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THE EFFECT OF ROTATION
ON THE FLATTENING OF CELESTIAL BODIES:

A JOURNEY THROUGH FOUR CENTURIES

WOLFGANG H. MÜLLER

This paper presents an overview and comments on various continuum models
used for predicting the deformation of celestial objects under their own rotation,
also known as “flattening” — in particular from a historical perspective. Initially
we shall discuss the chronology of events leading to models for fluids, solids,
and gases. Our review will range from Newton’s famous Principia, Thomson
and Tait’s Treatise on natural philosophy, and the treatise of the spinning top
by Klein and Sommerfeld to the modern literature, which accounts for quantum
mechanics and relativistic effects in exotic spinning celestial objects, such as
neutron stars and white dwarfs. Then, based on previously published results
by Müller and Lofink (2014) and Müller and Weiss (2016), we will present a
modern treatment of the fluid model according to Newton. It will be applied not
only to the Earth but also to other celestial bodies. We will compare the results to
actual measurements and discuss reasons for discrepancies. Finally, we turn to
a model for a solid based on Hookean linear elasticity, which we shall also state
and solve in modern terminology. In particular, we will not only compute the
flattening but also present closed-form solutions for the stresses in a gravitating
and stationary spinning, linear-elastic sphere.

1. Some historical background and the experimental evidence

We all know that the rotational movement of matter against an inertial system
gives rise to centrifugal accelerations, leading first to complex motion, which then
eventually ceases and results in stationary deformation. In particular, if the rotating
matter is a gas or a liquid, these deformations may be considerable. Indeed, the
great Newton [1972, p. 51] himself describes this effect in words in his famous
bucket experiment, i.e., the formation of what we now know to be a parabolic
free water surface: “. . . superficies aquae sub initio plana erit, quemadmodum ante
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2 WOLFGANG H. MÜLLER

Figure 1. Photographs showing the optically visible, yet small
flattening of Jupiter and Saturn. For convenience circles illustrat-
ing a perfect spherical shape have been added [Wikipedia 2016b;
NASA 2017].

motum vasis, at postquam, vi in aquam paulatim impressa, effecit vas, ut haec
quoq; sensibiliter revolvi incipiat, recedet ipsa paulatim a medio, ascendetque ad
latera vasis, figuram concavam induens, (ut ipse expertus sum). . . .”1 Note that his
description is purely qualitative as well as heuristic, namely based on experience,
as he says himself, despite the fact that he had developed calculus and was most
likely in a position to predict the shape of the free surface mathematically. However,
no such attempt is made, at least not in his Principia.

The incompressible fluid model. This is different in the case of predicting the
figure of the Earth and other planets. Newton specifically mentions Jupiter show-
ing a huge amount of flattening, which was easily observable, even in the old
days, as well as the Earth; see Figure 1. He idealizes both planets as fluid bodies
and says in [Newton 1972, p. 592], “Planetae sublato omni motu circulari diurno
figuram sphaericam, ob aequalem undique partium gravitatem, affectare deberent.
Per motum illum circularem sit ut partes ab axe recedentes juxta aequatorem ascen-
dere conentur. Ideoque materia si fluida sit ascensu suo ad aequatorem diametros
adaugebit, axem vero descensu suo ad polos diminuet. Sic jovis diameter (consen-
tientibus astronomorum observationibus) brevior deprehenditur inter polos quam
ab oriente in occidentem. Eodem argumento, nisi terra nostra paulo altior esset
sub aequatore quam ad polos, maria ad polos subsiderent, & juxta aequatorem

1Unfortunately translations of the original Latin text are never word by word and hence distract
from the original power of Newton’s thoughts and sometimes cloud what he really meant. Also, be
advised that Newton’s Principia come in various editions with substantial amendments from version
to version. A true scholar of the history of science would point out and study the differences. For
brevity we are not going to attempt this here. Nevertheless, the reader who wishes to consult a
(nonverbatim) translation of the original may want to turn to [Newton 1999, p. 81]: “. . . the surface
of the water will at first be plain, as before the vessel began to move; but the vessel, by gradually
communicating its motion to the water, will make it begin sensibly to revolve, and recede little by
little from the middle, and ascend to the sides of the vessel, forming itself into a concave figure (as I
have experienced). . . ”
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ascendendo, ibi omnia inundarent.”2 The latter is obviously a gut feeling statement
of Newton, the discoverer of the law of gravity, as we shall see shortly.

Indeed, the rest of the passage anticipates the mathematical definition of the
flattening or (more precisely) the ellipticity, f , which is given by the ratio [Stacey
and Davis 2008, Chapter 6]

f =
a− c

a
, (1-1)

where a denotes the (mean) equatorial radius and c the polar radius of a celestial
body. In contrast to the bucket problem Newton [1972, p. 595] quantifies the flatten-
ing of the Earth, first, based on geodesic experiments of his time: “. . . Vis centrifuga
corporum in aequatore terrae est ad vim centrifugam, qua corpora directe tendunt a
terra in latitudine Lutetiae graduum 48◦ 50′ 10′′, in duplicata ratione radii ad sinum
complementi latitudinis illius, id est, ut 7,54064 ad 3,267. Addatur haec vis ad
vim qua gravia descendunt in latitudine illa Lutetiae, & corpus in latitudine illa,
vi tota gravitatis cadendo, tempore minuti unius secundi describet lineas 2177,267
seu pedes Parisienses 15 dig. 1 & lin. 5,267. Et vis tota gravitatis in latitudine illa
erit ad vim centrifugam corporum in aequatore terrae ut 2177,267 ad 7,54064 seu
289 ad 1.”3

Second, Newton conceives a rather strange fluid model of the Earth, which
Chandrasekhar [1995, p. 384] calls “method of the canals”: two straight canals
(see Figure 2), one along the equatorial and one along the polar axis of the Earth,
are filled with water and interconnected at a right angle. Newton considers sta-
tionary conditions and equilibrium of forces resulting from gravity and centrifugal
acceleration. However, he does not really detail the mathematical analysis. Rather
he explains his findings by many words: Propositio XIX, Problema III and Propo-
sitio XX, Problema IV of [Newton 1999, p. 593]. Another excerpt may suffice

2“The equal gravitation of the parts on all sides would give a spherical figure to the planets, if
it was not for their diurnal revolution in a circle. By that circular motion it comes to pass that the
parts receding from the axis endeavour to ascend about the equator; and therefore if the matter is in
a fluid state, by its ascent towards the equator it will enlarge the diameters there, and by its descent
towards the poles it will shorten the axis. So the diameter of Jupiter (by the concurring observations
of astronomers) is found shorter betwixt pole and pole than from east to west. And, by the same
argument, if our earth was not higher about the equator than at the poles, the seas would subside
about the poles, and, rising towards the equator, would lay all things there under water” [Newton
1999, p. 405].

3“The centrifugal force of bodies in the equator is to the centrifugal force with which bodies
recede directly from the earth in the latitude of Paris 48◦ 50′ 10′′ in the duplicate proportion of the
radius to the cosine of the latitude, that is, as 7,54064 to 3,267. Add this force to the force with
which bodies descend by their weight in the latitude of Paris, and a body, in the latitude of Paris,
falling by its whole undiminished force of gravity, in the time of one second, will describe 2177,267
lines, or 15 Paris feet, 1 inch, and 5,267 lines. And the total force of gravity in that latitude will be
to the centrifugal force of bodies in the equator of the earth as 2177,267 to 7,54064, or as 289 to 1”
[Newton 1999, p. 106].
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Figure 2. A sketch from the Principia to illustrate Newton’s
method of canals [1972, p. 596]. Note that strangely enough New-
ton’s equator runs from A to B, i.e., from top to bottom.

in order to illustrate the point: “Quoniam pondera inaequalium crurum canalis
aqueae AC Qqca aequalia sunt; & pondera partium, cruribus totis proportionalium
& similiter in totis sitarum, sunt ad invicem ut pondera totorum, iadeoque etiam
aequantur inter se; erunt pondera aequalium & in cruribus similiter sitarum partium
reciproce ut crura, id est reciproce ut 230 ad 229. Et par est ratio homogeneorum
& aequalium quorumvis & in canalis cruribus similiter sitorum corporum. Horum
pondera sunt reciproce ut crura, id est, reciproce ut distantiae corporum a centro
terrae. Proinde si corpora in supremis canalium partibus, sive in superficie terrae
consistant; erunt pondera eorum ad invicem reciproce ut distantiae eorum a centro.
Et eodem argumento pondera, in aliis quibuscunque per totam terrae superficiem
regionibus, sunt reciproce ut distantiae locorum a centro; & propterea, ex hypothesi
quod terra sphaerois sit, dantur proportione.”4

Luckily, we have Chandrasekhar who translates Newton’s thoughts for us and
explains what all of this means, in particular all the data and numbers that are men-
tioned by Sir Isaac. Chandrasekhar [1995, p. 384] derives the following formula,
which, as we shall see shortly, is valid for small values of f :

f =
5
4

aω2
0

Gm/a2 =
5
4
ω2

0a3

Gm
=

5
4

3ω2
0

4πGρ0
, (1-2)

where G = 6.673 ·10−11 m3

kg·s2 stands for the gravitational constant, m is the mass of
the celestial body, and ω0 is its (constant) angular velocity. The last way of writing

4“Because the weights of the unequal legs of the canal of water AC Qqca are equal; and the
weights of the parts proportional to the whole legs, and alike situated in them, are one to another as
the weights of the wholes, and therefore equal betwixt themselves; the weights of equal parts, and
alike situated in the legs, will be reciprocally as the legs, that is, reciprocally as 230 to 229. And the
case is the same in all homogeneous equal bodies alike situated in the legs of the canal. Their weights
are reciprocally as the legs, that is, reciprocally as the distances of the bodies from the centre of the
earth. Therefore if the bodies are situated in the uppermost parts of the canals, or on the surface of the
earth, their weights will be one to another reciprocally as their distances from the centre. And; by the
same argument, the weights in all other places round the whole surface of the earth are reciprocally
as the distances of the places from the centre; and, therefore, in the hypothesis of the earth being a
spheroid are given in proportion” [Newton 1999, p. 409].
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the formula emphasizes incompressibility; i.e., a constant mass density, ρ0, was
used. Thus, we may suggestively say that the flattening is basically given by the
ratio of angular acceleration to gravitational acceleration. The ominous factor 5

4
accounts for the difference between the gravitational acceleration at the pole and
at the equator, which follows from the specific weights of the two water columns
in an oblate spheroid. Further below we shall derive this result slightly differently
than Chandrasekhar did and show precisely how the factor originates.

It is more than fair to point out that Newton withheld many details explaining
how his law of gravity would lead to this result. In fact, Chandrasekhar has good
reasons to believe that Newton knew the formula for the gravitational attraction of
an oblate spheroid, which we shall use further below as well. Needless to say that
Newton also does not provide a concise formula for the flattening, such as the one
above. Rather his approach is a mix of (hidden) theory and experimental evidence
as we tried to demonstrate by the previous two citations from the Principia. At
the end of his gedanken experiment with the two interconnected canals, and after
a long line of arguments involving equilibrium of forces and his law of gravity, he
concludes that the flattening of the Earth is given as, “Et altitudo ejus ad aequa-
torem erit 19658600 pedum circiter, & ad polos 19573000 pedum” [Newton 1972,
p. 598].5

Chandrasekhar [1995, p. 389] presents a translation of Newton’s line of thoughts
together with many annotations. We leave it to the reader to study the details and
conclude only that Newton’s predicted value for the flattening of a homogeneous
Earth is fE = 4.35 · 10−3. Furthermore, if we take (1-2) for granted and insert
the currently accepted values for the mass of the Earth, m E = 5.972 · 1024 kg,
its equatorial radius, aE = 6.378 · 106 m, and its angular (sidereal) speed ω0,E =

2π/86164 s [Wikipedia 2016a; 2016c], we find that fE = 4.33 · 10−3. Indeed, this
is amazingly close to Newton’s figure. However, modern sources quote a different
number for the observed flattening of the Earth, e.g., NASA’s fE = 3.35 · 10−3

[Williams 2017].
Why the discrepancy? As we shall see below, one of the key factors is the

choice of the “correct” constitutive equation, for example, an incompressible fluid
model in the present case, which forms the basis of (1-2). Moreover, in the same
context a remark is in order: frequently it remains unclear as to whether a quoted
number for the flattening truly results from direct length measurements or from
some model equation. In other words, circular conclusions are immanent (also see
[Bridgman 1958] regarding the interrelation of physical theory and experiment).
We will comment some more on this issue later. Furthermore, it is also known that
Earth is not homogeneous and the denser, heavier matter is at the center. This will

5“And its height at the equator will be about 19658600 feet, and at the poles 19573000 feet”
[Newton 1999, p. 108].
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also affect the flattening. By looking at (1-2) one may say with a grain of salt that
the effective density, ρ0, increases. Hence, the flattening decreases.

It is worth mentioning that Newton also applies his fluid model to explain the
rather large flattening value, f J , for Jupiter. For this purpose, he reinterprets (1-2)
in terms of (homogeneous, constant) mass densities, ρ, so to speak:

f =
3

4π
ω2

0

Gρ
=⇒ f J = fE

(
ω0,J

ω0,E

)2
ρE

ρJ
. (1-3)

Newton had some information on the relative densities of celestial bodies based
on his gravitational law, the measured times of revolution, and the distances of
the moons orbiting around them: “Erant autem verae solis, jovis, saturni ac terrae
diametri ad invicem ut 10000, 997, 791, & 109,. . . & propterea densitates sunt ut
100, 941

2 , 67 & 400” [Newton 1972, Liber III, Propositio VIII, Theorema VIII,
Corol 3 on p. 582].6 He concludes: “. . . sintque temporum quadrata ut 29 ad 5, &
revolventium densitates ut 400 ad 94 1

2 (see (1-3)2). . . Est igitur diameter iovis ab
oriente in occidentem ducta, ad ejus diametrum inter polos ut 10 1

3 ad 9 1
3 quam-

proxime” [Newton 1972, p. 599].7 We conclude that f J = 9.68 · 10−2. However,
the modern figure reported by NASA is f J = 6.49 · 10−2 [Williams 2017]. It is
curious to note that in both cases, for the Earth as well as for Jupiter, the predicted
flattening value is higher than the actually observed one. In contrast to that the
simplest solid model leads to an underestimate, as we shall see now.

The Hookean model. We shall now consider the historical development of solid
mechanics models for the flattening. First, let us ask why we need such models at
all? For an answer we simply quote from [Klein and Sommerfeld 2012, p. 687]:
“. . . the assumption of a fluid interior in a compliant shell is refuted by the phe-
nomenon of the tides. A thin crust of the Earth with the elastic compliability of
the materials known to us would follow the deforming influence of the tidal forces
almost as willingly as the water of the sea. There would then be, however, no
relative motion of the water with respect to the land under the influence of these
forces, but only a common rise and fall of the sea and the continents that would
escape immediate perception. Thus there remains only the assumption that the
Earth is, in the mean, effectively solid. . . .”

Note that the emphasis in this citation is on tidal effects. Consequently, it is not
surprising that the flattening problem is frequently discussed in context with the

6“But the true diameters of the Sun, Jupiter, Saturn, and the Earth, were one to another as 10000,
997, 791, and 109; and the weights towards the same as 10000, 943, 529, and 435 respectively; and
therefore their densities are as 100, 94 1

2 , 67, and 400” [Newton 1999, p. 398].
7“. . . and the squares of their periodic times are as 29 to 5, and their densities as 400 to

94 1
2 . . . Therefore the diameter of Jupiter from east to west is to its diameter from pole to pole nearly

as 10 1
3 to 9 1

3 ” [Newton 1999, p. 408].
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more general question of how the Earth deforms, if it is subjected not only to its
own gravitational field and to centrifugal accelerations, but also to the gravitational
influence of external celestial bodies, such as the Moon and the Sun. Traditionally
we refer to “tides” when we think of the rise and fall of sea levels, dictated by
the Moon’s or the Sun’s periodic gravitational pull. However, for geologists and
astrophysicists the meaning of this term is much wider. For them, quite general, any
permanent or periodic movement of the surface of the Earth, water or land, resulting
from internal or external forces are tides. In what follows we will concentrate on the
competing effects of self-gravity and centrifugal accelerations only. The influence
of external bodies will be ignored.

