 1-current in the strict sense and its expectation. Let
(X t , Vt) be the solution of the stochastic equation in Rd

×Rd :

dX t = Vt dt,

dVt = b(t, X t , Vt) dt + dWt ,
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where b is Lipschitz continuous and Wt is a Brownian motion in Rd. Assume that
(X0, V0) has a smooth density p0(x, v) with respect to Lebesgue measure. Thanks
to hypoellipticity, (X t , Vt) has, for every t > 0, a smooth density pt(x, v) with
respect to Lebesgue measure; it is a solution to the Fokker–Planck equation:

∂p
∂t
=1v p− v · ∇x p− divv(bp),

p|t=0 = p0.

Given T > 0, consider the random curve in Rd given by t ∈ [0, T ] 7→ X t ∈ Rd

(not necessarily simple) and consider the associated random 1-current ξX formally
defined as

ξX (x)=
∫ T

0
δX t (x)Vt dt, x ∈ Rd

; (3-17)

namely

(ξX , θ)=

∫ T

0
〈θ(X t), Vt 〉 dt, θ ∈ Cc(R

d ,Rd).

One can easily recognize that ξX is a 1-current in the strict sense. We have

E[(ξX , θ)] = E

[∫ T

0
〈θ(X t), Vt 〉 dt

]
=

∫ T

0
E[〈θ(X t), Vt 〉] dt

=

∫ T

0

(∫
Rd×Rd

〈θ(x), v〉pt(x, v) dx dv
)

dt.

We may also proceed as in Proposition 20, and see directly from (3-17) that, for
any x ∈ Rd , we do have formally

E[ξX (x)] =
∫ T

0
E[δX t (x)Vt ] dt

=

∫ T

0
dt
∫

Rd×Rd
δy(x)vpt(y, v) dy dv

=

∫ T

0
dt
∫

Rd×Rd
δx(y)vpt(y, v) dy dv

=

∫ T

0
dt
∫

Rd
vpt(x, v) dv. (3-18)

In accordance with the above, we have proven the following.

Proposition 32. The 1-current ξX admits a mean current E[ξX ] on Rd, induced by
the vector field

u(x)=
∫ T

0

∫
Rd
vpt(x, v) dv dt, x ∈ Rd. (3-19)
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3.6. Example of a random 1-current in the broad sense and its expectation. Let
X t be the solution of the stochastic equation in Rd :

dX t = b(t, X t) dt + dWt ,

where b is Lipschitz continuous and Wt is a Brownian motion in Rd. Assume that
X0 has a smooth density p0(x) with respect to Lebesgue measure. Also X t has,
for every t > 0, a smooth density pt(x) with respect to Lebesgue measure; it is a
solution to the Fokker–Planck equation:

∂p
∂t
=1x p− divx(bp),

p|t=0 = p0.

Given T > 0, consider again the random curve X t in Rd (not necessarily simple)
and consider the associated random 1-current ξX formally defined as

ξX (x)=
∫ T

0
δX t (x) dX t , x ∈ Rd

;

namely,

(ξX , θ)=

∫ T

0
〈θ(X t), dX t 〉, θ ∈ Cc(R

d ,Rd),

where now the integral is understood as a stochastic integral. There are two main
choices: Itô and Stratonovich integrals. Let us discuss only the Itô case, but the
other one is also not difficult.

Given θ ∈ Cc(R
d ,Rd), (ξ, θ) is a well defined random variable, because the

process θ(X t) is adapted, E[
∫ T

0 ‖θ(X t)‖
2 dt]<∞, and

∫ T
0 〈θ(X t), dX t 〉 is given by∫ T

0
〈θ(X t), dX t 〉 =

∫ T

0
〈θ(X t), b(t, X t)〉 dt +

∫ T

0
〈θ(X t), dWt 〉.

So ξX is a current in the broad sense. In general, it is not clear if it is a current
also in the strict sense because we cannot “fix ω” and consider the map ω ∈� 7→∫ T

0 〈θ(X t(ω)), dX t(ω)〉 (the Itô integral is an equivalence class and its pointwise
evaluation at ω is not a well-defined concept).

