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TOWARDS A COMPLETE CHARACTERIZATION
OF THE EFFECTIVE ELASTICITY TENSORS OF MIXTURES

OF AN ELASTIC PHASE AND AN ALMOST RIGID PHASE

GRAEME W. MILTON, DAVIT HARUTYUNYAN AND MARC BRIANE

The set GU f of possible effective elastic tensors of composites built from two
materials with positive definite elasticity tensors C1 and C2 = δC0 comprising
the set U = {C1, δC0} and mixed in proportions f and 1− f is partly character-
ized in the limit δ→∞. The material with tensor C2 corresponds to a material
which (for technical reasons) is almost rigid in the limit δ →∞. This paper,
and the underlying microgeometries, has many aspects in common with the
companion paper “On the possible effective elasticity tensors of 2-dimensional
and 3-dimensional printed materials”. The chief difference is that one has a
different algebraic problem to solve: determining the subspaces of stress fields
for which the thin walled structures can be rigid, rather than determining, as in
the companion paper, the subspaces of strain fields for which the thin walled
structure is compliant. Recalling that GU f is completely characterized through
minimums of sums of energies, involving a set of applied strains, and comple-
mentary energies, involving a set of applied stresses, we provide descriptions of
microgeometries that in appropriate limits achieve the minimums in many cases.
In these cases the calculation of the minimum is reduced to a finite-dimensional
minimization problem that can be done numerically. Each microgeometry con-
sists of a union of walls in appropriate directions, where the material in the wall
is an appropriate p-mode material that is almost rigid to 6− p ≤ 5 independent
applied stresses, yet is compliant to any strain in the orthogonal space. Thus
the walls, by themselves, can support stress with almost no deformation. The
region outside the walls contains “Avellaneda material”, which is a hierarchical
laminate that minimizes an appropriate sum of elastic energies.

1. Introduction

This paper is a companion to “On the possible effective elasticity tensors of 2-
dimensional and 3-dimensional printed materials” [Milton et al. 2017], which gives
a partial characterization of the set GU f of effective elasticity tensors that can be
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produced in the limit δ→ 0 if we mix in prescribed proportions f and 1− f two ma-
terials with positive definite and bounded elasticity tensors C1 and C2 = δC0. Here
we consider the opposite limit δ→∞, which corresponds to mixing in prescribed
proportions an elastic phase and an almost rigid phase. Our results are summarized
in the theorem in the conclusion section. For a complete introduction and summary
of previous results the reader is urged to read at least the first three sections of the
companion paper. The essential ideas presented here are much the same as those
contained in the companion paper. However, the algebraic problem relevant to this
paper, of determining when the set of walls can support a set of stress fields, is
quite different from the algebraic problem encountered in the companion paper of
determining when the set of walls is compliant to a set of strain fields.

The microstructures we consider involve taking three limits. First, as they have
structure on multiple length scales, the homogenization limit where the ratio be-
tween length scales goes to infinity needs to be taken. Second, the limit δ→∞
needs to be taken. Third, as the structure involves walls of width ε, which are very
stiff to certain applied stresses, the limit ε→ 0 needs to be taken so the contribution
to the elastic energy of these walls goes to zero, when the structure is compliant to
an applied strain. The limits should be taken in this order, as, for example, standard
homogenization theory is justified only if δ is positive and finite, so we need to take
the homogenization limit before taking the limit δ→∞.

As in the companion paper we emphasize that our analysis is valid only for
linear elasticity, and ignores nonlinear effects such as buckling, which may be
important even for small deformations. It is also important to emphasize that to
apply our results when phase 2 is perfectly rigid (rather than almost rigid) requires
special care. Indeed, if phase 2 is perfectly rigid, then many of the microgeometries
considered here do not permit the kind of motions that are permitted for any finite
value of δ, no matter how large. In particular, the structures considered in Figures
6, 8, and 9(d) of the companion paper would be completely rigid if phase 2 was
perfectly rigid. To permit the required motions, one has to first replace the rigid
phase 2 with a composite with a small amount of phase 1 as the matrix phase, so
that its effective elasticity tensor is finite but approaches infinity as the proportion
of phase 1 in it tends to zero. The microgeometry in this composite needs to be
much smaller than the scales in the geometries discussed here, which would involve
mixtures of it and phase 1.

