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QUANTUM MECHANICS: LIGHT AND SHADOWS
(ONTOLOGICAL PROBLEMS AND EPISTEMIC SOLUTIONS)

GIANFAUSTO DELL’ANTONIO

We discuss several problems that arise in the Copenhagen interpretation of quan-
tum mechanics, in an attempt to come to grips with what E. T. Jaynes has called
the quantum omelette.1

1. Introduction

In this contribution in honor of Lucio Russo, friend and admired colleague, I will
present some remarks on the status of quantum mechanics, a theory through which
we try to understand the world of atoms and molecules.

The research in this field has led to extraordinary successes; in fact, our present
technology is to a large extent based on our description of this world.

We are convinced that we have found the key that opens the door to its full con-
tent, and that in the future our task is only (!) to unravel ways to solve complicated
equations, maybe with the aid of a computer.

But quantum mechanics (QM) also poses conceptual problems and has been the
arena of debates since the times of the founding fathers.

These problems are related to the meaning of QM as a physical theory.
The problematic relations between ontology and epistemology have been de-

bated in western culture since the time of Plato, but the debate has seen a new life
with QM since the basic foundational elements of classical physics are not valid in
QM.

I will consider here only the traditional presentation of QM based on the for-
mulation given by the Copenhagen school and developed among others by Born,
Jordan, Heisenberg, and Schrödinger.

Generally speaking, this is the only presentation taught in universities and known
to the majority of physicists.

Another presentation, which I will call pilot wave theory, originated by de Broglie
and brought to a high mathematical standard by S. Goldstein and D. Dürr, gives
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a totally different representation of the building blocks of theory and has its own
conceptual difficulties. I shall come back briefly to this theory.

It is a basic assumption of western science that existence and reality can be rep-
resented through a metaphysical system which, while creating its own fundaments,
serves the purpose of representing reality.

One should recognize that the origin of physics is the idea that reality exists and
is at least partially accessible to our inspection.

At the same time, humans shape their experiences not only through their senses
but also through their metaphysical and categorial presuppositions.

Causality, identity, and noncontradiction are not regarded as platonic concepts
that humans discovered in the world as ideas but rather as prior conditions for
human understanding.

The categorial representation of reality, in particular Newtonian space-time, lim-
its and configures in a definite manner Newtonian physics.

On the other hand, there is David Hume’s analysis of the inductive nature of
science and the impossibility of grounding the notion of causation in experience.
Causation as such is never found in the observable word; it is rather a metaphysical
presupposition which allows the subject to make sense of observations.

In the same way, identity and noncontradiction are the conditions that constrain
our observations.

Positivism relies on the distinction between empirical terms (empirically given
in physical theories and experiments) and theoretical terms which are their trans-
lations into simple statements.

In this way, true knowledge (episteme) is replaced by objective knowledge with
humans’ shaping (experience).

One may say that the machian critic of Newton mechanics paved the way for
quantum mechanics.

In fact, the multiple representations provided by different modern theories sug-
gest that the successes of human understanding must be regarded as creations rather
that discoveries.

When discussing the breakdown of the foundations of theories in the twentieth
century, Wolfgang Pauli [1994] remarked that the modern physicist regards with
skepticism philosophical systems which, while imagining that they have defini-
tively recognized the a priori conditions of human understanding itself, have in fact
succeeded only in setting up the a priori conditions of the system of mathematics
and the exact sciences of a particular epoch.

Still we believe that physical theories are not only mirrors that reflect our own
beliefs.

Within physical discourse, a cornerstone is counterfactual reasoning. If a theory
makes predictions which agree reasonably well with experimental or observational
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results, scientists are inclined to believe that its logical and mathematical structure
reflects the structure of the real world in some way, even if the philosophers remain
permanently skeptical [Griffiths 2002].

In this regard, the classical representation of physics was produced when Newton
related the mathematical theory of calculus with physical notions such as space,
time, force, particles, and mass.

This representation was extended by Maxwell relating the theory of partial dif-
ferential equations with electromagnetism and introducing in physics the notions
of charge and fields.

This approach, contrary to the pythagorean–platonic view, regards mathematics
as a nonrepresentative discipline. It is only physics which, making use of the
mathematical formalism, attempts to discuss physical reality.

In this respect, it can be said that quantum mechanics represents a dissolution
of this classical representation of the world.

2. Origins of QM

Conventionally one places the beginning of quantum mechanics at Planck’s for-
mulation of the quantum postulate. The theory soon went beyond its original
formulation, which aimed to justify the spectrum of black-body radiation.

It was observed that in the quantum world some physical quantities, in partic-
ular the energy of the states of the atoms, seemed to be forced to have a discrete
spectrum. This is of course totally different from the classical world as we perceive
with our senses.

On the basis of the relation between energy and momentum of particles of light
established by Einstein, this provided a quantization also of the frequency of the
radiation emitted or absorbed.

The energy of the states of the atoms and some quantities related to a pair of
states (emission or absorption of light) were the only information accessible to
experimenters.

Following the positivistic rule that only observable quantities should be consid-
ered within a theory, W. Heisenberg advanced the first closed formulation of the
theory, matrix mechanics.

The theory was not designed to talk about trajectories of particles; following
the Einstein dictum “it is only the theory that tells you what you can observe”,
Heisenberg derived the uncertainty principle from matrix mechanics and the quan-
tum postulate.

Notice that in this postulate enter quantities (position and momentum) that are
well defined in classical physics, but are attributed to matrices in this formulation
of QM.
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Through a more accurate analysis, for which the contributions of M. Born and
P. Jordan and the reference to the dispersion relations of Kramers were essential, it
was soon discovered that the theory could have a wider scope, still within atomic
physics.

The theory of matrices was given a stronger mathematical flavor with the theory
of operators in a Hilbert space. Notice that at the very same time and in the same
place (Göttingen) Hilbert was developing his functional calculus (and Jordan was
his assistant for some time).

Several other matrices entered in the relations that were derived with matrix
mechanics. The ones that more frequently appeared in the analysis were powers
of position matrices, powers of momentum matrices, and their real linear span.

If ai, j is a matrix that represents the observable A and φi is the vector associated
to the state S in order to account for experimental data,

∑
i, j φi ai, jφ j has to be

taken to be the expected value for a measurement of A in the state S.
The measurements resulted in a real number, and therefore, all matrices which

were used were hermitian. It was natural (and mathematically more convenient) to
agree that all hermitian matrices represent observables.

Notice that observable is here understood as a definition, without reference to
the instrumental apparatus that can be used to measure its value. This is a clear
violation of the positivistic rule, since for very few observables can a prescription
be given to construct an instrument which can be used to measure them.

Therefore, the term observable, often used in the mathematical formulation of
QM, refers to an ontological description.

In this formalism, it turns out that in order to represent something one is forced
to consider matrices which are complex-valued. Therefore, observables can be
represented by matrices with complex entries. Observations always lead to a real
number, and therefore, not all matrices represent observables but only those that
are hermitian.

Notice that the algebra of matrices is not commutative and the product of two
hermitian matrices need not be hermitian. In the mathematical formulation of the
theory, it was convenient to consider the entire algebra of matrices and not only
the “observable” ones.

The theory of matrices developed by Born, Heisenberg, and Jordan gave a ratio-
nal basis to very many problems in atomic physics.

At the same time, it made clear that classical mechanics and dynamics were
not a valid instrument for the description of the structure of the atomic world, in
spite of the fact that the description of the atomic reactions was given in classical
terminology. Indeed it was heavily stressed by N. Bohr that all relevant information
can only be transmitted and received within the formalism of classical mechanics.
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Roughly at the same time, E. Schrödinger developed wave mechanics adapting
ideas of L. de Broglie.

L. de Broglie had remarked that a quantal fraction of reality seemed to have
a particle-like behavior in some experimental instances and a wave-like behavior
(diffraction) in others.

Following an analogy with the variational principles of classical mechanics both
in the lagrangian and hamiltonian formulations, he proposed that a quantal fraction
of reality be described by a complex wave. It was complex because the analogy
with classical (hamiltonian) mechanics required the introduction of a “momentum”
and by the formalism of the Fourier transform a fraction of reality with definite mo-
mentum was represented by a monochromatic wave and therefore complex-valued.

Schrödinger adapted the de Broglie formalism to describe the structure of the
atoms, in particular the hydrogen atom. He modified the wave equation proposed
by de Broglie to take into account that the dynamics is nonrelativistic, and he pro-
posed an equation which replicates the hamiltonian structure of classical mechanics
and takes into account the intuition of de Broglie, i.e., that plane waves should be
representative of sharp values of the momentum.

The Fourier transform gives the relation between a representation in which the
position has a relevant role in the description and a representation in which the
relevant role is given to momentum.

Later Born postulated that the square of the modulus of the wave gives the
density of the probability that at a given time the system is in a spacial configuration
and that the square of the modulus of its Fourier transform gives the density of the
probability that the system is in a specific momentum configuration.

A great success of the analysis of Schrödinger was the proof that his time-
independent equation gave exactly the energy levels found for the hydrogen atom.
It was proven later by W. Pauli that this result can be obtained by purely algebraic
analysis.

For more complex atomic structure, the analysis is not so simple and requires
several approximations and estimates. Still the analysis of the atomic spectra
through a solution of the Schrödinger equation led to excellent results (and also
to interesting developments in the theory of partial differential equations).

With de Broglie and Schrödinger begins the formulation of quantum mechanics
as wave mechanics; immediately after it was proved by several people (including
Schrödinger himself) that the two formulations are equivalent (as a theory of oper-
ators in a separable Hilbert space).

