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GIANPIETRO DEL PIERO

A unified approach to classical plasticity, including metal plasticity, geomateri-
als, and crystal plasticity, is presented. A distinctive feature of this approach is
that the basic constitutive elements (yield criterion, flow rule, consistency condi-
tion, and hardening rule), instead of being assumed on a phenomenological basis
or deduced from ad hoc principles, are obtained directly from the stationarity of
the energy. The plastic continuum is regarded as a particular micromorphic con-
tinuum, and its energy has the form resulting from a homogenization procedure
introduced in the theory of structured deformations. This form of the energy
requires an additive decomposition of the deformation gradient, in place of the
multiplicative decomposition usually adopted in finite plasticity. It is shown by
examples that many of the models adopted in classical plasticity can be obtained
from ad hoc specifications of the energy.

1. Introduction

Plasticity is a branch of continuum mechanics characterized by the presence of a
state variable, the plastic strain, which describes rearrangements of the material
structure at the microscopic level. With the progress of microstructural multiscale
theories, it became important to specify the nature of the continuum in which a
plasticity model is embedded. For classical plasticity the underlying continuum
is the classical continuum, that is, a continuum whose external power is produced
by body forces and surface tractions alone. This excludes nonlocal models such
as gradient plasticity, in which the plastic strain is supposed to produce an extra
power when multiplied by microscopic external forces, and the latter produce an
extra stress measure plus a hyperstress represented by a third-order tensor.1 Rate-
dependent theories, and in particular viscoplasticity, are also excluded from the
present treatment.
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1For this and other models of classical and nonclassical plasticity, see the book by Gurtin, Fried,

and Anand [Gurtin et al. 2010, Part XV] and the references therein.
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The bases of classical plasticity were laid down in the 1940s. Of the basic
constitutive elements of the theory,
• the yield condition,

• the flow rule,

• the consistency condition, and

• the hardening rule,

the first three had been fixed by the end of that decade, and the fourth followed a
few years later.2 Though these elements take origin from experimental observation,
several efforts were made to relate them to general principles, in order to show
that plastic response is not a caprice of nature, but obeys a precise mathematical
structure. In this spirit, Prager [1949] proved that the flow rule, in the form of a
normality law, is a consequence of the uniqueness of the solution of the incremental
equilibrium problem. In a paper published just before, Hill [1948] had proved that
uniqueness is, in turn, a consequence of a principle of maximum plastic work.

Soon afterwards, Drucker [1952] showed that normality is also a consequence
of a quasithermodynamic postulate of material stability. Actually this was not
progress, since Drucker’s postulate came out to be more restrictive than Hill’s prin-
ciple. Progress was also not brought by the postulate of Il’yushin [1961] which,
though less restrictive in general, in the case of classical plasticity is equivalent to
Drucker’s [Lucchesi and Podio-Guidugli 1990]. On the contrary, some progress
came with the introduction of supplementary state variables.3 This opened the way
to the study of nonassociated plasticity, which is in contradiction with Drucker’s
postulate, since by its own definition nonassociated plasticity does not obey the
normality law.4

Several variational principles were formulated at the earlier stages of the the-
ory.5 In the development of such principles, a turning point was marked by the
introduction of the concept of plastic potential.6 In the broader context of classical
continuum mechanics, related concepts of dissipation function and dissipation po-
tential were introduced by Ziegler [1963] and Moreau [1970; 1974]. Incremental
minimum principles involving a strain energy made of the sum of an elastic en-
ergy and a dissipation potential were formulated by Fedelich and Ehrlacher [1989]

2See Prager’s overview [1949]. Prager’s kinematical hardening model [1955] was introduced in
the mid 1950s.