2. Characterizing G closures through sums of energies
and complementary energies

Cherkaev and Gibiansky [1992; 1993] found that bounding sums of energies and
complementary energies could lead to very useful bounds on G-closures. It was
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subsequently proved in [Francfort and Milton 1994; Milton 1994] that minimums
over C∗ ∈ GU f of such sums of energies and complementary energies completely
characterize GU f in much the same way that Legendre transforms characterize
convex sets: the stability under lamination of GU f is what allows one to recover
GU f from the values of these minimums (see also Chapter 30 in [Milton 2002]).
Specifically, in the case of 3-dimensional elasticity, the set GU f is completely
characterized if we know the seven “energy functions”,
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In fact, Milton and Cherkaev [1995] showed it suffices to know these functions for
sets of applied strains ε0

i and applied stresses σ 0
j that are mutually orthogonal:
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The terms appearing in the minimums have a physical significance. For example,
in the expression for W 2

f ,
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has the physical interpretation of being the sum of energies per unit volume stored
in the composite with effective elasticity tensor C∗ when successively subjected to
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the two applied strains ε0
1 and ε0

2 and then to the four applied stresses σ 0
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and the second is called a complementary energy, although it too physically repre-
sents an energy per unit volume associated with the applied stress σ 0

j .
For well-ordered materials with C2 ≥ C1 (or the reverse), Avellaneda [1987]
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found by finding a combination of the parameters entering the formula for the effec-
tive tensor of sequentially layered laminates that minimizes the sum of six elastic
energies. In general this has to be done numerically, but it suffices to consider
laminates of rank at most 6 if C1 is isotropic [Francfort et al. 1995], or, using an
argument of Avellaneda [1987], to consider laminates of rank at most 21 if C1 is
anisotropic (see Section 2 in the companion paper).

In the case of 2-dimensional elasticity, the set GU f is similarly completely char-
acterized if we know the 4 “energy functions”,
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The effective tensor C∗ = C A
f (ε
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3) of the Avellaneda material is found by

finding a combination of the parameters entering the formula for the effective tensor
of sequentially layered laminates that minimizes the sum of three elastic energies.
In general this has to be done numerically, but it suffices to consider laminates of
rank at most three if C1 is isotropic [Avellaneda and Milton 1989], or, using an
argument of Avellaneda [1987], to consider laminates of rank at most 6 if C1 is
anisotropic (see Section 2 in the companion paper).

3. Microgeometries which are associated with sharp bounds on many sums
of energies and complementary energies

The analysis here of mixtures of an almost rigid phase mixed with an elastic phase
is very similar to the analysis in the companion paper for mixtures of an extremely
compliant phase and an elastic phase. The roles of stresses and strains are inter-
changed and now the challenge is to identify matrix pencils that are spanned by
matrices with zero determinant, rather than symmetrized rank 1 matrices. We now
have the inequalities
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The first inequality is clearly sharp, being attained when the composite consists
of islands of phase 1 surrounded by a phase 2 (so that (C∗)−1 approaches 0 as
δ→∞). Again the objective is to show that many of the other inequalities are also
sharp in the limit δ→∞, at least when the spaces spanned by the applied stresses
σ 0

j for j = 1, 2, . . . , 6− p satisfy certain properties. This space of applied stresses
associated with W p

f has dimension 6− p and its orthogonal complement defines
the p-dimensional space Vp.

The recipe for doing this is to simply insert into a relevant Avellaneda material
a microstructure occupying a thin walled region containing a p-mode material,
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such that the walled structure, by itself, is very stiff when the applied stress lies
in the (6− p)-dimensional subspace spanned by the σ 0

j , yet allows strains in the
orthogonal p-dimensional subspace Vp spanned by the ε0

i . We say a composite
with effective tensor C∗ built from the two materials C1 and C2 = δC0 is very stiff
to a stress σ 0

j if the complementary energy σ 0
j : C

−1
∗
σ 0

j goes to zero as δ→∞, and
allows a strain ε0

i if the elastic energy ε0
i : C∗ε

0
i has a finite limit as δ→∞. These

p-mode materials have exactly the same construction as that specified in Section 8
of the companion paper, only now the region that was occupied by the elastic
phase is now occupied by the rigid phase, and the material that was occupied by the
extremely compliant phase (which becomes void in the limit δ→ 0) is occupied by
the elastic phase. If we happened to choose C0 = C1, all the moduli (and effective
moduli) are simply rescaled, i.e., for any δ, and in particular for large values of δ, if
a mixture of two materials with effective tensors C1 and C1/δ has effective tensor
C∗, then when rescaling the elasticity tensors of the two phases to δC1 and C1, the
resulting effective elasticity tensor will be δC∗. Thus, the analysis of the response
of the p-mode materials is essentially the same as in the companion paper. Exactly
the same trial fields can be chosen to bound the response of the p-mode material.
Hence we do not repeat this analysis but instead the reader is referred to Section 8
of the companion paper.

The subspace orthogonal to Vp is now required to be spanned by matrices σ (k),
for k = 1, . . . , 6− p, such that

σ (k)nk = 0 (3-2)

for some unit vector nk . Thus the identifying feature of these matrices σ (k) is that
they have zero determinant, and then nk can be chosen as a null vector of σ (k). The
existence of such matrices σ (k) is proved in Section 4. The proof uses small per-
turbations of the applied stresses and strains. But, due the continuity of the energy
functions W k

f established in Section 5, the small perturbations do not modify the
generic result. The vectors nk determine the orientation of the walls in the structure
since a set of walls orthogonal to n can support any stress σ such that σn= 0.

