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A variational formulation of continuum mechanics, in which the principle of
virtual work and the variational law of interaction are postulated as the basic
axioms, is still controversially discussed. In particular, not widely accepted is
the internal virtual work contribution of a continuum, as postulated as a smooth
density integrated over the deformed configuration of the body, in which the
stress field is defined as the quantity dual to the gradient of the virtual displace-
ment field. The question arises whether this internal virtual work can be deduced,
rather than just postulated, from already known mechanical concepts completely
within the variational framework. To achieve such a derivation, we give in this
paper an interpretation of Piola’s micro-macro identification procedure in view
of the Riemann integral, which naturally provides in its mathematical definition
a micro-macro relation between the discrete system of infinitesimal volume el-
ements and the continuum. Accordingly, we propose a definition of stress on
the micro level of the infinitesimal volume elements. In particular, the stress is
defined as the internal force effects of the body that model the mutual force inter-
action between neighboring infinitesimal volume elements. The internal virtual
work of the continuum is then obtained by Piola’s micro-macro identification
procedure, where in the limit of vanishing volume elements the virtual work
of the continuous macromodel is identified with the virtual work of the discrete
micromodel. In the course of this procedure, the stress tensor emerges directly as
the quantity dual to the gradient of the virtual displacement field. Furthermore,
we try to gather important results of variational continuum mechanics, which
have appeared here and there in very diverse forms, in order to underline once
more the strength of a variational formulation of continuum mechanics.

1. Introduction

To date, there are essentially two different ways to postulate the foundations of
continuum mechanics. The first method, henceforth called the nonvariational ap-
proach, was conceived mainly by Cauchy [1823; 1827a] and assumes forces and
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moments as the elemental quantities. The second method, which traces back to
Lagrange [1788] and Piola [1832; 1848; 2014; dell’Isola et al. 2015a], is of a
variational nature and defines forces in a generalized sense as the quantities dual to
the virtual displacement field and the gradients thereof. The variational approach
has gained much attention during the last half century, especially in the field of
generalized continua like gradient materials and polar and micromorphic media;
see for instance [dell’Isola et al. 2015b; 2011; Toupin 1964; Germain 1973b].
Most of these generalized theories cannot be stated straightforwardly by using the
nonvariational approach. For an evaluative comparison of both the variational and
the nonvariational formulations of continuum mechanics and for further references
on this topic, we refer to [dell’Isola et al. 2017] and works cited therein. In what
follows and without claiming to be in any way complete, we try to review the vast
amount of literature on the various formulations of classical continuum mechanics
that has appeared in the last two centuries. Since we focus in this treatise on the
notion of stress, we omit the discussion about inertia forces. As a consequence, we
refer exclusively to the terminology used in statics, e.g., the equilibrium of forces
and moments, instead of addressing the balance of linear and angular momentum.

The first formulation of continuum mechanics can be attributed to Cauchy with
his celebrated publications [Cauchy 1823; 1827a]. Cauchy restricted forces to be
of volume and surface nature only. He assumed the force interaction between an
arbitrary subbody and the rest of the body to take place exclusively by surface
forces, called stress vectors. This requirement is nowadays referred to as the stress
principle of Euler and Cauchy [Truesdell and Toupin 1960, §200]. Cauchy im-
plicitly made the assumption, known as Cauchy’s postulate, that a stress vector
for a given body point depends only on the normal vector to an imagined cutting
or contact surface passing through this point. By postulating the equilibrium of
forces at an infinitesimal parallelepiped, he proved that the stress vectors acting
upon opposite sides of the same surface at a given point are equal in magnitude
and opposite in direction, which is referred to as Cauchy’s lemma. Applying then
the equilibrium of forces at an infinitesimal tetrahedron, Cauchy’s stress theorem
shows that the stress vector for a body point depends linearly on the normal vector
of the imagined contact surface. Consequently, Cauchy’s stress theorem asserts the
existence of the stress tensor field [Truesdell 1991, pp. 174–175]. Furthermore, by
postulating the equilibrium of moments at an infinitesimal parallelepiped, Cauchy
proved the symmetry of the stress tensor.1 Note that in all proofs boundedness
assumptions on the applied external forces are involved. In a further publication,

1Cauchy’s lemma and the symmetry of the stress tensor are formulated in [Cauchy 1827a] as
“Théorème I” and “Théorème II”, respectively. The celebrated stress theorem of Cauchy has to be
extracted out of the text and the formulas on [Cauchy 1827a, pp. 68–69].
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Cauchy [1827b] derived from the equilibrium of forces at an infinitesimal par-
allelepiped together with the results of the stress theorem the local equilibrium
equations. Poisson [1829, §11] as well as Thomson and Tait [1867, §698] showed
by integrating the local equilibrium equations over a finite volume and by applying
the divergence theorem that these equations are the sufficient as well as necessary
conditions for the equilibrium of the body. This is, the equilibrium of forces and
moments in integral form has to hold for the body and all its subbodies. Lamé
[1852, §32] and Clebsch [1862, §16] derived the (virtual) work contribution of
the body. They attained the (virtual) work of the body by multiplying the local
equilibrium equations with infinitesimal (virtual) displacements, followed by an
integration over the body and application of the divergence theorem, and final usage
of the surface boundary conditions.

Kirchhoff [1876, Vorlesung 11] reversed the direction of argumentation and
based continuum mechanics on the equilibrium of forces and moments in integral
form [Müller and Timpe 1914, p. 23]. Kirchhoff proposed, since every subbody
is again a body, that the integral balance laws not only hold for the body, but
also for every subbody. By using the results of Cauchy’s stress theorem in the
integral balance laws and by applying the divergence theorem, the local equilib-
rium equations as well as the symmetry of the stress tensor can be extracted by
a localization argument. Also the axiomatic scheme of Noll [1959] followed the
approach of Kirchhoff and highly influenced the celebrated work of Truesdell and
Toupin [1960, §196]. As a consequence of the popularity of [Truesdell and Toupin
1960], this approach has become standard in continuum mechanics and can be
found in a wealth of modern textbooks [Altenbach and Altenbach 1994; Başar and
Weichert 2000; Becker and Bürger 1975; Bertram 2012; Chadwick 1999; Ciarlet
1988; Dvorkin and Goldschmit 2006; Eringen 1980; Gurtin 1981; Haupt 2002;
Holzapfel 2000; Liu 2002; Malvern 1965; Ogden 1997; Sedov 1972; Spencer 2004;
Truesdell and Noll 1965]. Furthermore, Noll [1974] showed that the balance laws
can be derived from the objectivity of the work done by the applied (external) forces
and postulated this objectivity as a fundamental axiom of continuum mechanics;
see also [Truesdell 1991].

An axiomatization of continuum mechanics at an earlier date and the attempt
to partially solve the sixth problem of Hilbert2 has been given by Hamel in [1912,
§38–39] or [1927, §II.b.α], whose approach differs from Cauchy’s in only one
point: instead of claiming the equilibrium of moments at an infinitesimal volume

2Hilbert’s sixth problem was proposed in a lecture at the international congress of mathematicians
at Paris in 1900 [1901; 1902] “to treat in the same manner, by means of axioms, those physical
sciences in which mathematics plays an important part; in the first rank are the theory of probabilities
and mechanics.”
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element, Hamel demanded the stress tensor be symmetric, which he denoted the
Boltzmann axiom.

Cauchy’s theory of continuum mechanics is based on the insights of Newton
and Euler, where forces and moments are the primitives of mechanics. In contrast,
Piola was highly influenced by Lagrange’s Mécanique Analytique and the calculus
of variation (see the Introduction of [Piola 1832]3). He understood forces in the
sense of duality as linear functionals on virtual displacements. While the theories
developed in [Piola 1832] are for rigid bodies only, Piola [1848]4 formulated his
variational theory of mechanics also for deformable bodies, with the principle of
virtual work as the fundamental equation. Piola introduced between the reference
and the deformed configurations an intermediate configuration which differs from
the deformed configuration by only a rigid body motion. The stresses are defined
as indeterminate Lagrange multipliers to the rigidity constraints between the in-
termediate and deformed configuration [Piola 2014, Chapter 1, pp. 83–84]. By
claiming the principle of virtual work with its corresponding contributions, Piola
obtained by an appropriate substitution of variables and integration by parts the
local equilibrium equations of Cauchy and the corresponding force boundary con-
ditions. In fact, Piola introduced the (Cauchy) stress tensor as a linear functional
on the symmetrized gradient of the virtual displacement field. As a direct con-
sequence of this definition, which already contains objectivity assumptions, the
stress tensor is symmetric. Furthermore, Piola derived the integral balance laws
for an arbitrary subbody by choosing virtual displacement fields which respect
the rigidity constraint between the intermediate and the deformed configurations
[Piola 2014, Chapter 1, pp. 85–86]. A very similar approach, without reference
to Piola, can be found in [Hamel 1967, Chapter III, §6]. The variational theory
of Piola has been made even clearer by the encyclopedia article [Hellinger 1914].
Hellinger in his theory defined forces and stresses as linear forms on the virtual
displacement field and the gradient thereof, and proposed the principle of virtual
work as the fundamental equation in continuum mechanics. The gradient of the vir-
tual displacement field does not imply a symmetric stress tensor. Hellinger [1914,
p. 619] mentioned therefore that the symmetry follows either from the Boltzmann
axiom of Hamel or from the equilibrium of moments in integral form. An exegetic
series about [Hellinger 1914] including the complete translation into English has
just been finished by Eugster and dell’Isola [2017a; 2017b; 2017c].