Schrödinger’s formulation employs the representation of the Hilbert space as a
space of square-integrable functions over a measure space; Heisenberg’s formula-
tion chooses a specific orthonormal complete basis and looks at the operators as
“matrices” in this basis.
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Of course separable Hilbert spaces are isomorphic, and therefore, one can repre-
sent QM in any other realization of the Hilbert space, for example in the realization
as square-integrable functions on the unit interval of the real line. But in this repre-
sentation, the operators corresponding to simple physical quantities (e.g., position,
momentum, and energy) have a very complicated presentation.

A major role in the theory is played by the rule that describes the value of an
observable when the system is in a given state.

The structure of the formalism suggests that this operation be linear in the ob-
servables but sesquilinear in the wave function that represents the state, in order to
ensure that the result of any measurement is a real number. This is formalized in
Born’s rule, which we will discuss shortly.

This leads, as Schrödinger immediately remarked, to a characteristic feature of
the theory, the superposition principle which is better explained in the Schrödinger
representation.

If φ and ψ are unit vectors in the Hilbert space, 8= (φ+ψ)/|φ+ψ | is also a
unit vector but in general (φ, Aφ)+ (ψ, Aψ) 6= (8, A8).

There is therefore interference between the waves. This phenomenon is very
well known for water waves and for electromagnetic waves, but here it is counter-
intuitive since the waves are probability waves.

The superposition principle has a more involuted description in the formalism
of Heisenberg, but the two formulations are equivalent, and therefore, the super-
position principle also affects this representation. Independently of the formalism
chosen, this implies a relationship between states that cannot be explained in terms
of familiar classical physical concepts.

Some researchers tried to escape the problem posed by the superposition princi-
ple by searching for hidden variables (the wave functions does not fully describe
the state of the system).

The naive hidden variables theory turned out to not be practicable because they
lead to inequalities (Bell’s inequalities) that are disproved by experiments.

A totally different way out is the pilot wave theory (also named Bohm theory),
which was initiated by de Broglie himself. It is a non-Newtonian theory in which
particles move under the action of a vector field (pilot wave) which itself satisfies
a Schrödinger equation defined on the configuration space of all the particles.

It is a theory of particles and not a hidden variable theory because the (point)
particles are fully described by their position and momentum. It is not a Newtonian
theory because no reference is made to forces; the motion of the particles is ruled
by a vector field which is not associated to the particles.

Its presence is perceived only through its action on the particles. The evolution
of the field is independent of the particles and is determined by a Schrödinger
equation on the configuration space of all the points.
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We shall not further discuss this interesting theory (which is also mathematically
difficult as the vector field is singular) which, as remarked before, has its own
interpretation problems.

3. Ontology and epistemology: the quantum omelette

Bohr’s reaction to the difficulty of describing the ontological content of quantum
mechanics was to abandon the physical representation of quantum mechanics, i.e.,
regard the formalism of quantum mechanics as solely epistemological.

There is a difference between discussing what reality is and how humans acquire
knowledge from experience.

An ontological question is a question about the nature of existence and reality.
It presupposes the existence of reality and the possibility to represent it.

An epistemological answer is related to the way in which humans connect to
external reality. It is not regarded as a ground or goal of understanding. Its task is
to describe how humans relate to experience. Physical theories are economics of
human experience (Mach).

From this point of view, problems are not out there but are part of a definite view-
point with definite metaphysical assumptions and presuppositions without which
they cannot even be stated.

According to Jaynes [1990], our present the quantum-mechanical formalism is
not entirely ontic but at the same time not entirely epistemological. It is a peculiar
mixture describing in part nature and in part incomplete human information about
nature, all scrambled up by Heisenberg and Bohr into an omelette that nobody
knows how to unscramble.

Unscrambling the quantum omelette is a prerequisite for any advance in basic
interpretation of the theory.

Quantum mechanics, in its Copenhagen interpretation, makes a process end with
a choice, codified by Born’s probability rule.

But if we take an ontological point of view, there can be no choice which de-
termines what reality is: a subject cannot define by a choice, within a physical
representation of a theory, what is physically real. Physical reality can be repre-
sented in an objective manner only if the subject (the experimenter) plays no role
within that representation.

Einstein showed the inconsistencies with respect to physical reality (as under-
stood in classical physics, the setting in which experiments and their outcomes
are described) in which QM had been drawn through Bohr’s complementarity ap-
proach.

What is considered physically real according to quantum mechanics?
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Bohr’s epistemological approach escapes ontological debates. Bohr’s explained
how things had to be done. Following this set of rules, one could recover from QM
a rational account of classical phenomena [Bohr 1935; 1963].

When asked whether the quantum theory can be considered as somehow mir-
roring an underlying quantum reality, Bohr declared, “There is no quantum world.
There is only an abstract quantum physical description” [Petersen 1963]. It is
wrong to think that the task of physics is to find out what nature is. Physics
concerns what we can say about nature.

Later he wrote, “Physics is to be regarded not so much as the study of something
a priori given but as development of methods of ordering and surveying human expe-
rience which can be unambiguously communicated in ordinary human language”.

Bohr always stood on the epistemic side and never discussed questions related
to the ontology of the quantum realm.

It was Heisenberg, and later Born and Pauli, who, when stressing the successes
of the new theory, incoherently mixed the epistemological complementarity scheme
of Bohr with an ontological (Platonistic) approach which assumed a direct relation
between the mathematical formalism and reality itself.

This led to the cooking of the quantum omelette.
This quantum-unrealistic position was consolidated at the Solvay conference

(1927) and is now part of what every physicist learns and practices. It is the con-
ceptual background of all the brilliant successes of QM in atomic, nuclear, and
solid-state physics over the past ninety years.

Physicist have learned to think about the theory in a highly unrealistic way, to
be at ease with wave functions and operators. This (unrealistic) way has brought
about the most marvelous predictive successes in the history of science.

The triumph of this approach is exemplified by the fact that the Copenhagen in-
terpretation is taught in all universities around the globe, while the mathematically
equivalent pilot wave theory of de Broglie is seldom taught and is considered a
curiosity.

Our students manipulate and draw wave functions as if they had an objective
reality.

4. Copenhagen quantum mechanics

The quantum theory of Planck and Bohr was the basis on which one had to construct
a new theory to describe the dynamics of atomic systems.

Let us recall that a mathematical model, according to J. von Neumann, is a math-
ematical construction that, supplemented by a verbal language of correspondence,
provides a coherent basis for the description of a class of physical phenomena.
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A model originates from a combination of experimental evidence, theoretical
analysis, and mathematical analogies. A model obtains the status of a theory on the
basis of the amount of physical phenomena it helps to organize in a coherent way.

When the class of phenomena described by a model in a somewhat unified way
covers an entire field of physics, one speaks of a theory. A theory in general
provides a different perception of what is relevant, both conceptually and from the
point of view of the experiments, a different paradigm.

The passage from a model to a theory is also conditioned by cultural background,
versatility to adapt to applications, and also prejudgements.

A theory indicates what experiments are worth performing and what the ques-
tions that can be meaningfully asked are.

Form this point of view, QM deserves to be called a theory; it has changed
our perception of the world at the atomic scale, providing a unified physical and
mathematical picture, is at the basis of new technology, and has stimulated the
development of a relevant part of modern mathematics.

When a theory reaches acceptance by a majority, it tends to dismiss as “false”
or “irrelevant” any other attempt to construct an alternative model. Researchers
working in QM tend to dismiss alternative theories as irrelevant and mental con-
structions and have the tendency to dismiss as futile the research on the foundation
of the theory.

The consensus that comes from extraordinary successes is taken as a sign of truth.
Still there are conceptual problems that come partly, as N. Bohr emphasized,

from the fact that the language which is used is borrowed from classical physics
(N. Bohr went to the extreme of stating that classical physics is necessary to de-
scribe quantum mechanics) and partly from the difficulty of reconciling the intrinsic
probabilistic aspects of quantum mechanics with the deterministic features which
we are used to associating to physical phenomena.

For these reasons, quantum mechanics is a theory which is mathematically self-
consistent and very effective in its application, but not conceptually complete.

We have stated that the mathematical construction of a model (and of a theory)
requires

• stating axioms (or postulates), in general derived from phenomenology and
from some historical and cultural background (the structure of previous suc-
cessful theories),

• deduction of some nontrivial consequences, typically under the form of theo-
rems and equations, and

• determining a verbal language which associates the mathematical structures
to measurable quantities; this empirical description is in everyday language
and links the theory to experimental data.
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In classical physics, the mathematical constructions are, e.g., the variational
principles, the equations of hamiltonian or lagrangian dynamics of material points,
and the equations of the dynamics of the continuum and the equations of electro-
magnetism as formulated by Maxwell.

The (scientific) verbal language, i.e., the correspondence between mathemati-
cal entities and quantities that can be measured, is given for granted in classical
physics; this common agreement is a result of centuries of “experience” and is also
due to the fact that we have a daily experience of the classical world.

No one doubts the objective meaning of terms such as measure of a velocity
or measure of a magnetic field, and we regard the result of a measurement as
independent of the experimenter and of the apparatus used.

For the phenomena at the atomic scale as described by QM, this objectivity fails
and the very concept of measurement can become problematic.

One can try to overcome this problem by stating that macroscopic objects, such
as a measurement apparatus, must be regarded as classical objects, obeying the
laws of classical physics.

But this would divide the physical world into two separate incompatible parts,
and it would be difficult to make precise each time to which world one refers.

Many efforts have been made to solve the measurement problem (i.e., the de-
tailed description in QM of the process of measurement), and various mechanisms
have been proposed to explain why in (most) macroscopic bodies one does not
perceive the typical structures of QM.