We have

E

[∫ T

0
〈θ(X t), dX t 〉

]
=

∫ T

0
E[〈θ(X t), b(t, X t)〉] dt + E

[∫ T

0
〈θ(X t), dWt 〉

]
.

Since for an Itô integral E[
∫ T

0 〈θ(X t), dWt 〉] = 0, we have∫ T

0
E[〈θ(X t), b(t, X t)〉] dt =

∫ T

0

(∫
Rd
〈θ(x), b(t, x)〉pt(x) dx

)
dt. (3-20)

Hence we have proved the following.
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Proposition 33. The 1-current ξX admits a mean current E[ξX ] on Rd, induced by
the vector field

u(x)=
∫ T

0
b(t, x)pt(x) dt.

4. Advanced applications and open problems

4.1. A mathematical model for tumor induced angiogenesis. The main features
of the process of formation of a tumor-driven vessel network are (see [Chaplain
and Stuart 1993; Plank and Sleeman 2004; Bonilla et al. 2017])

(i) vessel branching;

(ii) vessel extension;

(iii) chemotaxis in response to a generic tumor angiogenic factor (TAF), released
by tumor cells;

(iv) haptotactic migration in response to fibronectin gradient, emerging from the
extracellular matrix and through degradation and production by endothelial
cells themselves; and

(v) anastomosis, the coalescence of a capillary tip with an existing vessel.

We will limit ourselves to describe the dynamics of tip cells at the front of
growing vessels, as a consequence of chemotaxis in response to a generic TAF
released by tumor cells.

The i-th tip cell is characterized by its position and velocity (X i
t , V i

t ) ∈ R2d for
t ≥ 0; also its history

(X i
s, V i

s )s∈[T i ,2i∧t)

plays a role; the random variables T i and 2i are respectively the birth (branch-
ing) and death (anastomosis) times of the i-th tip cell. All random variables and
processes are defined on a filtered probability space (�,F,Ft , P).

The number of tip cells changes in time, due to proliferation and death. We
denote this random number by Nt for t ≥ 0.

The growth factor is a random function C :�×[0,∞)×Rd
→R, that we write

as C(t, x).
Tip cells and growth factor satisfy the system

dX i
t = V i

t ,

dV i
t =

[
−k1V i

t + f (C(t, X i
t ))∇C(t, X i

t )
]

dt + σ dW i
t ,

∂

∂t
C(t, x)= k2δA(x)+ d11C(t, x)− η(t, x, S·)C(t, x),

(4-1)
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where k1, k2, σ, d1 > 0 and f : R→ R are given, W i
t for i ∈ N are independent

Brownian motions, A is a Borel set of Rd representing the tumoral region acting
as a source of the TAF; initial conditions X i

0, V i
0 and C(0, x) are also given.

Let us describe the term η(t, x, S·). For every t ≥ 0, we introduce the measure

St :=

Nt∑
i=1

1t∈[T i ,2i )ε(X i
t ,V

i
t )
,

where ε denotes the usual Dirac measure. With these notations we may assume
that, for every t ≥ 0, the function η(t, ·, ·) maps Rd

×C([0, t];M(Rd)) into R:

η(t, ·, ·) : Rd
×C([0, t];M(Rd))→ R.

With the notation η(t, x, S·), we understand η(t, x, {Ss}s∈[0,t]).
We may leave the function η unspecified, with suitable assumptions. However,

to help with intuition, we may assume the following structure:

η(t, x, S·)=
∫ t

0
e−(t−s)/τ

(∫
Rd

∫
Rd

K (x − x ′)|v′|Ss(dx ′, dv′)
)

ds

for a suitable function K : Rd
→ R.

In the SDE system (4-1), besides the friction force, there is a force due to the un-
derlying TAF field C(t, x); from the relevant literature we take [Plank and Sleeman
2004; Stéphanou et al. 2006]

f (C)=
d1

(1+ γ1C)q
. (4-2)

The capillary network of endothelial cells X (t) consists of the union of all ran-
dom trajectories representing the extension of individual capillary tips from the
random time of birth (branching) T i to the random time of death (anastomosis) 2i,

X (t)=
Nt⋃

i=1

{
X i (s), T i

≤ s ≤min{t,2i
}
}
, (4-3)

giving rise to a stochastic network. Thanks to the choice of a Langevin model for
the vessel’s extension, we may assume that the trajectories are sufficiently regular
and have integer Hausdorff dimension 1.