3See [Lemaitre and Chaboche 1990, p. 193] or [Ziegler 1983, §14].
4The interest in nonassociated plasticity was stimulated by the study of geomaterials, such as

soils, concrete, and stones; see, e.g., [Vermeer and de Borst 1984].
5For the variational principles formulated before the 1950s, see Hill’s book [1950].
6See [Hill 1950] for plasticity, and [Rice 1971] for viscoplasticity. Later, the existence of a special

type of potential, called maximal responsive, was proved to be equivalent to Hill’s principle; see the
article by Eve, Reddy, and Rockafellar [Eve et al. 1990, Theorem 4.1].
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and by Petryk [2003]. Subsequent contributions by Dal Maso et al. [2006; 2008],
Mielke [Carstensen et al. 2002; Mielke 2003], and their schools marked substantial
progress in this direction.

The variational approach adopted in the present paper, formally similar to those
in [Fedelich and Ehrlacher 1989; Petryk 2003], has the peculiarity of deducing
all constitutive elements from the stationarity condition on the energy functional.
Indeed, this condition determines the incremental response law without any sup-
plementary assumption, such as the existence or convexity of the elastic range, or
the form of the flow rule.7

After fixing the incremental response law, the incremental equilibrium problem
can be formulated. This is the problem of determining the small deformations
from a given equilibrium placement, due to a conveniently small load increment.
Though the deformations to be determined are small, it is sometimes convenient
to formulate the problem in large deformations.8 This is the case, for example,
when one has in mind to approximate a problem with large load increments by a
sequence of problems with small load increments.

The present study is restricted to stationarity, that is, to the condition of nonnega-
tiveness of the first variation of the energy. In this way only equilibrium conditions
are obtained, without any information about stability. This is a serious limitation.
Indeed, a stability analysis would show that in classical plasticity a softening re-
sponse is unstable, because the plastic strain localizes on arbitrarily small regions of
the body. Initially, this led to considering softening materials as inadmissible. But
this viewpoint, consecrated by Drucker’s postulate, conflicted with the evidence
of the softening response exhibited by many real materials. Later, it was realized
that softening can be described by adding to the energy a nonlocal stabilizing term,
depending on the gradient of the plastic strain rate [Aifantis 1984; Bažant et al.
1984].9

In this paper some preliminary definitions, including a new ad hoc notation
for homogeneous maps, form Section 2, and the transitions from the equilibrium
problem in finite deformation to the evolution problem and from this one to the
incremental equilibrium problem are briefly illustrated in Section 3. This section
deals with two-scale, or micromorphic, continua, of which the plastic continua

7The idea of deducing the constitutive properties from two scalar potentials, an elastic energy
and a dissipation function, had already been exploited by Collins, Houlsby, and coworkers. They
initially applied it to geomaterials [Collins and Houlsby 1997], and then to general rate-independent
dissipative materials [Houlsby and Purzrin 2000; Collins 2003].

8The linearized equations for large deformations differ from those of the linear theory; see
Section 3.2 below.

9More recent one-dimensional analyses of the softening response in the proximity of fracture can
be found in [Pham et al. 2011a; 2011b] for damage and in [Del Piero 2013; Del Piero et al. 2013] for
plasticity.
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are a subclass. For them, in Section 3.4 it is shown that the stationarity of the
energy determines the response law relating the Piola stress to the elastic part of
the deformation, and produces a local stationarity condition which will be shown
to fully characterize the constitutive response.

In Section 4 the incremental problem is reformulated as a minimum problem for
the energy. The selected form of the energy is based on the additive decomposition
of the deformation gradient into an elastic and a plastic part, a rather unusual choice
in the context of large deformations. As shown in Section 4.1, this choice leads to
a particular form of the plastic strain rate, in which a symmetric plastic stretching
is followed by a rotation to be determined by a constitutive assumption. In most
models this rotation is taken equal to the identity. An exception is the crystal
plasticity model discussed in Section 7.10 An indifference argument developed in
Section 4.2 shows that the plastic part of the energy is independent of this rotation.

In the crucial Section 5, the constitutive elements of the theory are deduced from
the local stationarity condition, now called plastic stationarity condition. A major
result in this paper is that this condition determines a bounding map in the stress
space, related to the directional derivatives of a dissipation potential. The values
taken by this map in different directions impose directional limit values for the
stress. This leads to the definition of an elastic range, a region in the stress space
which by its own construction turns out to be closed and convex. From the plastic
stationarity condition it also follows that a plastic strain rate can only occur if the
stress is a boundary point of the elastic range, and that its direction belongs to the
normal cone at that boundary point. This is the normality law which determines
the associated flow rule. Thus, nonassociated flow rules are not provided by the
variational procedure.

