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AROUND TWO THEOREMS AND A LEMMA BY LUCIO RUSSO

ITAI BENJAMINI AND GIL KALAI

We describe two directions of study following early work of Lucio Russo. The
first direction follows the famous Russo–Seymour–Welsh (RSW) theorem. We
describe an RSW-type conjecture by the first author which, if true, would imply
a coarse version of conformal invariance for critical planar percolation. The
second direction is the study of “Russo’s lemma” and “Russo’s 0–1 law” for
threshold behavior of Boolean functions. We mention results by Friedgut, Bour-
gain, and Hatami, and present a conjecture by Jeff Kahn and the second author,
which may allow applications for finding critical probabilities.

1. Introduction

We have not met Lucio Russo in person but his mathematical work has greatly
influenced our own and his wide horizons and interests in physics, mathematics,
philosophy, and history have greatly inspired us. We describe here two directions
of study following early work of Russo. The first section follows the famous
Russo–Seymour–Welsh theorem regarding critical planar percolation. The second
section follows the basic “Russo’s lemma” and the deep “Russo’s 0–1 law”. In
each direction we present one central conjecture.

2. Planar percolation

Consider 1
2 -Bernoulli bond percolation on a square lattice. Russo [1978] and Sey-

mour and Welsh [1978] proved the RSW theorem relating the probability of having
an open crossing in a n× cn rectangle to that of crossing a square. In particular,
their results imply that

the probability of critical Bernoulli percolation crossing a long rectangle
is bounded away from zero and depends only on the aspect ratio.
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This fundamental fact was crucial in Kesten’s proof [1980] that the critical prob-
ability for planar percolation is 1

2 , and has been used and extended to a variety
of models using clever proofs. But until recently all proofs have depended on
rotational symmetry. Vincent Tassion [2016] recently proved the RSW statement
under various sets of weaker assumptions, and this has been the key to solving
several known problems. On a personal note, we mention that the RSW lemma
was essential in controlling the influence of a fixed edge on the crossing event,
allowing us to establish, jointly with Oded Schramm, noise sensitivity of critical
percolation; see [Benjamini et al. 1999; Garban and Steif 2015].

What about an RSW-type result for more general planar graphs going beyond
Euclidean lattices and tessellations?

In what follows we suggest a conjectural extension of the RSW theorem to gen-
eral planar triangulations. The motivation comes from conformal uniformization;
see [Benjamini 2015].

There are strong ties between critical planar percolation and conformal geometry.
In [Smirnov 2001] the scaling limit of critical Bernoulli site percolation on the
triangular lattice was proved to be conformally invariant. Benjamini [2015] gave
a far-reaching conjecture relating percolation and conformal uniformization and
derived it from the conjectural extension of the RSW theorem.

A generalized RSW conjecture. Tile the unit square with (possibly infinitely many)
squares of varying sizes so that at most three squares meet at corners. That is,
the dual graph is a triangulation. Color each square black or white with equal
probability independently.

Conjecture 2.1. There is a universal c > 0 such that the probability of a black
left-right crossing is bigger than c.

At the moment we do not have a proof of the conjecture even when the squares
are colored black with probability 2

3 . Behind the conjecture is a coarse version of
conformal invariance. That is, the crossing probability is bounded away from zero
and one if the tile shapes are uniformly close to circles (rotation invariance), and
the squares can be of different sizes (dilation invariance). If true, the same should
hold for a tiling or a packing of a triangulation, with a set of shapes that are of
bounded Hausdorff distance to circles.

If the answer to Conjecture 2.1 is affirmative, this will imply (see [Benjamini
2015]) the following: Let G be the 1-skeleton of a bounded degree triangulation of
an open disk. Assume G is transient for the simple random walk; then 1

2 -Bernoulli
site percolation on G admits infinitely many infinite clusters almost surely. We do
not know this even for any p-Bernoulli percolation with 1> p > 1

2 . In [Benjamini
and Schramm 1996b] it is shown that such triangulations result in square tilings
as in the conjecture. The proof there is an analogue of the RSW phenomenon
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for a simple random walk on the triangulation. We speculate that 1
2 -Bernoulli site

percolation on G admits infinitely many infinite clusters almost surely if and only
if G is transient.