To define the thin walled structure, introduce the periodic function Hc(x) with
period 1 which takes the value 1 if x − [x] ≤ c, where [x] is the greatest integer
less than x , and c ∈ [0, 1] gives the relative thickness of each wall. Then for the
unit vectors n1, n2, . . . , n6−p appearing in (3-2), and for a small relative thickness
c = ε, define the characteristic functions

ηk(x)= Hε(x · nk + k/p). (3-3)

This characteristic function defines a series of parallel walls, as shown on the left
in Figure 1, each perpendicular to the vector n j , where η j (x) = 1 in the wall
material. The additional shift term k/p in (3-3) ensures the walls associated with
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Figure 1. Example of walled structures. On the left we have a
“rank 1” walled structure and on the right a “rank 2” walled struc-
ture. The generalization to walled structures of any rank is obvious,
and precisely defined by the characteristic function (3-4) that is 0
in the walls, and 1 in the remaining material.

k1 and k2 do not intersect when it happens that nk1 = nk2 , at least when ε is small.
We emphasize that ε is not a homogenization parameter, but rather represents a
volume fraction of walls.

Now define the characteristic function

χ∗(x)=
p∏

k=1

(1− ηk(x)). (3-4)

If p ≤ 3, this is usually a periodic function of x, an exception being if p = 3 and
there are no nonzero integers z1, z2, and z3 such that z1n1+ z2n2+ z3n3 = 0. More
generally, χ∗(x) is a quasiperiodic function of x. The walled structure is where
χ∗(x) takes the value 0. In the case p = 2 the walled structure is illustrated on the
right in Figure 1.

The walled structure is where χ∗(x) given by (3-4) takes the value 0. Inside
it we put a p-mode material with effective tensor C2

∗
= C∗(Vp) that allows any

applied strain ε0 in the space Vp but which is very stiff to any stress σ 0 orthogonal
to the space Vp. Using the six matrices

v1 = σ
0
1 /|σ

0
1 |, . . . , v6−p = σ

0
6−p/|σ

0
6−p|, v7−p = ε

0
1/|ε

0
1 |, . . . , v6 = ε

0
p/|ε

0
p| (3-5)

as our basis for the 6-dimensional space of 3× 3 symmetric matrices, the compli-
ance tensor [C∗(Vp)]

−1 in this basis takes the limiting form

lim
δ→∞
[C∗(Vp)]

−1
=

(
0 0
0 B

)
, (3-6)

where B represents a (strictly) positive definite p × p matrix and the 0 on the
diagonal represents the (6−p)× (6−p) zero matrix. Inside the walled structure,
where χ∗(x)= 1, we put the Avellaneda material with effective elasticity tensor

C1
∗
= C A

f (0, . . . , 0, ε0
1 , . . . , ε

0
p).
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In a variational principle similar to (4-4) in the companion paper (i.e., treating
the Avellaneda material and the p-mode material both as homogeneous materials
with effective tensors C1

∗
= C A

f and C2
∗
= C∗(Vp), respectively) we choose trial

strain fields that are constant,

εi (x)= ε0
i , for i = 1, 2, . . . , p, (3-7)

thus trivially fulfilling the differential constraints, and trial stress fields of the form

σ j (x)=
6−p∑
k=1

σj,kηk(x)/ε, (3-8)

which are required to have the average values

σ 0
j = 〈σ j 〉 =

6−p∑
k=1

σj,k, (3-9)

and the matrices σi, j are additionally required to lie in the space orthogonal to Vp

(so they cost very little energy) and satisfy

σj,k = c j,kσ
(k), (3-10)

for some choice of parameters c j,k to ensure that σj,knk = 0 and hence that σ j (x)
satisfies the differential constraints of a stress field — this requires σ j (x)nk to be
continuous across any interface with normal nk . Additionally, the c j,k in (3-10)
should be chosen so the σ 0

j given by (3-9) are orthogonal.
To find upper bounds on the energy associated with this trial stress field, first

consider those parts of the walled structure that are outside of any junction regions,
i.e., where for some k we have ηk(x) = 1, while ηs(x) = 0 for all s 6= k. An
upper bound for the volume fraction occupied by the region where ηk(x)= 1 while
ηs(x)= 0 for all s 6= k is of course ε, as this represents the volume of the region
where ηk(x) = 1. The associated energy per unit volume of the trial stress field
in those parts of the walled structure that are outside of any junction regions is
bounded above by

6−p∑
k=1

σj,k : [C∗(Vp)]
−1σj,k/ε. (3-11)

With an appropriate choice of multimode material, one can construct bounded
trial stress fields that are essentially concentrated in phase 2, and consequently,
σj,k : [C∗(Vp)]