Hence the random measure [Capasso and Villa 2008]

A ∈ BRd 7→H1(X (t)∩ A) ∈ R+ (4-4)
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may admit a random generalized density δX (t)(x) with respect to the usual Lebesgue
measure on Rd such that, for any A ∈ BRd ,

H1(X (t)∩ A)=
∫

A
δX (t)(x) dx . (4-5)

By Theorem 11, we may then state that

H1(X (t)∩ A)=
∫ t

0

Ns∑
i=1

εX i (s)(A)|
d
ds

X i (s)
∣∣∣Is∈[T i ,2i ) ds.

Hence,

δX (t) =

∫ t

0

Ns∑
i=1

δX i (s)

∣∣∣ d
ds

X i (s)
∣∣∣Is∈[T i ,2i ) ds.

4.1.1. Vessel branching. Two kinds of branching have been identified; either from
a tip or from a vessel.

The birth process of new tips can be described in terms of a marked point process
(see, e.g., [Brémaud 1981]), by means of the random measure 8 on BR+×Rd×Rd

such that, for any t ≥ 0 and any B ∈ BRd×Rd ,

8((0, t]× B) :=
∫ t

0

∫
B
8(ds× dx × dv), (4-6)

where 8(ds × dx × dv) is the random variable that counts those tips born either
from an existing tip, or from an existing vessel, during times in (s, s + ds], with
positions in (x, x + dx], and velocities in (v, v+ dv].

Given the history Ft− of the whole process up to time t−, we claim that the
compensator of the random measure 8(ds× dx × dv) is

α(C(s, x))Gv0(v)Ss(d(x, v)) ds

+β(C(s, x))Gv0(v)(K1 ∗ δX (t))(x) dx dv ds, (4-7)

where α(C) and β(C) are nonnegative functions; for example, we may take

α(C)= β(C)= α1
C

CR+C
, (4-8)

where CR is a reference density parameter [Capasso and Morale 2009]; K1 : R
d
→

R is a suitable mollifying kernel.
As a technical simplification, we will further assume that the initial value of the

state of a new tip is (T N (t)+1, X N (t)+1, vN (t)+1), where T N (t)+1 is the random time
of branching, X N (t)+1 is the random point of branching, and vN (t)+1 is a random
velocity, selected out of a normal distribution Gv0 with mean v0, and some variance.
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4.1.2. Anastomosis. When a vessel tip meets an existing vessel, it joins at that
point and time and it stops moving. This process is called tip-vessel anastomosis.

As in the case of the branching process, we may model this process via a marked
counting process; anastomosis is modeled as a “death” process.

Let 9 denote the random measure on BR+×Rd×Rd such that, for any t ≥ 0 and
any B ∈ BRd×Rd ,

9((0, t]× B) :=
∫ t

0

∫
B
9(ds× dx × dv), (4-9)

where 9(ds×dx×dv) is the random variable counting those tips that are absorbed
by the existing vessel network during time (s, s+ ds], with position in (x, x + dx],
and velocity in (v, v+ dv].

We assume that the compensator of the random measure 9(ds× dx × dv) is

γ (K1 ∗ δX (s))(x)Ss(d(x, v)) ds, (4-10)

where γ is a suitable constant.