Today we would say that if we wish to model the deformation of the Earth
when subjected to forces we need an appropriate constitutive model. In particular,
if we want to emphasize Earth’s solid characteristics we need constitutive models
pertinent to solids. Clearly, the concept of constitutive equations was in its infancy
when this need arose first and, hence, Sommerfeld explains to us in great detail
[Klein and Sommerfeld 2012, p. 685] that the transition between a fluid and a
solid can be gradual. In fact, the only constitutive law available in the middle of
the nineteenth century that had a sound mathematical basis and could therefore
be used to study three-dimensional continua was Hooke’s law of linear elasticity.
Moreover, it is fair to say that tensor notation was still under development at that
time and in the very few papers dedicated to the problem of a sphere subjected
to general gravitation, i.e., tides, plus centrifugal forces, a most repelling notation
is used. Further below we will revisit the problem in modern form. Thus, at this
point it may suffice to mention that, at least to our knowledge, the first source
that presents an explicit formula for the flattening of a rotating, self-gravitating,
compressible, linear-elastic sphere is Thomson and Tait’s treatise [1912, p. 432],
which in modern notation reads

f =
ρ0 R2ω2

0

E
(1+ ν)(2+ ν)

7+ 5ν
. (1-4)

E denotes Young’s modulus, ν is Poisson’s ratio, and ρ0 and R are the mass density
and the radius of the sphere in its reference configuration, respectively. Of course,
the question arises which elastic constants to use for the Earth. If we take the ones
for steel, as suggested in [Klein and Sommerfeld 2012, p. 692], i.e., EE ≈ 210 GPa,
and νE ≈ 0.3, we find with ρ0,E ≈ 5514 kg

m3 and RE = 6.371 · 106 m, the mean
radius of the Earth [Wikipedia 2016a; 2016c], a value of fE = 2 · 10−3, and we
may conclude that a solid Earth model leads to an underestimate of the observed
figure; in short, this Earth model is too rigid.

In fact, the question of which radius and which Young’s modulus to use is rather
subtle and it takes some care to find good answers. Let us start with the radius. The
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effect of self-gravitation of Earth or any other massive celestial object on deforma-
tion is immense. An originally homogeneous sphere of a mass equivalent to Earth
will shrink considerably after “gravitation has been switched on.” It was shown
[Müller and Weiss 2016, p. 72] that the radius of the undeformed homogeneous
sphere would shrink by more than ten percent, a number that calls for the use of
geometrically nonlinear deformation theory. However, the radius of the initially ho-
mogeneous, unstrained sphere is not the radius RE that was inserted above in (1-4).
Why? For an answer first note that the strength of centrifugal acceleration is two
orders of magnitude below that of self-gravity. It is therefore justified to use linear
elasticity (i.e., a linear relationship between stress and stain) and a linear strain
measure in order to assess its effects on deformation. However, linear elasticity
does not distinguish between the current and the reference configuration. The de-
formation is assumed to be small. In fact, exactly this kind of approximation was
the foundation of (1-4). To say it once more, in problems of linear elasticity the size
of the reference and of the current radius hardly differ. Hence, we may consider
the quantity R in (1-4) to be that of the deformed sphere subjected to self-gravity.
Centrifugal accelerations will not change this value considerably. If one so wishes,
we may alternatively say that the Earth deformed by self-gravity was considered
as a new reference configuration onto which centrifugal loads were applied.

Now let us turn to the question of which Young’s modulus is to be used in
(1-4). Due to the authority of Lord Kelvin’s and Love’s statements according to
which the resilience of Earth is basically that of steel, it is customary to use the
corresponding elastic data: “Hence it appears that if the rigidity of the earth, on the
whole, were only as much as that of steel or iron, the earth as a whole would yield
about two-fifths as much to the tide-producing influences of the sun and moon as
it would if it had no rigidity at all; and it would yield by more than three-fourths of
the fluid yielding, if its rigidity were no more than that of glass” [Thomson 1863,
p. 574], “The comparison between theory and observation, owing to the extreme
complexity of the circumstances, has been hitherto so imperfect that we cannot
say it disproves this result; and therefore, from tidal phenomena hitherto observed,
we cannot infer that the earth is more effectively rigid than steel” [Thomson 1863,
p. 576], and “An example will make it clear how the table is to be interpreted. From
the first column we learn that a homogeneous sphere of the size and mass of the
earth made of a material nearly as rigid as steel and nearly as incompressible, the
Poisson’s ratio of the material being 1

4 , could not exist. It would be unstable as
regards radial displacement. If such a sphere existed for an instant it would at once
begin to condense towards the centre. If it were as rigid and compressible as steel,
and homogeneous, it would be stable” [Love 1911, p. 114].

However, Earth contains a nickel-iron core surrounded by a silicate mantle. In
other words, Earth is a composite consisting of spherical shells. In such a situation
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it is more appropriate to use effective elastic properties instead, which could be
obtained by a homogenization scheme. To the best knowledge of the author this
has not been attempted so far.8 The simplest homogenization schemes would be
to use Voigt and Reuss upper and lower volumetric bounds, i.e.,

EVoigt= EFev+ESiO2(1−v), EReuss=

(
v

EFe
+

1− v
ESiO2

)−1

, v=

(
ri

ro

)3

. (1-5)

If we now take values for the elastic moduli of iron and silicon, ESiO2 = 80 GPa,
and make use of the data for the radii of the iron core and the silicate mantle,
ri = 5100 km and ro= 6370 km, respectively, we find that the homogenized Young’s
modulus will be between 56% and 70% of the value for steel. After inserting this
into (1-4) the value for the flatting will increase and come a little closer to the
experimentally observed value.

Summarizing we may conclude that the Earth is a complex material body made
of fluidic and solid-like shells. Indeed, it is likely that the fraction of both has
not been constant in time, and that the current shape of the Earth may have been
reached when the fraction was considerably different from today. Note that it is
commonly assumed that the Earth was still almost completely in a fluid state 3 Ga
ago and then started to continuously form more and more outer solid crust [Turcotte
and Pflugrath 1984]. Moreover, it is known today [Dehant et al. 2003] that as the
Earth cools, the inner core solidifies from the fluid outer core. It can be assumed
that such dynamic processes, even though they may be slow, will also lead to a
change in the flattening. However, the description of such complex processes is far
beyond the scope of this paper.

Compressible fluid or gas models. We shall finally consider the history of mod-
eling the flattening of gas spheres; in other words we shall consider revolving
stars. The question is what we mean by “gas”. Surely a normal star like our Sun
consists mostly of hydrogen and helium. From a very naive point of view, these
are “gases”. However, both are in an extreme state, temperature- and pressurewise,
which is known as plasma. Thus, besides mechanical equilibrium it is imperative
to study thermal equilibrium as well, in combination with quantum mechanics and,
if the star is very heavy, as in the case of white dwarfs and neutron stars, by using
relativistic instead of Newtonian gravity models. It is for that reason that scientific
analysis of the deformation in rotating stars is comparatively young. As a matter
of fact, in such cases the line between what we may want to call a fluid or a
gas becomes indistinct. As we shall see, everything centers around the question of
which equation of state to use in order to connect pressure, density, and temperature.

8A private communication by Igor Sevostianov from New Mexico State University indicates that
NASA is in the process of doing that.
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In other words the stress tensor is isotropic and the capability for carrying shear
forces is (mostly) ignored in such compressible fluid-gas models.

The story starts with two seminal papers, one by Milne [1923] and the other
one by Chandrasekhar [1933]. Just like Newton they assume static equilibrium
of forces to hold, such that the state of stress is spherically isotropic, given by
a pressure, p. This pressure is connected to density ρ via a so-called polytropic
equation of state

p = Kρ(n+1)/n, (1-6)

where n is the polytropic index, a fudge parameter, and K is a constant, which can
be linked, for example, to the conditions at the center of the gas sphere. Moreover,
the gas is considered as ideal; i.e., p = ρ(R/M)T holds, where R = 8.314 kJ

kg·K de-
notes the ideal gas constant, M the molecular weight, and T absolute temperature.

Clearly, these relations account for compressibility, as it should be in the case
of a gas. However, from the materials theory point of view we must ask what the
status of the polytropic equation is and whether it qualifies as a true constitutive
relation. The proper answer is that it does not. Rather it is a half breed. This
is easily seen if one specializes (1-6) to the adiabatic equation of an ideal gas, for
which n= 3

2 ,
5
2 , or 3 depending on whether the ideal gas is monatomic, diatomic, or

multiatomic. As is well known the adiabatic equation results from combination of
the ideal gas law, the internal energy of an ideal gas, and the assumption to consider
nonviscous, isentropic processes. In other words, it requires the first and second
laws of p dV thermodynamics to hold in combination with the two aforementioned
constitutive equations for the ideal gas.

Interestingly, if we accept all this, a relation similar to (1-2) results in

f =
5
4
ω2

0

Gρm
v(n), (1-7)

where ρm is the average of the inhomogeneous mass density distribution, and v(n)
is a function depending on the polytropic index, which must be determined nu-
merically from a solution of a modified Lane–Emden equation.9 More details of
the derivation and further references can be found in [Rozelot et al. 2011; Horedt
2004].

It should be mentioned that the flattening of our Sun is extremely small. While
the difference of the polar and equatorial diameters of Earth is of the order of forty
kilometers, it is merely 12 km in the case of the Sun [Rozelot et al. 2011, p. 175],
despite the fact that the Sun is so much larger than Earth. In view of the much
stronger gravitational pull we may conclude that the Sun “holds on very tightly”

9The modification is due to the fact that the original Lane–Emden equation was derived for a
nonrotating star. Now the centrifugal accelerations had to be added.
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to its revolving masses. However, on second glance the situation is much more
complicated. While the models described so far may be realistic when predicting
the flattening of Earth, which seems essentially to rotate like a rigid body at a single
angular speed, this is not so in the case of the Sun.

In this context astrophysicists have coined the term “differential rotation”, which
is supposed to mean that different parts of a rotating object move with different
angular velocities at different latitudes and/or depths of the body and/or in time.
All of this is happening in the Sun: Galileo’s paper on sunspots [Galilei 1613] is
often hailed to be the first definite scientific work on them including the observation
that they are located on or close to the Sun’s surface and that they move, because
the Sun rotates. Galileo says on p. 27, “. . . il [a planet] quale oltre alla velocità
douerebbe ancore muouersi quasi uniformemente. . . il che non accade nel moto
delle macchie, le quali velocemente trepassano le parti di mezzo [of the Sun],
e quanto più sono vicine alla circonferenza, tanto più pigramente caminano.”10

However, with certainty we may say that this phenomenon was known a long time
before, albeit not truly quantified, and that there is a long debate about priority
rights, in which even the ever-so-modest Galileo did not hesitate to engage. We
leave this uncommented here and refer to [Van Helden 1995; Galilei and Scheiner
2010] if the reader wishes to know more about this delicate topic.

Probably the first to make a quantitative statement about different angular speed
in various latitudes of the Sun was Carrington [1859]. He says quite clearly on
pp. 83–84 of his paper that “. . . there is an equatoreal current causing spots to
move in the direction of the solar rotation, and a reverse current in the higher
latitudes north and south. . . ” and he quantifies this by daily drift recordings in
form of a table on p. 83 of his paper. The reason for differential rotation in the
Sun is due to strong mass convection, because of the steep temperature gradients
from the core outwards. The convecting mass carries a portion of the star’s angular
momentum, so that the angular velocity must redistribute according to the principle
of conservation of angular momentum.

However, incorporating differential rotation in models for the flattening did not
happen until the 1980s, more than fifty years after the extension of the Lane–
Emden equation to a uniformly rotating star in [Milne 1923; Chandrasekhar 1933].
An overview on existing models is given in [Rozelot et al. 2011, p. 170; Horedt
2004, §3.5]. Clearly, the numerical analysis is now even more complex. It is not
surprising that no rule of thumb formulae for the flattening are presented any more.
However, there are plots predicting the flattening according to various differential

10“. . . It [a planet], besides its velocity, would also have to move almost uniformly, being some
considerable space away from the Sun. . . This does not happen with the motion of the sunspots,
which traverse the middle region [of the Sun] with great rapidity, while the closer they are to the
circumference, the more sluggishly they proceed” [Galilei and Scheiner 2010, p. 104].
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Figure 3. Distribution of the Sun’s angular velocity field. Left:
surface plot. Right: meridional section.

rotation models and these plots are commented verbally. One example of such
work is [Godier and Rozelot 2000]. There an empirical equation for the angular
velocity field ω(x, θ) by [Kosovichev 1998; Godier and Rozelot 1999; 2000] is
used, where x is the normalized radial distance and θ is the polar angle:

ω = 2π
(

A1(x)+ A3(x)[1− 5 cos θ ] + A5(x)[1− 14 cos2 θ + 21 cos4 θ ]
)
,

A1(x)=


435, x ≤ 0.71,
435+ 51.85(x − 0.71), 0.71< x ≤ 0.983,
435− 882.53(x − 1), 0.983< x ≤ 1,

A3(x)=−228(x), A5(x)=−3.58(x), 8(x)= 0.5
(

1+ erf
[

2
x−0.69

0.1

])
.

To be precise, it is assumed that the Sun rotates according to ω = ωe3, viewed
from an inertial observer situated at the Sun’s center with its unit vector e3 pointing
to the Sun’s pole. Figure 3 gives an idea of the complexity of the field. It is
interesting to note that the core rotates quite differently than the rest of the Sun.
As far as the flattening is concerned the conclusion is that “Comparing the profile
of ε [the flattening] for the differential rotation case with the profile of ε in the
rigid rotation case, where we find ε0 ' 2.59 · 10−6, we see that the oblateness of
the Sun is increased by the differential rotation of a quantity equal to 6.18 ·10−6. . . ”
[Godier and Rozelot 2000, p. 370]. Still being a very small value the refined theory
nevertheless makes a remarkable difference.

Most recently, the deformation of more exotic rotating stars has gained the atten-
tion of the astrophysicists, namely white dwarfs and neutron stars. For those read-
ers who are not familiar with the nomenclature, we attempt to summarize facts in a
somewhat dilettante manner. A white dwarf is a stellar remnant composed mostly
of electron-degenerate matter. It is very dense. While its mass is comparable to
that of the Sun, its volume is close to that of Earth. White dwarfs are thought to
be the final evolutionary state of stars whose mass is not high enough to become a
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neutron star. The latter results from the gravitational collapse of the core of a star
with a mass more than ten times that of the Sun. Neutron stars are composed almost
entirely of neutrons. The conservation of angular momentum requires that neutron
stars rotate extremely fast. A newborn neutron star can rotate many hundred times
a second, so they say, which leads to the emission of electromagnetic beams that
can be detected on Earth. For this reason neutron stars are also known as pulsars
(= pulsating stars). Clearly, such a high spinning rate should lead to considerable
deformation of the neutron star, which might result in a “starquake” during which
its crusts “breaks”. Indeed, changes in the pulsating emission pattern are observed,
also known as “glitches”, which are interpreted by the astrophysicists to be the
result of exactly such an occurrence [Franco et al. 2000].

We now proceed to present Newton’s fluid and the Hookean solid model of
Thomson and Tait for revolving celestial objects in the language of modern contin-
uum mechanics.

2. Fluid models

The following sections were adapted in part from [Müller and Lofink 2014]. Some
further information regarding the derivation of pertinent formulae can be found in
Appendix A. The issue of instabilities during revolution of fluidic, self-gravitating
spheres has been addressed in a seminal paper by Poincaré [1885]. However, the
angular speed of the Earth and other bodies of our solar system are small enough
to ignore such peculiarities in this paper.

Discussion of pressure and flattening relations. We consider a self-gravitating
sphere made of an incompressible fluid which starts spinning about a fixed axis at a
constant angular velocity, ω0. Due to centrifugal accelerations and internal friction
it finally reaches a stationary state of axisymmetric deformation and assumes the
shape of a spheroid with major and minor axes a and c, respectively. Its flattening,
f = 1− λ, can be calculated from the transcendental equation

2ω2
0a3

3Gm
=
(1+ 2λ2) arccos λ− 3λ

√
1− λ2

(1− λ2)3/2
, λ=

c
a
. (2-1)

An alternative but numerically equivalent solution in terms of arcsin λ was pre-
sented in [Fitzpatrick 2016, p. 46]. For a given angular velocity (2-1), allows one
to calculate the flattening of a body of mass m and equatorial radius a numerically.
For this purpose note that f = 1− λ. Moreover, we can expand (A-14) in a series
for the flattening:

2ω2
0a3

3Gm
=

8
15 f + 44

105 f 2
+ O[ f ]3. (2-2)
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Obviously, the first term is dominant for small flattening values and agrees with
Newton’s result from (1-2). Interestingly MacLaurin was obviously the first who
presented a solution to the flattening problem in terms of a series about f ≈ 0
(which in hindsight explains the term MacLaurin series, i.e., a series close to the
point zero). He says in Section 655 of [MacLaurin 1742, p. 543], “The grav-
ity. . . represented. . . at the equator by D, and the centrifugal force at D by V, . . . , if
the density of the spheroid be uniform. . . the ratio of V to D may be determined
to any degree of exactness, at pleasure. . . . The excess of the semidiameter of the
equator above the semiaxis is to the mean semidiameter nearly as 5V to 4D− 11V

7 .”
Now, (A-8) allows us to calculate the magnitude of gravitational acceleration at
the equator of a spheroid:

D=
3Gm
2a2

1

1
1− λ2

[
arccos λ
√

1− λ2
− λ

]
. (2-3)

And since the centrifugal acceleration at the equator of the spheroid is given by
V= aω2

0, a series expansion leads to

2ω2
0a3

3Gm
=

4
5 f

1+ 44
35 f

1
1− λ2

[
arccos λ
√

1− λ2
− λ

]
=

8
15 f − 184

525 f 2
+ O[ f ]3, (2-4)

if we accept the quoted result from MacLaurin’s book. In comparison with (2-2) we
conclude that the dominant (i.e., Newton’s) term comes out correctly; the higher-
order terms, however, do not. In fact, MacLaurin never claimed this to be the case,
and it is fair to say that a closed-form solution, such as (2-1), does not appear in
his treatise, as one could surmise from a remark on [Fitzpatrick 2016, p. 47].