In particular, they explain why it is difficult to perceive (outside specialized labo-
ratories) the superposition principle and the entanglement. Some of these attempts
have led to a better understanding of the conceptual structure of the formalism and
of its interpretation, but a satisfactory answer has yet to be found.

Let us stress again that from the empirical point of view QM has had outstand-
ing success in organizing, describing, and also in some cases predicting results of
experiments in its range of validity, namely the (nonrelativistic) physics of atoms
and molecules and their aggregates.

At the same time, the refinement of the formalism of QM has contributed greatly
to the development of modern mathematics.

Still it must be remembered that this theory has its own range of validity, in
particular that it is nonrelativistic and it is not applicable to phenomena which
occur at very high energies.

5. States and observables in QM

We review the basic structure with a mathematical description of the concepts of
states and observables.
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In general terms, a state of a system is the result of a preparation procedure. In
order to construct a model, one must think of an idealized procedure that results in
a well defined state.

One may think that the definition of a state is such that when a system is in
state “A” any experiment gives the same result if performed by different observers.

This is true in classical physics; a measurement can be done, at least in principle,
without altering the state of the system. And one can describe the state of a com-
posite system by separately describing its parts. To give an example, the “state”
of the solar system is described by giving the position and velocity of the single
planets.

This has led those in classical mechanics to consider as elementary states the
points in phase space M.

An observable is characterized by the value it takes on each state, i.e., by a real-
valued function on the phase space: if m ∈M and if f is continuous, the number
f (m) represents the result of the measurement of the observable described by f

when performed on a system in the state described by m.
From a mathematical point of view, therefore, the states in classical mechanics

are elements of the dual of the space of continuous functions, the duality given by
{m, f } → f (m).

The meaning of the word measurement and the role of the measurement appa-
ratus are not discussed further; their definitions are considered clearly established
and universally accepted. And it does not depend on the observer.

In classical statistical mechanics, one also introduces more general states rep-
resented by positive measures µ that are absolutely continuous with respect to
Lebesgue measure.

These states are linear positive functionals on essentially bounded functions;
as a consequence one can include in the theory a larger class of observables, i.e.,
functions in L1(M).

As can be seen from this brief reminder, the definition of pure state in classi-
cal mechanics is linked to the possibility of considering continuous functions as
observables.

Dynamics is given by means of differential equations for functions in phase
space which are required to be differentiable.

When one tries to develop QM and its dynamics keeping some analogy with
Hamiltonian mechanics, the first problem one faces is that in QM an equivalent of
phase space does not exist, and therefore, it is difficult to decide a priori how to
describe a pure state and characterize an observable.

This problem is solved differently in the two basic formulations of quantum
mechanics, which we shall denote Schrödinger QM and Heisenberg QM.
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Schrödinger quantum mechanics. In the formulation of quantum mechanics due
to Schrödinger, the primitive elements are the (pure) states which are represented
by (normalized) vectors in a separable complex Hilbert space (for one particle,
H≡ L2(Rd)) where d is the number of degrees of freedom of the corresponding
classical system.

This interpretation makes explicit use of the analogy between |φ(x)|2, x ∈ Rd ,
and the classical Liouville distribution ρ(x).

In Schrödinger’s formulation, the observables are a dual structure; they are rep-
resented by operators on H.

Since H is concretely represented as L2(Rd), the observables are represented
by operations on functions, typically by multiplication by another function and by
differential operators.

In view of the analysis done by de Broglie, the operator −i ∂
∂xm

can be identi-
fied with the momentum of a particle. Also real functions of momentum space
represent observables. For these observables, one can expect to define a possible
measurement procedure.

Dynamics of the states is given by the Schrödinger equation; dynamics on the
observables is defined by duality.

Since the set of operators which are sums of a function of position and a function
of momentum is not invariant under time translations, in order to be able to describe
the dynamics, one is forced to increase the number of observables.

If we require the average value of any observable in any state to be a real number,
we should restrict ourselves to hermitian operators (more precisely to self-adjoint
operators in order to have a functional calculus).

One is therefore led to state that the observables are in one-to-one correspon-
dence with self-adjoint operators, in spite of the fact that for a generic self-adjoint
operator one is not able to exhibit the experimental apparatus which may be used
to measure the observable it represents.

According to Born’s rule,
∫
�⊂R3 |φ(x)|2 dx represents the probability that, per-

forming a position measurement of a particle in the state described by φ(x), the
outcome is that the particle is localized in the region �.

This implies that, if the observable A is represented by the function A(x) in
configuration space, then

(φ, Aφ)≡
∫
|φ(x)|2 A(x) dx

is the average of the results one obtains if one measures the outcomes of a mea-
surement of A.
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In the same way, if the observable B is represented by the function B(p) in
momentum space, then

(φ̂, Bφ̂)≡
∫
|φ̂|2(p)B(p) dp

(where φ̂(p) is the Fourier transform of φ(x)) is the average of the results of the
measurements of the observable B.

By polarization, one obtains the value of (φ, Aψ) for every observable A and
for any pair φ,ψ ∈H.

Heisenberg’s quantum mechanics. In the formulation given by Born, Jordan, and
Heisenberg (matrix mechanics), the primitive elements are the matrices that give
the probability of transition from an atomic state un to another state um under the
influence of an external field or under spontaneous decay

This leads one to consider as basic elements in the theory the observables rep-
resented by infinite matrices, i.e., linear operators on a separable Hilbert space.

The structure of the states plays a lesser role in this formulation of quantum
mechanics. They are considered the result of an initialization and are distinguished
by means of the value they give for the expected value of the observables.

This correspondence is linear for the matrices that represent observables, and so
the states are linear functions of the observables continuous in a suitable topology,
i.e., elements in a dual space.

Interference effects are not easy to describe in the Heisenberg formalism. A con-
crete analysis of entanglement and interference without reference to the Schrödinger
representation is difficult.

On equivalence. We have already seen that the two representations are equivalent
in the mathematical sense and correspond mathematically to dual structures.

The mathematical instruments used are different: mostly algebraic in Heisen-
berg’s presentation and mostly function-theoretical in Schrödinger’s.

A bridge between the physics of the two formulations of QM is given by Born’s
rule, which we will describe soon as an axiom.

In this rule, the states and the observables play equally important and symmetric
roles.

But Schrödinger’s formulation has special properties that come from the fact
that one was naturally led to use the representation of the Hilbert space as (square-
integrable) functions on the configuration space.

This special presentation introduces spurious elements which make QM more
visualizable in space (one draws on the blackboard the shape of the wave function)
at the price of introducing misunderstandings.
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Indeed the wave function is not a measurable quantity; it is rather an abstract
instrument which can be used to determine probabilities of real events.

Still some remnants of the visual picture survive. The use of periodic cells intro-
duces homology, and smooth functions can belong to different homology classes.

If, as usually assumed in regular crystals, the wave functions are coherent over
many cells, these homological properties are inherited by the state of the crystal
and may influence the expectation values of specific observables.

Therefore, the homology class of a wave function (a priori an abstract object)
may be measurable; indeed the topology of the wave function is at the root of the
use of geometrical and topological methods in solid-state theory.

As a consequence, one must be prepared to recognize that there are “geometric”
properties of the wave functions which correspond to measurable quantities.

6. The axioms

After these preliminaries, we can now state the axioms of quantum mechanics. In
choosing the order of the axioms, we shall follow the point of view of Schrödinger.

Axiom 1. Pure states are represented by unit vectors in a separable Hilbert space H.
Vectors that differ by a phase represent the same pure state.

It follows that the (pure) states are represented by projection operators Pφ =
|φ〉〈φ| (in Dirac’s notation).

Since a Hilbert space is a vector space, the superposition principle holds: if
φ,ψ ∈ H, then also aφ + bψ ∈ H for a, b ∈ C. We assume here that all Hilbert
space vectors represent states, i.e., there are no “superselection rules”.

Also in quantum mechanics, one can introduce nonpure states, called statistical
mixtures. They are represented by sums of projection operators

σ =
∑
n

cn Pφn , cn > 0,
∑
n

cn = 1.

Positive-trace class operators with trace 1 are called density matrices. Their
relation with the pure states is the same as in classical mechanics.

Contrary to what happens in classical mechanics, no pure state is dispersion-
free for all observables; this is due to the fact that their dual, the algebra B(H), is
not commutative.

Recall that the dispersion of a state σ relative to a (symmetric) operator A is

1σ (A)≡ σ(A2)− (σ (A))2.

A state σ is dispersion-free relative to A if and only if 1σ (A)= 0.
For comparison, notice that in classical mechanics, where the role of B(H) is

taken by continuous functions, all pure states are dispersion-free with respect to
each observable.
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The dual of the pure states, under the duality given by Pφ , A→ tr PφA, is B(H),
the set of bounded closed operators H.

Axiom 2. • The observables in quantum mechanics are represented by the self-
adjoint operators on a separable (complex) Hilbert space H.

• The mean value of the measurement of the observable represented by the self-
adjoint operator A in the state represented by Pφ (the projection operator on
the one-dimensional subspace spanned by the vector φ) is given by

〈A〉φ ≡ (φ, Aφ)≡ tr(APφ)

where the symbol tr stands for trace, a function defined as usual for finite-rank
matrices and extended by sum convergence in the case of infinite matrices.

Notice that in this in the formulation of Born’s rule we assumed that the
measurement is an abstract procedure that requires no further analysis. In this
respect also Axiom 2 is ontic.