4.2. Turbulence. The topic of turbulence is too wide and deep to be recalled here;
let us mention a general reference [Frisch 1995] and one example to attempt to
develop fragments of a rigorous theory based on the stochastic Navier–Stokes
equations and their invariant measures [Flandoli et al. 2008]. Among the several
ideas to approach turbulence, which is to a wide extent a statistical theory, there
is one of Alexander Chorin [1994] which is particularly attractive. Based on some
evidence that turbulent fluids are “made” (this sentence has to be taken in a very in-
tuitive sense) of vortex structures, in particular filament-like structures (see [Frisch
1995] for a discussion), Chorin had the idea to describe such “vortex filaments”
by means of paths of stochastic processes, and relate the statistical properties of
these processes to the statistical properties of turbulent fluids. In particular, Chorin
considered the so called self-avoiding walk and tried to connect its Flory exponents
to the Kolmogorov exponents of K41 theory of turbulence — we cannot enter in
further detail here, see [Chorin 1994]. Unfortunately, as Chorin admitted in his
book, this connection is not clearly identified, so it was only a research suggestion;
taken by some authors, like Gallavotti [2002], Lions and Majda [2000] and Flandoli
and Gubinelli [2002] who tried to develop part of such arguments using Brownian
motion instead of self-avoiding walk. The problem remains essentially open after
these contributions.

The concept of a random 1-current described in the present work is strongly
related to — in fact, it was strongly motivated by — stochastic vortex filaments. It
does not solve in itself the question of connection with K41 or other statistical
theories of turbulence, but it gives a precise language to approach it. Before we
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continue, let us say again that vortex filaments are an intuitive concept, since classi-
cal continuum mechanics allows us only to define the vorticity field of a fluid, and
the identification of “structures” in it is not rigorous, at least at present. Having
said this, the intuitive idea of a vortex filament is a curve, a vortex line (an integral
curve of the vorticity field) over which the vorticity field is supported — maybe
with the generalization of a finite number of such lines, not only one. This directly
leads to the concept of a 1-current, a distributional vector field, concentrated along
curves. Since a statistical theory should be developed, random 1-currents are the
right objects. If we denote by X the process whose paths represent the vortex
filaments, the random distributional vorticity field is given by

ξX =

∫ T

0
δXs dXs .

The two main open questions are about statistical properties and about the re-
alism of these random vortex structures. Concerning the realism, we mean the
connection between these structures and more classical objects of fluid dynamics,
typically the partial differential equations of continuum mechanics. The only par-
tial result until now in this direction is the mean field result [Bessaih et al. 2017],
where a smoothed version of 3D Euler equations is obtained as the mean field of
interacting vortex filaments — also with a smoothed Biot–Savart kernel.

Concerning the statistical properties, first attempts have been made in [Chorin
1994; Lions and Majda 2000; Flandoli and Gubinelli 2002] by using Gibbs mea-
sures. The problem, not yet solved, is to identify a stochastic process X such that
the random distributional vorticity field ξX written above has statistical properties
like those of K41 theory. This means that the associated random velocity field
u X = K ∗ ξX has to be introduced (K denotes here the Biot–Savart kernel) and
expected values like

E[|u(x + re)− u(x)|2],

where r is a real number and e is a unitary vector, have to be computed and com-
pared with the prescription of statistical theories of turbulence (K41 prescribes a
behavior of the form Cr2/3 for small r ).

A more modest but still quite open problem, very related to the machinery de-
veloped in the present work, is the following one: given a vorticity field ξ(x)—
generic, or typical of turbulent fluids — find a stochastic process X such that

ξ(x)= E[ξX ](x).

Solving this problem may increase some understanding of the statistical problem
above and provide relevant initial conditions for the mean-field approach of [Bes-
saih et al. 2017].
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4.3. Pathwise stochastic analysis. In recent years, a new direction in stochastic
analysis grew up thanks to a number of outstanding contributions. The beginning
of this direction is often traced back to a paper by Hans Föllmer [1981] where he
derived an Itô formula for the composition f (xt) of a C2 function f :Rd

→R with
a single deterministic path x : [0, T ] → Rd , which possesses quadratic variation
along a sequence of partitions (πn) of [0, T ], in the sense that

[x (i)
·
]
(πn)
t := lim

n→∞

∑
ti∈πn

(x (i)ti+1∧t − x (i)ti∧t)
2

exists finite and continuous in t ∈ [0, T ], for each i = 1, . . . , d , where x (i)t denotes
the i-coordinate of xt . The stochastic integral