The pressure distribution within the spheroid is given by (see Appendix A)

p(ξ 1)= p(0)(1− ξ 2
1), p(0)=

3ρ0Gm
2a

(
1−

λ
√

1− λ2
arccos λ

)
λ

1− λ2 , (2-5)

where a comoving, so-called spherical radial coordinate [Sokolov 1992] has been
used (see (A-16) for details). Note that for vanishing flattening, i.e., λ= 1,

p(ξ 1)=
ρ0Gm

2R
(1− ξ 2

1). (2-6)

In fact, the form of this equation corresponds to the result for the pressure distri-
bution in a self-gravitating, nonrotating, homogeneous sphere of radius a = c ≡ R:
recall that the gravitational acceleration at a radial position r within such a sphere
is given by f =−Gm(r)/r2er where m(r)= 4

3πρ0r3 is the total mass “beneath”
that position [Müller 2014, p. 269]. Thus, from the analogue to (A-2) in an inertial
frame we conclude that

∇ · σ =−ρ f =⇒ p(r)=− 1
2

4
3πGρ2

0r2
+C. (2-7)
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The constant of integration is determined by the requirement of vanishing pressure
at the outer surface of the sphere at the outermost radial position, R. Hence,

p(r)=
ρ0Gm

2R

(
1−

r2

R2

)
, m = 4

3πρ0 R3. (2-8)

In comparison with (2-6) we may interpret the generalized spherical coordinate
as a normalized measure of the radial distance from the center of the ellipsoid to
an arbitrary point within. We may also be tempted to conclude that because (2-6)
and (2-8) refer to pressure induced exclusively by gravitation, (2-5) includes only
gravitational but no centrifugal effects. This seems even more plausible, because
the angular velocity ω0 does not occur in this expression at all. This conclusion,
however, is erroneous: alternatively, (A-12) allows us by using (A-15)2 to write
for p(0) in (A-17)

p(0)=
3ρ0Gm

4a

(
1

λ
√

1− λ2
arccos λ− 1

)
λ

1− λ2 −
1
2ρ0ω

2
0a2. (2-9)

The first term is always positive and accounts for gravitational effects only. The
second one is clearly negative and shows that the centrifugal acceleration leads
to a pressure decrease. Moreover, if we insert (2-1) into (2-9), we reobtain (2-5).
This proves that p(0) of (2-5) is truly the net pressure including gravitational and
centrifugal acceleration. Moreover, note that the pressure vanishes everywhere,
provided λ = 0, i.e., in the case of total flattening, f = 1. Then according to
(A-14) the corresponding, critical angular velocity is given by ωc

0 = π
√

Gρ0. For
a liquid Earth this would result in a revolution time of circa 3300 seconds. This is,
of course, just a curious, totally unrealistic result.

Evaluation of the flattening formulae for the fluid model. The predictions for
the flattening of various celestial bodies shown in Table 1 are based on experimen-
tal data presented in [Williams 2017; Rozelot and Neiner 2011, p. 179]. More
specifically, the values shown in the column f (Newton) were obtained by using
Newton’s result shown in (1-2). The numbers in the column f (exact) are based
on a numerical evaluation of (A-14).

Figures 4 and 5 allow us to compare the observed and the predicted values for the
flattening of various planets and for some stars, respectively. The following can be
said: intuitively we expect gas-like bodies, such as gas giants or “stars”, to follow
the fluid model quite closely. However, gaseous object or not, the fluid model
tends to overestimate the flattening. In fact, Newton’s formula leads to the highest
overestimates. The numerical solution of (A-14) predicts amounts of flattening
somewhat closer but (in general) still larger than the observed values. Note that in
the case of Mars the predictions match reality surprisingly well. This is also true
for Mercury and Venus. Indeed, no flattening has been observed for them.
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Planets ω0 [1/s] a1 [m] m [kg] f (Newton) f (exact) f

Mercury 1.23993 · 10−6 2.4395 · 106 3.300 · 1023 1.26683 · 10−6 0.0 0.000
Venus −2.99242 · 10−7 6.0520 · 106 4.870 · 1024 7.63391 · 10−8 0.0 0.000
Earth 7.30263 · 10−5 6.3780 · 106 5.970 · 1024 4.34083 · 10−3 4.32631 · 10−3 3.350 · 10−3

Mars 7.09483 · 10−5 3.3960 · 106 6.420 · 1023 5.75157 · 10−3 5.72576 · 10−3 5.890 · 10−3

Jupiter 1.76296 · 10−4 7.1492 · 107 1.898 · 1027 1.12071 · 10−1 1.03131 · 10−1 6.487 · 10−2

Saturn 1.63115 · 10−4 6.0268 · 107 5.680 · 1026 1.92058 · 10−1 1.67431 · 10−1 9.796 · 10−2

Uranus −1.01473 · 10−4 2.5559 · 107 8.680 · 1025 3.70974 · 10−2 3.60525 · 10−2 2.293 · 10−2

Neptune 1.08406 · 10−4 2.4764 · 107 1.020 · 1026 3.27717 · 10−2 3.19531 · 10−2 1.708 · 10−2

Pluto −1.13851 · 10−5 1.1950 · 106 1.310 · 1022 3.16255 · 10−4 3.16178 · 10−4 0.000

Stars

Sun 2.86533 · 10−6 6.96342 · 108 1.9886 · 1030 2.61105 · 10−5 2.61139 · 10−5 5.000 · 10−5

Achernar 3.49445 · 10−5 8.35610 · 109 1.3323 · 1031 1.00160 5.83710 · 10−1 3.103 · 10−1

Regulus 1.09432 · 10−4 2.89678 · 109 7.5565 · 1030 7.21520 · 10−1 4.72896 · 10−1 2.453 · 10−1

Vega 1.39475 · 10−4 1.93583 · 109 4.2456 · 1030 6.22579 · 10−1 4.27247 · 10−1 1.870 · 10−1

Alderamin 1.44117 · 10−4 1.96368 · 109 3.7782 · 1030 7.79630 · 10−1 4.97959 · 10−1 2.296 · 10−1

Altair 1.87638 · 10−4 1.47625 · 109 3.5595 · 1030 5.96023 · 10−1 4.14304 · 10−1 1.916 · 10−1

Table 1. Experimentally observed and predicted flattening values.
Data from last column from [Williams 2017; Rozelot and Neiner
2011].

Figure 4. Comparison of observed and predicted flattening values
for the planets.

One reason for the observed discrepancy is the assumption of incompressibility,
i.e., a constant mass density ρ0 throughout the body. This is not a very realistic
assumption, since the mass density increases, if we approach the center of the
celestial body, where the heavy elements gather. They “sink” to the bottom, so to
speak. The amount of densification has been quantified for the Earth in the PREM
model [Dziewonski and Anderson 1981, p. 312], for gas giants such as Jupiter or
Saturn in [Miles and Ramsey 1952], or for the Sun in [Blanch et al. 94, p. 43].
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Figure 5. Comparison of observed and predicted flattening values
for some stars.

Our simple fluid model does not allow for a radially varying density. However, the
following simple argument shows in which direction the flattening will change if
mass is accumulated closer to the center of an ellipsoidal fluid body rotating at a
fixed angular speed. Suppose we compress the matter of an ellipsoid such that it
occupies only half of the original equatorial radius. This will require its constant
mass density to increase roughly by a factor of eight. According to (1-2) this
would lead to a decrease of the flattening by one eighth. We may thus suspect that
rearranging matter of a fixed amount toward the center will have the same effect.

The flattening of our Moon deserves a separate comment. The observed value of
0.0012 [Williams 2017] is small but distinct from zero. Of course we cannot simply
apply (1-2) or (2-1) since the Moon “is tidally coupled to the Earth so that the same
side of the Moon always faces the Earth, the rotation of the Moon is too small to
explain the observed value of J2 [the moment of inertia, C]. However, the present
flattening may be a relic of a time when the Moon was rotating more rapidly. At that
time the lunar lithosphere may have thickened enough so that the strength of the
elastic lithosphere was sufficient to preserve the rotational flattening” [Turcotte and
Schubert 2002, p. 377]. We may now use (2-1) and the data for mass and equatorial
radius presented in [Williams 2017] to predict that the former rotation rate of the
Moon was roughly 58 hours. Note that for the evaluation Figure 6 is very useful.

The other big moons of our solar system, like Io [Thomas et al. 1998], Europa
[Van Hoolst et al. 2008], Ganymede [Anderson et al. 2001a], and Callisto [Ander-
son et al. 2001b] of Jupiter, or Titan of Saturn [Zebker et al. 2009] also show tidal
coupling to their planet. According to the literature they seem to have no or almost
no flattening, or, like Io a strongly ellipsoidal shape, which cannot be explained by
our axisymmetric fluid model. The latter is also the case for large asteroids from
the asteroid belt between Mars and Jupiter, which is why they are not studied here
either.
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Figure 6. Graphic representation of (2-4) used for correlation of
angular velocity and predicted flattening.

Figure 7. Modeling the pressure distribution within the Earth as
a function of dimensionless radius, ξ1, using an incompressible
fluid model (black) and the PREM model (red).

Figure 8. Mass density distribution within the Earth as a function
of dimensionless radius, r/R, according to the PREM model (red)
in comparison with the average mass density, ρ0 = ρ(r = 0).

We now discuss the evolution of the pressure as a function of quasiradial dis-
tance, ξ 1, according to the incompressible fluid model. To this end we may start
directly from (2-5), which is plotted in Figure 7 (black lines). The red lines stem
from the so-called PREM model [Dziewonski and Anderson 1981], which is based
on experimental evidence (elastic wave scattering) and allows for compressibility.

Obviously there is a distinct transition point (the end of the outer core), where
the pressure shows a kink when plotted over the dimensionless radius, r/R. In this
context, it is fair to point out that the PREM model considers the Earth as spherical.
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The reason for the transition is the huge jump in mass density when entering the
outer core, i.e., essentially changing from the density of silicon dioxide to iron.
The corresponding density plots are shown in Figure 8.

In Table I of the PREM model [Dziewonski and Anderson 1981] the mass den-
sity was fitted piecewise by splines, which is in agreement with the numerical data
presented in the additional Table II. In the latter pressure data is also recorded.
However, the pressure can be calculated as follows, once the density function
ρ = ρ(r/R) is known. We start from Poisson’s equation for the gravitational
potential in the inertial frame, specialized to the case of purely radial dependence:

1U f
=4πρ(x) =⇒

1
r2

d
dr

(
r2 dU f

dr

)
=4πρ(r) =⇒

dU f

dr
=

m(r)
r2

with m(r)= 4π
∫ r ′=r

r ′=0
ρ(r ′)r ′2 dr ′. (2-10)

This corresponds to the well known fact that the gravitational attraction in a
sphere of purely radially dependent density is given by Newton’s law for point
masses as if the mass m(r) “beneath” the radial point of interest were concentrated
at r = 0. We now turn to the local balance of momentum specialized to the case
of a fluid at rest and to purely radial dependencies. Then this vector equation
degenerates to

ρ
dυ
dt
=∇ · σ + ρ f =⇒

dp
dr
=−ρ(r)

dU f

dr
. (2-11)

After combining and integrating we obtain

p(r)= p0−

∫ r ′=r

r ′=0

ρ(r ′)m(r ′)
r ′2

dr ′. (2-12)

In fact, it is this equation that is depicted in Figure 7, which, of course, agrees with
the pressure data presented in Table II of [Dziewonski and Anderson 1981]. Clearly,
a radially dependent mass density is difficult to incorporate in the fluid model for
the flattening presented above. However, in view of the extreme underestimate
of the center pressure in the simple fluid model as evident in Figure 7 (right),
it is absolutely essential to take it into account. In order to simulate the onion
layered structure of the Earth we will discuss at the end of the paper the potential
of combining the fluid and the solid model for predicting the flattening.

3. Hookean solid model

As in the case of the fluid model the following sections were repeated in part from
[Müller and Lofink 2014]. However, typographical errors were removed and the
way of presentation was changed for didactic reasons.
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Compilation of stresses and displacement formulae. It is shown in Appendix B
that the stresses in a self-gravitating Hookean sphere are given by

σrr =−
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(3-1)

Moreover, the displacements read

ur =−
ρ0ω

2
0 R2

E
(1+ ν)(1− 2ν)

1− ν

[
1

10

(
g
ac
−

2
3

)(
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+
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−
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ρ0ω
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3E
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dϑ

(
3+ 2ν
7+ 5ν

−
2+ ν
7+ 5ν

r2
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r,

uϕ = 0.

(3-2)

For further investigations it will be advantageous to use Young’s modulus, E , and
Poisson’s ratio, ν, instead of Lamé’s constants

λ=
ν

(1− 2ν)(1+ ν)
E, 2µ=

1
1+ ν

E . (3-3)

Moreover, we have defined the gravitational and centrifugal accelerations at the
outer (equatorial) surface r = R by

g =
Gm
R2 , ac = Rω2

0. (3-4)

It will be instructive to divide the stresses and displacements into purely gravita-
tional and centrifugal parts

σi j = σ
grav
i j + σ

c
i j , ui = ugrav

i + uc
i , i, j ∈ {r, ϑ, ϕ}, (3-5)
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where

σ grav
rr =−

3mg
10A
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(
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r2

R2

)
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σ
grav
ϑϑ ≡ σ

grav
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grav
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ugrav
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(3-6)

and

σ c
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(3-7)

A denotes the surface area of the (spherical) celestial body. It is useful to in-
troduce this quantity since the factor gm/A can now be interpreted as the total
“weight” of the celestial body distributed over its surface. This is nothing else but
a pressure, and it serves nicely as a very intuitive measure for normalizing the
gravitational stresses and displacement. However, of course, we may also write
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Figure 9. Behavior of the radial gravitational displacement com-
ponent (see text).

gm/A ≡ Gm2/(4πR4). As we shall see shortly this notation is more suitable if
we wish to discuss the range of validity of the linear-elastic solution. Moreover,
k = λ+ 2

3µ and 2µ= E/(1+ ν) denote the isotropic compressibility of a Hookean
solid and its shear modulus, respectively. Gravity will compress the celestial body
quite strongly and, therefore, it is most appropriate to use k in context with the
gravitational part of the solution.

Evaluation of the formulae for stresses and flattening. Figure 9 presents a study
of various aspects of the behavior of the gravitational part of the displacement.
In a sphere gravity leads to purely radial contraction, i.e., there is only a radial
displacement, ugrav

r . The first two pictures concentrate on the dimensionless form
given by (3-6)6. The situation is depicted for three different values of Poisson’s
ratio: ν = 0 (red), ν = 0.3 (green), and ν = 0.5 (blue). If we normalize by E
instead of k (second picture in Figure 9), we can see very clearly that the radial
contraction vanishes if ν = 0.5, i.e., if the body is incompressible, no matter how
strong the gravitational force may be. This is an artifact inherent to the concept of
incompressibility. It is interesting to note that, depending on Poisson’s ratio, the
extremum of ugrav

r is not necessarily located at the surface of the celestial body. In
fact, we find

r ext
=

√
1
3

3− ν
1+ ν

R. (3-8)



THE EFFECT OF ROTATION ON THE FLATTENING OF CELESTIAL BODIES 23

Moons a1 [m] m [kg]

Moon 1.738 · 106 7.34 · 1022

Io 1.82 · 106 8.932 · 1022

Europa 1.56 · 106 4.8 · 1022

Ganymede 2.63 · 106 1.482 · 1023

Callisto 2.41 · 106 1.08 · 1023

Titan 2.576 · 106 1.3452 · 1023

Table 2. Physical data for the Moon and some Jupiter and Saturn
moons [Williams 2017; Wikipedia 2015e; 2015d; 2015b; 2015c;
2015a; 2015f].

Note that at the surface of a celestial body we have

ugrav
r /R|r=R =−

Gm2

20πR4k
. (3-9)

The concept of linear elasticity is valid if the displacements, and in particular this
expression, remain small. This may not necessarily be so for all telluric celestial
bodies, which we would like to treat as solids, in particular by the model of a
Hookean solid. We proceed to investigate this issue in the next two plots.

Figure 93 is dedicated to the inner planets (Mercury in red, Venus in green, Earth
in blue, and the dashed line for Mars). For the numerical evaluation we have used
the mass data shown in Table 1. For the radius we use the values for R ≡ a1. The
latter choice is somewhat problematic: in order to meet the requirements of the
linear theory of elasticity, we need to know the radius of the reference state, i.e.,
the outer radius before loads have been applied, and not a radius that includes the
effects of gravity and centrifugal acceleration. Thus, our choice for R represents
essentially the current radial situation. However, within the framework of linear
elasticity the difference between the current and the reference radius should differ
by a few percent, at most. Moreover, the proper choice of k is by no means ob-
vious. Basically, k is an average compressibility of the respective body. For that
reason we have decided to depict (3-9) for a physically reasonable range of k values.
Clearly, the linear theory of elasticity seems to be applicable only to Mercury and
Mars (for which the values nearly coincide). Venus and Earth show normalized
displacements of 5% and more, which are not acceptable. A nonlinear approach is
necessary to calculate the gravitational stresses and displacements in this case.