After the variational formulation of continuum mechanics was almost buried
into oblivion, there has been a renaissance of the variational theory in the 1970s
by the publications of Germain [1972; 1973a; 1973b]; see also [Maugin 1980].
Therein, first and second gradient theories as well as theories for continua with

3An English translation is given in [Capecchi and Ruta 2015, pp. 90–93].
4An English translation is given in [Piola 2014].
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microstructure have been formulated by defining virtual work contributions in the
sense of duality and by the postulation of the principle of virtual work as the
basic axiom. Maybe the most important contribution, which varies from Piola
and Hellinger, is the explicit statement of the axiom of power of internal forces.
This axiom demands the virtual work of internal forces to vanish for all rigid vir-
tual displacements and induces the symmetry of the stress in classical continuum
mechanics. To date, textbooks on continuum mechanics based on the variational
approach can exclusively be found in France, i.e., [Germain 1986; Lemaitre and
Chaboche 1990; Salençon 2000; 2001]. Following the ideas of Germain [1972],
dell’Isola et al. [2015b; 2011; 2012] obtain from the theory of distributions by
L. Schwartz [1951] a representation of the virtual work in terms of N -th order
stresses which are defined as the quantities dual to the N -th gradients of the virtual
displacement field. A similar representation of forces in a continuum has already
been proposed by Segev [1986]. In this generalized theory, the classical continuum
is embedded and obtained for N = 1. Consequently, the theory of the classical
continuum is also referred to as first gradient theory. Another axiomatization of
variational nature, also for an N -th gradient continuum, is from Bertram [1989]
and Bertram and Forest [2007]. They base continuum mechanics on invariance
requirements upon a general principle of virtual power, as a linear and continuous
extension of the balance of work. In contrast to [Germain 1972], the theory is
formulated for the total virtual power, and there is no a priori partition into internal
and external forces.

Poisson [1829, p. 400], before Piola had published his variational theories, crit-
icized the methods of Lagrange for not being suitable for continuum mechanics.
Piola was thereby stimulated to defend the variational approach to continuum me-
chanics; see the introduction of [Piola 1848]5. More than a hundred years later,
Truesdell came up with a similar criticism in [Truesdell and Toupin 1960, §231] and
charged the theory of Hellinger [1914, §3a] to fail through petitio principii, because
the stress components would unmotivatedly appear in the constituting variational
principle. To avoid this a priori notion of internal virtual work, Del Piero [2009]
proposed an approach based on the objectivity criterion of Noll [1974]. Instead of
the work, the virtual work of the external forces is required to be objective in his
contribution. Hence, the balance laws can be deduced and used to prove Cauchy’s
stress theorem. Using in the virtual work of the external forces of an arbitrary
subbody the relation between the surface force and the normal vector of the cutting
surface, an expression of the internal virtual work is obtained. Knowing the form
of the internal virtual work, the principle of virtual work can then be formulated
a posteriori as being the balance between the virtual work of external and internal

5An English translation is given in [Piola 2014, Chapter 1, p. 4].
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forces. Continuum mechanics based on requiring objectivity of the external virtual
work (or power) can also be found in the textbook of Mariano and Galano [2015].
A similar derivation of the internal virtual work contribution is given in the earlier
work of Murnaghan [1937].

In the nonvariational approach the stress principle of Euler and Cauchy defines
the notion of stress in the sense that it restricts the interaction between subbodies to
take place by contact surface forces only. Hence, the contact interaction between
the subbodies is chosen as a basic concept. Together with the equilibrium of forces,
the existence of the stress tensor follows from Cauchy’s theorem. In contrast, in the
variational theory as proposed by Germain [1972; 1973a; 1973b], the stress tensor
field is defined as the quantity dual to the gradient of the virtual displacement field.
By the application of the divergence theorem, the interaction mechanism between
neighboring subbodies, i.e., the contact interaction, follows as a consequence. The
latter is in the variational theory a derived concept but not an independent one.
As mentioned above, the variational formulation is often criticized due to its a
priori definition of the internal virtual work. Consequently, the question arises
whether the internal virtual work contribution can be deduced from already known
mechanical concepts, but still completely within the variational framework. This
is meant to show the existence of the stress tensor, but without using the stress
principle of Euler and Cauchy. It seems to the authors that such a derivation has
already been obtained in [Piola 1848, Capitolo VI],6 “On the motion of a generic
deformable body following the ideas of the modern scientists about the molecu-
lar actions”, where Piola presented a nonlocal continuum theory deduced by the
identification of the virtual work contributions of a discrete micromodel with the
corresponding virtual work of a continuous macromodel, i.e., the continuum. As
proposed by [dell’Isola et al. 2015a], we call this approach Piola’s micro-macro
identification procedure. Piola [1848, Capitolo II]7 used this micro-macro identi-
fication also for external forces when discussing line, surface, and volume forces.
Having the discrete molecular and atomistic structure of a body in mind, Piola
associated the placements of the material particles of a discrete system with the
continuous placement field of the continuum evaluated at distinct points. With
a clever scaling of the appearing force quantities, and in the limit of vanishing
distances between the infinitely many material points and their neighbors, the sum
of all virtual work contributions of the discrete material particles can be rewritten as
an integral expression. It is this very integral expression which is identified with the
virtual work contribution of the continuous macromodel. In his nonlocal continuum
theory, Piola proposes a model in which each material point can interact with all the

6An English translation is given in [Piola 2014, Chapter 1, pp. 146–164] and commented on in
[dell’Isola et al. 2015a].

7An English translation is given in [Piola 2014, Chapter 1, pp. 31–75].
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other material points of the body. The micro-macro identification procedure then
leads straightforwardly to a virtual work contribution having the form of a sixfold
integral over the body; see (10) in [dell’Isola et al. 2015a, p. 5]. A subsequent
Taylor expansion of the variation of the quadratic distances between the material
points, together with painful rearrangements of the force quantities, yields then the
virtual work expressions of an N -th-gradient theory [dell’Isola et al. 2015a].

In this paper we aim to show that Piola’s micro-macro identification procedure,
which has fallen into oblivion until its translation into English by dell’Isola et al.
[Piola 2014], is a suitable approach to derive the virtual work contributions for a
continuum. More precisely, we want to address a derivation in which the internal
virtual work contribution of the classical continuum is obtained directly from a
micro-macro identification, which does not require the full Taylor expansion of
Piola’s nonlocal theory. Furthermore, we slightly modify Piola’s line of arguments.
Instead of motivating the appearing micromodel from the molecular structure of the
continuum, we claim that such a micromodel is naturally included in the definition
of an integral. We start from the concept of the volume integral appearing in the
virtual work as being obtained by a dissection of the body into volume elements
followed by a limit process with a refinement of these elements. In this way, the
mathematical definition of the volume integral naturally provides a micro-macro
relation between the infinitesimal volume elements and the continuum. The iden-
tification of the virtual work of the continuous macromodel with the virtual work
of the discrete micromodel in the limit of vanishing volume elements can then be
understood as Piola’s micro-macro identification procedure. Within this context,
we propose in addition a definition of stress as the internal force effects of the body
on the micro level, which model the interaction between neighboring infinitesimal
volume elements. The very same perception of stress has already been formulated
by Boltzmann in his Populäre Schriften:

“What now concerns the forces which the volume elements of solid bod-
ies mutually exert on each other, one must assume, that each volume
element acts on only its direct neighbors, and that it exerts forces on all
points adjacent to the cutting surface, which act just as if pulling threads
under tension or pushing supporting bars were attached to it.”8

Within the limit process of vanishing volume elements, the summation of all virtual
work contributions of the force interactions between the volume elements of the
body leads to the appearance of the stress tensor in the internal virtual work con-
tribution of the continuum. Hence, using the definition of the stress on the micro
level of the infinitesimal volume elements in the sense of Boltzmann together with
Piola’s micro-macro identification procedure, the existence of the stress tensor and

8This is an English translation of [Boltzmann 1905, p. 297].
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consequently the internal virtual work of the continuum can be derived without
using the stress principle of Euler and Cauchy. The variational law of interaction,
which requires the internal virtual work to vanish for all rigid virtual displacements,
implies in a further step the symmetry of the stress tensor. With this alternative per-
spective on the concept of stress, it is possible to shed some light on the internal
virtual work of the continuum and to formulate mechanics completely within a
variational framework, in which the principle of virtual work and the variational
law of interaction emerge as fundamental axioms of mechanics.

The outline of the paper is as follows. In Section 2, the required kinematics of
the continuum is introduced. Section 3 proposes a variational theory of mechanics,
mainly based on the insights of [Germain 1972; dell’Isola et al. 2012], with the
principle of virtual work and the variational law of interaction as the basic axioms.
The core of this paper is formulated in Section 4: based on an alternative defi-
nition of stress on the micro level of infinitesimal volume elements and Piola’s
micro-macro identification procedure, the virtual work contribution of the stress is
derived on the macro level, together with the emerging stress tensor. In Section 5
the symmetry of the stress tensor is shown as a consequence of the variational law
of interaction. The invariance of the virtual work with respect to different integral
parametrizations and coordinate representations induces transformation properties
of the appearing force quantities. A small selection of transformation properties
for the stress is shown in Section 6. Section 7 derives the boundary value prob-
lem from the principle of virtual work for the classical assumption that external
forces contribute either as volume forces in the interior of the body or as surface
forces on the boundary. For the very same assumptions on the external forces, the
integral balance laws are derived in Section 8. In the course of this, the inverse
stress theorem appears which answers the question how a subbody interacts with
its complement. Finally, conclusions are drawn in Section 9.

2. Kinematics of the continuum

In this section we introduce briefly the kinematical objects required for the varia-
tional formulation of continuum mechanics. The physical space is represented by
the three-dimensional Euclidean vector space E3, equipped with an orthonormal
basis (eI

x , eI
y, eI

z ) and an origin O , subsequently called the I -system. A point of the
physical space is addressed by the position vector x ∈ E3. The cartesian coordinate
representation of the position vector x in the I -system is denoted as

I x :=

x
y
z

 with x = xeI
x + yeI

y + zeI
z . (1)
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E3
�

δξ(x) κ

B

xx = κ(x)

eI
x

O

eI
y

Figure 1. The placement κ of the body B into the Euclidean vec-
tor space E3. At every material point x in the deformed configura-
tion �, a virtual displacement δξ(x) can be evaluated.