Notice that if A ∈B(H) the correspondence

A→ tr(σ A)

defines a linear continuous functional on B(H).
Therefore, we could start, as in the Heisenberg point of view, with the definition

of the observables as the real part of the algebra of all bounded operators on a
complex Hilbert space H and consider the states as derived quantities by duality.

Axioms 1 and 2 describe the mathematical content of QM (and also its meta-
physical content).

We introduce now two axioms that represent the verbal part of the model, i.e.,
the rules which must be used to associate measurable quantities to the mathematical
entities in Axioms 1 and 2.

Axioms 3 and 4 connect the mathematical formalism to the outcome of labora-
tory experiments and are therefore of epistemic character.

A step in this direction has already been made in Axiom 2 by Born’s rule, but
nothing has been said so far about the description of a single measurement.

In particular until now we did not speak of the effect that has on a state described
by σ , the measurement of an observable a described by an operator A.

Axiom 3. Let the operator A describe the observable a, and assume that A has
purely discrete simple spectrum, i.e., the eigenvalues are different from each other
and the eigenfunctions ψ A

i form a complete orthonormal basis.
If one performs a measurement of the observable a in a state represented by a

vector φ ∈H, |φ|2= 1, the outcome can be only one of the eigenvalues ak of A. The
probability of the outcome ak is pA

k = |(ψ
A
k , φ)|

2, where ψ A
k is the eigenfunction

of the operator A associated to the k-th eigenvalue.
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We remark that this statement is compatible with Born’s rule. Indeed from
Axiom 3 it follows that the average of the results of the measurements of a when
the state is described by the vector φ is (φ, Aφ)≡ tr(PφA) where we have denoted
by Pφ the orthogonal projection on the vector φ.

For observables which are represented by operators with partly continuous spec-
trum, the formulation of Axiom 3 is slightly more complicated; we don’t detail
here the obvious modifications. Axiom 3 is probably too ambitious as formulated.
Given a generic symmetric bounded operator A, it is difficult even in principle to
give a prescription for the construction of a measuring instrument which measures
the observable associated to A.

For example it is difficult to indicate the instrument that measures the observable
associated to ξ�ξ̂6ξ�, where ξ� is the operator of multiplication by the indicator
function of the domain � in configuration space and ξ̂6 is multiplication by the
indicator function of the domain 6 in Fourier space.

Axiom 3 refers to the possible results of a measurement and to the probability
with which they are obtained.

There is no indication of the effect of the state of the system after measurement.
In classical mechanics, it is assumed that, at least in principle, it is possible to

perform measurements on a system without altering its state. In quantum mechan-
ics, this is not possible. The interaction with the measuring apparatus alters in
general the state of the system in a way that cannot be predicted. But one assumes:

Axiom 4 (projection postulate). If ai is a nondegenerate eigenvalue, with eigen-
function ψ A

i of the operator A associated to the observable a, and if the measure-
ment of a has given ai as a result, immediately after the measurement, the state of
the system is described by the vector ψ A

i .

The formulation immediately after, although imprecise, takes into account the
fact that the operator A may not commute with the hamiltonian and therefore the
eigenstates are not invariant in time.

Since the evolution under the Schrödinger equation is a continuous process in
time, this effect is negligible if the time elapsed between two measurements is
negligible.

We notice that Axiom 4 is needed to give objective meaning to the measurement
process, i.e., the measurement codifies an objective property of the system after the
measurement.

But Axiom 4 has far-reaching consequences since the algebra of the observables
is nonabelian in quantum mechanics.

Suppose that at time t1 > t0 we perform a second measurement now of the
observable b associated to the operator B which does not commute with A and has
eigenvectors {ψk}.
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According to the rules of quantum mechanics, we obtain the result bk with prob-
ability |(φ1, ψk)|

2; if the result is bk , we conclude, by Axiom 4, that the system
immediately after the new measurement is in state ψk .

Now we perform again a measurement of A at time t2 > t1. The result will be ah ,
h 6= 1, with probability |(ψh, φ1)|

2 < 1: the system has a finite probability to be in
a state different from φ1.

This implies that it is impossible to determine (even approximately) the state of
the system if one does not have complete control of the environment.

For comparison, notice that in classical mechanics all observables (i.e., all func-
tions on phase space) take at any given time a definite value on all pure states.

7. The semiclassical limit

The problem of finding a path relating the classical description and the quantum
one is an ontological problem which aims to provide a physical explanation of
what the relation between the classical and quantum realms is, both of which are
presupposed to be physically real.

This problem cannot be understood in epistemological terms alone because there
is no reference of the theory to something happening within physical reality. It is
occasionally referred to as the problem of the quantum-to-classical limit.

Apart from the mathematical formulation which we shall outline shortly, the
limit should be described in terms of a physical representation since it tries to
explain what is going on beyond abstract mathematical formalism.

Therefore, the path must be represented in physical terms. The question ana-
lyzed from the point of view of Bohr’s interpretation is ill posed: how can we
possibly argue that there is a limit that can be explained with physical reality?

The quantum-to-classical limit in quantum mechanics is not so much a mathe-
matical problem which seeks to relate incompatible formalisms but rather a phys-
ical problem which should provide a physical explanation for the connection be-
tween these seemingly incompatible descriptions.

The search of the physical explanation for the path from the classical to the
quantum (or conversely) is a strictly representative enterprise [Jaynes 1990].

In some ways, this problem is similar to the problem of the description of a
constrained system in mechanics. On one side is the classical microscopic point
of view (world), where all systems satisfy the classical equations of Hamilton and
Maxwell.

On the other side is the world in which constraints are considered as objective
elements, worthy of a classification and an explicit (physical) description.
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In this case, within classical dynamics, the connection between the two physical
worlds is made through approximations, stating the physical approximation scheme
as carefully as one is able.

The same view is taken in classical mechanics about statistical mechanics or
thermodynamics, which have their own strict internal rules. It is suggested that
there is a bridge to the world of classical mechanics; the bridge is made of approx-
imations and changes of scales.

One may wonder whether there is a comparable practical bridge between the
classical world and the quantum one.

Mathematically one can construct such a bridge provided one is willing to play
with Planck’s constant h̄, which appears in the quantum-mechanical formalism.

Since Planck’s constant has a well defined value (in suitable units) in our phys-
ical world, any such limit must be seen as a mathematical exercise.

One can prove mathematically that in a very precise sense two classes of so-
lutions of the Schrödinger equation have as its limit when h̄→ 0 two classes of
solutions of classical dynamics, of Liouville and Hamilton type, respectively.

Generally speaking, the initial data should be well localized both in configu-
ration space and in momentum space, compatibly with the rules of the Fourier
transform (semiclassical wave packets) or otherwise much more localized in mo-
mentum space, and depend smoothly on the spacial coordinates (WKB states)

Remark that due to the structure of the Schrödinger equation one can trade the
smallness of Planck’s constant for a large value of the mass.

As a consequence, the barycenter of a very massive quantum-mechanical body
(e.g., the earth) moves in a gravitational field roughly in the same way as a classical
point particle with the same mass. This saves classical celestial mechanics.

But in general the description of dynamics is entirely different in classical and
quantum mechanics.

8. Principle of decoherence

Taking for granted that the description of the motion of a stone is totally different
from that of very small bodies such as atoms and electrons, one may expect that
this difference is due to the (relative) complexity of the stone and that the peculiar
features of quantum mechanics, detectable at the level of atoms, is averaged out
and therefore no longer relevant for the motion of the stone.

This would prove a physical way to connect the classical and quantum worlds
and would imply that for all practical purposes quantum-mechanical bodies of
macroscopic size can be correctly described by classical physics.

The first problem of this approach is that apparently it is not only the size of the
body which determines whether it has a quantum behavior.
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Quantum-electronic devices, e.g., superconductors, can have the size of a meter
and still must be described by quantum mechanics. It is still debated whether
macromolecules can be described with classical mechanics or whether for them
the quantum-mechanical properties must be taken into account.

As for superconductors, their coherence (tendency to show a quantum behav-
ior) can be seen mathematically as a result of their almost pure periodic structure.
Mathematically this is translated into the fact that the wave function is correlated
over many elementary cells and therefore the analytic and topological structure is
stable over a long distance.

Amorphous materials are more subject to interference effects so that the quan-
tum structure is averaged out over a relatively short distance and is not effective
over a long distance.

This averaging out is at the basis of the principle of decoherence which is often
considered as a solution to the problem of the quantum-classical divide.

We shall briefly describe this principle through a typical example. We shall
see that, contrary to a statement which is often made, some traces of the quantum
behavior remain and in particular this principle does not solve the measurement
problem (intrinsic indeterminacy in the measurement process).

Decoherence should be regarded as a consequence of a continuous process of
correlations between the quantum system under study and the environment.

From a mathematical point of view, decoherence is linked to partial trace or
conditioning.

Conditioning in quantum mechanics has properties similar to those of the opera-
tion with the same name in classical probability theory, but one should notice that,
contrary to what happens in classical probability theory, in quantum mechanics
complete information about the state of the system does not imply knowledge of the
state of each component.

Suppression of information relative to the environment should lead to writing
effective equations for a relevant subset of the measurable quantities of the subsys-
tem.

If the subset can be described in classical terms, we expect that these equations
are the equations of classical physics. The structure of the interaction should de-
termine the subset of observables for which this reduction is possible.

The dynamics that one obtains should describe the evolution of these observables
independently of the evolution of the environment for almost all its configurations
and for a sufficiently long time.