Figure 94 focuses on various moons (Earth’s Moon in red, Io in green, Europa in
blue, Ganymede in black, Callisto in magenta, and Titan in cyan). The necessary
data is compiled in Table 2. We conclude that the linear-elastic solution applies.

The first two pictures in Figure 10 show the nonvanishing dimensionless com-
ponents of the centrifugal part of the displacement according to (3-7)7,8 for three
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Figure 10. Behavior of the centrifugal displacement components
(see text).

different values of Poisson’s ratio, namely ν = 0 (red), ν = 0.3 (green), and ν = 0.5
(blue). Here uc

r was evaluated at the equator, i.e., ϑ = π/2, and for the pole, i.e.,
ϑ = 0. This leads to positive and to negative values, respectively, which makes
sense in view of the effect of the centrifugal acceleration on a deformable body
(extension perpendicular to the axis of rotation accompanied by lateral contrac-
tion). Further, uc

ϑ was evaluated at the equator, i.e., ϑ = π/4, where it assumes
its extremum. It is interesting to note that the extreme values are not necessarily
located at the surface of the body and that the location depends on Poisson’s ratio:

for uc
r → r ext

=

√
1
3
(1−2ν)(3−ν)/(1+ν)−10((1−ν)(3+2ν)/(7+5ν))P2

1−2ν−10((1−ν)(1+ν)/(7+5ν))P2
R,

for uc
ϑ → r ext

=

√
1
3

3+ 2ν
2+ ν

R (independently of ϑ).

We now concentrate specifically on the Earth and find for the centrifugal dis-
placement components on its surface:

uc
r/R|r=R =

ω2
0,E m E

2πE

[
1
5(1− 2ν)−

(1+ ν)(2+ ν)
7+ 5ν

P2

]
, (3-10)

uc
r/R|r=R =

ω2
0,E m E

4πE

[
1
5(1− 2ν)−

(1+ ν)(2+ ν)
7+ 5ν

P2

]
. (3-11)
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The third and fourth pictures in Figure 10 illustrate these relationships when
evaluated in the equatorial plane, uc

r/R|ϑ=π/2 (positive values due to centrifugal
acceleration), in the polar direction, uc

r/R|ϑ=0 (negative values due to lateral con-
traction, i.e., the Poisson effect), and at 45◦, uc

ϑ/R|ϑ=π/4, using Earth data from
Table 1 (with R = a1) for physically reasonable ranges of Young’s moduli and
Poisson’s ratios. Obviously, all values stay below the 1% threshold and, hence, the
message is that linear elasticity may be used to describe the centrifugal displace-
ments and stresses even in the case of the Earth. We now compute the flattening
in general as

a = R+ ur (r = R, ϑ = π/2), c = R+ ur (r = R, ϑ = 0)

=⇒ f ≡
a− c

a
≈
ρ0 R2ω2

0

E
(1+ ν)(2+ ν)

7+ 5ν
≡
ρ0 R2ω2

0

µ

1+ ν/2
7+ 5ν

, (3-12)

if we neglect higher-order terms in ur as we should within the framework of a
linear theory.

This, indeed, is the result originally presented by Thomson and Tait [1912,
p. 432]. However, in comparison with (A-14) from the fluid model this relation has
a serious drawback: for a given telluric body it is not evident which effective elastic
constants, i.e., Young’s modulus and Poisson’s ratio, to use. However, if we believe
that this simple Hookean model applies to telluric planets, we may use this result
to determine an effective shear modulus or modulus of rigidity, µ≡ G, if we use
the experimentally observed data for the flattening. The factor (1+ ν/2)/(7+ 5ν)
is nearly constant for all possible values of ν, i.e., circa 1

7 :

µ=
3mω2

0

28πR f
. (3-13)

If we evaluate this relation using Earth’s data, we obtain a value of 50 GPa,
which is smaller than the value for iron or steel (roughly 70 GPa), which is often
quoted in context with planet Earth.

We now turn to the stresses and begin by examining the purely gravitational part
shown in (3-6). As it should, these relations are of a purely radial nature: there
are no shear stresses, all normal stresses depend only on the radius r , and the two
angular stresses are equal. Figure 11 illustrates their dependence on r for three
different choices of Poisson’s ratio: ν = 0 (red), ν = 0.3 (green), and ν = 0.5
(blue). The maximum compression is at the body’s center. Interesting to note is
the cross-over point of the angular stresses. It is independent of Poisson’s ratio and
located at r/R =

√
1/2.

It should be pointed out that the linear-elastic solution for the gravitational
part is dominant in comparison with the stresses due to centrifugal accelerations.
Figure 12 illustrates the situation by showing the behavior of all combined stresses
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Figure 11. Behavior of the gravitational stress components (see text).

Figure 12. Behavior of the combined stress components (see text).

according to (3-1) as a function of radial position for various values of Poisson’s
ratio. In fact, the plots for the normal stresses were generated for the equatorial
plane, i.e., by choosing ϑ = π/2, and the one for the shear stress at ϑ = π/4 in
order to show the maximum values. For the numerical evaluation we have chosen
the observed mean radius of the Earth, i.e., RE = 6.371 ·106 m, ω0,E = 2π/86164 s,
and m E = 5.97 · 1024 kg [Wikipedia 2016a; 2016c]. Thus, we have g = 9.81 m

s2 ,
ac = 0.034 m

s2 , and g/ac = 298.7. These numbers already indicate the dominance
of gravitation. In fact, in the case of the normal stresses it turns out that the gravi-
tational parts in (3-1) are so strong that they conceal the dependence on the polar
angle almost completely. All normal stresses are highly compressive. Note the
striking similarity to the plots shown in Figure 11 and the very slight difference
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Figure 13. Behavior of the centrifugal stress components (see text).

between the two angular stresses. Both emphasize our point that gravitation is
dominant. Moreover, the shear stress is hardly dependent on Poisson’s ratio.

There is another caveat we have to keep in mind, specifically in context with
the Earth. During our discussion of the displacements due to gravitation we found
that the linear-elastic solution is not really valid for planet Earth: the predicted
displacements were simply too large (see Figure 93). To be specific, the radius we
chose for our numerical evaluation of the stresses in Figure 12 is the observed mean
radius, i.e., the radius after gravitation and centrifugal accelerations are “switched
on”. The symbol R in our linear-elastic calculations, however, is the radius of the
unloaded configuration. In other words, it is much larger than the chosen RE =

6.371 · 106 m. Thus, the predicted magnitude of the combined normal stresses
is doubtful, too: our numerical value underestimates distances in the reference
configuration and the ratio g/ac ≡ Gm E/(R3

Eω
2
0,E) will become smaller. Most

likely it will keep its dominance in the stress expressions, but the details are left to
a nonlinear analysis and future research.

There is no problem with a numerical evaluation of the shear stress, though,
since it is purely due to centrifugal acceleration. For conversion of the numbers
shown on all plots in Figure 12 into absolute stress values we may use ρ0,E R0

E ≈

119 GPa in the case of the Earth. Thus, the shear stresses within this simplistic
model are very small. For example, they amount to circa 0.1 MPa one kilometer
below the Earth’s surface. This is in favor of the low shear stress hypothesis as
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Figure 14. Mechanical pressure as a function of the dimension-
less radius, r/R (see text).

outlined, e.g., on [Lee et al. 2002, p. 543]. However, we have to keep in mind that
this is a very simplistic Earth model, although an exact and quantitative one.

Figure 13 illustrates the behavior of all stress components due to centrifugal ac-
celeration as given by (3-7)1–6. The radial as well as the shear stress show hardly
any dependence on Poisson’s ratio. Their behavior is depicted in Figure 131,4.
There σ c

rr was evaluated along the equator at ϑ = π/2 and along the radius leading
to the pole, i.e., ϑ = 0, giving positive and negative values, respectively, as intu-
itively expected. Further, σ c

rϑ was drawn for ϑ = π/4 at the location of maximum
values. The angular normal stresses show a distinct dependence on ν. They were
evaluated for three different choices of Poisson’s ratio: ν = 0 (red), ν = 0.3 (green),
and ν = 0.5 (blue) at ϑ = π/2 (solid lines) and ϑ = 0 (dashed lines).

We now turn to a study of the mechanical pressure. If we restrict ourselves to
gravitation we may write

pgrav
=−

1
3(σ

grav
rr + σ

grav
ϑϑ + σ

grav
ϕϕ )=

gm
10A

3− ν
1− ν

(
3−

5(1+ ν)
3− ν

r2

R2

)
. (3-14)

Note that because of 3gm/A≡ ρ0Gm/R this reduces to the pressure distribution
for the gravitationally stressed, incompressible liquid sphere shown in (2-8), if we
only use the incompressibility condition ν = 0.5 for a Hookean solid. We might
have suspected this, even if an incompressible Hookean solid should not be referred
to as an incompressible fluid.

Figure 14 depicts the total mechanical pressure, which was calculated from

p =− 1
3(σrr + σϑϑ + σϕϕ), (3-15)

i.e., the combined action of gravitation and centrifugal acceleration. The equation
was evaluated for ϑ = π/2 using (3-1) and Earth data. The same color code as
before applies. However, as expected from our previous discussion, gravitation
is dominant. In other words the plots look essentially the same for other values
of ϑ . Note the agreement with Figure 7 (right) for the case ν = 0.5. The curious
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cross-over point is visible again and the predicted pressure is well below the ones
predicted by the PREM model. Clearly the calculation of the pressure according to
(3-14) and (3-15) is formal and does not satisfy the boundary condition p(r/R)= 0
unless the incompressibility condition ν = 0.5 is satisfied.

4. Conclusions and outlook

In this paper we have provided a somewhat comprehensive analysis of the flattening
phenomenon. We started from its history, which is almost 400 years old. Then two
constitutive models were discussed extensively. In the first model, the spinning
celestial body was treated as an incompressible fluid and, in the second one, as a
linear-elastic Hookean material. The corresponding boundary value problems were
defined, and the local field equations were solved in closed form. Both models
were numerically evaluated for terrestrial planets, gas giants, moons, and asteroids,
as well as stars. The predictions for the corresponding flattening values were com-
pared to experimental observations. Reasons for discrepancies were discussed. It is
particularly noteworthy that the linear-elastic solution is not valid for larger telluric
planets including Earth. A nonlinear solution for large deformations needs to be
found in this case. This issue is extensively discussed in [Müller and Weiss 2016].

In most of our investigations a homogeneous mass density was a prerequisite.
So far, an onion-layered type of Earth model for the flattening has neither been
formulated nor analyzed. In principle the Hookean approach presented in Section 3
would allow one to study such a situation by adding certain transition conditions
between the layers. In fact, it would even be possible to combine the linear-elastic
and the fluid model by determining the coefficients of the Legendre series appro-
priately. However, such a solution would definitely involve a considerable amount
of additional algebra and, in the end, most likely lead to rather cumbersome ex-
pressions. Therefore, it seems justified to perform a fully numerical analysis from
the very beginning on, for example by discretizing the Earth using finite elements.
This way not only the effects of a heterogeneous mass density distribution could be
investigated, but also the impact of constitutive equations beyond linear elasticity.
All of this is left to future investigations.

Appendices

In the following sections we present the derivation of some important formulae
for the fluid as well as for the linear solid model. In fact, these results have been
presented before in [Müller and Lofink 2014] but for the convenience of the reader
they are compiled here once more.
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Figure 15. Notations used for Euclidean transformations.

Appendix A: Derivation of pressure and flattening formulae for a rotating,
self-gravitating body made of an incompressible fluid

The following text is adapted in part from [Müller and Lofink 2014], which con-
tained several typographical errors. The text arrangement was also revised for
didactic reasons.

Recall the Euclidian transformation x = Q · x+ b between an inertial system
and a noninertial frame (identifiable by the bar with the Cartesian unit base ei ;
see Figure 15), Q being the rotation tensor. The origins of the two systems are
separated by the vector b. We may write for the relations between the velocities
and the accelerations in both systems (see, e.g., [Müller 2014, p. 183])

x = Q · x+ b =⇒ υ = Q ·υ +Ω · (x− b)+ ˙b

=⇒ a = Q · a+ 2Ω · (υ − ˙b)+ (Ω̇ −Ω ·Ω) · (x− b)+ ¨b, (A-1)

Ω := Q̇ · Q> being the spin matrix. The angular velocity vector is given by
ω =− 1

2Ωi j ei × e j .
Thus, the balance of momentum for the noninertial system reads (see, e.g.,

[Müller 2014, p. 199])

ρ
dυ
dt
= ∇ · σ + ρ( f + i), (A-2)

where the inertial accelerations were collected in

i = 2Ω · (υ − ˙b)+ (Ω̇ −Ω ·Ω) · (x− b)+ ¨b. (A-3)

The Earth rotates at a constant angular speed, i.e., ω̇= 0, and we assume station-
ary conditions, i.e., υ = 0. Moreover, the origins of the two systems shall coincide,
i.e., b= 0. Then

∇ · σ + ρ( f −ω× (ω× x))= 0. (A-4)

For a fluid at rest (with respect to the noninertial frame) the stress tensor reduces to
an isotropic pressure, i.e., σ =−p I . Moreover, potentials can be used to obtain the
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gravitational as well as the centrifugal acceleration by differentiation with respect
to position, i.e., f = −∇U f and −ω × (ω × x) = −∇Uω. Finally we assume
incompressibility, i.e., ρ = ρ0 = const, and therefore,

∇[p+ ρ0(U f
+Uω)] = 0. (A-5)

We use Cartesian coordinates in the noninertial frame (i.e., comoving ones, which
explains the bar), such that ω, ω0 = const, and consequently

−∇Uω
=−ω×(ω×x)=ω2

0(x1e1+x2e2) =⇒ Uω
=−

1
2ω

2
0(x

2
1+x2

2). (A-6)

In general, we may write for the gravitational potential at a point x within an
inhomogeneous material region V ′ [Fitzpatrick 2011, p. 170]

U f (x)=−G
∫

V ′

ρ(x′) dV ′

|x− x′|
. (A-7)

In order to solve the integral we have to specify the mass density within the body
as well as its shape. For the case of a homogeneous ellipsoid with three differ-
ent principal axes, ai , (also known as MacLaurin ellipsoid in geodesy) the three-
dimensional integration can be reduced to one-dimensional integrals [Fitzpatrick
2016, p. 45] (Einstein’s summation rule applies; m denotes the total mass of the
ellipsoid):

U f (x)=−3
4 Gm(α0−αi x2

i )≡−πGρ0a1a2a3(α0−αi x2
i ), α0=

∫
∞

0

du
1
,

αi =

∫
∞

0

du
(a2

i + u)1
, 1= (a2

1 + u)1/2(a2
2 + u)1/2(a2

3 + u)1/2. (A-8)

Note that in this equation we anticipate the equilibrium shape of the spinning Earth:
it is assumed to be a spheroid, i.e., an ellipsoid with two principal axes of equal
length. With this in mind (A-5) can now be integrated, and the result is

p(x)= p(0)− 1
2ρ0[(

3
2 Gmα1−ω

2
0)x

2
1+ (

3
2 Gmα2−ω

2
0)x

2
2+

3
2 Gmα3x2

3]. (A-9)

This equation contains several unknowns, namely the central pressure p(0) and the
lengths of the principal axes, ai . In fact, we must write them as functions of the
mass of the spheroid, its angular speed, etc. In order to find out how, we concentrate
on the outer periphery of the ellipsoid, which is described by the equation

X
2
1

a2
1
+

X
2
2

a2
2
+

X
2
3

a2
3
= 1. (A-10)

Note that we identify locations on the periphery by the vector X . Moreover, we
assume that the atmospheric pressure acting on the Earth’s surface can be neglected
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and is set equal to zero. Therefore, (A-9) leads to

X
2
1(

α1−
ω2

0
3
2 Gm

)−1 4p(0)
3ρ0Gm

+
X

2
2(

α2−
ω2

0
3
2 Gm

)−1 4p(0)
3ρ0Gm

+
X

2
3

α−1
3

4p(0)
3ρ0Gm

=1, (A-11)

due to the requirement of continuity of the tractions of a surface at rest (with re-
spect to the noninertial frame). Equations (A-10) and (A-11) must be satisfied
simultaneously; hence,

4p(0)
3ρ0Gm

=

(
α1−

ω2
0

3
2 Gm

)
a2

1 =

(
α2−

ω2
0

3
2 Gm

)
a2

2 = α3a2
3 . (A-12)

This leads after some algebraic manipulations to

(a2
2 − a2

1)

∫
∞

0

[
a2

1a2
2

(a2
1 + u)(a2

2 + u)
−

a2
3

(a2
3 + u)

]
du
1
= 0. (A-13)

Therefore, the ellipsoid must be a spheroid, i.e., a1 = a2 ≡ a, as might be ex-
pected due to the rotation about a fixed axis and isotropy of space. It is interesting to
note that there is experimental evidence which shows that this is only approximately
true. Bretagnon et al. [1997] or Burša [1992] report that three principal moments
of inertia are required to describe the observed precession rate of the Earth more
accurately, I11 ≡ A = 0.329611083 ·m E a2

E , I22 ≡ B = 0.329618344 ·m E a2
E , and

I33 ≡ C = 0.330697340 · m E a2
E , two of which are very similar. We conclude

that the resistance to rotation about the polar axis is greatest, whereas resistance
to rotation about the two equatorial principal axes is smaller and almost equal.
Almost! B is slightly larger than A. If we assume a homogeneous ellipsoid, such
that A = 1

5 m E(b2
E + c2

E) and B = 1
5 m E(a2

E + c2
E), we conclude that aE should be

slightly larger than bE . However, for a homogeneous Earth ellipsoid we should
also have aE =

√
(5/(2m E))(B+C − A), a relation which is not guaranteed by

the numbers shown above. The reason is very simple: the mass distribution of the
Earth is not homogeneous. Its core is much denser than its outside regions. This has
an influence on its precession rate, a figure that was used to compute the numerical
values for the principal moments of inertia. Thus, as common with all models, our
simple assumption of a fluid, spheroidal Earth has its limits. It is worth pointing out
that the earlier literature ignored differences between A and B due to insufficient
accuracy of measurements at that time; see, e.g., [Munk and MacDonald 1960,
Chapters 6 and 10]. It is also worth commenting that our implicit assumption
according to which the principal axes of the real Earth point in the direction of the
Earth’s geographical pole and its equatorial regions is an approximation. More-
over, the polar or rather the third principal axis of the real Earth does not perfectly
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coincide with the direction of the angular velocity vector, a phenomenon which is
known as the Earth’s wobble. All of this underlines the limits of the assumption
of a perfectly symmetric spheroid rotating about its polar axis.