The body B, as suggested by [Noll 1959; Segev 1986], is a three-dimensional com-
pact differentiable manifold. A point of the body manifold x∈B is called a material
point of B. The placement of B, as depicted in Figure 1, is the embedding of the
body into the physical space, i.e., the mapping κ : B→ E3. Embeddings as proper
injective immersions respect the principle of impenetrability and the permanence
of matter; see [Truesdell and Toupin 1960, §16] for their specific definitions. The
image � = κ(B) ⊂ E3 is the region in the physical space occupied by the body
manifold and is called the deformed configuration. The deformed configuration as
a closed subset9 can be written as a disjoint union �=�∪ ∂� of the interior �
and the boundary ∂� of the deformed configuration, respectively. A spatial point
x ∈� is called a material point in the deformed configuration �.

A variational family of placements is a differentiable parametrization of place-
ments κ(ε, x) with respect to a single parameter ε ∈ R, such that κ(x) = κ(ε0, x).
The virtual displacement field δξ : �→ E3 in the deformed configuration is the
smooth vector field over � defined as

δξ(x) :=
∂κ

∂ε
(ε0, κ

−1(x)), (2)

which corresponds to the variation of the placement κ evaluated at the material
point x= κ−1(x). When no body manifold is available or not of interest as for in-
stance in fluid mechanics where often only control volumes in space are considered,
the virtual displacement field can be directly defined as a smooth vector field over
the deformed configuration �. By multiplying (2) with a small δε = (ε− ε0), the
resulting fields can be interpreted as infinitesimal displacements of the deformed

9A compact manifold embedded into the Euclidean space E3 is a closed subset of E3, as is evident
by the following two propositions from set theory [Munkres 2000]. Proposition 1: The image of a
compact set under a continuous map is compact. Proposition 2: A compact set of a Hausdorff space
is closed. Since an embedding is a continuous map and the Euclidean vector space is a Hausdorff
space, the assertion follows immediately.
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configuration. A subset of such displacements are displacements which shift the
deformed configuration infinitesimally as if it was the configuration of a rigid body.
The corresponding virtual displacements constitute the subset of rigid virtual dis-
placements δξrig which can be parametrized for instance as

δξrig(x)= δrO + δφ× x, (3)

where δrO ∈ E3 and δφ ∈ E3 denote the virtual displacement of the origin O and
the virtual rotation, respectively. The virtual rotation vector δφ or, more precisely,
the virtual rotation operator δφ× will mainly be used throughout the text instead of
the skew-symmetric linear map φ̃(ε) with φ̃(ε0)= 0, which provides via ξ(ε, x)=
exp(φ̃(ε))x a variational family of rigid rotations.

3. The axioms of mechanics

Once we have introduced the kinematics of the continuum, we briefly reconsider
the axiomatic scheme of variational continuum mechanics proposed by Germain
[1972; 1973b]. Following Lagrange’s ideas, we start with the mechanical definition
of forces and consider them as quantities dual to the virtual displacements. As a
consequence and as stated for instance in [dell’Isola et al. 2015b; 2011; 2012],
we therefore accept the idea of considering forces as distributions in the sense
of L. Schwartz [1951]. This definition already uses the concept of duality and
motivates the formulation of the equilibrium conditions in variational form, which
is the first axiom, the principle of virtual work. In an upcoming step, internal and
external forces are defined in order to impose a certain variational condition on the
internal forces. This is the second axiom, the variational law of interaction.

Definition 1 (mechanical definition of force). We define force as a linear functional
F on the space of virtual displacement fields δξ , which associates with every δξ a
real number δW = F(δξ) called virtual work.

For a continuum, the space of virtual displacement fields is given by all smooth
vector fields over the body �. Choosing appropriate compact supports for these
vector fields, and following the results of the theory of distributions, forces can be
represented by the map

δξ 7→ δW = F(δξ) with F(δξ)=
N∑

k=0

∫
�

∂k

∂xk (δξ) | dFk, (4)

where ∂k/∂xk denotes the k-th partial derivative with respect to x, the force mea-
sure dFk is a tensor-valued measure of rank k + 1 having support in �, and
the symbol | stands for the complete contraction of the tensors, i.e., a (k + 1)-
contraction. We refer to [dell’Isola et al. 2015b] for more technical details about
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this result. Remark that (4) gives a much larger spectrum of force representations
than required for the classical continuum theory. However, it is precisely one of
the aims of this paper to deduce, by an appropriate micro-macro identification, the
force representations for the interactions of the classical theory.

Contained in the integral of (4) is that the k-th derivative of the virtual displace-
ment and the corresponding force measure dFk have to be evaluated at the very
same point x ∈ � and are then to be contracted, which constitutes the duality
pairing and which may be phrased as follows.

Forces, as abstract entities, are perceived by imposing test displacements
(and their derivatives) at every point x ∈�, in order to characterize them
completely in magnitude and direction.

Note that the magnitude does not require the concept of a metric in this context.
The magnitude is given by the virtual work (4), which is per definition a metric-
independent scalar. This scalar furthermore does not depend on the chosen coor-
dinate representation of δξ and dFk , nor on the parametrization of the appearing
integral. This motivates regarding the virtual work as the invariant quantity in
mechanics. Conversely, the invariance of the virtual work provides all the transfor-
mation rules for the occurring force quantities when a coordinate representation is
chosen, or when the parametrization of the integral is changed. The physical units
of forces, virtual displacements, and the virtual work are [F] = N, [δξ ] =m, and
[δW ] = Nm= J, respectively. Based on the definition of force, we may now state
the first axiom, which is the equilibrium conditions of a body in variational form.

Axiom 1 (principle of virtual work). Let the force measures dFk contain the total-
ity of forces acting on the body in its deformed configuration �. For the body to be
in equilibrium, the overall virtual work δWtot generated by dFk has to vanish for
all virtual displacements δξ :

δWtot =

N∑
k=0

∫
�

∂k

∂xk (δξ) | dFk
= 0 for all δξ . (5)

The principle of virtual work (5) requires the totality of forces acting on the
body, which encompasses both the internal and the external forces of �, as they are
defined below. This totality represented by the force measures dFk(x) is obtained
by the pointwise summation of the individual force contributions dFk

i (x), since
forces as linear functionals are additive. Furthermore, (5) has to hold for arbitrary
virtual displacement fields δξ . This arbitrariness implies that the virtual work also
has to vanish for all suitably regular subbodies.

Definition 2 (internal and external forces). Let K be a subsystem of �, that is,
K ⊆ �. We call Fi an internal force of K if it is exerted from material points
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x ∈ K on other material points y ∈ K . We call Fe an external force of K if it is
exerted from the environment of K on some material points x ∈ K .

Internal forces describe the force interactions among the points x ∈ K exclu-
sively, whereas external forces act from outside on the points x ∈ K . The classifica-
tion into internal and external forces therefore depends strongly on the considered
subsystem. An external force F of K ⊂�, which acts from a subset B ⊂�\ K on
some material points in K , is an internal force of any subsystem C ∪K with C ⊇ B.
This definition is very classical and strongly related to mechanical modeling. The
same classification can be found for instance in [Hellinger 1914, pp. 637–638]10

or [Germain 1973b]11. One must bear in mind that every mechanical interaction
which one desires to model, in order to predict an observation, has to be introduced
explicitly in the mathematical framework of a mechanical theory. Based on the
definition of the internal forces, we may now state the second axiom.

Axiom 2 (variational law of interaction12). Let δW i denote the virtual work gen-
erated by the totality of internal forces measures dFi,k of an arbitrary subsystem
K ⊆�. It then holds that δW i vanishes under each rigid virtual displacement field
δξrig as specified in (3):

δW i
=

N∑
k=0

∫
K

∂k

∂xk (δξ) | dFi,k
= 0 for all δξrig. (6)

From a mechanical point of view, the variational law of interaction can be in-
terpreted as follows: the totality of internal force measures dFi,k of the subsystem
K ⊆� is not perceived from the outside when the subsystem as a whole is virtually
moved like a rigid body, or in other words, one does not have to work against the
total internal force under any virtual rigid body motion. It has to be mentioned that
(6) does not give any conditions on the force measures dFi,k of order k > 1.

10Also see the translation [Eugster and dell’Isola 2017b, p. 11]: “Thereby primarily the [follow-
ing] difference must be clarified, if the force effects are external, i.e., [the effects] have their cause
in the relation to media and sources of effects located outside the considered medium (long-range
forces, pressures at the boundary and such like), or internal, i.e., [the effects] are based on the material
constitution of the particular medium and the mutual effects of the particles thereof.”

11“The various “forces” which act on the mechanical system are divided in a very classical way
into two classes: external forces which represent the dynamical effects on S due to the interaction
with other systems which have no common part with S, and internal forces which represent the
mutual dynamical effects of subsystems of S; for instance, if Si and S j are two disjoint subsystems
of S, the action of Si on S j represents “external forces” acting on S j , but “internal forces” if one
considers the system S itself.”

12Denoted by Germain [1973b] as axiom of power of internal forces. We prefer to call it varia-
tional law of interaction as it is the variational version of the law of interaction proposed by Glocker
[2001, Chapter 2].
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In contrast to the first axiom, the variational law of interaction requires a metric
to extract from it the rigid virtual displacement fields δξrig, for which the variations
are evaluated. By using their specific parametrization (3), the universal quantifier
in (6) implies that the variations have to be carried out independently for the two
kinematic quantities δrO and δφ. This leads to the resultant forces as the quantities
dual to δrO , but also to the first occurrence of (resultant) moments as the quantities
dual to δφ. The fact that precisely three equations are obtained for the resultant
forces, and another three for the moments, is attributed to the specific form (3) of
the rigid virtual displacement field in E3 and would be different if another metric
space would have been chosen for the embedding. Note that the moments always
lead back to the variational law of interaction (6) in our approach, as no metric is
needed in the principle of virtual work (5), nor in the representation of forces (4).

4. From Piola’s micro-macro identification to the virtual work of stress

Equation (4) shows us the wide variety of possible force interactions in a continuum.
In most variational formulations of continuum mechanics, as, e.g., [Hellinger 1914;
Germain 1972; 1973a; 1986; Salençon 2000; Salençon 2001], only distinct subsets
of these force representations are postulated for the internal and external virtual
work. In this section, we show how these virtual work contributions of the classical
continuum can be derived using Piola’s micro-macro identification procedure.