In Section 6 some well known plasticity models are reobtained assuming par-
ticular forms of the plastic energy. Section 6.1 deals with the three basic mod-
els of perfect, kinematic, and dilatational plasticity, which include kinematic and
isotropic hardening as special cases. The assumption of isochoricity of the plastic
strain rate is studied in Section 6.2. It is well known that this assumption gives the
opportunity of taking the hydrostatic pressure as a supplementary state variable.11

As a consequence of stationarity, this extra variable generates a pressure-dependent
family of elastic ranges, such that normality holds for each member of the family.
This makes possible to include in the present scheme some plasticity models usu-
ally described by nonassociated flow rules.

10In the models based on the multiplicative decomposition, an equivalent constitutive assumption
is the assumption of plastic irrotationality, by which the plastic spin, which is the skew-symmetric
part of the plastic strain rate, is set to zero. Here, too, crystal plasticity is an exception.

11See, e.g., [Srinivasa 2010; Vermeer and de Borst 1984, Ziegler 1983, §17.6; Ziegler and Wehrli
1987, §VII.A].
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The isotropic case, in which the plastic energy is independent of the direction of
the plastic strain rate, is investigated in Section 6.3. This case includes the energies
of Drucker and Prager and of Mises. These energies are used as paradigms to com-
pare the plastic behaviors of metals and geomaterials. The fact that isochoric plas-
ticity cannot describe some plastic volume changes observed in geomaterials, such
as the dilatancy of soils, motivates the Cam-clay model summarized in Section 6.4,
specifically conceived to describe such phenomena [Roscoe and Poorooshasb 1963;
Roscoe et al. 1958].

Finally, Section 7 deals with the plasticity of crystals. This is a special case of
isochoric plasticity, in which the plastic strain has the form of slips occurring on
predetermined slip planes. As said above, this is the only case considered in this
paper in which the form of the plastic strain is given a priori, so that there is no
need of specifying constitutively any rotation. The single-slip and the multislip
models are illustrated in Sections 7.1 and 7.2, respectively. In Section 7.3, the
periodic energies used to study the two-level shear of single crystals are considered.
Within the exception constituted by crystal plasticity, this model exhibits the further
exception that the plastic potential which governs the evolution of the plastic strain
need not be nonsmooth. Instead of being diffused along the whole process, the
plastic dissipation concentrates on singular instability events of catastrophic nature.
This opens perspectives of revision of the bases of classical plasticity, including the
revisitation of the concept of elastic range and of the other constitutive elements.
For reasons of brevity, only a mention of such perspectives can be made here.

It is the present author’s opinion that the possibility of treating in a unified
way many models reproducing the behavior of materials of different natures, just
acting on the shape of the plastic energy and then looking at the consequences of the
plastic stationarity condition, is a paramount advantage of the variational approach.

2. Notation and preliminaries

2.1. Linear spaces and linear maps. By linear space we mean a finite-dimensional
vector space endowed with an inner product. A linear map from a linear space A

to a linear space B is a map ` : A →B such that

`(αH +βK )= α`(H)+β`(K ) for all H, K ∈ A and α, β ∈ R. (2-1)

The set of all linear maps of A into B is a linear space which will be denoted
by L (A ,B).

If B is the real line R, the elements of L (A ,R) are the linear functionals on A .
By the representation theorem of linear functionals, L (A ,R) is isomorphic to A .
That is, with every ` ∈L (A ,R) one can associate a unique element H of A such
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that
`(K )= H · K for all K ∈ A , (2-2)

with ( · ) the inner product of A .12

For A fixed and B = A , we write L in place of L (A ,A ) and we call its
elements second-order tensors. The linear maps of L into itself are called fourth-
order tensors.

A subspace of a linear space is a subset which is itself a linear space. Proper
subspaces of L are the set S of all symmetric tensors and the set W of all skew-
symmetric tensors.