On the other hand we obtain from (A-12)

2ω2
0a3

3Gm
=
(1+ 2λ2) arccos λ− 3λ

√
1− λ2

(1− λ2)3/2
, λ=

a3

a1
≡

c
a
, (A-14)

because the following integrals can now be solved in closed form:

α0 =
1
a

∫
∞

0

dυ
(1+ υ)(λ2+ υ)1/2

=
2
a

arccos λ
√

1− λ2
, υ =

u
a2 ,

α1 ≡ α2 =
1
a3

∫
∞

0

dυ
(1+ υ)2(λ2+ υ)1/2

=
1
a3

λ

1− λ2

[
arccos λ

λ
√

1− λ2
− 1

]
,

α3 =
1
a3

∫
∞

0

dυ
(1+ υ)(λ2+ υ)3/2

=
1
a3

2(
√

1− λ2− λ arccos λ)
λ(1− λ2)3/2

.

(A-15)

We will now turn to (A-9) and compute the pressure function p(x). This will
later put us in a position to compare the result to expressions for the Hookean
stresses. It is advisable to use generalized, comoving, spherical coordinates [Sokolov
1992] as follows:

x1 = aξ 1 cos ξ 2 sin ξ 3, x2 = aξ 1 sin ξ 2 sin ξ 3, x3 = cξ 1 cos ξ 3,

ξ 1 ∈ [0, 1], ξ 2 ∈ [0, 2π ], ξ 3 ∈ [0, π]. (A-16)

By combining (A-9), (A-12), and (A-15) we arrive at

p(ξ 1)= p(0)(1−ξ 2
1), p(0)=

3ρ0Gm
2a

(
1−

λ
√

1− λ2
arccos λ

)
λ

1− λ2 . (A-17)

Appendix B: Derivation of the stress and displacement formulae for a
linear-elastic solid model

The presented solution follows a procedure outlined in the paper by Hiramatsu
and Oka [1966]. It can also found in great detail in [Müller 2014, §9.6]. We start
from the stationary local balance of momentum in a centrally comoving noninertial
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frame in spherical coordinates ignoring all explicit azimuthal dependences on ϕ:

∂σrr

∂r
+

1
r
∂σrϑ

∂ϑ
+

1
r
(2σrr − σϑϑ − σϕϕ + σrϑ cotϑ)

= ρ0

(
Gm0

R3 −ω
2
0

)
r + ρ0ω

2
0r cos2 ϑ,

∂σrϑ

∂r
+

1
r
∂σϑϑ

∂ϑ
+

1
r
[3σrϑ + (σϑϑ − σϕϕ) cotϑ] = −ρ0ω

2
0r sinϑ cosϑ,

∂σrϕ

∂r
+

1
r
∂σϑϕ

∂ϑ
+

1
r
(3σrϕ + 2σϑϕ cotϑ)= 0.

(B-1)

For convenience we omit the bars introduced in the main text when denoting quan-
tities of the noninertial frame, i.e., we do not write σ i j or ui , for example, but σi j

and ui instead. The expressions on the right-hand side follow from the gravita-
tional and centrifugal potentials shown in (A-6) and (A-8). A homogeneous mass
density, ρ0, was assumed throughout. This is in agreement with the conventions
of linear elasticity where the forces are applied to the undeformed system, which
in the present case is a sphere of radius R and total mass m0 =

4
3πρ0 R3. We now

complement these equations by Hooke’s law into which linear kinematic conditions
for the displacements u are inserted:

σrr = λ∆+ 2µ
∂ur

∂r
, σϑϑ = λ∆+

2µ
r

(
∂uϑ
∂ϑ
+ ur

)
,

σϕϕ = λ∆+
2µ
r
(ur + uϑ cotϑ), σrϑ = µ

[
∂uϑ
∂r
−

1
r

(
uϑ −

∂ur

∂ϑ

)]
,

σϑϕ =
µ

r

(
∂uϕ
∂ϑ
− uϕ cotϑ

)
, σrϕ = µ

(
∂uϕ
∂r
−

1
r

uϕ

) (B-2)

with the abbreviation

∆=
1

r2 sinϑ

[
∂

∂r
(r2ur sinϑ)+

∂

∂ϑ
(ruϑ sinϑ)

]
. (B-3)

Here λ and µ denote Lamé’s constants. It is now a matter of differentiation and
algebra to show that (B-1)1,2 can be rewritten as

(λ+ 2µ)
∂∆

∂r
−

2µ
r
∂Ω

∂ϑ
−

2µ
r
Ω cotϑ = ρ0

(
Gm0

R3 −ω
2
0

)
r + ρ0ω

2
0r cos2 ϑ,

(λ+ 2µ)
1
r
∂∆

∂ϑ
+ 2µ

∂Ω

∂r
+ 2µ

Ω

r
=−ρ0ω

2
0r sinϑ cosϑ

(B-4)

with an additional abbreviation

2Ω =
∂uϑ
∂r
+

uϑ
∂r
−

1
r
∂ur

∂ϑ
. (B-5)



THE EFFECT OF ROTATION ON THE FLATTENING OF CELESTIAL BODIES 35

We will return to (B-1)3 later. It will serve to determine uϕ and is ignored for
the time being. Cross-differentiation of (B-4) and mutual insertion leads to the
decoupling of 1 and �:

∂2∆

∂r2 +
2
r
∂∆

∂r
+

1
r2

∂2∆

∂ϑ2 +
cotϑ

r2

∂∆

∂ϑ
=
ρ0(3Gm0/R3

− 2ω2
0)

λ+ 2µ
,

∂2Ω

∂r2 +
2
r
∂Ω

∂r
+

1
r2

∂2Ω

∂ϑ2 +
cotϑ

r2

∂Ω

∂ϑ
−

Ω

(r sinϑ)2
= 0.

(B-6)

These are equations of the Legendre type, and we may write their general solution
in terms of Legendre series:

∆=
ρ0(3Gm0/R3

− 2ω2
0)

6(λ+ 2µ)
+

∞∑
n=0

(
Anrn
−

Bn

rn+1

)
Pn,

Ω =

∞∑
n=0

(
anrn
−

bn

rn+1

)
dPn

dϑ
.

(B-7)

Pn = Pn(cosϑ) denotes the Legendre polynomial of the n-th degree. Note that in
the formula for ∆ the particular solution has been taken into account so that the
inhomogeneity of the corresponding differential equation is covered. Moreover,
the coefficients used to express Ω are related to those of ∆ since (B-4) have to be
observed. This leads to

2Ω =−
λ+ 2µ
µ

∞∑
n=0

(
An

n+ 1
rn
+

Bn

n
1

rn+1

)
dPn

dϑ
+
ρ0ω

2
0

9µ
r2 dP2

dϑ
. (B-8)

These solutions help to find expressions for the two unknown displacements ur

and uϑ . To this end we use the definitions shown in (B-3) and (B-5) to obtain

∂2uϑ
∂r2 +

1
r2

∂2uϑ
∂ϑ2 +

4
r
∂uϑ
∂r
+

cotϑ
r2

∂uϑ
∂ϑ
+

1
r2

(
2−

1

sin2 ϑ

)
uϑ

=
∂(2Ω)
∂r
+

1
r
∂∆

∂ϑ
+

3
r
(2Ω). (B-9)

By observing (B-7) and (B-8) we see that the solution to this differential equation
is again of the Legendre type:

uϑ =
∞∑

n=0

[
−
(n+ 3)λ+ (n+ 5)µ
(n+ 1)(2n+ 3)2µ

Anrn+1
−
(n− 2)λ+ (n− 4)µ

n(2n− 1)2µ
Bn

rn

+Cnrn−1
−

Dn

rn+2

]
dPn

dϑ
+

5ρ0ω
2
0

126µ
r3 dP2

dϑ
. (B-10)



36 WOLFGANG H. MÜLLER

Now that we have found uϑ we can obtain the radial displacement by integration
from (B-3) and (B-5). If we suppress rigid body translation the final result reads

ur =

∞∑
n=0

[
−

nλ+ (n− 2)µ
(2n+ 3)2µ

Anrn+1
+
(n+ 1)λ+ (n+ 3)µ

(2n− 1)2µ
Bn

rn +nCnrn−1

+ (n+ 1)
Dn

rn+2

]
Pn +

ρ0(3Gm0/R3
− 2ω2

0)

30(λ+ 2µ)
r3
+
ρ0ω

2
0

21µ
r3 P2. (B-11)

Finally we obtain uϕ by combining (B-1)3 and (B-2)5,6:

uϕ =
∞∑

n=1

(
Enrn
+

Fn

rn+1

)
dPn

dϑ
. (B-12)

Before we turn to expressions for the stresses we try to simplify the series as
much as possible by evaluating the boundary conditions

ur and ϑ |r=0 <∞ =⇒ Bn = 0, n = 1, 2, . . . , Dn = 0, n = 0, 1, . . . ,

ur |r=0 = 0 =⇒ B0 = 0, C1 = 0,

uϕ|r=0 <∞ =⇒ Fn = 0, n = 1, 2, . . . .
(B-13)

Note that C0 and F0 are irrelevant because of the prefactor n and dP0
dϑ = 0, re-

spectively. Thus, according to (B-2) the stresses relevant for traction boundary
conditions at the outer surface read

σrr =

∞∑
n=0

[
−
(n2
− n− 3)λ+ (n+ 1)(n− 2)µ

2n+ 3
Anrn
+ n(n− 1)2µCnrn−2

]
Pn

+
5λ+ 6µ

10
ρ0(Gm0/R3)

λ+ 2µ
r2
−

5λ+ 6µ
15

+
ρ0ω

2
0

λ+ 2µ
r2
+

2
7ρ0ω

2
0r2 P2,

σrϑ =

∞∑
n=1

[
−

n(n+ 2)λ+ (n2
+ 2n− 1)µ

(n+ 1)(2n+ 3)
Anrn
+ 2µ(n− 1)Cnrn−2

]
dPn

dϑ

+
8
63ρ0ω

2
0r2 dP2

dϑ
,

σrϕ = µ

∞∑
n=1

(n− 1)Enrn−1 dPn

dϑ
.

The traction vector at the outer surface r = R vanishes and

σrϕ|r=R = 0 =⇒ En = 0, n = 2, 3, . . . , (B-14)

because of the linear independence of the polynomial expressions dPn
dϑ . We con-

clude that
σrϕ ≡ 0, uϕ ≡ 0. (B-15)
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Moreover,

σrϑ |r=R = 0 =⇒
−

n(n+ 2)λ+ (n2
+ 2n− 1)µ

(n+ 1)(2n+ 3)
Rn An + 2µ(n− 1)Rn−2Cn = 0, n 6= 2,

−
8λ+ 7µ

21
R2 A2+ 2µC2+

8
63ρ0ω

2
0 R2
= 0, n = 2.

(B-16)

And finally

σrr |r=R = 0 =⇒

5λ+ 6µ
10

ρ0(Gm0/R3)

λ+ 2µ
R2
−

5λ+ 6µ
15

ρ0ω
2
0

λ+ 2µ
R2
+

3λ+ 2µ
3

A0 = 0,

n = 0,
3λ+ 2µ

7
R A1 = 0 =⇒ A1 = 0, n = 1,

2
7ρ0ω

2
0 R2
+
λ

7
A2 R2

+ 4µC2 = 0, n = 2,

−
(n2
− n− 3)λ+ (n+ 1)(n− 2)µ

(2n+ 3)
Rn An + 2µn(n− 1)Rn−2Cn = 0,

n > 2.

(B-17)

We are now in a position to determine all remaining coefficients:

A0 =−
3

10
5λ+ 6µ
3λ+ 2µ

ρ0(Gm0/R3)

λ+ 2µ
R2
+

1
5

5λ+ 6µ
3λ+ 2µ

ρ0ω
2
0

λ+ 2µ
R2,

A1 = 0, A2 =−
2
3

ρ0ω
2
0

19λ+ 14µ
, An = 0, n = 3, 4, . . . ,

C2 =−
4λ+ 3µ

19λ+ 14µ
ρ0ω

2
0

3µ
R2, Cn = 0, n = 3, 4, . . . .

(B-18)

This result leads directly to the expressions for the stresses and displacements
presented in (3-1) and (3-2).
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ERROR ESTIMATE FOR A HOMOGENIZATION PROBLEM
INVOLVING THE LAPLACE–BELTRAMI OPERATOR

MICOL AMAR AND ROBERTO GIANNI

In this paper we prove an error estimate for a model of heat conduction in com-
posite materials having a microscopic structure arranged in a periodic array and
thermally active membranes separating the heat-conductive phases.

1. Introduction

Heat and electrical conduction in composite materials has been widely investigated
in recent years in the context of homogenization theory (see among others, e.g.,
[Amar et al. 2017a; 2017b; 2003; 2004; 2006; 2010; Auriault and Ene 1994;
Bunoiu and Timofte 2016; Donato and Monsurrò 2001; Hummel 2000; Jose 2009;
Timofte 2013]). In this paper we will focus on the study of models of heat conduc-
tion in composite materials used for encapsulation of electronic devices. This topic
is attracting increasing interest among researchers, both from the point of view of
applications and also in a more mathematical setting. In our previous paper [Amar
and Gianni 2018b] (to which we refer for a more detailed physical description of
the problem) a composite medium was taken into account, which was made of a
hosting material with inclusions separated from their surroundings by a thermally
active membrane.

Such a situation is consistent with many physical applications in which a ma-
terial must be modified in a way such that its thermal conductivity is enhanced
while preserving other material properties, e.g., ductility. This is, as stated above,
the case of polymer encapsulation of electronic devices as well as, just to give an
example, engine coolants. Specifically, in the first case, ductility of the material
is required to fill the voids and the interstices among the electrical components by
applying a moderate pressure. Polymers and rubbers have this property, but they do
not display a satisfactory heat dissipation which, on the other hand, can be attained
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by adding highly conductive nanoparticles. In some situations, these nanoparticles
are enclosed in a membrane separating them from the surrounding medium. It is
therefore only natural to investigate the influence of these membranes on the overall
conductivity of the composite medium under different assumptions on the thermal
behavior of these interfaces. The case of perfect or imperfect thermal contact,
though interesting from the point of view of applications, is mathematically well
known; for this reason we focused on the case in which the membrane is thermally
active, e.g., a tangential heat diffusion takes place. In [Amar and Gianni 2018b]
a macroscopic model was deduced, via the unfolding homogenization technique,
assuming the periodicity of the microscopic structure, whose characteristic length
is described by a small parameter ε. We make use of a sensible mathematical
description of the behavior of the interfaces which are modeled by means of the
Laplace–Beltrami operator (see, e.g., [Allaire et al. 1996; Andreucci et al. 2003]).

In this paper we complete the research started in [Amar and Gianni 2018b]
providing an “error estimate” which enables us to evaluate the rate of convergence,
with respect to ε→ 0, of the solution uε of the microscopic (physical) problem to
the solution u0 of the macroscopic one. More precisely, we prove

‖uε − (u0+ εu1)‖L2(0,T ;H1(Ω)) ≤ γ
√
ε,

‖uε − u0‖L2(ΩT ) ≤ γ
√
ε,

for a proper constant γ > 0 independent of ε, where u1 is the so-called first corrector
and is defined in (3-13).

To obtain this estimate we follow the classical approach given by the asymptotic
expansions due to Bensoussan, Lions, and Papanicolaou [Bensoussan et al. 1978]
which, under extra-regularity assumptions, gives an H 1-estimate for this error. The
knowledge of the rate of convergence is a crucial tool for numerical applications.
Moreover, we prove the symmetry and the strict positivity of the matrix describ-
ing the diffusivity of the macroscopic (homogenized) material. This last result is
crucial to guarantee the well-posedness of the parabolic limit equation.