Integration always consists of a dissection of a region into simple elements,
followed by a limit process with a refinement of these elements. We sketch this
process for the Riemann integral over the body volume with a dissection of the
deformed configuration � into cuboids and an approximation from the inside. As
a sort of a lower Darboux sum, an approximation from the inside sums the contribu-
tions of the inner cuboids, i.e., the cuboids lying completely within the domain �;
see Figure 2. In what follows, we will denote the position vector of the center of
a cuboid i jk with respect to the I -system by I xi jk = (xi , y j , zk)

T. The indices
i, j, k appearing in the subsequent sums range always such that all inner cuboids
are taken into account. Without loss of generality, we assume all the infinitesimal
volume elements to be of the same size 1V = 1x 1y1z, where 1x,1y,1z
denote the lengths of the corresponding edges. Accordingly, the volume integral
over the body � of a function w(x) is obtained when the limit∫

�

w(x)dv = lim
1V→0

∑
i, j,k

w(xi , y j , zk)1V (7)

does exist.
It is now this type of volume integral which we use in the context to interpret

Piola’s micro-macro identification procedure. Crucial for the following is that the
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�
1y

1x

eI
x

O

eI
y

xi jk

Figure 2. Dissection of the deformed configuration � into
cuboids and approximation of the Riemann integral from the in-
side. The inner cuboids lying completely within the domain � are
colored in gray.

discrete approximation of the body by finite volume elements can already be con-
sidered as a mechanical model, i.e., the micromodel. The identification procedure
is then performed as follows.

• The virtual work contributions 1W are stated for the force interactions that
occur (or are modeled) in the discrete micromodel.

• The virtual displacement of a discrete volume element i jk is identified with
the continuous virtual displacement field evaluated at an arbitrary point inside
the volume element — for instance δξ(xi jk) when it is evaluated at the center
point xi jk .

• In the limit of vanishing volume elements 1V → 0, the virtual work contri-
bution of the continuous macromodel δW is identified with the virtual work
of the discrete micromodel 1W , i.e., δW = lim1V→01W .

Obviously, the same procedure can also be applied for lower dimensional integra-
tions, to obtain force interactions on lines or surfaces.

What now follows for the external forces can be found similarly in [Piola 1848,
§§31–32]13, despite the fact that Piola uses a reference configuration to address
the material points. One kind of force interaction that we allow to be exerted from
the environment on the body, i.e., as an external force, leads to the virtual work
contribution

1W e
v =

∑
i, j,k

δξ(xi jk) ·1Fv(xi jk)=
∑
i, j,k

δξ(xi jk) ·
1Fv(xi jk)

1V
1V (8)

13An English translation is given in [Piola 2014, Chapter 1, pp. 51–55].
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of the discrete micromodel. Remark that the virtual work of a single cuboid is
obtained by the duality pairing between the virtual displacement δξ(xi jk) and the
force 1Fv(xi jk), which can be considered as a force in the sense of Newton. The
virtual work δW e

v of the external force effect appearing in the continuous macro-
model is then identified with the micromodel by

δW e
v = lim

1V→0
1W e

v =

∫
�

δξ · fv dv, (9)

where the existence of the limit

fv(x) := lim
1V→0

1Fv(xi jk)

1V
(10)

has to be assumed. Equation (10) is nothing else but the definition of a volume
force with unit [ fv] = N/m3.

The forces exerted by the environment on the body via the surface of the de-
formed configuration ∂� can be modeled in a similar way. This leads then to a
surface force fa with unit [ fa] = N/m2 and to the corresponding virtual work
contribution δξ · fa , such that the virtual work of external forces for the continuum
is of the form

δW e
=

∫
�

δξ · fv dv+
∫
∂�

δξ · fa da. (11)

We could also introduce further virtual work contributions of external force effects
that are acting on surfaces, lines, or even points inside the body.

On the micro level of volume elements, one may also introduce force effects
between the individual volume elements. This is exactly the idea, which enables
us to give a verbal definition of stress on the discrete micro level of infinitesimal
volume elements in the sense of Boltzmann.

Definition 3 (stress). We define stress as the internal force effects of the body
that model the mutual force interactions between neighboring infinitesimal volume
elements sharing the same surfaces.

We want to mention that this definition explicitly excludes the interaction be-
tween cuboids sharing the same edges and wedge points. The upcoming derivation
shows how the three stress vectors of the continuous macro level emerge in the
virtual work from Definition 3 together with Piola’s micro-macro identification
procedure.

In a first step, we consider two neighboring cuboids with coordinates I xi jk =

(xi , y j , zk)
T and I x(i+1) jk = (xi+1, y j , zk)

T, which are aligned in the eI
x -direction

as depicted in Figure 2 as hatched elements. As all volume elements are of the
same size, it holds that xi+1 = xi +1x . Figure 3 shows a close-up of these two
cuboids together with their virtual displacements δξ and their force interactions
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δξ(xi )

1Gx (xi )

1Hx (xi +1x)

δξ(xi +1x)

1x
1Ax

1x

eI
x

Figure 3. Force interaction between two neighboring volume ele-
ments aligned in the eI

x -direction.

1Gx and 1Hx . For the sake of brevity, we omit in the figures as well as in the
upcoming formulas the dependence of δξ , 1Gx , and 1Hx on the coordinates y j

and zk . The discrete virtual work contribution of the two adjacent cuboids by the
force increments 1Gx and 1Hx is

1W s
= δξ(xi ) ·1Gx(xi )+ δξ(xi +1x) ·1Hx(xi +1x) (12)

with 1Gx being the force with unit [1Gx ] = N exerted from the right cuboid on
the left cuboid and 1Hx being the force with unit [1Hx ] = N exerted from the
left cuboid on the right cuboid. To relate the forces 1Gx and 1Hx in (12) to each
other, we introduce forces 1Fx and 1Cx such that

1Gx(xi )=1Fx(xi )+1Cx(xi ) and 1Hx(xi +1x)=−1Fx(xi ). (13)

Note that we intentionally violate here the principle of action and reaction by the
force 1Cx : the principle of action and reaction does not constitute an indepen-
dent axiom in our approach, but is contained in the variational law of interaction.
Consequently, we do not apply action equals reaction by setting 1Cx = 0, but
leave it to the variational law of interaction on the macro level to decide later
whether the force 1Cx is needed in (13). With the help of (13), the virtual work
contribution (12) of the two adjacent cuboids becomes

1W s
= δξ(xi ) ·1Cx(xi )+ δξ(xi ) ·1Fx(xi )− δξ(xi +1x) ·1Fx(xi )

= δξ(xi ) ·1Cx(xi )− (δξ(xi +1x)− δξ(xi )) ·1Fx(xi )

= δξ(xi ) ·1Cx(xi )− (δξ(xi +1x)− δξ(xi ))
1
1x
·1x 1Fx(xi ). (14)

We denote by 1Ax := 1y1z the surface element that is shared by the adjacent
cuboids and rewrite (14) as

1W s
=

(
δξ(xi ) ·

1Cx(xi )

1V
−
δξ(xi +1x)− δξ(xi )

1x
·
1Fx(xi )

1Ax

)
1V . (15)
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Tx (x1) Tx (x2) Tx (x3) Tx (xn−1)

eI
x

xnCx (xn−1)xn−1Cx (x3)x3Cx (x2)x2Cx (x1)x1

Figure 4. Mutual force interactions between the members of the
row of inner cuboids in the direction eI

x at the position y j , zk .

Furthermore, we introduce in (15) the abbreviations

Cx(xi ) :=
1Cx(xi )

1V
,

Tx(xi ) :=
1Fx(xi )

1Ax
,

Dxδξ(xi ) :=
δξ(xi +1x)− δξ(xi )

1x
,

(16)

where Cx is the incremental volume force with unit [Cx ] = N/m3, Tx is the in-
cremental stress vector with unit [Tx ] = N/m2, and Dxδξ is the dimensionless
differential quotient. Inserting the abbreviations (16) in (15), we obtain

1W s
= δξ(xi ) ·Cx(xi )1V − Dxδξ(xi ) · Tx(xi )1V . (17)

Equation (17) is the virtual work contribution of the mutual force interaction of
two neighboring cuboids, which is the interaction of the two cuboids by internal
short-range forces. As such, 1W s will contribute in the limit to the internal virtual
work δW i in (6).

Figure 4 depicts the row of inner cuboids aligned in the eI
x -direction at the posi-

tion y j , zk , together with all mutual force interactions that occur between each pair
of neighboring cuboids. By adding all these force interactions to 1W s in (17), we
get the virtual work contribution of this entire row as

1W s
=

n−1∑
i=1

δξ(xi , y j , zk) ·Cx(xi , y j , zk)1V
− Dxδξ(xi , y j , zk) · Tx(xi , y j , zk)1V . (18)

Summation of all the cuboid rows in the eI
x -direction leads to

1W s
=

∑
i, j,k

(δξ ·Cx)i jk 1V − (Dxδξ · Tx)i jk 1V, (19)

which corresponds to a summation over all inner cuboids of the deformed configu-
ration �. The force interactions (Cy, Ty) and (Cz, Tz) to the neighboring cuboids
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in the y- and z-directions contribute in a similar way. Consequently, the entire
virtual work of stress of the discrete micromodel is

1W s
=

∑
i, j,k

(δξ ·Cx + δξ ·Cy + δξ ·Cz)i jk 1V

− (Dxδξ · Tx + Dyδξ · Ty + Dzδξ · Tz)i jk 1V, (20)

which models all mutual force interactions between the neighboring inner cuboids.
The virtual work δW s of the mutual force interactions on the macro level is then

identified with the virtual work of the micromodel (20) by taking the limit

δW s
= lim
1V→0

1W s, (21)

which requires the limits of the objects in (16) to exist. We denote them by

cx(I x) := lim
1V→0

Cx(xi , y j , zk),

tx(I x) := lim
1Ax→0

Tx(xi , y j , zk),

δξ,x(I x) := lim
1x→0

Dxδξ(xi , y j , zk).