∫ t
0 〈∇ f (xs), dxs〉 required in the

formula,

f (xt)− f (x0)−
1
2

∫ t

0

d∑
i, j=1

∂i∂ j f (xs) d[x (i)
·
, x ( j)
·
]
(πn)
s =

∫ t

0
〈∇ f (xs), dxs〉, (4-11)

is not a priori defined, but it exists from the formula itself: the limit or Riemann
sums

lim
n→∞

∑
ti∈πn

〈∇ f (xti∧t), xti+1∧t − xti∧t 〉

exists since the sum of the other terms in the formula have a limit, thanks to the exis-
tence of the quadratic variation (the so-called joint quadratic variation between two
coordinates [x (i)· , x ( j)

· ]
(πn)
t exists by polarization and it is a bounded variation func-

tion, hence the integral on the left-hand side of (4-11) exists as limit of Riemann–
Stieltjes sums). Probability is not totally excluded by this approach, but its role
is localized: probability provides the existence of the quadratic variation [x (i)· ]

(πn)
t

for almost every path of relevant stochastic processes, like Brownian motion and
more generally continuous semimartingales; it is otherwise very difficult to con-
struct a deterministic function having nonzero quadratic variation [x (i)· ]

(πn)
t (if it

is zero, the formula above is just the usual chain rule). In a sense, a main topic
in stochastic analysis, which previously has been treated by probability from the
first to the last step (namely Itô’s formula from the viewpoint of Itô’s approach),
is now decoupled: one half of the story is based on probability — the existence of
the quadratic variation — and the other half is purely deterministic.

The question arisen by that paper is: to what extent can one develop a similar
approach for other pieces of stochastic analysis? A breakthrough is rough path
calculus developed by Terry Lyons [1998], which introduces new classes of paths,
defines stochastic integrals for them and solves stochastic differential equations.
Again, the theory is fully deterministic but at the foundation there is the concept of
rough path, a sort of path x enriched by its Lévy areas

∫ t
0 x (i)s dx ( j)

s (we refer here to
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a subclass for the general theory); the latter object exists for almost every path of
Brownian motion and semimartingales using probability, namely using Itô’s theory
of stochastic integration.

The theory of rough paths has been revisited with a novel approach by Massimil-
iano Gubinelli [2004] and, in a sense based on this new viewpoint, a sort of multidi-
mensional analog (namely for functions x : Rd

→ R or more precisely for distribu-
tions) has been developed in the outstanding work of Martin Hairer [2014], see also
the alternative theory by Gubinelli et al. [2015]. Again in these theories, probability
guarantees the existence of fundamental objects, after which the procedure to define
other objects and solve (ordinary or partial) differential equations is fully determin-
istic. Let us also mention this kind of two-step approach in other recent directions
of stochastic analysis, like stochastic homogenization [Gloria and Otto 2015].

After reviewing this introduction to the subject of “stochastic calculus without
probability”, let us mention an open research direction related to the topics of the
present paper. Probability allows us to define stochastic integrals of the form∫ t

0
〈θ(Xs), dXs〉

for several stochastic processes X and functions θ . The map θ 7→
∫ t

0 〈θ(Xs), dXs〉

is a random 1-current in the broad sense. In many cases, thanks to probabilistic
estimates, there is a random 1-current in the strict sense ξX,t(ω) associated to it,
given by

ξX,t =

∫ t

0
δXs dXs .

This is, for a given ω, a deterministic 1-current associated to the deterministic
path X ·(ω). Conceptually, this is similar to the quadratic variation or the Lévy area
associated to X ·(ω): concepts which are well-defined by probability, and would
be extremely difficult to define without. The question then is: starting from the
deterministic pair

(X ·(ω), ξX,·(ω)),

is it possible to develop, by purely deterministic methods, some pieces of stochas-
tic calculus, as it was done by the theories recalled above starting from the pairs
(path, quadratic variation), (path, Lévy area) and so on? For instance, is it possible
to formulate and solve differential equations driven by single paths of Brownian
motions? At present, this program has not been developed. Only the regularity, in
terms of distributions, of ξX,·(ω) has been partially understood, see [Flandoli et al.
2005; 2009].
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