Though the results proved in this paper are along the same lines as other ones
obtained in the framework of the homogenization theory, they are nevertheless of
some mathematical interest due to the presence of the Laplace–Beltrami operator,
which makes the computations a bit tricky.

The paper is organized as follows. In Section 2 we recall the definitions and
some properties of the tangential operators (gradient, divergence, and Laplace–
Beltrami operator), state our geometrical setting, and present our model. In Section 3,
after having proved some energy inequalities, we follow the formal approach by
Bensoussan, Lions, and Papanicolaou in order to introduce the cell functions and to
guess the limit equation, proving the ellipticity of its principal part (see Theorem 3.1).



ERROR ESTIMATE FOR A HOMOGENIZATION PROBLEM 43

Finally, in Section 4 taking advantage of the asymptotic expansions obtained in
Section 3, we provide the error estimate (see Theorem 4.1).

2. Preliminaries

2.1. Tangential derivatives. Let φ be a C2-function, 8 a C2-vector function, and S
a smooth surface with normal unit vector n. We recall that the tangential gradient
of φ is given by

∇
Bφ =∇φ− (n · ∇φ)n (2-1)

and the tangential divergence of 8 is given by

divB 8= div 8− (n · ∇8i )ni − (div n)(n ·8)

= divB(8− (n ·8)n)= div(8− (n ·8)n), (2-2)

where, taking into account the smoothness of S, the normal vector n can be nat-
urally defined in a small neighborhood of S as ∇d/|∇d|, where d is the signed
distance from S. Moreover, we define the Laplace–Beltrami operator as

1Bφ = divB(∇Bφ), (2-3)

so that by (2-1) and (2-2) we get that the Laplace–Beltrami operator can be written as

1Bφ =1φ− nt
∇

2φn− (n · ∇φ) div n

= (δi j − ni n j )∂
2
i jφ− n j∂ jφ∂i ni = (I − n⊗ n)i j∂

2
i jφ− (n · ∇φ) div n, (2-4)

where ∇2φ stands for the Hessian matrix of φ. Finally, we recall that on a regular
surface S with no boundary (i.e., when ∂S =∅) we have∫

S
divB 8 dσ = 0. (2-5)

2.2. Geometrical setting. The typical periodic geometrical setting is displayed in
Figure 1. Here we give, for the sake of clarity, its detailed formal definition.

Let us introduce a periodic open subset E of RN , so that E + z = E for all
z ∈ ZN . We employ the notation Y = (0, 1)N , and Eint = E ∩Y , Eout = Y \ E , and
Γ = ∂E ∩ Y . We assume that Eout is connected and Γ ∩ ∂Y =∅.

Let Ω be an open connected bounded subset of RN ; for all ε > 0 define Ωε
int =

Ω ∩εE and Ωε
out =Ω \εE , so that Ω =Ωε

int∪Ω
ε
out∪Γ

ε, where Ωε
int and Ωε

out are
two disjoint open subsets of Ω , and Γ ε

= ∂Ωε
int ∩Ω = ∂Ω

ε
out ∩Ω . The regions

Ωε
out and Ωε

int correspond to the outer phase and the inclusions, respectively, while
Γ ε is the interface. We also assume that Ω and E have regular boundary, and we
stipulate that dist(Γ ε, ∂Ω)≥ γ0ε, for a suitable γ0 > 0. To this purpose, for each ε,
we are ready to remove the inclusions in all the cells which are not completely
contained in Ω (see Figure 1). This assumption is in accordance with our previous
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Figure 1. Left: the periodic cell Y . Eint is the shaded region, and
Eout is the white region. Right: the region Ω .

papers [Amar et al. 2004; 2006; 2009a; 2009b; 2010; 2013], and maybe it can be
dropped as in [Allaire and Murat 1993; Cioranescu et al. 2012]; nevertheless, we
will not pursue this line of investigation in this paper.

Moreover, let ν denote the normal unit vector to Γ pointing into Eout, extended
by periodicity to the whole of RN , so that νε(x)= ν(x/ε) denotes the normal unit
vector to Γ ε pointing into Ωε

out.
Finally, given T > 0, we denote ΩT = Ω × (0, T ). More generally, for any

spatial domain G, we denote GT = G× (0, T ).

2.3. Position of the problem. Let µε, λε :Ω→ R be defined as

λε = λint in Ωε
int, λε = λout in Ωε

out,

µε = µint in Ωε
int, µε= µout in Ωε

out.

For every ε > 0, we consider the problem for uε(x, t) given by

µε
∂uε
∂t
− div(λε∇uε)= 0 in (Ωε

int ∪Ω
ε
out)× (0, T ), (2-6)

[uε] = 0 on Γ ε
T , (2-7)

εα
∂uε
∂t
− εβ1Buε = [λε∇uε · νε] on Γ ε

T , (2-8)

uε(x, t)= 0 on ∂Ω × (0, T ), (2-9)

uε(x, 0)= u0(x) in Ω, (2-10)

where we denote
[uε] = uout

ε − uint
ε , (2-11)

and the same notation is employed also for other quantities. We assume that all the
constants µint, µout, λint, λout, α, β involved in (2-6) and (2-8) are strictly positive.

Since problem (2-6)–(2-10) is not standard, in order to define a proper notion
of weak solution, we will need to introduce some suitable function spaces. To
this purpose and for later use, we will denote by H 1

B(Γ
ε) the space of Lebesgue-

measurable functions u : Γ ε
→ R such that u ∈ L2(Γ ε) and ∇Bu ∈ L2(Γ ε). Let
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us also set
X ε

0 (Ω) := H 1
0 (Ω)∩ H 1

B(Γ
ε). (2-12)

Definition 2.1. We say that uε ∈ L2(0, T ;X ε
0 (Ω)) is a weak solution of problem

(2-6)–(2-10) if

−

∫ T

0

∫
Ω

µεuε
∂φ

∂τ
dx dτ +

∫ T

0

∫
Ω

λε∇uε · ∇φ dx dτ

− εα

∫ T

0

∫
Γ ε

uε
∂φ

∂τ
dσ dτ + εβ

∫ T

0

∫
Γ ε
∇

Buε · ∇Bφ dσ dτ

=

∫
Ω

µεu0φ(x, 0) dx + εα
∫
Γ ε

u0φ(x, 0) dσ, (2-13)

for every test function φ ∈ C∞(ΩT ) such that φ has compact support in Ω for every
t ∈ (0, T ) and φ( · , T )= 0 in Ω .

If uε is smooth, by (2-4) it follows that (2-8) can be written in the form

εα
∂uε
∂t
− εβ(1uε− νt

ε∇
2uενε− (νε · ∇uε) div νε)= [λ∇uε · νε] on Γ ε, (2-14)

where, as in (2-4), ∇2uε stands for the Hessian matrix of uε. By [Amar and Gi-
anni 2018a, Theorem 4.2], for every ε > 0, problem (2-6)–(2-10) admits a unique
solution uε ∈ L2(0, T ;X ε

0 (Ω))∩ C0([0, T ]; L2(Ω)∩ L2(Γ ε)), if u0 ∈ H 1
0 (Ω).

Finally, it will be useful in the sequel to also define µ, λ : Y → R as

λ= λint in Eint, λ= λout in Eout,

µ= µint in Eint, µ= µout in Eout.

3. Homogenization of the microscopic problem

In the following, we will assume that the initial data satisfies

u0 ∈ H 1
0 (Ω)∩ H 2(Ω). (3-1)

By the trace inequality [Amar and Gianni 2018b, Proposition 1; Amar et al.
2004, proof of Lemma 7.1] we get that u0 satisfies

ε

∫
Γ ε
|u0|

2 dσ ≤ γ, ε

∫
Γ ε
|∇

Bu0|
2 dσ ≤ γ, (3-2)

where γ > 0 is independent of ε. Notice that, for our purposes, it should be enough
to assume that u0 ∈ H 1

0 (Ω) and satisfies (3-2), but we prefer to assume (3-1) since
it is reasonable to choose u0 not depending on ε.

We are interested in understanding the limiting behavior of the heat potential uε
when ε→ 0; this leads us to look at the homogenization limit of problem (2-6)–
(2-10).
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To this purpose, we first obtain some energy estimates for the heat potential uε.
Multiplying (2-6) by uε and integrating, formally, by parts, we obtain

1
2

∫ t

0

∫
Ω

µε
∂u2

ε

∂τ
dx dτ +

∫ t

0

∫
Ω

λε|∇uε|2 dx dτ

+
εα

2

∫ t

0

∫
Γ ε

∂u2
ε

∂τ
dσ dτ + εβ

∫ t

0

∫
Γ ε
|∇

Buε|2(x) dσ dτ = 0. (3-3)

Then, evaluating the time integral and taking into account the initial condition
(2-10), we obtain, for all 0< t < T ,

1
2

∫
Ω

µεu2
ε(t) dx+

∫ t

0

∫
Ω

λε|∇uε|2 dx dτ+
εα

2

∫
Γ ε

u2
ε(t) dσ+εβ

∫ t

0

∫
Γ ε
|∇

Buε|2 dσ dτ

=
1
2

∫
Ω

µεu2
0 dx +

εα

2

∫
Γ ε

u2
0 dσ. (3-4)

By (3-2) the right-hand side of (3-4) is stable as ε→ 0; hence,

sup
t∈(0,T )

∫
Ω

u2
ε(t) dx +

∫ T

0

∫
Ω

|∇uε|2 dx dτ

+ sup
t∈(0,T )

ε

∫
Γ ε

u2
ε(t) dσ + ε

∫ T

0

∫
Γ ε
|∇

Buε|2 dσ dτ ≤ γ, (3-5)

where γ is a constant independent of ε.
Notice that inequality (3-5) implies that there exists a function u belonging to

L2(0,T ;H 1
0 (Ω)) such that, up to a subsequence, uε⇀u weakly in L2(0,T ;H 1

0 (Ω)).
It will be our purpose to characterize the limit function u.

3.1. The two-scale expansion. We summarize here, to establish the notation, some
well known asymptotic expansions needed in the two-scale method (see, e.g., [Ben-
soussan et al. 1978; Sánchez-Palencia 1980]), when applied to stationary or evolu-
tive problems involving second-order partial differential equations. Introduce the
microscopic variables y ∈ Y and y = x/ε, and assume

uε = uε(x, y, t)= u0(x, y, t)+ εu1(x, y, t)+ ε2u2(x, y, t)+ · · · . (3-6)

Note that u0, u1, u2 are periodic in y, and u1, u2 are assumed to have zero integral
average over Y . Recalling that

div=
1
ε

divy + divx , ∇ =
1
ε
∇y +∇x , (3-7)

we compute

∇uε =
1
ε
∇yu0+ (∇x u0+∇yu1)+ ε(∇yu2+∇x u1)+ · · · , (3-8)
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and

1uε =
1
ε2 A0u0+

1
ε
(A0u1+ A1u0)+ (A0u2+ A1u1+ A2u0)+ · · · , (3-9)

where

A0 =1y, A1 = divy ∇x + divx ∇y, A2 =1x . (3-10)

Moreover, recalling (2-3) and taking into account that the normal vector νε depends
only on the microscopic variable, we also obtain

1Buε =
1
ε2 AB

0 u0+
1
ε
(AB

0 u1+ AB
1 u0)+ (AB

0 u2+ AB
1 u1+ AB

2 u0)+ · · · , (3-11)

where

AB
0 =1

B
y , AB

2 =1
B
x

AB
1 = divB

x ∇
B
y + divB

y ∇
B
x = 2(I − ν⊗ ν)i j∂

2
xi y j
− (divy ν)ν · ∇x .

(3-12)

Substituting in (2-6)–(2-10) the expansion (3-6), and using (3-7)–(3-12), one
readily obtains, by matching corresponding powers of ε, that u0 solves [u0] = 0
on Γ , and

P0[u0] :

{
−λ1yu0 = 0 in Eint, Eout,

β1B
yu0+ [λ∇yu0 · ν] = 0 on Γ .

By the equality

0=
∫

Y
λ|∇yu0|

2 dy+
∫
Γ

[λ∇yu0 · ν]u0 dσ

=

∫
Y
λ|∇yu0|

2 dy−
∫
Γ

β1B
yu0u0 dσ

=

∫
Y
λ|∇yu0|

2 dy+
∫
Γ

β|∇B
y u0|

2 dσ,

we obtain that u0 is independent of y, i.e., u0 = u0(x, t).
Moreover, u1 satisfies [u1] = 0 on Γ , and

P1[u1] :

{
−λ1yu1 = 0 in Eint, Eout,

β1B
yu1+ [λ∇yu1 · ν] = −β(divB

y ∇
B
x u0)− [λ∇x u0 · ν] on Γ .

Following a classical approach, we introduce the factorization

u1(x, y, t)=−χ(y) · ∇x u0(x, t)=−χh(y)
∂u0

∂xh
(x, t), h = 1, . . . , N , (3-13)
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for a vector function χ : Y → RN , whose components χh satisfy

−λ divy(∇yχh − eh)= 0 in Eint, Eout, (3-14)

β1B
y(χh − yh)=−[λ(∇yχh − eh) · ν] on Γ , (3-15)

[χh] = 0 on Γ . (3-16)

The functions χh are also required to be periodic in Y , with zero integral average on
Y (here, eh denotes the h vector of the canonical basis of RN ). We note that [Amar
and Gianni 2018a, Theorem 5.1 and Remark 5.3] assures existence and uniqueness
of the cell functions χh ∈ C∞# (Y ), for h = 1, . . . , N (here and in the following, the
subscript # denotes the Y -periodicity).

Finally, u2 solves [u2] = 0 on Γ , and

P2[u2] :


−λ1yu2 =−µu0t + λ1x u0+ 2λ

∂2u1

∂x j∂y j
in Eint, Eout,

β1B
yu2+ [λ∇yu2 · ν] = αu0t −β1

B
x u0−β divB

x ∇
B
y u1

−β divB
y ∇

B
x u1− [λ∇x u1 · ν] on Γ .

The limiting equation for u0 is finally obtained as a compatibility condition for
P2[u2], and amounts to∫

Y

(
−µu0t + λ1x u0+ 2λ

∂2u1

∂x j∂y j

)
dy =

∫
Γ

[λ∇yu2 · ν] dσ

=

∫
Γ

(αu0t−[λ∇x u1·ν]−β1
B
yu2−β1

B
x u0−β divB

x ∇
B
y u1−β divB

y ∇
B
x u1) dσ. (3-17)

We now replace the factorization (3-13) in the previous equality, and we take into
account that

2
∫

Y
λ
∂2u1

∂x j∂y j
dy =−2

∫
Γ

[λ∇x u1 · ν] dσ, (3-18)

−

∫
Γ

[λ∇x u1 · ν] dσ = div
((∫

Γ

[λ](ν⊗χ) dσ
)
∇u0

)
, (3-19)

−

∫
Γ

β1B
yu2 dσ = 0, (3-20)

−

∫
Γ

β1B
x u0 dσ =−β|Γ |1u0+ div

((∫
Γ

β(ν⊗ ν) dσ
)
∇u0

)
, (3-21)

−

∫
Γ

β divB
x ∇

B
y u1 dσ = div

((∫
Γ

β(I − ν⊗ ν)∇yχ dσ
)
∇u0

)
, (3-22)

−

∫
Γ

β divB
y ∇

B
x u1 dσ = 0, (3-23)
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where (3-23) follows from (2-5), since Γ has no boundary. Hence, we obtain for
the homogenized solution u0 the parabolic equation

µ̃u0t − div((λ0 I + Ahom)∇u0)= 0 in ΩT , (3-24)

where

µ̃= µint|Eint| +µout|Eout| +α|Γ |,

λ0 = λint|Eint| + λout|Eout|,

Ahom
=

∫
Γ

[λ](ν⊗χ) dσ +β
∫
Γ

((I − ν⊗ ν)+ (ν⊗ ν)∇yχ −∇yχ) dσ

=

∫
Γ

[λ](ν⊗χ) dσ −β
∫
Γ

∇
B
y (χ − y) dσ.

(3-25)

Clearly, (3-24) must be complemented with a boundary and an initial condition
which are u0= 0 on ∂Ω×(0, T ) and u0(x, 0)= u0(x) inΩ , respectively, as follows
from the microscopic problem (2-6)–(2-10). Indeed, by (3-5) we obtain that {uε}
converges weakly in L2(0, T ; H 1

0 (Ω)), which implies the weak convergence of the
trace on ∂Ω , while the initial data is already included in the weak formulation of
the problem.

Theorem 3.1. The matrix λ0 I + Ahom is symmetric and positive-definite.