−1σj,k is bounded above by a quantity proportional to 1/δ. Our
assumption that we take the limit δ→∞ before taking the limit ε→ 0 ensures
that 1/(δε)→ 0, and thus ensures that the quantity (3-11) goes to zero in this limit.
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Next, consider those junction regions where only two walls meet, i.e., where for
some k1 and k2 > k1, x is such that ηk1(x)= ηk2(x)= 1 while ηs(x)= 0 for all s
not equal to k1 or k2. Provided nk1 6= nk2 , an upper bound for the volume fraction
occupied by each such junction region is ε2. Then the associated energy per unit
volume of the trial stress field in these junction regions where only two walls meet
is bounded above by

6−p∑
k1=1

6−p∑
k2=k1+1

(σi,k1 + σi,k2) : [C∗(Vp)]
−1(σj,k1 + σj,k2). (3-12)

Thus, the powers of ε cancel and this energy density goes to zero if the multimode
material is easily compliant to the strains σj,k1 +σj,k2 for all k1 and k2 with k2 > k1.

Finally, consider those junction regions where three or more walls meet, i.e., for
some k1, k2 > k1, and k3 > k2, x is such that ηki (x)= 1 for i = 1, 2, 3. For a given
choice of k1, k2> k1, and k3> k2 such that the three vectors nk1 , nk2 , and nk3 are not
coplanar, an upper bound for the volume fraction occupied by this region is ε3. In
the case that the three vectors nk1 , nk2 , and nk3 are coplanar, we can ensure that the
volume fraction occupied by this region is ε3 or less by appropriately translating
one or two walled structures, i.e., by replacing ηkm (x) with ηkm (x + αi nkm ) for
m = 2, 3, for an appropriate choice of α2 and α3 between 0 and 1. Since the energy
density of the trial field in these regions scales as ε3/ε2

= ε, we can ignore this
contribution in the limit ε→ 0 as it goes to zero too.

From this analysis of the energy densities associated with the trial fields it
follows that one does not necessarily need the pentamode, quadramode, trimode,
bimode, and unimode materials as appropriate for the material inside the walled
structure. Instead, by modifying the construction, it suffices to use only pentamode
and quadramode materials. In the walled structure we now put pentamode materials
in those sections where for some k, we have ηk(x) = 1 while ηk′(x) = 0 for all
k ′ 6= k. Each pentamode material is very stiff to the single stress σ (k) appropriate
to the wall under consideration. In each junction region of the walled structure
where ηk1(x) = ηk2(x) = 1 for some k1 6= k2 while ηk(x) = 0 for all k not equal
to k1 or k2, we put a quadramode material which is very stiff to any stress in the
subspace spanned by σ (k1) and σ (k2) as appropriate to the junction region under
consideration. In the remaining junction regions of the walled structure (where
three or more walls intersect) we put phase 1. The contribution to the average
energy of the fields in these regions vanishes as ε→ 0 as discussed above.

By these constructions we effectively obtain materials with elasticity tensors C∗
such that

lim
δ→∞

(C∗)−1
=5p(C A

f )
−15p, (3-13)

where I is the fourth-order identity matrix, 5p is the fourth-order tensor that is the
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projection onto the space Vp, and C A
f is the relevant Avellaneda material. In the

basis (3-5), 5p is represented by the 6× 6 matrix that has the block form

5p =

(
0 0
0 Ip

)
, (3-14)

where Ip represents the p× p identity matrix and the 0 on the diagonal represents
the (6− p)× (6− p) zero matrix.

In the case d = 2 the analysis simplifies in the obvious way. We have the
inequalities

0≤W 0
f (σ

0
1 , σ

0
2 , σ

0
3 ),

ε0
1 : [C

A
f (0, 0, ε0

1)]ε
0
1 ≤W 1

f (σ
0
1 , σ

0
2 , ε

0
1),

2∑
i=1

ε0
i : C

A
f (0, ε

0
1 , ε

0
2)ε

0
i ≤W 2

f (σ
0
1 , ε

0
1 , ε

0
2),

(3-15)

the first one of which is sharp in the limit δ→∞ being attained when the material
consists of islands of phase 1 surrounded by phase 2. The recipe for showing that
the bound (3-15) on W 1

f (σ
0
1 , σ

0
2 , ε

0
1) is sharp for certain values of σ 0

1 and σ 0
2 and

that the bound (2-5) on W 2
f (σ

0
1 , ε

0
1 , ε

0
2) is sharp for certain values of σ 0

1 is almost
exactly the same as in the 3-dimensional case: insert into the Avellaneda material
a thin walled structure of unimode and bimode materials, respectively, so that it is
very stiff to any stress in the space spanned by σ 0

1 and σ 0
2 in the case of W 1

f , or so
that it is very stiff to the stress σ 0

1 in the case of W 2
f .