How does the influence of a square in the tiling on the crossing probability at
p = 1

2 relate to its area? Establishing a high-dimensional version of the RSW
lemma is a well-known and very important open problem. Dan Asimov and Dylan
Thurston (private communication) worked out a 2k-dimensional model with duality
but not yet with RSW. Informally look at the critical p for a full infinite surface
and prove RSW for plaquettes in cubes. That is (for d = 3, say), if the probability
of no open path from top to bottom in an n× n× n box is at least 1

2 , then there is
no open path from top to bottom in a cube 2n× 2n× n with probability bounded
away from 0 independently of n.

A comment on large graphs and percolation. In the category of planar graphs, in
view of (discrete) conformal uniformization, transience (equivalently conformal
hyperbolicity) is a natural notion of largeness. In the context of Cayley graphs,
nonamenability serves as a notion of large Cayley graphs. Thus the still open
conjecture [Benjamini and Schramm 1996a] that there is a nonempty interval of
p’s such that p-Bernoulli percolation admits infinitely many infinite clusters if and
only if the group is nonamenable shares some flavor with Conjecture 2.1: both
suggest that a graph is large provided there is a phase with infinitely many infinite
clusters.

3. Isoperimetric inequalities and Russo’s 0–1 law

We endow the discrete cube �n = {−1, 1}n with the product probability mea-
sure µp, where the probability for each bit to be 1 is p. A Boolean function f
is a function from �n to {−1, 1}, and f is monotone if changing the value of a
variable from−1 to 1 does not change the value of f from 1 to−1. The influence of
the k-th variable on f , denoted by I p

k ( f ), is the probability that changing the k-th
variable will change the value of f . The total influence is I p( f ) =

∑n
k=1 I p

k ( f ).
We denote µp( f )= µp{x : f (x)= 1}, and write Varp( f )= 4µp( f )(1−µp( f )).
(If p = 1

2 we omit the superscript/subscript p.)
A basic result in extremal and probabilistic combinatorics going back to Harper

(and others) is the isoperimetric inequality. For the measure µp the isoperimetric
relation takes the form (see, e.g., [Kahn and Kalai 2007; Kalai 2016]):

Theorem 3.1. pI p( f )≥ µp( f ) logp(1/µp( f )).

If f is monotone then µp( f ) is a monotone function of p. Fixing a small
ε > 0, the threshold interval of f is the interval [p, q] where µp( f ) = ε and
µq( f ) = 1 − ε. A fundamental lemma by Russo [1982] and Margulis [1974]
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asserts that for a monotone Boolean function f ,

dµp( f )/dp = I p( f ).

The deep Russo’s 0–1 law [1982] asserts informally that the threshold interval
of a Boolean function is of size o(1) if all variables have o(1)-influence. In view of
the Russo–Margulis lemma, understanding the total influence is crucial for under-
standing the threshold window of a Boolean function. Sharp form of the Russo 0–1
theorem and various related results were proved in the last two decades, and Fourier
methods played an important role in these developments. We mention especially
the paper by Kahn, Kalai, and Linial [Kahn et al. 1988] and the subsequent papers
[Bourgain et al. 1992; Talagrand 1994; Friedgut and Kalai 1996; Friedgut 1998]
and the books [Garban and Steif 2015; O’Donnell 2014]. To a large extent, this
study is centered around the following problem.

Problem. Understand the structure of Boolean functions of n variables for which

I p( f )≤ K 1
p
µp( f ) logp(1/µp( f )).

We will quickly describe some main avenues of research and central results
regarding this problem. For a more detailed recent survey, see [Kalai 2016].

(1) For the case where both p and µp( f ) are bounded away from zero and one (or
even when log(1/p)/ log n→ 0) and K is bounded, Friedgut [1998] proved
that such functions are approximately “juntas”; namely, they are determined
(with high probability) by their values on a fixed bounded set of variables.
This result can be seen as a sharp form of Russo’s 0–1 law and it has a wide
range of applications.

(2) For the case where K is bounded, µp( f ) is bounded away from zero and
one, but log(1/p)/ log n is bounded away from zero, there are important
theorems by Friedgut [1999] and Bourgain [1999] (see below) and Hatami
[2012]. These results have important applications for proving sharp threshold
theorems. Hatami’s work is based on the important, if mysterious, notion of
pseudojuntas.