(22)

Similar to (16), cx is a volume force with unit [cx ] = N/m3, tx is the stress vector
with unit [tx ] = N/m2, and δξ,x is the dimensionless partial derivative of δξ with
respect to x . The corresponding contributions in the y- and z-directions are denoted
accordingly. Using (20) and (22) and defining

c := cx + cy + cz, (23)

we can identify the virtual work of the continuous macromodel as

δW s
=

∫
�

(δξ · c− δξ,x · tx − δξ,y · ty − δξ,z · tz) dv, (24)

where dv denotes the volume element in the deformed configuration. In addition
to the term δξ · c, the stress vectors ti of the three orthogonal spatial directions
i = x, y, z contribute to δW s, paired with the corresponding partial derivatives δξ,i .

The reason to take the limits like in (22) and not in any other form is motivated
as follows. If we assume 1Cx = 0, then 1Gx and 1Hx in (13) can be interpreted
as two mutual force distributions, equal in size and opposite in direction, which are
infinitesimally shifted against each other. If we would factor out 1V and already
take the limit1V→ 0 in the second line of (14), the volume force1Fx/1V , paired
with the vanishing difference δξ(xi +1x)− δξ(xi ), would have to be infinitely
large to produce a nonvanishing contribution to the integral (“0 ·∞”). The mere
difference δξ(xi+1x)−δξ(xi ) alone is not strong enough to keep bounded volume
forces for 1V → 0 in the integral. However, by using the differential quotient
(1/1x)[δξ(xi + 1x) − δξ(xi )] as in the third line of (14), the aforementioned
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difference is strengthened by the division with 1x and a nonzero expression is
obtained. At the same time, the volume force 1Fx/1V , which tends to infinity
for 1V → 0, has to be moderated to a surface force 1Fx/1Ax , which, after the
limit process, is called the stress vector tx .

The choice of a particular cartesian parametrization of the deformed configu-
ration � in the formulation (24) was inevitable. In order to get rid of this par-
ticular choice, we bring (24) into a coordinate-free form, in which the stress ten-
sor emerges as a Euclidean second-order tensor. Using the cartesian coordinates
(x, y, z) with the orthonormal basis vectors (eI

x , eI
y, eI

z ), the partial derivative with
respect to the position vector x is defined as

∂δξ

∂x
:= δξ,x ⊗ eI

x + δξ,y ⊗ eI
y + δξ,z ⊗ eI

z . (25)

The partial derivatives δξ,i of the virtual displacement field with respect to the
coordinates i = x, y, z can therefore be extracted by contracting the last tensor slot
of the partial derivative with the basis vectors eI

i :

δξ,x =
∂δξ

∂x
· eI

x , δξ,y =
∂δξ

∂x
· eI

y, δξ,z =
∂δξ

∂x
· eI

z , (26)

where the dot denotes the contraction. For a second-order tensor A ∈ E3
⊗ E3 and

vectors u, v ∈ E3, the relation (A · v) · u = u · (A · v) = A : (u⊗ v) holds. Using
this relation together with (26), the terms involving the stress vectors ti in (24) are
reformulated as

δξ,x · tx + δξ,y · ty + δξ,z · tz

=

(
∂δξ

∂x
· eI

x

)
· tx +

(
∂δξ

∂x
· eI

y

)
· ty +

(
∂δξ

∂x
· eI

z

)
· tz =

∂δξ

∂x
: σ , (27)

where the stress tensor σ emerges as being the second-order Euclidean tensor field

σ (x) := tx(x)⊗ eI
x + ty(x)⊗ eI

y + tz(x)⊗ eI
z . (28)

The stress tensor field (28) as the tensor field over the deformed configuration �
is called Cauchy stress. Using (27), the virtual work of the stress (24) can now be
written in the form

δW s
=

∫
�

(
δξ · c−

∂δξ

∂x
: σ

)
dv. (29)

Comparing the virtual work (29) with the possible force representations (4), we
immediately recognize that the stress contributes with volume measures of order
zero, dF0

= c dv, and order one, dF1
= −σ dv. Even though the derivation of

(29) makes use of cartesian coordinates for the parametrization of the domain
�, the virtual work of the stress (29) includes only Euclidean vector and tensor
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fields together with tensor operations. Consequently, (29) is independent of any
choice of coordinates and can therefore be claimed to be coordinate-free. Note
that definitions (25) and (28) rely on cartesian coordinates. For curvilinear co-
ordinates, these definitions have to be revisited and require the concepts of co-
and contravariant basis vectors [Başar and Weichert 2000; Green and Zerna 1954;
Ogden 1997], which goes beyond the scope of this paper. However, and herein lies
the strength of a variational formulation, since the virtual work is invariant with
respect to the parametrization of the appearing integral, (24) can also be applied
to curvilinear coordinates. Without introducing partial derivatives or divergence
operators for curvilinear coordinates, we will demonstrate in the Appendix how to
derive the local equilibrium equations in cylindrical coordinates, by starting from
(24) instead of (29). For spaces more general than E3, as for example manifolds,
the partial derivative in (29) is not defined anymore and has to be exchanged with
a covariant derivative, as discussed in [Eugster 2015a; 2015b; Segev 1986].

5. Symmetry of the stress tensor

In this section, we prove the symmetry of the stress tensor. Our approach basically
follows the strategy proposed by Germain [1972; 1973b] and can be regarded as a
detailed version of it. According to Definition 3, stresses contribute to the internal
forces of the body. If now the stresses are the only internal force contributions,
they also form the totality of internal forces and as such they have to satisfy the
variational law of interaction (Axiom 2) in their entirety. The following proof is
nothing else but the evaluation of the variational law of interaction for the stresses.
Note that the proof will be carried out by exclusively using the variational law of
interaction, meaning that external forces are nowhere needed in the argumentation
up to the point at which the existence of the stress tensor is addressed. We start
with the variational law of interaction (6), by which the virtual work δW s of the
stress has to satisfy

δW s
= 0 for all δξK ,rig(x)=

{
δξrig(x) for x ∈ K ,
0 for x /∈ K

(30)

for any open set K ⊆ � with rigid virtual displacements δξrig as defined in (3).
Equation (30) implies additional conditions on the force quantities c and ti in
(24), which are elaborated in the following and which will lead to the symmetry
conditions in question. Combining (30) and (24) yields

0=
∫

K
(δξrig ·c−δξrig,x · tx−δξrig,y · ty−δξrig,z · tz) dv for all K and all δξrig. (31)
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The rigid virtual displacement fields δξrig are taken from (3), and their partial deriva-
tives δξrig,i for i = x, y, z are accordingly calculated as

δξrig(x)= δrO + δφ× x and δξrig,i (x)= δφ× x,i . (32)

Inserting (32) into (31), one obtains the variational condition

0=
∫

K

(
(δrO+δφ×x) ·c−(δφ×x,x) · tx−(δφ×x,y) · ty−(δφ×x,z) · tz

)
dv

for all K , all δrO , and all δφ. (33)

We use the relation (δφ× z) · f = δφ · (z× f ) to move the quantities δrO and δφ
in front of the integral and obtain

0= δrO ·

∫
K

c dv+ δφ ·
∫

K
(x× c− x,x × tx − x,y × ty − x,z × tz) dv

for all K , all δrO , and all δφ. (34)

The variational law of interaction for the stresses has now been brought into a form
which allows one to evaluate the variations δrO and δφ, and to carry out a subse-
quent localization step based on the fundamental lemma of calculus of variations.

We start to carry out the variation for all δrO , while making the specific choice
δφ ≡ 0. Consequently, (34) reduces to

0= δrO ·

∫
K

c dv for all K and all δrO . (35)

Since (35) has to hold for all δrO , we obtain

0=
∫

K
c dv for all K . (36)

If now c is continuous on a neighborhood K of x, then (36) can be localized, which
yields

c(x)= 0. (37)

The question whether c is continuous at x can not be answered here, i.e., by the
variational law of interaction alone. The continuity of c strongly depends on the
external forces that are applied on the body, as well as on the constitutive laws that
still have to be specified for both the internal and external forces. In other words,
the continuity of c involves the principle of virtual work (Axiom 1) because of
the external forces, together with the choice of the constitutive laws, and can be
checked only after the entire continuum problem has been solved.

In the case that c is continuous at x, we have c= 0 by (37); hence, cx+cy+cz= 0
by (23). The latter means that the three volume forces ci cancel out each other
on the considered volume element and can therefore be disregarded in the ansatz
(13). As a consequence, the ansatz (13) simplifies to 1Gx(xi ) = 1Fx(xi ) and
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1Hx(xi+1x)=−1Fx(xi ), and in the same fashion for the directions y and z, with
which we have proven that action equals reaction applies for the stress vectors ti .

For the upcoming evaluation of (34) with respect to the variations δφ, we assume
continuity of c, that is, c = 0. As a consequence, the variational problem (34)
reduces to

0= δφ ·
∫

K
(−x,x × tx − x,y × ty − x,z × tz) dv for all K and all δφ. (38)

Since (38) has to hold for all δφ, we obtain

0=
∫

K
(−x,x × tx − x,y × ty − x,z × tz) dv for all K . (39)

By using the same arguments for the localizing as above, we obtain the symmetry
conditions for the stress vectors, which are

x,x × tx(x)+ x,y × ty(x)+ x,z × tz(x)= 0. (40)

They again hold only for stress vector fields ti which are continuous at x. This conti-
nuity can again only be checked after the evaluation of the principle of virtual work
together with the constitutive laws. A discontinuity appears for instance when an
external surface force is applied on a surface inside the body. The same holds true
for line forces and point forces. In these cases, continuity can be assumed at least
piecewise. Another example showing that the limits of Ci and Ti in (16) do not even
have to exist, at least not uniquely, are the force interactions within a rigid body.