4. The algebraic problem: characterizing those symmetric matrix pencils
spanned by zero determinant matrices

Now we are interested in the following question: Given k linearly independent
symmetric d × d matrices A1, A2, . . . , Ak , find necessary and sufficient conditions
such that there exists linearly independent matrices {Bi }

k
i=1 spanned by the basis

elements Ai such that det(Bi ) = 0. It is assumed that d = 2 or 3 and 1 ≤ k ≤ kd ,
where k2 = 2 and k3 = 5. Here we are working in the generic situation, i.e., we
prove the algebraic result for a dense set of matrices. The continuity result of
Section 5 will allow us to conclude for the whole set of matrices. Actually, the
proof below also shows that the algebraic result holds for the complement of a
zero measure set of matrices.

Theorem 4.1. The above problem is solvable if and only if the matrices Ai for
i = 1, . . . , k satisfy the following conditions:

(i) det(A1)= 0, if k = 1, d = 2, 3. (4-1)
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(ii) (α1γ2+α2γ1− 2β1β2)
2 > 4 det(A1) det(A2), if k = d = 2, (4-2)

where
Ai =

(
αi βi

βi γi

)
. (4-3)

(iii) 4= 18 det(A1) det(A2)S1S2− 4S3
1 det(A2)+ S2

1 S2
2 − 4S3

2 det(A1)

− 27 det(A1)
2 det(A2)

2 > 0, if k = 2, d = 3, (4-4)

where Si =
∑3

j=1 si j for i = 1, 2 and si j is the determinant of the matrix
obtained by replacing the j-th row of Ai by the j-th row of Ai+1, where by
convention we have A3 = A1.

(iv) Always solvable if k ≥ 3, d = 3. (4-5)

Remark. In fact, the condition (4-1), that det(A1) = 0, could be excluded since
we are considering the generic case. It is inserted because we can treat it explicitly.

Proof. We consider all the cases separately.

Case (i): k = 1. In this case one must obviously have det(A1)= 0.

Case (ii): k = 2, d = 2. We can without loss of generality assume that (by small
perturbations) det(Ai ) 6=0 for i =1, 2. For η, µ∈R2, denote A(η, µ)=ηA1+µA2,
and thus for the equality

det(A(η, µ))= det(A1)η
2
+ (α1γ2+α2γ1− 2β1β2)ηµ+ det(A2)µ

2 (4-6)

to happen, one must first of all have µ 6= 0; thus, dividing by µ2 and setting t = η/µ,
we get that the quadratic equation

1
µ2 det(A(η, µ))= det(A1)t2

+ (α1γ2+α2γ1− 2β1β2)t + det(A2)= 0 (4-7)

must have two different solutions, i.e., the discriminant is strictly positive, which
amounts to exactly (4-2).

Case (iii): k = 2, d = 3. Again, we can without loss of generality assume that
det(Ai ) 6= 0 for i = 1, 2. Set again A(η, µ)= ηA1+µA2; thus we must have that
the equation

det(A(η, µ))= det(A1)η
3
+ S1η

2µ+ S2ηµ
2
+ det(A2)µ

3
= 0 (4-8)

has at least two different real roots, which by Cardan’s condition gives

4= 18 det(A1) det(A2)S1S2− 4S3
1 det(A2)+ S2

1 S2
2

− 4S3
2 det(A1)− 27 det(A1)

2 det(A2)
2 > 0, (4-9)

which is exactly (4-4).
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Case (iv): k ≥ 3, d = 3. Let us consider the case k = 3 first. Let us show that
we can assume, without loss of generality, that det(A1)= det(A2)= 0, by proving
that there exist numbers ηi 6= 0 for i = 1, 2 such that the matrices B1 = η1 A1+ A2

and B2 = η2 A1+ A3 have zero determinant. Indeed, we assume without loss of
generality that det(Ai ) 6= 0 for i = 1, 2, 3. We would then like to have

det(B1)(η1)= η
3
1 det(A1)+ η

2
1( · )+ η1( · )+ det(A2)= 0, (4-10)

which has a nonzero root η1, being a cubic equation with det(B1)(0)= det(A2) 6= 0.
Similarly, the equation det(B2)(η2)= 0 has a nonzero solution η2. The matrices
B1, B2, and A1 are linearly independent, because the linear independence of B1,
B2, and A1 is equivalent to the condition

det

η1 1 0
η2 0 1
1 0 0

= 1 6= 0. (4-11)

Assume now that A1, A2, and A3 are linearly independent and

det(A1)= det(A2)= 0. (4-12)

For any η, µ ∈ R, consider the matrix

B3 = B(η, µ)= A3+ ηA1+µA2.