Proof. We first prove the symmetry. By (2-1), we have

−

∫
Γ

∇
B
y yh · ∇

B
y χ j dσ =−

∫
Γ

(eh − νhν) · ∇
B
y χ j dσ =−

∫
Γ

(∇B
y χ j )h dσ ; (3-26)

then, taking into account (3-14)–(3-16), we obtain

0=−
∫

Y
λ1y(χh − yh)χ j dy

=

∫
Y
λ∇y(χh − yh) · ∇yχ j dy−β

∫
Γ

1B
y(χh − yh)χ j dσ

=

∫
Y
λ∇yχh · ∇yχ j dy−

∫
Y
λeh · ∇yχ j dy+β

∫
Γ

∇
B
y (χh − yh) · ∇

B
y χ j dσ

=

∫
Y
λ∇yχh · ∇yχ j dy+

∫
Γ

[λ]νhχ j dσ

+β

∫
Γ

∇
B
y χh∇

B
y χ j dσ −β

∫
Γ

∇
B
y yh∇

B
y χ j dσ

=

∫
Y
λ∇yχh · ∇yχ j dy+

∫
Γ

[λ]νhχ j dσ

+β

∫
Γ

∇
B
y χh∇

B
y χ j dσ −β

∫
Γ

(∇B
y χ j )h dσ. (3-27)
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From (3-25) and (3-27), we can rewrite

Ahom
=

∫
Γ

β(I − ν⊗ ν) dσ −
∫

Y
λ(∇yχ ⊗∇yχ) dy−

∫
Γ

β(∇B
y χ ⊗∇

B
y χ) dσ,

which gives the symmetry of the matrix Ahom and hence the symmetry of the whole
matrix λ0 I + Ahom.

Let us now prove that it is also positive-definite. Firstly, we observe that, using
(3-26) and (3-27), we obtain

∫
Y
λ∇(χh − yh) · ∇(χ j − y j ) dy+β

∫
Γ

∇
B
y (χh − yh)∇

B
y (χ j − y j ) dσ

=

∫
Y
λ∇χh · ∇χ j dy+

∫
Y
λeh · e j dy−

∫
Y
λ∇χh · e j dy−

∫
Y
λ∇χ j · eh dy

+β

∫
Γ

∇
Bχh · ∇

Bχ j dσ +β
∫
Γ

∇
B yh · ∇

B y j dσ

−β

∫
Γ

∇
Bχh · ∇

B y j dσ −β
∫
Γ

∇
Bχ j · ∇

B yh dσ

=

∫
Y
λ∇χh · ∇χ j dy+

∫
Y
λδhj dy+

∫
Γ

[λ]χhν j dσ +
∫
Γ

[λ]χ jνh dσ

+β

∫
Γ

∇
Bχh · ∇

Bχ j dσ +β
∫
Γ

∇
B yh · ∇

B y j dσ

−β

∫
Γ

(∇B
y χh) j dσ −β

∫
Γ

(∇B
y χ j )h dσ

=

∫
Y
λ∇χh · ∇χ j dy+

∫
Y
λδhj dy+β

∫
Γ

∇
Bχh · ∇

Bχ j dσ +β
∫
Γ

∇
B yh · ∇

B y j dσ

− 2
∫

Y
λ∇χh · ∇χ j dy− 2β

∫
Γ

∇
Bχh∇

Bχ j dσ

=

∫
Y
λδhj dy−

∫
Y
λ∇χh · ∇χ j dy+β

∫
Γ

(δhj − νhν j ) dσ −β
∫
Γ

∇
Bχh∇

Bχ j dσ.

Then, we can rewrite

(λ0 I + Ahom)hj =

∫
Y
λδhj dy+

∫
Γ

βδhj dσ −
∫
Γ

βνhν j dσ

−

∫
Y
λ∇χh · ∇χ j dy−

∫
Γ

β∇Bχh · ∇
Bχ j dσ

=

∫
Y
λ∇(χh − yh) · ∇(χ j − y j ) dy+

∫
Γ

β∇B(χh − yh) · ∇
B(χ j − y j ) dσ.
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Finally, setting λmin =min(λint, λout) and using Jensen’s inequality, we obtain

N∑
h, j=1

(λ0 I + Ahom)hjξhξ j =

∫
Y

N∑
h, j=1

λ(∇χhξh − ehξh) · (∇χ jξ j − e jξ j ) dy

+

∫
Γ

N∑
h, j=1

β∇B(χhξh − yhξh) · ∇
B(χ jξ j − y jξ j ) dσ

≥ λmin

∫
Y

∣∣∣∣ N∑
h=1

(∇χhξh − ehξh)

∣∣∣∣2 dy+β
∫
Γ

∣∣∣∣ N∑
h=1

∇
B(χhξh − yhξh)

∣∣∣∣2 dσ

≥ λmin

∣∣∣∣∫
Y

N∑
h=1

(∇χhξh − ehξh) dy
∣∣∣∣2+β|Γ |∣∣∣∣ 1

|Γ |

∫
Γ

N∑
h=1

∇
B(χhξh − yhξh) dσ

∣∣∣∣2

≥ λmin

N∑
j=1

( N∑
h=1

(
ξh

∫
Y

∂χh

∂y j
dy− δhjξh

))2

+
β

|Γ |

∣∣∣∣ N∑
h=1

∫
Γ

∇
B(χhξh − yhξh) dσ

∣∣∣∣2

≥ λmin

N∑
j=1

( N∑
h=1

ξh

∫
∂Y
χhn j dσ − ξ j

)2

= λmin|ξ |
2

where we have denoted by n = (n1, . . . , nN ) the outward unit normal to ∂Y . More-
over, we remark that the last integral vanishes because of the periodicity of the cell
function χh .

This proves that the homogenized matrix is positive-definite. �

Remark 3.2. We note that the homogenized matrix is positive-definite indepen-
dently of the strict positivity of β.

Once Theorem 3.1 has been proved, the existence of a unique solution for (3-24)
complemented with suitable initial and boundary conditions is standard. The next
proposition states the regularity of this solution, which is a property needed in order
to obtain the error estimate.

Proposition 3.3. Assume u0 ∈ C∞c (Ω) (i.e., u0 has compact support in Ω). Then,
the solution u0 to (3-24) satisfying the homogeneous boundary condition on ∂Ω ×
[0, T ] and the initial condition u(x, 0)= u0(x) in Ω belongs to C∞(Ω ×[0, T ]).

Proof. The result can be obtained applying [Friedman 1964, Theorem 12 in §5]. �

Remark 3.4. Actually, the asserted C∞-regularity of the homogenized solution u0

is far from being optimal in order to obtain the error estimate proved in Section 4.
Indeed, to this purpose, it is enough to have that u0 ∈ C0([0, T ]; C3(Ω)) and this is
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guaranteed if, for instance, u0 ∈ C4(Ω) and satisfies the compatibility conditions

Lhomu0(x)= 0, L2
homu0(x) := Lhom(Lhomu0(x))= 0 on ∂Ω, (3-28)

where Lhom=− div((λ0 I+Ahom)∇), with λ0 and Ahom defined in (3-25). However,
we prefer the simpler assumptions of Proposition 3.3, since we are not interested in
stating which are the minimal conditions to be satisfied by the initial data in order
to obtain the optimal regularity of the homogenized solution.

For further use (taking into account the system satisfied by u2 and (3-24)), we
introduce the factorization of the function u2 in terms of the homogenized solution
u0; i.e.,

u2(x, y, t)= χ̃i j (y)
∂2u0

∂xi∂x j
(x, t), i, j = 1, . . . , N , (3-29)

where the functions χ̃i j : Y → R satisfy

−λ1yχ̃i j =−
µ

µ̃
(λ0δi j + ahom

i j )+ λδi j − 2λ
∂χi

∂y j
=: F in Eint, Eout, (3-30)

β1B
y χ̃i j + [λ∇yχ̃i j · ν] =

α

µ̃
(λ0δi j + ahom

i j )−β(δi j − (ν⊗ ν)i j )

+ 2β(I − (ν⊗ ν))i · ∇χ j −βν jχi div ν+ [λνi ]χ j =: G on Γ , (3-31)

[χ̃i j ] = 0 on Γ . (3-32)

The functions χ̃i j are also required to be periodic in Y , with zero integral average
on Y . In order to obtain (3-30)–(3-32) we have taken into account (3-12), which
gives

divB
x (∇

B
y φ)+ divB

y (∇
B
x φ)= 2(δi j − νiν j )

∂2φ

∂xi∂y j
− ν j

∂νi

∂yi

∂φ

∂x j
,

with φ(x, y, t) = u1(x, y, t) = −χ(y) · ∇x u0(x, t) and the usual summation con-
vention for repeated indexes. By [Amar and Gianni 2018a, Theorem 5.1 and
Remark 5.3], problem (3-30)–(3-32) admits a unique solution χ̃i j ∈ C∞# (Y ), for
i, j = 1, . . . , N , since it is easy to check that∫

Y
F dy =

∫
Γ

G dσ.

4. Error estimate

In this section we prove that the limit u of the sequence {uε} of the solutions of
problem (2-6)–(2-10) coincides with the solution u0 of (3-24). In order to achieve
this result, we will state an error estimate for the sequence {uε}, which gives the
rate of convergence of such a sequence to the homogenized function u0, in a suit-
able norm, thus obtaining a stronger convergence result with respect to the one
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obtained in our previous paper [Amar and Gianni 2018b]. However, this result
needs extra-regularity assumptions on the initial data u0(x) (see Proposition 3.3
and Remark 3.4), which assure more regularity of the homogenized solution u0.

Theorem 4.1. Assume that u0 ∈ C∞c (Ω). Let u0 be the smooth solution of (3-24),
satisfying the initial condition u0(x, 0)= u0(x) in Ω and the boundary condition
u0(x, t) = 0 on ∂Ω × (0, T ); moreover, let u1 be the function defined in (3-13).
Then

‖uε − (u0+ εu1)‖L2(0,T ;H1(Ω)) ≤ γ
√
ε, (4-1)

‖uε − u0‖L2(ΩT ) ≤ γ
√
ε, (4-2)

for a proper constant γ > 0, independent of ε.

Proof. Let us define the rest function

rε(x, t)= (uε(x, t)− u0(x, t)− εu1(x, x/ε, t))ε−1, x ∈Ω, t > 0.

Separately in Ωε
int and in Ωε

out, we get

µε
∂rε
∂t
− div(λε∇rε)=

1
ε

{
−µε

∂u0

∂t
+ div(λε∇u0)−µ

εε
∂u1

∂t
+ ε div(λε∇u1)

}
=

1
ε

{
−µε

∂u0

∂t
+ λε1x u0+ 2λεu1xh yh

}
−µε

∂u1

∂t
+ λε1x u1+

1
ε2λ

ε1yu1

=−
1
ε
λε1yu2−µ

ε ∂u1

∂t
+ λε1x u1 =: Eε −µε

∂u1

∂t
.

Moreover,

[rε]= 0, rε(x, 0)=−u1(x, x/ε, 0)=χ(x/ε)·∇x u0(x, 0)=χ(x/ε)·∇x u0(x, 0),

and

εα
∂rε
∂t
−εβ1Brε=

1
ε

{
εα
∂uε
∂t
−εβ1Buε−εα

∂u0

∂t
+εβ1Bu0

}
−

{
εα
∂u1

∂t
−εβ1Bu1

}
=

1
ε
[λε∇uε · νε] −α

∂u0

∂t
+β1B

x u0+β divB
x ∇

B
y u1+β divB

y ∇
B
x u1

− εα
∂u1

∂t
+εβ1B

x u1+
1
ε
(β1B

yu1+β divB
y ∇

B
x u0+β divB

x ∇
B
y u0)+

1
ε2β1

B
yu0

=
1
ε
[λε∇uε · νε] − [λε(∇x u1+∇yu2) · νε] −β1

B
yu2

− ε

(
α
∂u1

∂t
−β1B

x u1

)
−

1
ε
[λε(∇x u0+∇yu1) · νε]

= [λε∇rε · νε] − ε
(
α
∂u1

∂t
−β1B

x u1

)
− [λε∇yu2 · νε] −β1

B
yu2,
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where we have taken into account the problems satisfied by u1 and u2 (u1 and u2

are defined in Section 3.1) and the fact that divB
x ∇

B
y u0 = 0 and 1B

yu0 = 0.
Let us now introduce the corrected rest function

r̃ε = rε + u1φε,

where φε is a cut-off function equal to 1 in a neighborhood of ∂Ω , and such that

φε(x)= 0 if dist(x, ∂Ω)≥ γ0ε.

Clearly, φε ≡ 0 on Γ ε (since dist(Γ ε, ∂Ω) ≥ γ0ε, by the assumptions made in
Section 2.2), so that rε = r̃ε on Γ ε. We may assume 0≤ φε ≤ 1, |∇φε| ≤ γ /ε. The
function r̃ε satisfies [r̃ε] = 0 on Γ ε and

µε
∂ r̃ε
∂t
− λε1r̃ε = Eε −µε

∂u1

∂t
+µεφε

∂u1

∂t
− λε1(u1φε) in Ωε

int,Ω
ε
out, (4-3)

r̃ε(x, 0)= χ(x/ε) · ∇x u0(x, 0)(1−φε) on Ω, (4-4)

r̃ε = 0 on ∂Ω, (4-5)

and on Γ ε

εα
∂ r̃ε
∂t
− εβ1B r̃ε = [λε∇rε · νε] − ε

(
α
∂u1

∂t
−β1B

x u1

)
− [λε∇yu2 · νε] −β1

B
yu2

= [λε∇r̃ε · νε] − ε
(
α
∂u1

∂t
−β1B

x u1

)
− [λε∇yu2 · νε] −β1

B
yu2. (4-6)

Note that the correction u1φε has been introduced precisely in order to guarantee
(4-5). Multiply (4-3) by r̃ε and integrate by parts; by virtue of (4-5), we get∫ t

0

∫
Ω

{Eε − λε1(u1φε)}r̃ε dx dτ −
∫ t

0

∫
Ω

{
µε
∂u1

∂τ
(1−φε)

}
r̃ε dx dτ

=
1
2

∫ t

0

∫
Ω

µε
∂ r̃2
ε

∂τ
dx dτ +

∫ t

0

∫
Ω

λε|∇r̃ε|2 dx dτ +
∫ t

0

∫
Γ ε
[λε∇r̃ε · νε]r̃ε dσ dτ

=
1
2

∫
Ω

µεr̃2
ε (x, t) dx −

1
2

∫
Ω

µεr̃2
ε (x, 0) dx +

∫ t

0

∫
Ω

λε|∇r̃ε|2 dx dτ

+
ε

2

∫
Γ ε
αr̃2
ε (x, t) dσ −

ε

2

∫
Γ ε
αr̃2
ε (x, 0) dσ + εβ

∫ t

0

∫
Γ ε
|∇

B r̃ε|2 dσ dτ

+ ε

∫ t

0

∫
Γ ε

(
α
∂u1

∂t
−β1B

x u1

)
r̃ε dσ dτ +

∫ t

0

∫
Γ ε
(β1B

yu2+ [λ∇yu2 · νε])r̃ε dσ dτ.

(4-7)
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This implies

1
2

∫
Ω

µεr̃2
ε (x, t) dx +

ε

2

∫
Γ ε
αr̃2
ε (x, t) dσ +

∫ t

0

∫
Ω

λε|∇r̃ε|2 dx dτ

+ εβ

∫ t

0

∫
Γ ε
|∇

B r̃ε|2 dσ dτ

=
1
2

∫
Ω

µεr̃2
ε (x, 0) dx +

ε

2

∫
Γ ε
αr̃2
ε (x, 0) dσ

− ε

∫ t

0

∫
Γ ε

(
α
∂u1

∂τ
−β1B

x u1

)
r̃ε dσ dτ

−

∫ t

0

∫
Γ ε
(β1B

yu2+ [λ
ε
∇yu2 · νε])r̃ε dσ dτ

+

∫ t

0

∫
Ω

{Eε − λε1(u1φε)}r̃ε dx dτ −
∫ t

0

∫
Ω

{
µε
∂u1

∂τ
(1−φε)

}
r̃ε dx dτ.