The symmetry of the stress tensor (28) is proven in the same manner as we have
shown the symmetry condition for the stress vectors, with the only difference that
we start now with the virtual work contribution in the form (29), instead of (24),
with vanishing volume force c = 0. In (29) and (30), the partial derivative of
the rigid virtual displacement field with respect to the position vector x is needed,
which is by (3) the variation δφ× = δφ̃ = φ̃,ε(ε0) of the skew-symmetric linear
map φ̃(ε) as introduced in the text below of (3). Similar to (38), the variational
law of interaction implies the condition

0=−
∫

K

∂δξrig

∂x
: σ dv =−

∫
K
δφ̃ : σ dv for all K and all δφ. (41)

For a continuous stress tensor field σ , (41) can be localized to provide the varia-
tional condition

δφ̃ : σ = 0 for all δφ. (42)

Now, for S,W ∈ E3
⊗ E3 with S being symmetric and W being skew-symmetric,

it can be shown14 that S :W = 0. Since δφ̃ is skew-symmetric, the only nontrivial

14 S :W = tr(ST
·W)= tr(W · ST)=WT

: ST
= ST

:WT
=−S :W implies S :W = 0.
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solution for σ to guarantee (42) is to be symmetric, which proves the symmetry of
the stress tensor

σ = σT. (43)

Depending on the specific application, one might choose between the representa-
tions (24) and (29) of the virtual work of stress. The same applies for the symmetry
conditions, which may be stated either in terms of the stress vectors (40) or in terms
of the stress tensor (43). Which one is preferred is often a matter of taste.

For generalized continua as for instance micromorphic continua of degree one
[Germain 1973b], the stress tensor obtained from Definition 3 corresponds to the so-
called intrinsic stress, which is always symmetric. By the introduction of additional
degrees of freedom, as used to describe some microstructure, the nonsymmetric
microstress tensor appears as a coupling stress between the micro and the macro
levels.15 Since the sum of these two stress tensors appears in relation with the
surface forces, this sum is commonly called the Cauchy stress tensor, which is in
general a nonsymmetric second-order tensor.

6. Transformation properties of stress

As mentioned in Section 3, the invariance of the virtual work provides the required
transformation properties of the appearing force quantities, when different integral
parametrizations or coordinate representations are used. Applying this invariance
to the virtual work of the stress (24) or (29), various stress representations can be
derived. Without the notion of real work or power, we are able to obtain the work
conjugate stress representations [Başar and Weichert 2000; Macvean 1968] from
the virtual work alone. Since there is a wealth of possible stress and coordinate
representations, we show here just a selection of three important transformation
properties. The first is a reparametrization of the integral in (24) with curvilin-
ear coordinates. The second is a reparametrization of the integral in (29) with
respect to a new set of position vectors addressing a reference configuration. The
last transformation property is obtained for the coordinate representation of (29)
when using cartesian coordinates only. All transformation properties are derived
for continuous fields, i.e., for c= 0, with the virtual work contribution of the stress

δW s
=−

∫
�

(δξ,x · tx + δξ,y · ty + δξ,z · tz) dv =−
∫
�

∂δξ

∂x
: σ dv, (44)

satisfying the symmetry conditions (40) and (43).
The first integral in (44) is formulated in the deformed configuration and param-

etrized by cartesian coordinates I x = (x, y, z)T. For a set of curvilinear coordinates

15Note that since in this context the micro level is also described by a continuous field, it has to
be understood in a way different from the micro level as used in this paper.
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(p, q, r)T as, e.g., cylindrical coordinates, there exists at least a local invertible map
ϕ relating the cartesian with the curvilinear coordinates by

I x = ϕ(p, q, r)=

x(p, q, r)
y(p, q, r)
z(p, q, r)

 and

p
q
r

= ϕ−1(I x)=

p(I x)
q(I x)
r(I x)

 . (45)

Note that curvilinear coordinates cannot be related to a position vector x in the
sense of (1), where each of the coordinates in I x corresponds to one of the com-
ponents of the position vector x. The volume element in (44) can be expressed in
new coordinates as
dv = dx dy dz = J dp dq dr = J dv̂

with J = det(Dϕ)(p, q, r) and dv̂ = dp dq dr , (46)

where Dϕ denotes the Jacobian matrix containing the partial derivatives of ϕ. To
still integrate over the same set in the Euclidean space, the domain of integration
transforms to �̂ = ϕ−1(�). Furthermore, we introduce the virtual displacement
field in curvilinear coordinates δξ̂ , such that the identity

δξ(I x)= δξ̂(ϕ−1(I x))= δξ̂(p(I x), q(I x), r(I x)) (47)

holds. Due to (45) and (47) together with the chain rule, we can reformulate the
virtual work density in (44) now as

δξ,x · tx + δξ,y · ty + δξ,z · tz

=

(
δξ̂,p

∂p
∂x
+ δξ̂,q

∂q
∂x
+ δξ̂,r

∂r
∂x

)
· tx +

(
δξ̂,p

∂p
∂y
+ δξ̂,q

∂q
∂y
+ δξ̂,r

∂r
∂y

)
· ty

+

(
δξ̂,p

∂p
∂z
+ δξ̂,q

∂q
∂z
+ δξ̂,r

∂r
∂z

)
· tz

= δξ̂,p ·

(
∂p
∂x

tx +
∂p
∂y

ty +
∂p
∂z

tz
)
+ δξ̂,q ·

(
∂q
∂x

tx +
∂q
∂y

ty +
∂q
∂z

tz
)

+ δξ̂,r ·

(
∂r
∂x

tx +
∂r
∂y

ty +
∂r
∂z

tz
)

= δξ̂,p · t̂p + δξ̂,q · t̂q + δξ̂,r · t̂r , (48)

where we have introduced the new stress vectors

t̂p =
∂p
∂x

tx +
∂p
∂y

ty +
∂p
∂z

tz,

t̂q =
∂q
∂x

tx +
∂q
∂y

ty +
∂q
∂z

tz,

t̂r =
∂r
∂x

tx +
∂r
∂y

ty +
∂r
∂z

tz.

(49)
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Using (48) together with (46) in (44), we observe the virtual work of the stress to
be of the same form in cartesian and curvilinear coordinates:

δW s
=−

∫
�

(δξ,x · tx + δξ,y · ty + δξ,z · tz) dv

=−

∫
�̂

(δξ̂,p · t̂p + δξ̂,q · t̂q + δξ̂,r · t̂r )J dv̂. (50)

Note that the determinant of the Jacobian is J = 1 for cartesian coordinates. Al-
ternatively, we can consider J dv̂ to be the Riemannian volume element, where
J corresponds to the square root of the first fundamental form of the mapping ϕ
[Kühnel 2013; Lee 2013]. Moreover, as a direct consequence of (50), it follows that
the symmetry condition (40) applies in the same form when (x, y, z) are curvilinear
coordinates.

The integral in the rightmost expression of (44) is parametrized by the position
vector x of the deformed configuration. Consequently, the domain of integration �
changes for different configurations. It is often convenient to introduce a special
configuration �0, called the reference configuration, in which certain information,
as for example the stress state and the dimensions of the body, are available. The
position vectors X of the material points in the reference configuration are in a
bijective relation with the position vectors x in the deformed configuration; i.e.,
ϕ : �0→� with X 7→ x = ϕ(X). Note, in contrast to (45), that the function ϕ is
here a mapping between subsets of E3 but not of R3. Using the mapping ϕ, we can
express the integral in (44) with respect to the reference configuration�0=ϕ

−1(�).
This yields

dv = J dV with J = det F, (51)

where F = ∂ϕ/∂X is the deformation gradient. The virtual displacement field over
the reference configuration δ4 : �0→ E3 is under the mapping ϕ obtained as

δξ(x)= δ4(ϕ−1(x)). (52)

Using (51) and (52) together with the chain rule, the last expression in (44) can be
reformulated as

δW s
=−

∫
�

∂δξ

∂x
: σ dv =−

∫
�0

(
∂δ4

∂X
·
∂ϕ−1

∂x

)
: σ J dV

=−

∫
�0

(
∂δ4

∂X
· F−1

)
: σ J dV, (53)

where F−1
= ∂ϕ−1/∂x denotes the inverse of the deformation gradient. With the

relation (A · B) : C = A : (C · BT), we rewrite (53) as

δW s
=−

∫
�0

∂δ4

∂X
: (Jσ · F−T) dV =−

∫
�0

∂δ4

∂X
: P dV, (54)
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in which the new stress representation, the first Piola–Kirchhoff stress,

P := Jσ · F−T, (55)

has been identified. Further manipulation of (53) leads to other stress representa-
tions [Bonet and Wood 1997]. The transformation of the virtual work expression
guarantees the kinematical and the force quantities to always be work conjugate.

The last important transformation property is obtained when the stress vectors
and the virtual displacement field are represented with respect to orthonormal
frames. In addition to the I -system, we introduce the B-system (eB

x , eB
y , eB

z ) which
is rotated with respect to the I -system. The position vector x represented in the
B-system is given by the tuple B x = (x̂, ŷ, ẑ)T. Since the two coordinate systems
are rotated against each other, the coordinate representations of vectors u ∈ E3 are
related by

I u = AI B B u, (56)

with the transformation matrix AI B being orthogonal, i.e., AT
I B AI B = AI B AT

I B = I .
The inverse of the transformation matrix AI B is denoted as AB I = A−1

I B = AT
I B .

Furthermore, the coordinate representation of the virtual displacement field and its
partial derivative in the I -system are

I δξ(I x)=

δξ I
x (I x)

δξ I
y (I x)

δξ I
z (I x)

 ,
∂ I δξ

∂ I x
≡
(

I δξ,x I δξ,y I δξ,z
)
=

δξ I
x,x δξ I

x,y δξ
I
x,z

δξ I
y,x δξ I

y,y δξ
I
y,z

δξ I
z,x δξ I

z,y δξ I
z,z

 .
(57)

By exchanging (x, y, z) with (x̂, ŷ, ẑ) and I with B in (57), we obtain the coordi-
nate representation in the B-system. The same holds for the stress tensor σ , whose
coordinate representation in the I -system is, due to (28), the matrix

Iσ :=
(

I tx I ty I tz
)
=

σ I
xx τ I

xy τ I
xz

τ I
yx σ I

yy τ I
yz

τ I
zx τ I

zy σ I
zz

 . (58)

The coordinate representation of the rightmost term in (44) is further transformed
by using (56) and the chain rule to give

δW s
=−

∫
�

∂ I δξ

∂ I x
: Iσ dv =−

∫
�̂

(
∂(AI B Bδξ)

∂ B x
∂ B x
∂ I x

)
: Iσ dv̂

=−

∫
�̂

(
AI B

∂ Bδξ

∂ B x
AT

I B

)
: Iσ dv̂, (59)
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where �̂ denotes the open set of the rotated domain with the volume element dv̂ =
dx̂ dŷ dẑ. Using the symmetry of the double contraction and twice the relation
(AB) : C = A : (C BT), which holds also for matrices, (59) becomes

δW s
=−

∫
�̂

∂ Bδξ

∂ B x
: (AT

I B Iσ AI B) dv̂ =−
∫
�̂

∂ Bδξ

∂ B x
: (AB I Iσ AT

B I ) dv̂

=−

∫
�̂

∂ Bδξ

∂ B x
: Bσ dv̂, (60)

with which the transformation rule of the coordinate representation of the stress
tensor is identified to be

Bσ = AB I Iσ AT
B I . (61)

The transformation rule (61) is of vital importance in the derivation of Mohr’s
circle, which is a graphical method to find the principal axis of the stress tensor σ .