It is clear that the triple A1, A2, B3 is linearly independent, so we would like to
show that there exist η, µ ∈ R, such that det(B3)= 0. Assume, by contradiction,
that

det(B3) 6= 0, for all η, µ ∈ R. (4-13)

Let us then show that the condition (4-13) implies that c1 = c2 = 0, where, taking
into account the condition (4-12), we have that

det(B3)= c1η
2µ+ c2ηµ

2
+ c3ηµ+ c4η

2
+ c5µ

2
+ c6η+ c7µ+ det(A3). (4-14)

Indeed, if c1 6= 0, then taking η = µ2 we get that the equation det(B(µ2, µ))= 0
would have a solution µ ∈ R, being a fifth-order equation; thus, we get c1 = c2 = 0.
Next, by perturbing the elements of A1 and A2 if necessary, we can reach the
situation where no entries and second-order minors of both A1 and A2 vanish, by
first reaching the situation where A1 and A2 have no zero entries. If we now perturb
any i j and ik elements of A1 by small numbers ε and δ, where j 6= k, then to keep
the condition det(A1)= 0, we must have ε and δ satisfying

ε · cofi j (A1)+ δ · cofik(A1)= 0. (4-15)
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On the other hand, the condition c2 = 0 must not be violated by that perturbation,
thus we must have as well

ε · cofi j (A2)+ δ · cofik(A2)= 0. (4-16)

The last two conditions then imply that the cofactor matrix cof A1 is a multiple of
the cofactor matrix cof A2, i.e.,

cof(A2)= t · cof(A1), t 6= 0. (4-17)

Again, a small perturbation of the 11 and 12 elements of A1 by ε and δ satisfying
(4-15) with i = j = 1, k = 2 does not violate the condition det(A1) = 0, thus it
must not violate the condition (4-16). Observe that the above perturbation does
not change the cofactor cof11(A1), but it changes the cofactor element cof33(A1),
which means that the desired condition det(B3)= 0 can be reached by small per-
turbations. The case k = d = 3 is now done.

Assume now k ≥ 4 and d = 3. By the previous step, in the space spanned by
A1, A2, and A3 there are three matrices A′1, A′2, and B3 = A3+η3 A′1+µ3 A′2 that
are linearly independent with zero determinant. Then, again by the previous step,
we can find linearly independent matrices B1, . . . , Bk that have the form B1 = A′1,
B2= A′2, and Bi = Ai+ηi A′1+µi A′2 for 3≤ i ≤ k and that are linearly independent
and have zero determinant. �

5. Continuity of the energy functions

It follows from the preceding analysis that we can determine the three energy func-
tions

W 1
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , σ

0
5 , ε

0
1),

W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2),

W 3
f (σ

0
1 , σ

0
2 , σ

0
3 , ε

0
1 , ε

0
2 , ε

0
3)

in the limit δ→∞ for almost all combinations of applied fields. Here we establish
that these energy functions are continuous functions of the applied fields in the
limit δ→∞, and therefore we obtain expressions for the energy functions for all
combinations of applied fields in this limit.

Recall that the set GU f is characterized by its W -transform. For example, part
of it is described by the function

W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)= min

C∗∈GU f

[ 2∑
i=1

ε0
i : C∗ε

0
i +

4∑
j=1

σ 0
j : C

−1
∗
σ 0

j

]
. (5-1)

Here we want to show that such energy functions are continuous in their arguments.
Let the compliance tensor [C∗(σ 0

1 , σ
0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)]
−1 be a minimizer of (5-1),
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and suppose we perturb the applied stress fields σ 0
j by δσ 0

j and the applied strain
fields ε0

i by δε0
i . Now consider the walled material with a geometry described by

the characteristic function

χw(x)=
3∏

k=1

(1− Hε′(x · nk)), (5-2)

where n1, n2, and n3 are the three orthogonal unit vectors

n1 =

1
0
0

 , n2 =

0
1
0

 , n3 =

0
0
1

 , (5-3)

and ε′ is a small parameter that gives the thickness of the walls. Inside the walls,
where χw(x) = 0, we put an isotropic composite of phase 1 and phase 2, mixed
in the proportions f and 1− f with isotropic effective elasticity tensor C(κ0, µ0),
where κ0 is the effective bulk modulus and µ0 is the effective shear modulus, which
are assumed to have finite limits as δ→∞. (The isotropic composite could consist
of islands of void surrounded by phase 1.) Outside the walls, where χw(x) = 1,
we put the material that has effective compliance tensor

[C1
∗
]
−1
= [C∗(σ 0

1 , σ
0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)]
−1.

Let C ′
∗

be the effective tensor of the composite. We have the variational principle

2∑
i=1

(ε0
i + δε

0
i ) : C

′

∗
(ε0

i + δε
0
i )+

4∑
j=1

(σ 0
j + δσ

0
j ) : (C

′

∗
)−1(σ 0

j + δσ
0
j )

= min
ε1,ε2,ε3,ε4,σ 1,σ 2

〈 2∑
i=1

εi (x) : [χw(x)C1
∗
+ (1−χw(x))C(κ0, µ0)]εi (x)

+

4∑
j=1

σ j (x) : [χw(x)C1
∗
+ (1−χw(x))C(κ0, µ0)]

−1σ j (x)
〉
, (5-4)

where the minimum is over fields subject to the appropriate average values and
differential constraints. We choose constant trial stress fields