(3) The case where K is bounded and µp( f ) is small is wide open. This case is
important on its own and may have some applications for finding the critical
probability; see Conjecture 3.3.

(4) Cases where K = 1+ ε are of different nature and are also of much interest.
See [Ellis 2011], for example; work in progress of Ellis and N. Lifshitz is also
relevant.

(5) There are few results regarding the case where K is unbounded and espe-
cially when K grows quicker than log n. (One such result is by Bourgain and
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Kalai [1997] for functions with various forms of symmetry.) This is of great
interest already when both p and µp( f ) are bounded away from zero and one.

We turn to a theorem of Bourgain and a related and far-reaching conjecture.

Theorem 3.2 [Bourgain 1999]. There exists ε > 0 with the following property: For
every C there is K (C) such that if I p( f ) < pC , then there exists a subset R of
variables |R| ≤ K (C) such that

µp(x : f (x)= 1 | xi = 1, i ∈ S) > (1+ ε)µp( f ).

Conjecture 3.3 [Kahn and Kalai 2007, Conjecture 6.1(a)]. There exists ε > 0
with the following property: For every C there is K (C) such that if I p( f ) <
pCµp( f ) log(1/µp( f )) then there exists a subset R of variables |R| ≤ K (C)
log(1/µp( f )) such that

µp(x : f (x)= 1 | xi = 1, i ∈ S) > (1+ ε)µp( f ).

Several attempted stronger conjectures (such as Conjectures 6.1(b), 6.1(c) in
[Kahn and Kalai 2007]) turned out to be incorrect. Conjecture 3.3 was motivated
by a far reaching conjecture from [Kahn and Kalai 2007] relating two notions
of a threshold for random graphs. Related questions were raised in [Talagrand
2010]. We conclude with another approach for understanding Boolean functions
with small influence. The first step is the important Fourier–Walsh expansion. Ev-
ery Boolean function f can be written as a square free polynomial f =

∑
f̂ (S)xS ,

where xS =
∏
{xi : i ∈ S}. (The coefficients f̂ (S) are called the Fourier coefficients

of f .) It is easy to verify that
∑

f̂ 2(S)= 1 and that
∑

f̂ 2(S)|S| = I ( f ). Therefore:

Proposition 3.4. For every ε > 0, a Boolean function f can be ε ·Var( f )-approxi-
mated by the sign of a degree-d polynomial where d = (1/ε)I ( f ).

However, we note that Boolean functions described as signs of low-degree poly-
nomials may have large total influence. Our next step is to consider the repre-
sentation of Boolean functions via Boolean circuits. Circuits allow us to build
complicated Boolean functions from simple ones, and they have crucial importance
in computational complexity. Starting with n variables x1, x2, . . . , xn , a literal is
a variable xi or its negation −xi . Every Boolean function can be written as a
formula in conjunctive normal form, namely as ANDs of ORs of literals. A circuit
of depth d is defined inductively as follows: A circuit of depth zero is a literal. A
circuit of depth one consists of an OR or AND gate applied to a set of literals. A
circuit of depth k consists of an OR or AND gate applied to the outputs of circuits
of depth k−1. (We can assume that gates in the odd levels are all OR gates and that
the gates of the even levels are all AND gates.) The size of a circuit is the number
of gates. The famous NP 6= P conjecture (in a slightly stronger form) asserts that
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the Boolean function described by the graph property of containing a Hamiltonian
cycle cannot be described by a polynomial-size circuit.

A theorem by Boppana [1984] (the monotone case) and Håstad [1989] (the
general case) asserts that if f is described by a Boolean circuit of depth d and
size M then I ( f )≤ C(log M)d−1. We conjecture that functions with low influence
can be approximated by low-depth small-size circuits. A function g δ-approximates
a function f if |E( f − g)2| ≤ ε.

The next conjecture is slightly extended from one in [Benjamini et al. 1999].

Conjecture 3.5 (Benjamini, Kalai, and Schramm). For some absolute constant C
the following holds: For every ε > 0 a Boolean function f can be ε · Var( f )-
approximated by a circuit of depth d and size M , where

(log M)CdVar( f )≤ I ( f ).

Conclusion

Congratulations Lucio on your remarkable career and contributions and best wishes
for the future. It is time for us to meet!
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