It must be said at the onset that this program, on the mathematical side, is still
in its infancy, in spite of its extreme conceptual interest.
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Roughly speaking, the mechanism of decoherence is as follows. Assume that
the initial state of the total system observed object+ environment is

9 ∈Htot =Hobs⊗Henv, 9 = ψ ⊗φ, ψ ∈Hobs, φ ∈Henv.

If one measures an observable A ∈ B(Hobs), the mean of the values will be
(8, (A⊗ I )8) (we have introduced the natural immersion of B(Hobs) in B(H)).

If the hamiltonian of the total system is H , at time t > 0, the measurement of A
in the state 8 will give

(8, ei t H (A⊗ I )e−i t H8).

Due to the interaction between the two systems, there does not exist in general
an operator K ∈B(Hobs) such that for all A ∈B(Hobs) and for a generic state 8

(8, ei t H (A⊗ I )e−i t H8)= (8, (ei t K Ae−i t K
⊗ I )8).

One can hope (maybe even expect) that, if the environment has a large number
of degrees of freedom and the interaction is very weak, the interaction has mainly
the effect of modifying the state of the system, making it appear as a classical
Liouville state.

In this case, the coherence which is at the root of the superposition principle is
hidden by the lack of control of the environment. This would provide the bridge
between the quantum world and the classical one.

This description scheme has not yet been developed; only special cases have
been treated rigorously, and only strong qualitative arguments have been given in
sufficiently general cases.

Strong qualitative arguments have been given, e.g., to show that decoherence for
a quantum system can be produced by the interaction with a large number of light
particles, and in this case position variables emerge as a “pointer basis” (variables
which have a classical behavior).

One finds an overview of these considerations, e.g., in [Robert 1998; Wheeler
and Zurek 1983].

Arguments have also been given to describe the decoherence for a quantum
system in a thermal bath, i.e., interacting with a large number of particles in ther-
modynamic equilibrium at fixed temperature. In this direction, an approach to the
mathematical description of decoherence has been pursued in [Hornberger 2009]
in the framework of the algebraic formulation of quantum mechanics.

In spite of these developments, there are still many unsettled points in a mathe-
matical theory of decoherence.
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9. Mechanisms of decoherence

As a possible mechanism of decoherence, consider the system composed of a case
of a great number of quantum particles of very small mass ε scattering one after
the other and independently off a quantum particle of mass 1.

Let φ(x), x ∈ R3, be the wave function of the quantum particle before collision,
and denote by y the coordinate of the first light particle.

The dynamics of the first collision is given by the Schrödinger equation (in units
h̄ = 1)

i
∂φ

∂t
= Hφ, H =−

1
2
1x −

1
2ε
1y + V (y− x),

where 1 is the laplacian and the potential V is regular and compactly supported.
The initial state of the system is 8≡ φ(x)ψ(y), and we are interested in

(ei t H8, (A⊗ I )ei t H8)

where A is an observable of the system which is represented by an operator with
kernel A(x, x ′).

Setting ξ = x − y and η = x + y/ε and noticing that all laplacians commute, it
is not difficult to see that ei t H has the form

ei t H
= ei(t/2)1x ei(t/2ε)1ηe−i(t/2ε)1y ei t (1/2M)1y+Vx (y), Vx(y)= V (y− x).

Consider now the case in which the particle with coordinate y is very light (ε is
very small), and set t = εs.

Keeping into account that A⊗ I commutes with H 0
y ,

(ei t H8, (A⊗ I )ei t H8)= (Ws8, (e−iεs H0
x Aeiεs H0

x ⊗ I )Ws,x8), H 0
x =−

1
21x ,

where
Ws,x = e−i(s/ε)(1/2)1y ei(s/ε)((1/2)1y+Vx (y)).

When ε→ 0, the operator Ws converges to the wave operator Wx for the scat-
tering of the light particle off the heavy one with a potential Vx(y).

One therefore has

(ei t H8, (A⊗ I )ei t H8)=

∫
at(x, x ′)ζt(x, x ′)φ(x)φt(x) dx dx ′

where at(x, x ′) is the integral kernel of e−i t H0
1 Aei t H0

1 and ζt(x, x ′) is a positive-type
function (i.e.,

∫
ζ(x, x ′) f (x ′) f (x) dx dx ′ ≥ 0 for all f ).

The function ζ is given explicitly as

ζt(x, x ′)= (Wx ′φ,Wx(t)φ).
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As a function of u = x − y and v = (x + y)/2, for each value it reaches its
maximum when u = 0.

Notice that ζ0(x, x ′)φ(x ′)φ(x) is the kernel of the density matrix before the
interaction.

The function ζt has the following properties:

(a) ζt(x, x)= 1.

(b) If t > 0, |ζt(x, x ′)|< 1 if 0< |x − x ′|< Kt where the constant Kt depends on
the initial datum and on the potential.

(c) ζ t(x, x ′)= ζt(x ′x).

Property (b) indicates that due to the interaction the integral kernel is slightly
(ε is very small) more concentrated on the diagonal and slightly more spread out
due to the dispersive properties of the Schrödinger equation.

After the interaction with the first particles, the kernel of the density matrix
will be

ρ ′(x ′, x)= ζt(x ′, x)ρ(x ′, x).

Assume now that the successive interaction with the N particles of the environ-
ment are independent and take place at times {Tk} with intervals of order ε−1 in
such a way that it is entirely a sequence of independent events.

In this case, the modifications to the kernel of the density matrix can be consid-
ered as independent and after N collisions the kernel of the density matrix will be

ρN (x,′ x)φ(x ′)φ(x)ζ1(x ′, x)ζ2(x ′, x) · · · ζN (x ′, x).

Since all functions ζk , k = 1, . . . , N , have the properties (a), (b), and (c), we
conclude that if N is very large the kernel of the density matrix after the very many
collisions is concentrated for all macroscopic times on the diagonal and therefore
is represented by a classical Liouville measure.

It is not difficult to show that under these conditions the propagation of the
heavy particle is described within a good approximation by the Lagrange equation
in configuration space.

In the terminology of the theory of decoherence, this may be described as the
choice of a preferred basis (the configuration space).

But notice that in general the support on the diagonal is not of the order
√

h̄ and
therefore the (approximate, classical) dynamics is that of a Liouville distribution.

The procedure we have described is largely heuristic, and to have a rigorous
result one should proceed much more carefully, establishing exact formulae and
giving accurate estimates of the terms which one neglects.

This is a very difficult task that nobody has completed so far.
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10. Experiments on decoherence

From the experimental point of view, interesting and very refined experiments have
been performed in particular by the group of S. Haroche at the École Normale
Supérieure. A typical experiment is described in [Raimond 2014].

In this experiment, rubidium atoms (mice) initially in a circular Rydberg state f
are injected one at a time in a photon box (cat), an open cavity with reflecting
walls that can keep for 1 millisecond a specified number of photons of wavelength
6 millimeters.

The electromagnetic field in the cavity is prepared in a state of 9 or 10 photons;
this state approximates reasonably well a coherent state for which a (semi)classical
description is possible.

In particular one can define the frequency of the radiation field. In this state the
cavity-cat is sleeping.

The field is prepared in a (quasi)monochromatic state with frequency resonating
with that of the transition between the f and the g states of the rubidium.

The rubidium atom (mouse) which is injected in the cavity is in a state “ f ”; this
state has small dipole momentum and therefore does not disturb the cat (change
the number of photons).

While crossing the cavity, the atom-mouse is subjected to a laser beam to induce
a transition to another state “g”; the superposition of the two states has a large
electric dipole.

This produces emission and absorption of photons and modifies the distribution
of the number of photons in the cavity-cat which is now suspended between two
normal states f and g (and this makes its presence visible to the cat).

The environment is in this case represented by the walls of the cavity that “in-
teract” with the field present in the cavity because of imperfections.

The number of photons in the cavity (the status of the cat) can be monitored
by sending into the cavity a second rubidium atom. If the cat has remained in a
suspended state, it will interact with the atom-mouse.

The apparatus therefore permits one to tell whether the cavity is in a coherent
state and thereby permits one to measure the decoherence induced by the environ-
ment (by impurities in the walls of the photon box). The experiment reveals that
the amount of decoherence depends on the delay with which the second atom is
injected into the cavity.

Call decoherence time the time after which the description of the photon box as
a coherent state produces a relative error of 1/104. The results of the experiment
which is roughly described above indicate that the decoherence time is on the order
of 0.1 milliseconds.
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Decoherence is therefore effective in a small time even in this carefully organized
experiment.

One can expect that in the case of a real cat the survival time of coherence is
several orders of magnitude smaller and therefore coherence cannot be seen under
normal everyday life conditions (i.e., for true cats).

This and related experiments show that a result (the cat suspended between two
physical states) that seems to be counterintuitive when one has little control of
the environment can be observed in a laboratory in which maximum control is
possible.

11. The measurement problem and tracks in a cloud chamber

The difficulty in unscrambling the quantum omelette is clearly shown in the mea-
surement problem, which cannot be solved by the theory of decoherence.

As Bohr emphasized, measurement is done with classical instruments and the
result is expressed in classical language.

One often says that the instrument interacts with the object to be measured, but
there is an ambiguity in this statement.

In mathematical terms, the term interaction refers to the description of the dy-
namics by means of the structure of the equations. It belongs therefore to the world
of mathematical quantum mechanics.

On the other hand, the word measurement (distinct from interaction) must refer
to a process that takes place in the real world and leads to unambiguous results.

According to Bohr [Robert 1998], the unambiguous interpretation of any mea-
surement must be essentially framed in terms of classical physics theories, and
we may say that the language of Newton and Maxwell remains the language of
physicists for all time.