σ j (x)= σ 0
j + δσ

0
j , j = 1, 2, 3, 4, (5-5)

and trial strain fields

εi (x)= ε0
i + δεi (x), i = 1, 2, (5-6)

where δεi (x) has average value δε0
i and is concentrated in the walls. Specifically,
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if {δε0
i }k` denote the matrix elements of δε0

i , and letting

δε1
i =

{δε
0
i }11 {δε

0
i }12 0

{δε0
i }21 0 0
0 0 0

 ,

δε2
j =

0 0 0
0 {δε0

i }22 {δε
0
i }23

0 {δε0
i }32 0

 ,

δε3
j =

 0 0 {δε0
i }13

0 0 0
{δε0

i }31 0 {δε0
i }33

 ,

(5-7)

then we choose

δεi (x)=
3∑

k=1

δεk
i Hε′(x · nk)/ε

′, (5-8)

which has the required average value δσ 0
j and satisfies the differential constraints

appropriate to a strain field because δεk
i = ai,knT

k + nk aT
i,k for some vector ai,k .

Hence, there exist constants α and β such that for sufficiently small ε′ and for
sufficiently small variations δσ 0

j and δε0
i in the applied fields, we have〈 2∑

i=1

εi (x) : [χw(x)C1
∗
+ (1−χw(x))C(κ0, µ0)]εi (x)

+

4∑
j=1

σ j (x) : [χw(x)C1
∗
+ (1−χw(x))C(κ0, µ0)]

−1σ j (x)
〉

≤W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)+αε

′
+βK/ε′, (5-9)

where K represents the norm

K =

√√√√ 2∑
i=1

δε0
i : δε

0
i +

4∑
j=1

δσ 0
j : δσ

0
j (5-10)

of the field variations. Choosing ε′ =
√
βK/α to minimize the right-hand side of

(5-9), we obtain

W 2
f (σ

0
1 + δσ

0
1 , σ

0
2 + δσ

0
2 , σ

0
3 + δσ

0
3 , σ

0
4 + δσ

0
4 , ε

0
1 + δε

0
1 , ε

0
2 + δε

0
2)

≤W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)+ 2

√
αβK . (5-11)
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Clearly the right-hand side approaches W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2) as K → 0. On

the other hand, by repeating the same argument with the roles of

W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)

and

W 2
f (σ

0
1 + δσ

0
1 , σ

0
2 + δσ

0
2 , σ

0
3 + δσ

0
3 , σ

0
4 + δσ

0
4 , ε

0
1 + δε

0
1 , ε

0
2 + δε

0
2)

reversed, and with the compliance tensor

[C∗(σ 0
1 + δσ

0
1 , σ

0
2 + δσ

0
2 , ε

0
1 + δε

0
1 , ε

0
2 + δε

0
2 , ε

0
3 + δε

0
3 , ε

0
4 + δε

0
4)]
−1

replacing the compliance tensor

[C∗(σ 0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)]
−1,

we deduce that

W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)

≤W 2
f (σ

0
1 + δσ

0
1 , σ

0
2 + δσ

0
2 , σ

0
3 + δσ

0
3 , σ

0
4 + δσ

0
4 , ε

0
1 + δε

0
1 , ε

0
2 + δε

0
2)

+ 2
√
αβK . (5-12)

This, together with (5-11), establishes the continuity of W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2).

The continuity of the other energy functions follows by the same argument.

6. Conclusion

We have established the following theorems.

Theorem 6.1. Consider composites in three dimensions of two materials with pos-
itive definite elasticity tensors C1 and C2 = δC0 mixed in proportions f and 1− f .
Let the seven energy functions W k

f , for k = 0, 1, . . . , 6, that characterize the set
GU f (with U = (C1, δC0)) of possible elastic tensors be defined by (2-1). These
energy functions involve a set of applied strains ε0

i and applied stresses σ 0
j meeting

the orthogonality condition (2-2). The energy function W 6
f is given by

W 6
f (ε

0
1 , ε

0
2 , ε

0
3 , ε

0
4 , ε

0
5 , ε

0
6)=

6∑
i=1

ε0
i : C

A
f (ε

0
1 , ε

0
2 , ε

0
3 , ε

0
4 , ε

0
5 , ε

0
6)ε

0
i (6-1)

(as established by Avellaneda [1987]), where C A
f (ε

0
1 , ε

0
2 , ε

0
3 , ε

0
4 , ε

0
5 , ε

0
6) is the ef-

fective elasticity tensor of an Avellaneda material that is a sequentially layered
laminate with the minimum value of the sum of elastic energies