7. Boundary value problem

Starting from the principle of virtual work (Axiom 1), we derive in this section
the partial differential equations together with their boundary conditions, which
describe a deformable body under the force interactions assumed as follows. As
internal forces of the deformed configuration �, we allow solely stresses σ that are
short-range forces according to Definition 3. Any other kinds of internal forces, as
for example force interactions of nonneighboring volume elements by long-range
forces, are excluded. For the external forces, we assume that they either contribute
as volume forces fv dv in the interior � of �, or as surface forces fa da on the
boundary ∂� of �. The following derivation corresponds de facto with the reverse
direction of the approach presented by [Clebsch 1862; Lamé 1852].

To derive the boundary value problem, the virtual work of internal forces has to
be integrated by parts, for which we use the following integral theorem of R3. Let
� ⊂ R3 be an open subset of R3, � be the closure of �, and ∂� = � \� be the
boundary of �. For a function f (x, y, z) on �, integration holds in the form∫

�

∂ f
∂x

dv =
∫
�

∂ f
∂x

dv =
∫
∂�

f nx da (same for y and z), (62)

where I n= (nx , ny, nz)T are the coordinates of the outward unit normal n of �.
In order to evaluate the principle of virtual work (5), the total virtual work δWtot

of the body is required. The total virtual work is constituted of the virtual work
contribution of the internal forces δW i and the external forces δW e. Hence, the
principle of virtual work (5) takes the form

δWtot = δW i
+ δW e

= 0 for all δξ . (63)
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Since only stresses are allowed as internal forces, the internal forces contribute
according to (44) as

δW i
= δW s

=−

∫
�

∂δξ

∂x
: σ dv =−

∫
�

(δξ,x · tx + δξ,y · ty + δξ,z · tz) dv. (64)

To avoid the divergence theorem for (second-order) tensors, we will use partial
integration for the virtual work contribution δW i in terms of the cartesian stress
vectors ti , as shown in the right part of (64). The application of this procedure to
curvilinear coordinates is presented in the Appendix for the example of cylindrical
coordinates. For now using the product rule, each of the three terms δξ,i · ti in (64)
is rewritten as

δξ,x · tx = [δξ · tx ],x − δξ · tx,x (same for y and z), (65)

with which (64) becomes

δW i
=−

∫
�

([δξ ·tx ],x+[δξ ·ty],y+[δξ ·tz],z) dv+
∫
�

δξ ·(tx,x+ty,y+tz,z) dv. (66)

Applying now the divergence theorem (62) on each of the three terms [δξ · ti ],i in
the first integral, we obtain

δW i
=−

∫
∂�

([δξ · tx ]nx
+ [δξ · ty]ny

+ [δξ · tz]nz) da

+

∫
�

δξ · (tx,x + ty,y + tz,z) dv. (67)

With n= nx eI
x + ny eI

y + nzeI
z and the definition of the stress tensor σ according to

(28), the virtual work contribution (67) may now be rewritten as

δW i
=−

∫
∂�

δξ · σ · n da+
∫
�

δξ · (tx,x + ty,y + tz,z) dv, (68)

which is the desired strong variational form. By following our assumption about
the external loading of the body, only volume forces fv and surface forces fa are
considered. The external virtual work is therefore given by (11) as

δW e
=

∫
�

δξ · fv dv+
∫
∂�

δξ · fa da. (69)

The total virtual work (63) is obtained by summing up (68) and (69), which gives
the strong variational form of the principle of virtual work in the deformed config-
uration �:

δWtot =

∫
�

δξ · (tx,x + ty,y + tz,z + fv) dv+
∫
∂�

δξ · ( fa − σ · n) da = 0

for all δξ . (70)
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We now apply again the fundamental lemma of calculus of variations under the
following choices of variations: in a first step, we choose virtual displacement
fields with δξ = 0 on the boundary ∂� and δξ arbitrary in the interior �, and in
a second step, we let δξ be arbitrary on the boundary ∂�. This results in the two
localized conditions

tx,x + ty,y + tz,z =− fv in � (local equilibrium conditions),

σ · n= fa on ∂� (boundary conditions),
(71)

which are the partial differential equations in the interior � and the boundary condi-
tions for the forces on ∂�, forming together the classical boundary value problem
of continuum mechanics.

8. Integral balance laws

So far, we have not yet drawn any conclusions about how the subsystems of �
interact with each other. The answer to this question will be given at the end
of this section in the inverse stress theorem, of which the argumentation follows
the opposite direction as in Cauchy’s stress theorem. The interaction between the
subsystems can only take place by their external forces, since their internal forces,
by definition, cannot interact with their environments. Hence, we need to determine
the external forces for an arbitrary subsystem K of the continuum. For this, the total
virtual work of � is required and has to be evaluated for those virtual displacement
fields that correspond with rigid virtual displacements on the considered subsystem
K and are zero elsewhere. By doing so, the internal forces of K drop out, as do any
other forces not acting on the points of K , and only the external forces of K remain.
This special choice of virtual displacement fields is neither smooth nor continuous.
But as has already been recognized by [Hellinger 1914, §3.d], which is commented
on in [Eugster and dell’Isola 2017a], one succeeds with approximating such fields
by a family of continuous virtual displacements. Strichartz [1994, §6.6] shows that
such an approximation can even be achieved with smooth test functions, i.e., with
smooth virtual displacement fields.

For the sake of brevity and without loss of generality, we choose K to be an inner
subsystem. An inner subsystem K of � is understood in this context to be a closed
subset of �, whose boundary ∂K does not have any material points in common
with the boundary ∂� of �. As depicted in Figure 5, we denote the boundary of K
by ∂K , the interior of K by K , and the complement of K with respect to � as
H :=� \ K . Hence, � can be subdivided into the disjoint sets

�= K ∪ ∂K ∪ H = K ∪ H with K = K ∪ ∂K . (72)
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�

∂�
H

Km

m

∂K

n

Figure 5. Disjoint subdivision of the deformed configuration �
into an inner subsystem K and its complement H =� \ K . The
outward normals of K and H are denoted by n and m, respectively.
The common boundary of K and H is given by the boundary of K ,
denoted as ∂K .

For the boundaries, we have

∂H = ∂�∪ ∂K with m =−n on ∂K , (73)

where n and m are the outward-pointing unit normals of K and H , respectively.
For the formulation of the total virtual work δWtot of � according to (70), we

sum up the contributions of the total virtual work δW H
tot and δW K

tot of H and K ,
respectively. For δW H

tot, we obtain similarly to (70)

δW H
tot =

∫
H
δξ · (tx,x + ty,y + tz,z + fv) dv+

∫
∂�

δξ · ( fa − σ ·m) da

−

∫
∂K
δξ · σ ·m da, (74)

where, according to our loading assumptions, the external surface forces fa of �
act only on the subset ∂� of ∂H , but not on the boundary ∂K that was generated
by the subdivision (72) and (73). Consequently, the total virtual work δW K

tot of K
becomes

δW K
tot =

∫
K
δξ · (tx,x + ty,y + tz,z + fv) dv−

∫
∂K
δξ · σ · n da. (75)

By adding (74) and (75), one obtains

δW H
tot+ δW K

tot = δWtot, (76)

which is, due to m =−n on ∂K , again the virtual work according to (70).
To extract now from the total virtual work (76) only the external virtual work

contribution of K , we choose for δξ the rigid virtual displacements on K , which
implies

δWtot = 0 for all δξK ,rig(x)=
{
δξrig(x) for x ∈ K = K ∪ ∂K ,
0 for x ∈ H .

(77)
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With δξK ,rig(x)= 0 for x ∈ H , the virtual work contributions∫
H
δξK ,rig · (tx,x + ty,y + tz,z + fv) dv = 0,∫

∂�

δξK ,rig · ( fa − σ ·m) da = 0
(78)

vanish from δW H
tot in (74), and the variational problem (76) and (77) reduces with

the remaining contributions from (74) and (75) to

δWtot=

∫
K
δξrig ·(tx,x+ ty,y+ tz,z+ fv) dv−

∫
∂K
δξrig ·(σ ·n+σ ·m) da= 0

for all δξrig. (79)

The contribution of the internal forces of K , consisting in our case of just the
stresses in K , cancels out of (79) because of (41). To demonstrate this explicitly,
we reverse the partial integration (64)–(68), which gives∫

K
δξrig · (tx,x+ ty,y+ tz,z) dv−

∫
∂K
δξrig ·σ ·n da =−

∫
K

∂δξrig

∂x
: σ dv= 0. (80)

According to this, (79) reduces to

δWtot =

∫
K
δξrig · fv dv−

∫
∂K
δξrig · σ ·m da = 0 for all δξrig. (81)

In addition, the identity m =−n holds on ∂K by (73) for the outward normal m
of H . Furthermore, by setting

t := σ · n (82)

we can reformulate (81) as

0=
∫

K
δξrig · fv dv+

∫
∂K
δξrig · t da for all δξrig. (83)

By taking now the rigid virtual displacements δξrig from (3) and arranging the terms
with respect to δrO and δφ, one obtains

0=
∫

K
(δrO + δφ× x) · fv dv+

∫
∂K
(δrO + δφ× x) · t da

= δrO ·

(∫
K

fv dv+
∫
∂K

t da
)
+ δφ ·

(∫
K

x× fV dv+
∫
∂K

x× t da
)

for all δrO and all δφ. (84)

After the evaluation of the two independent variations for δrO and δφ, one ends up
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with the integral balance laws for the external forces and moments acting on K :∫
K

fv dv+
∫
∂K

t da = 0 (equilibrium of external forces),∫
K

x× fv dv+
∫
∂K

x× t da = 0 (equilibrium of external moments).
(85)

With t = σ · n from (82) and m =−n from (73), it is now also apparent, how the
subsystems of � interact with each other:

Theorem 1 (inverse stress theorem). Let the internal forces of � consist only of
the continuous stress tensor field σ , and let K be an (inner) subsystem of �. Then
the complement H =� \ K of K exerts on the (inner) subsystem K the force and
the moment ∫

∂K
t da and

∫
∂K

x× t da (86)

via the surface ∂K of K , where t depends linearly on the outward-pointing unit
normal n of K by t = σ · n.