Next, compute

∫ t

0

∫
Ω

Eεr̃ε dx dτ =
∫ t

0

∫
Ω

λε
{
−

1
ε
1yu2+1x u1

}
r̃ε dx dτ

=

∫ t

0

∫
Ω

λε
{
−

1
ε
1yu2− divx(∇yu2)

}
r̃ε dx dτ

+

∫ t

0

∫
Ω

λε{divx(∇yu2)+1x u1}r̃ε dx dτ

=−

∫ t

0

∫
Ω

div(λε∇yu2)r̃ε dx dτ

+

∫ t

0

∫
Ω

{λε divx(∇yu2)+ λ
ε1x u1}r̃ε dx dτ

=

∫ t

0

∫
Γ ε
[λε∇yu2 · νε]r̃ε dσ dτ +

∫ t

0

∫
Ω

λε∇yu2 · ∇r̃ε dx dτ

+

∫ t

0

∫
Ω

{λε divx(∇yu2)+ λ
ε1x u1}r̃ε dx dτ. (4-8)

Note that the last integral in (4-8) can be bounded in the following way:

∫ t

0

∫
Ω

{λε divx(∇yu2)+ λ
ε1x u1}r̃ε dx dτ ≤ γ (δ)+ δ

∫ t

0

∫
Ω

r̃2
ε dx dτ,
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where δ > 0 will be chosen in the following. We exploit here the estimate

∫ t

0

∫
Ω

(u2
2xi yi
+ u2

1xi xi
) dx dτ ≤ γ, (4-9)

which is a consequence of the regularity of the cell functions χ and χ̃ (recall
(3-13)–(3-16) and (3-29)–(3-32)) and of the homogenized function u0. Similarly,
for δ′ =min(λint, λout)/2,

−

∫ t

0

∫
Ω

λε1(u1φε)r̃ε dx dτ =
∫ t

0

∫
Ω

λε∇(u1φε) · ∇r̃ε dx dτ

≤ δ′
∫ t

0

∫
Ω

|∇r̃ε|2 dx dτ +
γ (δ′)

ε2 |{x ∈Ω | dist(x, ∂Ω)≤ γ0ε}|

≤ δ′
∫ t

0

∫
Ω

|∇r̃ε|2 dx dτ +
γ (δ′)

ε
, (4-10)

where, again due to the stated regularity of χ and u0, we used

sup
x∈Ω, y∈Y, 0<t<T

{|u1| + |∇x u1| + |∇yu1|}(x, y, t) <+∞. (4-11)

Moreover, for δ′′ which will be chosen later, we obtain

∫ t

0

∫
Γ ε
(β1B

yu2)r̃ε dσ dτ = εβ
∫ t

0

∫
Γ ε

(
1
ε

divB
y ∇

B
y u2+ divB

x ∇
B
y u2

)
r̃ε dσ dτ

− εβ

∫ t

0

∫
Γ ε
(divB

x ∇
B
y u2)r̃ε dσ dτ

=−εβ

∫ t

0

∫
Γ ε
∇

B
y u2∇

B r̃ε dσ dτ − εβ
∫ t

0

∫
Γ ε
(divB

x ∇
B
y u2)r̃ε dσ dτ

= γ (δ′′)+ δ′′ε

∫ t

0

∫
Γ ε
|∇

B r̃ε|2 dσ dτ + γ (δ′′)+ δ′′ε
∫ t

0

∫
Γ ε

r̃2
ε dσ dτ.

Here, we use

ε

∫ t

0

∫
Γ ε
(|∇B

y u2|
2
+ |divB

x ∇
B
y u2|

2) dσ dτ ≤ γ,

which is again a consequence of the regularity of χ̃ and u0.
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Combining the previous estimates, we have

1
2

∫
Ω

µεr̃2
ε (x, t) dx +

ε

2

∫
Γ ε
αr̃2
ε (x, t) dσ +

∫ t

0

∫
Ω

λε|∇r̃ε|2 dx dτ

+ εβ

∫ t

0

∫
Γ ε
|∇

B r̃ε|2 dσ dτ

≤
1
2

∫
Ω

µεr̃2
ε (x, 0) dx +

ε

2

∫
Γ ε
αr̃2
ε (x, 0) dσ − ε

∫ t

0

∫
Γ ε

(
α
∂u1

∂τ
−β1B

x u1

)
r̃ε dσ dτ

+ γ (δ′′)+ δ′′ε

∫ t

0

∫
Γ ε
|∇

B r̃ε|2 dσ dτ + δ′′ε
∫ t

0

∫
Γ ε

r̃2
ε dσ dτ

−

∫ t

0

∫
Γ ε
[λε∇yu2 · νε]r̃ε dσ dτ +

∫ t

0

∫
Γ ε
[λε∇yu2 · νε]r̃ε dσ dτ

+

∫ t

0

∫
Ω

λε∇yu2 · ∇r̃ε dx dτ + γ (δ)+ δ
∫ t

0

∫
Ω

r̃2
ε dx dτ

+ δ′
∫ t

0

∫
Ω

|∇r̃ε|2 dx dτ +
γ (δ′)

ε
−

∫ t

0

∫
Ω

{µε
∂u1

∂τ
(1−φε)}r̃ε dx dτ

≤ γ + γ (δ′′′)+ εδ′′′
∫ t

0

∫
Γ ε

r̃2
ε dσ dτ

+ γ (δ′′)+ δ′′ε

∫ t

0

∫
Γ ε
|∇

B r̃ε|2 dσ dτ + δ′′ε
∫ t

0

∫
Γ ε

r̃2
ε dσ dτ

+ γ (δ′′′)+ δ′′′
∫ t

0

∫
Ω

|∇r̃ε|2 dx dτ + γ (δ)+ δ
∫ t

0

∫
Ω

r̃2
ε dx dτ

+ δ′
∫ t

0

∫
Ω

|∇r̃ε|2 dx dτ +
γ (δ′)

ε
+ γ (δ′′′)+ δ′′′

∫ t

0

∫
Ω

r̃2
ε dx dτ, (4-12)

where δ′′′ will be chosen later. Finally, using Poincaré’s inequality, Gronwall’s
lemma, and absorbing the gradient term in (4-12) into the left-hand side (which is
possible choosing δ, δ′, δ′′, δ′′′ sufficiently small), we get∫ t

0

∫
Ω

|∇r̃ε|2 dx dτ ≤
γ

ε
. (4-13)

On recalling the definition of r̃ε, and invoking Poincaré’s inequality again, we
obtain ∫ t

0

∫
Ω

(uε − u0− εu1(1−φε))2 dx dτ ≤ γ ε. (4-14)

Moreover, taking into account that rε = r̃ε− u1φε and using (4-13), it follows that∫ t

0

∫
Ω

|∇rε|2 dx dτ≤γ
[∫ t

0

∫
Ω

|∇r̃ε|2 dx dτ+
∫ t

0

∫
Ω

|∇(u1φε)|
2 dx dτ

]
≤
γ

ε
, (4-15)
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where we recall the estimate for ∇(u1φε) done in (4-10). Hence, by (4-14) and
(4-15), we obtain (4-1). Finally, (4-2) can be obtained making use of (4-14) and
taking into account that∫ t

0

∫
Ω

(εu1(1−φε))2 dx dτ ≤ γ ε2. �
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OPERATORS ON BOURGAIN–DELBAEN SPACES

DANIELE PUGLISI

We prove that, whenever we pick real numbers a, b such that 0 < b < a < 1,
a+b> 1, and a3

+b3
= 1, then every bounded linear operator from `2 to Xa,b and

from Xa,b to `2 must be compact, where Xa,b is the Bourgain–Delbaen space.

1. Introduction

This note concerns a question posed to us by R. Aron during the conference Func-
tion Theory on Infinite Dimensional Spaces XIV (Madrid, 2016). We were told that
the same question was raised during some other conference in 1987 and it was
solved by J. Bourgain soon after. Since at that time J. Bourgain decided not to
publish it, the result remains only announced in [Alencar et al. 1987].

Throughout this note we shall use standard notation. For Banach spaces X, Y
we denote by L(X, Y ) the space of all bounded linear operators from X to Y and by
K(X, Y ) its ideal of compact operators. It is a classical result due to Pitt [1936] that
every linear continuous operator from `p to `q must be compact for all q < p. It is
worth noting here that this result has been generalized in [Puglisi 2014, Lemma 3.5]
where `p-direct sums of sequences of suitable Banach spaces have been used. Fol-
lowing Pitt’s theorem, in [Alencar et al. 1987, Lemma 5], the following was proved.

Proposition 1.1. Suppose a Banach space X has the property that, for some p > 1,
L(X, `p)= K(X, `p). Then L(X, `q)= K(X, `q) for all 1< q < p.

This proposition shows that there are nontrivial examples of triples (X, Y, Z) of
Banach spaces with the property that, if every continuous linear operator from X
to Y is compact and every continuous linear operator from Y to Z is compact, then
every continuous linear operator from X to Z is compact. In case this happens,
we say that the triple (X, Y, Z) has the compact operators transitivity property.
Therefore, it is quite natural to raise the following:

Communicated by Raffaele Esposito.
The author was supported by the “National Group for Algebraic and Geometric Structures, and their
Applications” (GNSAGA, INdAM).
MSC2010: 47B10.
Keywords: compact operators, Bourgain–Delbaen spaces.
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Question (R. Aron, 1987). Does every triple (X, Y, Z) of Banach spaces have the
compact operators transitivity property?

As announced in [Alencar et al. 1987], an answer was given by J. Bourgain but
unpublished. In this note, we give a simple counterexample to the above question.
It is also worth recalling the example given in [Argyros and Haydon 2011], where,
if we denote by XAH(L) the Argyros–Haydon space constructed on the infinite
subset L ⊆ N, the following spectacular result holds.

Theorem 1.2. If L ∩ L ′ is finite, then every bounded linear operator from XAH(L)
to XAH(L ′) must be compact.

In any case, the example we propose is much simpler.

2. The Bourgain–Delbaen space

In this section we would like to briefly review the construction of the classical
Bourgain–Delbaen space Xa,b [1980] using the original notation, even if we rec-
ommend the reader the Ph.D. thesis of M. Tarbard [2012], where the exposition is
very clear.

Definition 2.1. If X and Y are Banach spaces, then the Banach–Mazur distance
between X and Y is given by

d(X, Y )= inf{‖T ‖ · ‖T−1
‖ | T : X→ Y is an onto isomorphism}.

Definition 2.2. (i) A Banach space X is an L∞,λ space (λ≥ 1) if, for all E ⊆ X ,
where E is a finite-dimensional subspace of X , there is a finite-dimensional
subspace F ⊆ X , such that E ⊆ F and d(F, `dim F

∞
)≤ λ. Here `n

∞
means the

n-dimensional real vector space Rn endowed with the norm ‖(x1, . . . , xn)‖ =

max1≤k≤n|xk |.

(ii) If X is an L∞,λ space for some λ, then we simply say that X is an L∞ space.

For a λ > 1 let us fix from now on real numbers a, b such that

(1) 0< b < a < 1,

(2) a+ 2bλ≤ λ,

(3) a+ b > 1.

By induction, first we construct a sequence (dn)n ⊆ R and

im,l : span{ei | 1≤ i ≤ dm} → span{ei | 1≤ i ≤ dl}

with m < l ≤ n, where ei is the standard basic sequence, i.e., ei ( j)= δi, j . Let us
denote En = span{ei | 1≤ i ≤ dn} ⊆ `∞.

Let d1 = 1. Suppose d1, . . . , dn are known as well as {im,l | 1 ≤ m < l ≤ n}
satisfying
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(a) πm ◦ im,n = idspan{ei |1≤i≤dm} for m < n,

(b) il,n ◦ im,l = im,n for m < l < n,

where πm is the natural projection to the first dm coordinates. For all

γ = (m, i, j, ε′, ε′′) with m < n, 1≤ i < dm , 1≤ j ≤ dn , and ε′, ε′′ =±1,

let us define a functional in (span{ei | 1≤ i ≤ dn})
∗ as

c∗γ (x)= ε
′axi + ε

′′b(x − im,n ◦πm(x)) j .

Let us consider the set of all such functionals, namely

Fn = {c∗γ | γ = (m, i, j, ε′, ε′′), m < n, 1≤ i < dm , 1≤ j ≤ dn , and ε′, ε′′ =±1};

then we define
dn+1 = dn + card Fn

and
in,n+1(x) := (x1, . . . , xdn , (c

∗

γ (x))γ∈Fn︸ ︷︷ ︸
dn+1

, 0, 0, . . . , 0, . . . ).

For each n ∈ N let us consider

in : span{ei | 1≤ i ≤ dn} → `∞

defined as
in = lim

m→∞
(in,n+1 ◦ in+1,n+2 ◦ · · · ◦ im−1,m).

It has been shown by J. Bourgain and F. Delbaen [1980, Lemma 4.2(8)] that
‖in‖ ≤ λ for all n ∈ N. Therefore, if we denote

Fn = in(span{ei | 1≤ i ≤ dn}),

the space of Bourgain–Delbaen Xa,b is defined as the closure in `∞ of the countable
union ⋃

n∈N

Fn.

Since πn ◦ in = idEn , we have that d(Fn, `
dn
∞) = d(Fn, En) ≤ ‖πn‖ · ‖in‖ ≤ λ.

From [Lindenstrauss and Tzafriri 1973], since Xa,b is the closure of an increasing
sequence of finite-dimensional subspaces Fn with d(Fn, `

dn
∞)≤ λ, then

(α) Xa,b is an L∞,λ+ε space for all ε > 0.

Curiously, the space Xa,b satisfies the following properties, which make the space
very interesting:

(β) Xa,b does not contain any copy of `1; since Xa,b is an L∞ space, it follows
from a result of Lewis and Stegall [1973] that X∗a,b is isomorphic to `1;
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(γ ) Xa,b has the Radon–Nikodym property [Bourgain and Delbaen 1980, Lemma
5.4];

(δ) Xa,b is reflexive saturated [Bourgain and Delbaen 1980, Lemma 5.5] (i.e.,
every infinite-dimensional closed subspace contains an infinite-dimensional
reflexive subspace).

Before closing this section, we would like to review a final peculiar property. Let
α be the unique number such that

a1/(1−α)
+ b1/(1−α)

= 1.

Then in Xa,b the following holds. For a proof see [Bourgain and Delbaen 1980,
Lemma 5.9] (see also [Haydon 2000]).

Proposition 2.3. For every sequence (xn)n ⊆ Xa,b such that

(i) ‖xn‖ = 1 for all n ∈ N,

(ii) xn→ 0 weakly,

there exist C > 0 and a subsequence (xkn )n such that

‖xk1 + · · ·+ xkn‖ ≥ Cnα for all n ∈ N. (1)

3. Operators on the space Xa,b

Throughout this section we fix a, b such that

(i) 0< b < a < 1,

(ii) a+ b > 1,

(iii) a3
+ b3
= 1.

Before stating the main result, we would like to recall a well known result. Since
the proof is easy, we include it for the sake of completeness.

Proposition 3.1. Let X be a Banach space with a Schauder basis and Y any Ba-
nach space, and let T : X→ Y be a bounded linear operator. If

‖T (xn)‖
n→∞
−−−→ 0 for all bounded block basic sequences (xn)n, (2)

then T is compact.

Proof. Let us denote by (xn)n a Schauder basis of X with basis constant K , and
let us denote by

Pn : X→ X

the n-th projection associated to the basis; i.e.,

Pn

( ∞∑
i=1

ai xi

)
=

n∑
i=1

ai xi .
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We show that
‖T − T ◦ Pn‖

n→∞
−−−→ 0;

i.e., T is the uniform limit of finite rank operators.
Let us assume we are not in this situation; that means there exist δ > 0, a strictly

increasing sequence of natural numbers (kn)n , and a sequence of norm-1 (zn)n ⊆ X
such that

‖(T − T ◦ Pkn )(zn)‖> δ.

Since z1 = limn Pn(z1), we can find s1 > k1 such that

‖z1− Ps1(z1)‖<
δ

2‖T ‖
.

Let us define y1 = Ps1(z1)− Pk1(z1). Then

‖y1‖ ≤ 2K and ‖T (y1)‖ ≥ ‖(T − T ◦ Pk1)(z1)‖−‖(T − T ◦ Ps1)(z1)‖

>
δ

2
.

Let k j2 > s1. Similarly, we find s2 > k j2 such that

‖z j2 − Ps2(z j2)‖<
δ

2‖T ‖
.

Let us define y2 = Ps2(z j2)− Pk j2
(z j2). Then

‖y2‖ ≤ 2K and ‖T (y2)‖>
δ

2
.

Iterating this process we find a bounded block basic sequence (yn)n of Y such that
‖T (yn)‖> δ/2, against the assumption (2). �

Theorem 3.2. Every bounded linear operator from `2 to Xa,b and from Xa,b to `2

must be compact.

Proof. Since X∗a,b has the Schur property, it is obvious that any operator Xa,b to `2

is compact.
Suppose there is a bounded linear operator

T : `2→ Xa,b

which is not compact. By the previous proposition, there must exist a bounded
block basic sequence (xn)n ⊆ `2 such that

‖T (xn)‖> δ for some δ > 0.

It is worth recalling that a basis in a Banach space is shrinking if and only if any
bounded block basic sequence is weakly null. Since the basis in `2 is shrinking,
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we have that the sequence (xn)n is weakly null (and so is (T (xn))n). Therefore, the
sequence (

T (xn)

‖T (xn)‖

)
n

is weakly null.

By Proposition 2.3 and assumption (iii) above, by passing to a subsequence, there
exists C > 0 such that∥∥∥∥ T (x1)

‖T (x1)‖
+ · · · +

T (xn)

‖T (xn)‖

∥∥∥∥≥ Cn2/3.

On the other hand, since bounded block basic sequences in `2 are uncondition-
ally basic sequences (and so is (T (xn))n), it also follows that

‖T (x1)+ · · ·+ T (xn)‖ ≥ C ′n2/3

for some C ′ > 0. Therefore,

C ′n2/3
≤ ‖T (x1)+ · · ·+ T (xn)‖

≤ ‖T ‖‖x1+ · · ·+ xn‖`2

≤ ‖T ‖C ′′n1/2,

where the last inequality follows from the fact that (xn)n is a bounded block se-
quence in `2. This would imply that

n1/6
≤ ‖T ‖

C ′′

C ′
for all n ∈ N,

which is a contradiction. This completes the proof. �

We would like to finish this note with the following natural questions.

Question. (i) Does there exist a pair of Banach spaces (X, Y ) such that every
n-homogeneous polynomial from X to Y and from Y to X must be compact?

(ii) Let Y and Z be reflexive Banach spaces. Does, for every Banach space X , the
triple (X, Y, Z) have the compact operators transitivity property?
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