6∑
i=1

ε0
j : C∗ε

0
j . (6-2)
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Again some of the applied stresses σ 0
j or applied strains ε0

i could be zero. Addi-
tionally, we have

lim
δ→∞

W 0
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , σ

0
5 , σ

0
6 )= 0,

lim
δ→∞

W 1
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , σ

0
5 , ε

0
1)= ε

0
1 : [C

A
f (0, 0, 0, 0, 0, ε0

1)]ε
0
1 ,

lim
δ→∞

W 2
f (σ

0
1 , σ

0
2 , σ

0
3 , σ

0
4 , ε

0
1 , ε

0
2)=

2∑
i=1

ε0
i : [C

A
f (0, 0, 0, 0, ε0

1 , ε
0
2)]ε

0
i ,

lim
δ→∞

W 3
f (σ

0
1 , σ

0
2 , σ

0
3 , ε

0
1 , ε

0
2 , ε

0
3)=

3∑
i=1

ε0
i : [C

A
f (0, 0, 0, ε0

1 , ε
0
2 , ε

0
3)]ε

0
i ,

(6-3)

for all combinations of applied stresses σ 0
j and applied strains ε0

i . In the case that
det(σ 0

1 )= 0, we have

lim
δ→∞

W 5
f (σ

0
1 , ε

0
1 , ε

0
2 , ε

0
3 , ε

0
4 , ε

0
5)=

5∑
i=1

ε0
i : [C

A
f (0, ε

0
1 , ε

0
2 , ε

0
3 , ε

0
4 , ε

0
5)]ε

0
i , (6-4)

while, when f (t)= det(σ 0
1 + tσ 0

2 ) has at least two roots (the condition for which is
given by (4-4)),

lim
δ→∞

W 4
f (σ

0
1 , σ

0
2 , ε

0
1 , ε

0
2 , ε

0
3 , ε

0
4)=

4∑
i=1

ε0
i : [C

A
f (0, 0, ε0

1 , ε
0
2 , ε

0
3 , ε

0
4)]ε

0
i . (6-5)

Theorem 6.2. For 2-dimensional composites, the four energy functions W k
f , for

k = 0, 1, 2, 3, are defined by (2-5), and these characterize the set GU f , with
U = (C1, δC0), of possible elastic tensors C∗ of composites of two phases with
positive definite elasticity tensors C1 and C2 = δC0. These energy functions in-
volve a set of applied strains ε0

i and applied stresses σ 0
j meeting the orthogonality

condition (2-2). The energy function W 3
f is given by

W 3
f (ε

0
1 , ε

0
2 , ε

0
3)=

3∑
i=1

ε0
i : C

A
f (ε

0
1 , ε

0
2 , ε

0
3)ε

0
i (6-6)

(as proved by Avellaneda [1987]), where C A
f (ε

0
1 , ε

0
2 , ε

0
3) is the effective elasticity

tensor of an Avellaneda material that is a sequentially layered laminate with the
minimum value of the sum of elastic energies

3∑
j=1

ε0
j : C∗ε

0
j . (6-7)

We also have the trivial result that

lim
δ→∞

W 0
f (σ

0
1 , σ

0
2 , σ

0
3 )= 0. (6-8)
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When det σ 0
1 = 0, we have

lim
δ→∞

W 2
f (σ

0
1 , ε

0
1 , ε

0
2)=

2∑
i=1

ε0
i : [C

A
f (0, ε

0
1 , ε

0
2)]ε

0
i , (6-9)

while when f (t)= det(σ 0
1 + tσ 0

2 ) has exactly two roots (the condition for which is
given by (4-2)),

lim
δ→∞

W 1
f (σ

0
1 , σ

0
2 , ε

0
1)= ε

0
1 : [C

A
f (0, 0, ε0

1)]ε
0
1 . (6-10)

These theorems, and the accompanying microstructures, help define what sort
of elastic behaviors are theoretically possible in 2- and 3-dimensional materials
consisting of a very stiff phase and an elastic phase (possibly anisotropic, but with
fixed orientation). They should serve as benchmarks for the construction of more
realistic microstructures that can be manufactured. We have found the minimum
over all microstructures of various sums of energies and complementary energies.

It remains an open problem to find expressions for the energy functions in the
cases not covered by these theorems. Notice that for 3-dimensional composites
the function W 5

f is only determined when the special condition det(σ 0
1 ) = 0 is

satisfied exactly. Similarly, for 2-dimensional composites the function W 2
f is only

determined when the special condition det σ 0
1 = 0 is satisfied exactly. Thus these

functions are only known on a set of zero measure.
Even for an isotropic composite with a bulk modulus κ∗ and a shear modulus

µ∗, the set of all possible pairs (κ∗, µ∗) is still not completely characterized either
in the limit δ→∞. In these limits the bounds of Berryman and Milton [1988] and
Cherkaev and Gibiansky [1993] decouple and provide no extra information beyond
that provided by the Hashin–Shtrikman–Hill bounds [Hashin and Shtrikman 1963;
Hashin 1965; Hill 1963; 1964]. While the results of this paper show that in the limit
δ→∞ one can obtain 3-dimensional structures attaining the Hashin–Shtrikman–
Hill lower bound on κ∗, while having µ∗ =∞, it is not clear what the minimum
value for µ∗ is, given that κ∗ = ∞, nor is it clear in two dimensions what the
minimum value of κ∗ is when µ∗ =∞.
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