In the nonvariational approach to mechanics, the stress principle of Euler and
Cauchy assumes the interaction between subsystems to take place by surface forces
only. Cauchy’s stress theorem then shows that these surface forces depend linearly
on the normal of the contact surface, which asserts the existence of the stress tensor
field. Since we proposed in this paper an alternative notion of stress, the stress
tensor field follows already from the derivation in Section 4, but the interaction
mechanism between the subsystems remains unexplained. This interaction mech-
anism is now formulated in Theorem 1, called the inverse stress theorem, as it
demonstrates the reverse direction of Cauchy’s stress theorem.

9. Conclusion

In this paper, the controversy about the a priori notion of the contribution of the
internal virtual work in a variational formulation has been resolved by an alterna-
tive perspective on the notion of stress. This notion relies on the interpretation
of Piola’s micro-macro identification procedure in view of the Riemann integral,
which naturally provides in its mathematical definition a micro-macro relation be-
tween the discrete system of infinitesimal volume elements and the continuum.
Accordingly, we proposed a definition of stress in the sense of Boltzmann on the
micro level of the infinitesimal volume elements. In particular, when the stress is
defined as the internal force effects of the body that model the mutual force inter-
action between neighboring infinitesimal volume elements, Piola’s micro-macro
identification procedure leads directly to the internal virtual work of the classical
continuum. In the course of this, the stress tensor emerges as the quantity dual to
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the gradient of the virtual displacement field. It seems that Piola’s micro-macro
identification procedure gives us a very intuitive tool to model a wide variety of
force interactions which can appear in a continuum.

In contrast to the nonvariational formulation, in which the stress principle of
Euler and Cauchy defines the concept of stress, no assumption has been made about
the mechanism of interaction between subsystems, in order to show the existence of
the stress tensor. Within the variational formulation, the mechanism of interaction
between the subsystems follows from the inverse stress theorem, which effectively
shows the reverse direction of Cauchy’s stress theorem. The derivation of the vir-
tual work contribution of the stress as given in Section 4, together with the inverse
stress theorem, can be considered as the variational counterpart to Cauchy’s stress
theorem. In the variational formulation, the symmetry of the stress tensor is a direct
consequence of the variational law of interaction and the continuity of the stress
field. Since the virtual work is by definition an invariant expression, the virtual
work provides for different integral parametrizations or coordinate representations
the required transformation properties.

As variational methods are inevitable for generalized continua, i.e., continua
with microstructure or higher-order continua, it needs to be shown how the intro-
duced notion of stress can be applied to those theories. In the present approach,
neighboring volume elements have been understood as adjacent volume elements
sharing the same surface. However, Piola’s nonlocal theory makes us confident
to conjecture that the consideration of additional interactions between volume ele-
ments sharing the same edges and wedges, or which are even nonadjacent, will lead
to higher-order stresses as known from N -th gradient theories. Nevertheless, the
proposed definition of stress on the micro level of infinitesimal volume elements
would still hold in its essence.

In order to focus on the concept of stress, we have omitted the discussion about
inertia forces and inertial frames. By adding the inertia forces in the sense of
d’Alembert as external volume forces to the total virtual work, the equations of
motion in variational form and consequently a theory of dynamics is obtained.
Such a variational formulation already forms the basis for many approaches in
analytical dynamics, as for example the Lagrangian equations of motion, Hamil-
ton’s principle, or the projected Newton–Euler equations. As a consequence, both
continuum mechanics and analytical dynamics are based on the very same axioms.
The theories differ merely in the modeling of the corresponding force interactions.

Appendix: Equilibrium equations in cylindrical coordinates

In order to avoid the concept of co- and contravariant basis vectors, (50) is a con-
venient starting point to derive the local equilibrium conditions also for curvilinear
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coordinates. As an example, we choose cylindrical coordinates (p, q, r)= (r, ϕ, z)
which are related to the cartesian coordinates by

I x = ϕ(r, ϕ, z)= (r cosϕ, r sinϕ, z)T, (87)

with the determinant of the Jacobian J = det(Dϕ)(r, ϕ, z)= r . The virtual work
of internal forces according to (50) is

δW i
=−

∫
�

(δξ,r · tr + δξ,ϕ · tϕ + δξ,z · tz)r dv, (88)

where we have omitted the hat and have used the volume element (46). With the
volume element r dv = r dr dϕ dz, the virtual work densities within the integral
have the units [δξ,i · ti ] =Nm/m3. In contrast to tr and tz having units [ti ] =N/m2,
the stress vector tϕ has, due to the dimensionless partial derivative δξ,ϕ , the unit
[tϕ] = N/m3. This dimensional mismatch can be corrected by introducing the so-
called physical stress vectors σr , σϕ, σz [Başar and Weichert 2000, p. 101], defined
by the relations

tr = σr , tϕ = 1
r σϕ, tz = σz. (89)

The virtual work (88) together with the physical stress vectors (89) leads to16

δW i
=−

∫
�

(
δξ,r · σr + δξ,ϕ ·

1
r σϕ + δξ,z · σz

)
r dv. (90)

By using the product rule, we can reformulate each of the terms in (90) according to

δξ,r · σrr = [δξ · σrr ],r − δξ ·
[
σr,r +

1
r σr

]
r,

δξ,ϕ · σϕ = [δξ · σϕ],ϕ − δξ ·
[1

r σϕ,ϕ
]
r,

δξ,z · σzr = [δξ · σzr ],z − δξ · σz,zr.

(91)

Applying the identities (91) to (88), we reformulate the internal virtual work as

δW i
=−

∫
�

([δξ · σrr ],r + [δξ · σϕ],ϕ + [δξ · σzr ],z) dr dϕ dz

+

∫
�

δξ ·
(
σr,r +

1
r σr +

1
r σϕ,ϕ + σz,z

)
r dr dϕ dz. (92)

After carrying out the integration (62) of the first term in (92), the virtual displace-
ments are chosen such that δξ = 0 on the boundary ∂�, which yields

δW i
=

∫
�

δξ ·
(
σr,r +

1
r σr +

1
r σϕ,ϕ + σz,z

)
r dr dϕ dz. (93)

16Alternatively, (90) can be obtained by evaluating the expression ∂δξ/∂x : σ = (δξ,r ⊗ ∂r/∂x+
δξ,ϕ ⊗ ∂ϕ/∂x+ δξ,z ⊗ ∂z/∂x) : (σr ⊗ er + σϕ ⊗ eϕ + σz ⊗ ez) using the basis vectors of (97).
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As in Section 8, the external forces are assumed to be either volume forces or
surface forces on the boundary of the body. Consequently, just the volume forces fv
contribute to the virtual work,

δW e
=

∫
�

δξ · fvr dr dϕ dz, (94)

as the virtual displacements have been chosen to vanish on the boundary. With
δWtot = δW i

+ δW e together with the contributions (93) and (94), the principle of
virtual work (5) implies that

δWtot =

∫
�

δξ ·
(
σr,r +

1
r σr +

1
r σϕ,ϕ + σz,z + fv

)
r dr dϕ dz = 0 for all δξ . (95)

By the fundamental lemma of calculus of variations, the strong variational form (95)
leads directly to the local equilibrium conditions

σr,r +
1
r σr +

1
r σϕ,ϕ + σz,z + fv = 0. (96)

It is convenient to represent the physical stress vectors in the cylindrical orthonor-
mal basis (er , eϕ, ez), which depends on its position (r, ϕ, z) and is defined with
respect to the I -system as

I er =

cosϕ
sinϕ

0

 , I eϕ =

− sinϕ
cosϕ
0

 , I ez =

0
0
1

 . (97)

By computing the partial derivative of the basis vectors with respect to (r, ϕ, z), it
can easily be shown that the only nonvanishing contributions are

er,ϕ = eϕ, eϕ,ϕ =−er . (98)

For an explicit evaluation of (96) in components, the following computations are
of importance:

σr,r = (σrr er + τϕr eϕ + τzr ez),r = (σrr,r er + τϕr,r eϕ + τzr,r ez),

σϕ,ϕ = (τrϕer + σϕϕeϕ + τzϕez),ϕ

= (τrϕ,ϕer + τrϕeϕ + σϕϕ,ϕeϕ − σϕϕer + τzϕ,ϕez),

σz,z = (τr zer + τϕzeϕ + σzzez),z = τr z,r er + τϕz,zeϕ + σzz,zez,

fv = fr er + fϕeϕ + fzez.

(99)
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Using (99) within (96), we end up with the local equilibrium equations described
in the components of the (er , eϕ, ez)-system:

0= σrr,r +
1
r σrr +

1
r τrϕ,ϕ −

1
r σϕϕ + τr z,z + fr ,

0= τϕr,r +
1
r τϕr +

1
r σϕϕ,ϕ +

1
r τrϕ + τϕz,z + fϕ,

0= τzr,r +
1
r τzr +

1
r τzϕ,ϕ + σzz,z + fz,

(100)

which is often derived by geometrical arguments on the cylindrical volume ele-
ments [Timoshenko and Goodier 1951, p. 55]. The same procedure as proposed
here can also be applied to obtain the Lagrangian equilibrium equation in cylindri-
cal and spherical coordinates, which are presented in [Volokh 2006].
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