Therefore, the analysis of the quantum measurement process is the key to recov-
ering a rational account of physical phenomena.

We have stated that the main problem in QM is the distinction between interac-
tion (a mathematical structure) and measurement (a physical process).

We exemplify these difficulties by considering a simple phenomenon, the occur-
rence of tracks in a cloud chamber. It is simple enough to admit an almost complete
mathematical description, and at the same time it contains all the interpretation
problems in QM.

A Wilson cloud chamber is a vessel that contains vapor which is in a supersat-
urated state. Under a small local perturbation, it can locally make a transition to a
liquid state (droplet).
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It is an experimental fact that an α-decay produces in a cloud chamber at most
one track (sequence of liquid droplets placed on a line that is straight or slightly
curved if a magnetic field is present (a trajectory of a classical particle)).

Different decay events produce tracks that point in random directions. This
seems to contradict the description of decay in QM: according to Gamow if the
decay takes place at rest, a spherical wave is produced and moves radially according
to Schrödinger’s equation.

The presence of the track makes the result appear as if the interaction with the
supersaturated vapor turned the wave into a particle. We want to place this effect
in the context of Schrödinger’s QM.

Notice that in this experiment the experimenter is the cloud chamber (or rather
the supersaturated gas).

The problem of justifying the presence of a track of droplets within Schrödinger’s
quantum mechanics goes back to the early days of QM together with the question
of whether the presence of the track can be considered proof that a real α-particle
is produced in the decay.

Mott [1929] was among the first to attempt a systematic description using prop-
erties of the solutions of the time-independent Schrödinger’s equation. A rather
detailed account of the history of the problem and of various attempts to find a
solution can be found in a recent book by Figari and Teta [2014].

The analysis given by Mott is based on stationary and nonstationary phase tech-
niques in the time-independent formulation of Schrödinger’s equation; it goes in
the right direction but is incomplete in several ways.

To improve the analysis, we rely on semiclassical theory [Dell’Antonio 2015].
We shall see that the properties of the initial wave function allow for the intro-

duction of a semiclassical formalism in which the interaction of the wave with a
single atom can be regarded as semiclassical inelastic scattering. We stress that
this description does not have a universal character and depends essentially on the
mathematical properties of the initial state.

In this mathematical formulation, the α-wave before the production of the first
droplet of the track can be regarded (mathematically) as fragmented into (coherent)
semiclassical wavelets, each of high momentum, moving radially away from the
point at which the decay has taken place.

The linear size of each wavelet is comparable to that of the atoms. Each wavelet
moves according to the laws of QM: its barycenter moves on a classical path (curvi-
linear if a constant magnetic field is present), and its dispersion is of order

√
h̄ (in

natural units) and increases slowly in time.
No physical significance should be attached to this mathematical exercise. One

can compare it to the description of light as composed of light rays with a major
difference: the α-wave is a probability wave.
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The α-wavelets move coherently; the entire wave keeps its spherical structure
in accordance to Huygens’ principle.

When one of the wavelets interacts with an atom, the coherence with the other
wavelets is lost: the combined system wavelet+ ion (+ emitted electron) belongs
now to a different subspace of the Hilbert space in which the entire system (emitted
wave and atoms of the vapor) is described.

If one regards the resulting subsystem as isolated, the result is an entangled state
of the wavelet, of the wave functions of an ion, and perhaps of the emitted electron.

The interaction wavelet-atom can be considered as independent of the environ-
ment, and mathematically it can be regarded as inelastic scattering.

Therefore, QM describes the system after the interactions but before the produc-
tion of the first droplet, as a collection of very many coherent triples each composed
of the wave function of an ionized atom, a semiclassical wavelet, and the wave
function of an electron.

Each triplet belongs to a different sector of the Hilbert space, and there is no
interference between them.

Note that mathematically the ionization of an atom is the result of an interaction
described in QM by a unitary propagation within a huge Hilbert space.

On the other hand, the production of the first droplet is a random macroscopic
event, the result of a chain of processes of magnification which can probably best
be described within statistical mechanics. The local phase transition is due to the
modification produced by the ion in the electronic structure of the nearby atoms.
QM can at most be used to determine the probability that a droplet be formed.

Its relation with the Hilbert space description in QM is the measurement prob-
lem; how does the quantum-mechanical system choose the (probability) wavelet
that produces the droplet? Is it a random choice?

After the production of the droplet, the remaining wavelets no longer enter the
description of the system. It is improper to say that they have disappeared because
as probability waves they had no physical existence even before the formation of
the droplet.

The selection process is probability preserving (since the outcome occurs with
probability 1) and nonlocal (since the initial wave function is extended and the final
result is localized in a small cone). It is not described by the Schrödinger equation.

Since the interaction provides strong entanglement among the component of
each of the triplets of probability waves indicated above, one may assume that
the process of measurement selects not only an ion but also the corresponding
α-wavelet, although no actual measurement of the wavelet is done.

After the interaction, the chosen wavelet is still a (semiclassical) probability
wave. It can interact with the atoms in its path. Since the wave function of the
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wavelet has support on the order of magnitude of the square root of Planck’s con-
stant, the interaction can be regarded by a macroscopic observer as having taken
place at one point.

The momentum of the wavelet is essentially concentrated along a vector that is
directed from the point of decay to the point at which the first droplet is formed.

The production of further droplets is again a macroscopic phenomenon not de-
scribed by the Schrödinger equation. Since the interaction is local, the incoming
(probability) wavelet is well localized and the exchange of momentum is negligible;
its barycenter has essentially a classical motion.

The wavelet therefore moves as a classical object (an α-particle) with roughly
the same energy and momentum of the wave emitted in the decay.

The question of whether after the production of the first droplet the remaining
droplets in the track are produced by a probability wavelet or by a particle is devoid
of objective meaning.

In any case the interaction of the wavelet-particle with the other atoms leads to
the formation of a straight line of droplets (or a curved line if a magnetic field is
present). Due to the semiclassical nature of the wavelet, the direction of the track
is determined by the position of the source and of the first droplet.

Notice that after each collision the shape of the wavelet may change and from
the point of view of mathematics at every interaction the wavelet changes sector
in the abstract Hilbert space.

The quantum aspects of this description are limited to the fact that, although the
initial state is completely known, one can give only the probability that a track is
produced in a given direction.

We stress that one sees droplets only if ionization takes place and the ion triggers
the magnification mechanism. Without this mechanism (which can be described at
most by quantum statistical mechanics), the event is not recognized by the macro-
scopic observer as a measurement and it must be considered only as an interaction.

One therefore has to invoke the presence of a step in which probability is turned
into occurrence. This step is beyond QM and has not been understood so far. This
ambiguity is at the heart of the measurement problem in QM.

Notice that also from a bayesian point of view (updating of information) this is
a difficult problem since the updating is (presumably) done by the supersaturated
gas. On the other hand, critics of the description of a measurement process have
always remarked that a Ph.D. is not required to a make a measurement.

12. Some mathematics

For completeness we give some details of the mathematics involved. More details
can be found in [Dell’Antonio 2015].
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According to quantum mechanics, the α-wave φ0 produced in the decay can
be presented as a complex-valued spherically symmetric function with support in
a small neighborhood of the origin and with a phase proportional to M |v0||x |/h̄
where M ∈ R+ and v0 ∈ R3 are the parameters (mass and radial velocity) which
characterize the wave produced in the decay.

We take natural units in which Planck’s constant h̄ is very small, and we assume
that |v0| is very large.

It is convenient to have a different (equivalent) presentation of the initial data as
a function on the product of a small interval I ⊂ R+ and a fibered two-dimensional
sphere S2, with fibers perpendicular at each point to the sphere.

This presentation is particularly adapted to the introduction of a semiclassical
structure since both the free evolution in time and the wave packets are obtained
by the convolution of the wave function with a gaussian kernel.

For concreteness we shall write

φ0(x)= Ce−|x |
2/(2h̄)

∫
S2

dω ei Mv0(ζ(ω),x)/h̄, x ∈ R3,

where C is a normalization constant and ζ(ω), ω ∈ S2, is the unit vector orthogonal
to S2 at the point ω and directed opposite to the center of the sphere. The wave is
produced with high momentum, and therefore, we take 1� v0.

If there are no interactions, the wave evolves according to the free Schrödinger
equation; the evolution is described by the convolution with a suitable gaussian
kernel.

Taking into account that |v0| is very large, it is easy to see that at a later time T
the wave is approximately localized in a corona of mean radius v0T and width on
the order of

√
h̄.

Therefore, up to a small error, the wave function φT (x) at time T can also be
presented as a function on the product of an interval on the positive real axis and
the fibered unit sphere.

We shall assume that the (mathematical) interaction of the wave with the atoms
is of very short range and is nontrapping. This will allow us to consider the result
of the interaction as an inelastic scattering event. If the atoms are sufficiently sep-
arated from each other, we can consider the interactions as independent scattering
events.

The fact that several further ionizations are seen (forming a track of droplets)
suggests that the interaction between the atom and the semiclassical wave is rather
strong, and therefore, it is advisable to avoid using perturbation theory (a contact
interaction may be a better choice).

The waves in the Schrödinger picture are probability waves and carry no objec-
tive reality; they are tools to give the probability distribution of the outcomes if
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a measurement of a given observable is performed. Understanding the process by
which this probability is turned into a specific outcome constitutes the measurement
problem that is still unsolved in spite of its conceptual relevance.

A detailed description in quantum mechanics of the interaction of the emitted
wave with the atoms in the cloud chamber is beyond reach. We therefore make
some simplifying assumptions and approximations. We use natural units in which
Planck’s constant h̄ is very small.

Before the interaction, the wave satisfies the free Schrödinger equation and there-
fore the solution at time T is given by the convolution of the initial data with a
gaussian kernel. Under the assumption that Mv0 is very large, the presentation we
have used provides the following description of the wave at any time T > 0:

φT (x)= F h̄
T (|x |)

∫
S2

dω ei Mv0(ζ(ω),x)/h̄ + RT (x), x ∈ R3.

The function F h̄
T (ρ) is supported in a spherical corona of depth

√
h̄ and radius

|v0|T . The residual term RT (x) has L2 norm of order
√

h̄ and decreases fast in
time. We will neglect this term in the following analysis and will take the L2 norm
of φT to be 1.

We make use of natural units in which Planck’s constant h is very small. The
essential support of the wave function of an atom has linear size of order

√
h̄. All

quantities will be evaluated up to a relative error of order
√

h̄.
One can consider separately the evolution of small fragments, wavelets, of the

α-wave, of linear size
√

h̄.
The density of the atoms in the cloud chamber is such that each fragment inter-

acts with at most one of the atoms.
In the presentation of the α-wave given in (2.2), the fragments are obtained using

elements of a smooth partition of the unit sphere. Each element ξ has support of
linear size O(

√
h̄), and its initial condition at time T is

φξ (x, T )=8ξ (x, T )+ RT , 8ξ (x, T )= FT (|x |)
∫

S2
ξ(ω)ei Mv0(ζ(ω),x)/h̄ dω.

FT (ρ) has support in a neighborhood of v0T of linear dimension O(
√

h̄), and
we shall neglect RT , which is smaller in norm by a factor O(

√
h̄) with respect

to 8ξ .
We prove now that the solution with initial condition 8ξ (x, T ) is localized to-

gether with its (quantum) Fourier transform in a domain of linear size
√

h̄ and
therefore represents a semiclassical wavelet. We take ξ to be localized around
the point (0, 0, 1). By construction the function 8ξ (x, T ) is then supported in a
neighborhood of linear size O(

√
h̄) of (0, 0, v0T ). Recall that the quantum Fourier

transform is the Fourier transform written in units of h̄−1. Notice that we make an
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error of order h̄ in substituting the support of ξ on the sphere of radius v0T with its
projection on the tangent plane. Up to an error of order h̄, we can therefore write

8̃ξ (x, T )=
∫
ξ̃ (y)FT (|x |)ei M(v0x3+y1x1+y2x2)/h̄ dy1 dy2

where ξ̃ (y) has support in |y|< C2
√

h̄.
The Fourier transform is easy to compute; it has support in the ball of radius

O(
√

h̄) and center (0, 0,Mv0). Therefore, under free evolution, 8ξ (x, T ) behaves
as a semiclassical wave packet. Since v0 is very large, if the interaction is not
trapping, the wave remains in the cloud chamber for a very short time 1.

We can use this semiclassical picture during the time in which the interaction
with the atoms takes place. Standard phase-space analysis shows that, if φξT and φηT
have supports separated by a finite distance d, the same is true (up to an error of
order h̄) for a time T ≤ t ≤ T +1.

If the phenomenon we describe were scattering of a semiclassical wavelet by a
potential V (x), regularity and no trapping properties of the potential would give
a description of the event as semiclassical scattering. Regularity conditions on
the potential must be imposed in order for dynamics to preserve the semiclassical
structure. In our case the scattering is inelastic because the final state also contains
an electron.

Consider first the interaction with a single atom with wave function ψY with
essential support in a neighborhood of linear size of the order

√
h̄ of a point Y ∈R3.

As a result of the interaction, ionization occurs; we assume that the wave function
of the resulting ion remains localized in a neighborhood of Y of linear size O(

√
h̄).

We have assumed that the interaction is not trapping and its range is of order
√

h̄.
Since the speed with which the wave moves is very large, the interval of time 1
in which the interaction takes place is very short. Due to our assumption on the
density of the atoms, we can assume that the fragmentation of the wave is such
that during the interval of time 1 only one of the fragments interacts with the atom
in Y . Under this assumption after the interaction, this fragment is localized again
in a region of linear size

√
h̄ near the atom in Y .

Since the momentum of the incoming fragment was localized around Mv0Ŷ in
units of 1/h̄ and the loss of momentum in the interaction is very small on this
scale (the ionization energy is comparatively small), energy-momentum conserva-
tion implies that also the momentum of the outgoing fragment is sharply localized
around Mv0Ŷ .

The outgoing fragment is therefore represented by a semiclassical wavelet, with
approximately the same mean momentum as the incoming wavelet and approxi-
mately the same variance.

Consider an atom localized near the point P ∈R3
≡ (0, 0, r0). Under free motion
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the wave function F h̄
T overlaps the wave function of the atom for a very small time

interval 10T . Since the interaction is of very short range and nontrapping, the
wave function with initial data F h̄

T overlaps the wave function for a very short time.
Therefore, only a small part of the incoming wave contributes to the interaction
with the atom in P .

This suggests a (mathematical) decomposition of the incoming spherical wave
into fragments (wavelets), each of which can interact with only one of the atoms.
We will prove that, due to the properties of the initial α-wave, the wave can indeed
be seen as decomposed into small (coherent) fragments (wavelets) each propagat-
ing as a semiclassical wave packet (its barycenter follows a classical path). The
dispersion is of order

√
h̄ both in space and momentum (the latter in units of

√
h̄).

Notice that we are manipulating mathematical objects (probability amplitudes)
that enter into the mathematical framework by which quantum mechanics describes
outcomes of experimental observations.

Before the formation of the first droplet (and after very many interactions), the
partition in wavelets is a mathematical exercise. The macroscopic production of
the droplet selects one the ions (the seed for the production of the droplet). This
selection process is nonlocal and is not described by the Schrödinger equation.

The measurement process also selects the wavelet associated to the ion (although
one measurement is performed on it). The selected wavelet is still a probability
wave. Momentum conservation together with the semiclassical approximation im-
ply that also this outgoing α-wavelet can be treated semiclassically (but its shape
may have been changed by the interaction).

The outgoing wavelet interacts with the atoms on its path giving rise to further
ionizations. Each ionized atom is a seed for production of a droplet; this originates
the track. All other probability wavelets now have probability 0; therefore, there is
only one track.

As already mentioned, the mathematical device of partitioning does not lead
per se to anything physical. It reveals a detectable phenomenon due to the macro-
scopic mechanism of production of a droplet.

Notice that in this description the semiclassical wave packet entangled with the
selected atom may lead to measurable effects although no measurement is per-
formed on it.

As a result of the measurement (a probability-preserving nonlocal map), one
of the ions is selected and the corresponding wavelet acquires probability 1. This
distinguishes measurement from interactions.

We now generalize the analysis to take into account that there are many atoms in
the cloud chamber, uniformly distributed and sufficiently separated so that each of
them interacts with at most one of the wavelets and the interactions can be regarded
as independent.
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Each wavelet interacts with at most one atom. The outcome of the interaction
is an entangled state made of the wave functions of an ion and of the outgoing
wavelet (and of an electron).

We conclude that the interaction of the α-wave with the atoms in the cloud
chamber can be mathematically described before the measurement as a sequence
of disjoint and independent interactions of semiclassical probability wavelets with
the atoms of the cloud chamber.

After the interaction, the wavelets move incoherently and the wave functions of
the atoms are turned into the wave function of an ion. The interaction time is so
short that we are justified in substituting the interaction with the scattering map.

The act of measurement (the cloud chamber measures the position of the first
droplet produced) selects, according to Born’s rule, one and only one of the ions
to be the seed of the process of formation of the first droplet of liquid. The exact
mechanism behind this selection has not been understood so far; it can be best
described within quantum statistical mechanics.

The ion selected modifies the wave function of the nearby atoms. Since the
vapor is supersaturated, this gives rise locally to a phase transition with production
of a liquid droplet.

We assume that the measurement process also has the effect of keeping, as part
of the description of the system after the measurement, also the wavelet entangled
with the selected ion (although no direct measurement is performed on the wavelet).

The wavelet which is selected may originate on its path further ionizations, and
this gives the visible track. Notice that the (position) measurement of the first
droplet in the path is the only one which is represented by a (unitary) nonlocal
transformation. The process of production of the remaining part of the track is
essentially local.

After the measurement only one of the wavelets enters in the description of the
system; it has essentially the energy-momentum of the entire incoming wave. Since
it is well localized in position, it can be described as a particle (the α-particle). The
remaining (probability) wavelets no longer enter the description of the system.

In conclusion, the analysis we have performed of the production of tracks in a
cloud chamber shows that interaction should not be confused with measurement.

We briefly note the relation of this analysis with the problem of decoherence.
Before the interaction with the atoms, the semiclassical wavelets were coherent.

After the interaction with an atom, the wavelet is entangled with the wave function
of an ion. The coherence with the rest of the wave is no longer detectable (it would
require a detailed knowledge of the wave functions of the atoms and of the emitted
electrons).

If the environment contains N atoms which are placed sufficiently far apart so
that the interaction of the wave with each atom can be treated as independent, the
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interaction produces N mutually incoherent triples each representing an entangled
state of an ion, a wavelet, and the emitted electron.

This decoherence between the triples is entirely different from the decoherence
of a slow-moving quantum wave as a result of very many interactions with the
ambient space. Decoherence in the cloud chamber experiment is related to a single
interaction with an atom.

13. Quantum mechanics: Born’s rule as conditional probability and
information-theory analysis

Combined with the projection postulate, Born’s rule says that, when one knows
that a measurement corresponding to an observable a associated to a symmetric
operator A with discrete spectrum has taken place but one does not know the result,
the following information is gained.

If the initial state is described by density matrix ρin, then the density matrix ρfin

of the final state is given by

ρfin =
∑

i
tr(Piρin Pi )

where A =
∑

i λi Pi is the spectral decomposition of the operator A. One has by
definition

∑
i Pi = I and A =

∑
i λi Pi .

This formulation no longer requires that the initial state of the system be pure.
It is interesting to notice that the formula can be interpreted in information

theory as saying that ρfin represents the most probable state that one may have after
a measurement of the observable a in the state described by ρin [Vedral 2002].

We clarify what this statement means.
According to von Neumann, information is measured by relative entropy, and

the most probable state is the state which corresponds to minimal entropy relative
to the initial state.

Following Wiener, we consider the amount of information to be the negative of
the quantity defined as entropy.

We therefore take the negative of the relative entropy function D(ρ, σ ) as a
measure of the relative information about the quantum state σ that can be derived
from knowledge of the quantum state ρ:

D(ρ, σ )≡ tr(ρ ln ρ− ρ ln σ).

The function D is nonnegative and can be considered a nonsymmetric distance.
The most probable outcome state is by definition the state which minimizes the

distance D(ρ, σ ) for all allowed σ .
In the case of measurement of the observable a which is represented by the

operator A =
∑
λi Pi , the reference states are the density matrices which belong
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to the set
6A ≡ {σ : [Pi , σ ] = 0} for all Pi .

The last equation is equivalent to the condition [A, σ ] = 0, i.e., the requirement
that the state is obtained as a consequence of the measurement of the observable a.

We must minimize D(ρ, σ ) over 6. This amounts to selecting the quantum
state that is least distinguishable from the original state among all the states that
satisfy the constraint of being produced by the measurement of a.

We consider only the case in which the Hilbert space is finite-dimensional. The
same results are obtained if A is compact.

The set 6A is defined by a linear relation, so it is a simplex.
D( · , · ) is jointly convex in both arguments so that ( · , ρ) is convex for all ρ.
Since the problem is finite-dimensional, the following holds: if the function f

is (Gateau) differentiable and strictly convex on a simplex, and the directional
derivatives (we are in a finite-dimensional setting) at a point b are all 0, then b is
the global minimum of f .

We can parametrize 6A noticing that every element is of the form

σ =U3U∗

where 3 is a trace-1 matrix with positive entries and U is a unitary operator U =
πiUi where Ui is the identity on the range of (I − Pi ).

This means that [U, Pi ] = 0= [3, Pi ].
Therefore, writing σi for σ restricted to the range of Pi , we have for every

function f on 6A

f (σ )=
⊕

i
f (σi )

(i.e., functions act blockwise on 6A).
Consider first the variation along the directions parametrized by U .
We look for the variation in the direction parametrized by one-parameter sub-

groups. Call L the generator.
We then compute

d
dt
φ∗t tr AU |t=0 =

d
dt

tr(Aet L)U |t=0 =
∑
i, j

Ai, j LUi, j = tr(ALU )

where we have denoted by φ∗t the adjoint action. In the same way, one computes

d
dt
φ∗ tr(AU BU∗)|t=0 = tr(ALU BU∗)− tr(AU BU∗L).

It is easy to verify that

[L i , Pj ] = 0, L i Pj = δi, j L i .
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The derivatives take the form

∂L i

∑
j

tr(PjρPjU j ln λ jU j ln λ jU∗j )= tr L i [ln σi , ρi ].

If σ and
∑

PiρPi can be diagonalized simultaneously, the derivatives vanish.
This is also a necessary condition since the commutator [ln σi , ρi ] is traceless

and Lk and i Lk span the all-traceless matrices in the i-th block.
We must consider next the variation with respect to 3 restricting to the case

when σ and σi PiρPi can be simultaneously diagonalized.
Let µσk and µρk be the eigenvalues of σ and of

∑
i Piσ Pi .

If µρi 6= 0 and µσi = 0, one has D(ρ, σ )=∞ so that this cannot be a minimum.
One has

∂λσk − ∂λ
µ
k

∑
m
λρm ln λσm = 0,

which implies that λρk /λ
µ
k is independent of k.

So the ratio of the eigenvalues of σ and of
∑

i Pσi P is fixed. Since they are
both of trace 1, they coincide.

It follows that the state σ =
∑

PiρPi is the unique minimum of the relative
entropy, i.e., it is the unique state that is least distinguishable from the original state
among all states which are compatible with the observation of the observable a.

The results was later generalized by Kostecki [2014], who proves that mini-
mization of the (Araki) quantum entropy is equivalent to the Lüders rule (a rule for
updating information)

ρ→

∑
j∈J PjρPj∑

j tr(PjρPj )

where J is a subset of a countable set corresponding to an orthogonal decompo-
sition and

∑
i Pi = I ∈B(H) (the spectral sequence of an operator A on H) and

the domain of this equation is restricted by the condition that
∑

i tr(Piρ) 6= 0 (the
measurement of A succeeded).

This result has a strong bayesian flavor, and this leads us to the next topic.

14. Quantum bayesianism (QB)

I close this paper with a brief discussion of quantum bayesianism.
This vision of quantum mechanics, put forward by C. Fuchs and A. Peres [2000]

and then by C. Fuchs, N. Mermin, and A. Schack [Fuchs et al. 2015], explores
further the path laid by Bohr.

The approach of these authors was to follow the Bayes–de Finetti interpretation
of probability as updating of information in order to account for QM. They call
this approach quantum bayesianism (in short QB-ism).
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They agree with Bohr that the primitive concept of experience is fundamental
for the understanding of QM, but contrary to Bohr, QB-ism explicitly takes the
subjective view of probability stressed by Bayes and de Finetti; i.e., probabilities
are assigned to an event by an agent and are particular to that agent.

These authors state that QM does not describe physical reality. It provides every
single agent with an algorithm for computing probabilities for macroscopic events
(such as detector clicks) that are consequences of the agent’s interactions with his
world.

The agent has in general no control of the reaction, and the result of the experi-
ences leads to an upgrading of the picture and of the expectations.

Still, an important component of the agent’s experience is the impact of the
efforts of other agents to communicate in speech or writing their own experiences.
Science is a collaborative effort to find, through individual actions and verbal com-
munications, a model for what is common to all our constructed external worlds.

To reify the (common) external world is a sound strategy for all practical pur-
poses, but when subtle scientific concept are at stake, such as quantum state, it
pays to trace back our description to our experience of the external world.

In a letter to Sommerfeld, Schrödinger [2011, p. 490] already stated, “Quan-
tum mechanics forbids statements about what really exists — statements about the
object. Its statements deal only with the object-subject relation”.

And Niels Bohr [1934, p. 18] added, “in our description of nature the purpose
is not to disclose the real essence of the phenomena but only to track down [. . . ]
relations between the manifold aspects of our experience”.

Failing to recognize the foundational role of personal experience creates puzzles
and paradoxes.

This strict definition of the scope of quantum theory is the only one ever needed
whether by experimenters or by theorists.

In a letter to Peierls, J. Bell commented, “One can learn quantum mechanics the
way one learns how to ride a bicycle, without really knowing what one is doing.
But it is impossible to make sense of either without taking into account of what
people actually do with them”.

QB-ism shares with the Copenhagen interpretation the statement that the quan-
tum state of a system is not an objective property of that system but only a mathe-
matical tool to think about it.

A fundamental difference is that QB-ism (like Bayes) explicitly introduces each
user of quantum mechanics into the story, together with the world external to the
user.

A measurement is any action that an agent takes to elicit a response. Given a
measurement outcome, the quantum formalism guides the agent in updating the
probabilities for subsequent measurements.
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From this point of view a measurement does not, as the term unfortunately sug-
gests, reveal a preexistent state of the system.

Quantum mechanics is a powerful tool that any agent can use to organize his
own experience. That this tool is used with spectacular success is an important
objective fact about the world we live in.

But quantum mechanics itself does not deal directly with the objective world: it
belongs to our experience of that objective world.

This is entirely different from the standard versions of quantum mechanics; for
example Landau and Lifshitz [1965, pp. 2–3] state, “By measurement [. . . ] we
understand any process of interaction between classical and quantum objects, oc-
curring [. . . ] independently of any observer”.

Bohr renounces this extreme attitude, but still individuals enter the story only as
proprietors of a large classical apparatus, and the apparatus objectifies the diverse
family of users. Replacing the single user with the apparatus introduces the ill
defined shifty split much criticized by J. Bell.

This is a split between classical and quantum, macroscopic and microscopic;
the split is shifty because its location can be freely shifted.

Because the outcomes of the Copenhagen experiments are classical, they are
considered automatically real. In this interpretation, words like macroscopic are
used to indicate the objective, nonquantum character of the outcome of a measure-
ment.

In QB-ism measurement has a broader meaning; every action constitutes a mea-
surement, and every outcome is a private experience that can be communicated
in classical terms. The famous story about Wigner’s friend is transformed from a
paradox to a basic dictum.

The Copenhagen school holds that a quantum state encapsulates our knowledge.
QB-ism replaces knowledge with belief, the belief of the person who made a state
assignment, the belief of the implications of further experiences.

An important difference is the meaning of “with probability 1”. As in the theory
of Bayes, it reflects only the willingness to accept bets. It does not imply the
existence of a deterministic mechanism.

This point was made long ago by D. Hume in his critique of induction: in physics
we believe in induction only because it has worked over and over again.

That probability-1 assignments are as any other assignment is essential for the
coherence of QB-ism.
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