2.2. Homogeneous and bihomogeneous maps. In plasticity, an important role is
played by homogeneous and bihomogeneous maps. Therefore, it does not seem
inappropriate to recall some basic definitions and to introduce some ad hoc notation.
A map h from a linear space A to a linear space B is homogeneous of order one,
in short, homogeneous, if

h(t H)= th(H) for all H ∈ A and t ≥ 0. (2-3)

The set H (A ,B) of all homogeneous maps from A to B is a vector space, with
obvious definitions of the sum and multiplication by a scalar:

(h+ l)(H)= h(H)+ l(H), (αh)(H)= αh(H) for all α ∈ R and H ∈ A .

(2-4)
If a homogeneous map is additive,

h(H + K )= h(H)+ h(K ) for all H, K ∈ A , (2-5)

it is linear. Therefore, L (A ,B) is a proper subspace of H (A ,B).
If B is the real line R, the elements of H (A ,R) are the homogeneous function-

als on A . In this case we write

h F K in place of h(K ). (2-6)

The operator “F” maps the elements of (H (A ,R)×A ) into the real numbers. In
particular, by (2-2), a linear h can be identified with an element H of A . In this
case, the pairing reduces to the inner product of A :

h ∈L (A ,R) =⇒ h F K = H · K for all K ∈ A . (2-7)

A bihomogeneous map on A is a homogeneous map K from A to H (A ,R). For
any such map, the homogeneous functional on A obtained applying K to K ∈ A

12See, e.g., [Halmos 1942, §67].
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and the real number obtained by applying this homogeneous functional to H ∈A

are denoted by
K{K }, K{K } F H, (2-8)

respectively. For every bihomogeneous map we have

K{λK } FµH = λµK{K } F H for all λ,µ≥ 0. (2-9)

If K is linear, we write K[K ] in place of K{K }. If K is linear and K[K ] is linear
for all K , then K is a linear map from A to itself, that is, a fourth-order tensor K.
In this case, we have

K{K } F H = K[K ] · H. (2-10)

2.3. Directional derivatives. Let A be a linear space, and let φ be a map of L =

L (A ,A ) into the real line R. For A ∈L and H ∈L \ {0}, the limit

∇̆φ(A) F H = lim
ε→0+

φ(A+ εH)−φ(A)
ε

(2-11)

is the directional derivative at A in the direction H . If this limit exists for all H ,
we say that φ is Gâteaux differentiable at A. From its very definition it is clear that
∇̆φ(A) is a homogeneous functional, that is, an element of H (L ,R). If ∇̆φ(A)
is additive, it reduces to the ordinary derivative ∇φ(A), and φ is said to be Fréchet
differentiable, in short, differentiable, at A.

The map φ is twice Gâteaux differentiable at A if ∇̆φ is Gâteaux differentiable
in a neighborhood of A and the limit

∇̆
2φ(A){H} F K = lim

ε→0+

∇̆φ(A+ εH) F K −∇̆φ(A) F K
ε

(2-12)

exists for all H ∈L \ {0}. In this case ∇̆2φ(A) is said to be the second directional
derivative at A in the direction H . It is clear that ∇̆2φ(A){H} is an element of
H (L ,R), and that ∇̆2φ(A) is a homogeneous map from L to H (L ,R), that is,
a bihomogeneous map on L . If ∇̆2φ(A) is linear in both H and K , it reduces
to the second Fréchet derivative ∇2φ(A), which is identified with a fourth-order
tensor. Here we shall be interested in the case H = K , in which the expansions

φ(A+ εH)= φ(A)+ ε∇̆φ(A) F H + 1
2ε

2
∇̆

2φ(A){H} F H + o(ε2),

∇̆φ(A+ εH)= ∇̆φ(A)+ ε∇̆2φ(A){H}+ o(ε)
(2-13)

are direct consequences of the definitions.

2.4. Nonsmooth potentials and dissipation potentials. A function φ from L to
the real line

(i) with φ(A)= 0,
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(ii) twice differentiable at L \ {A},

(iii) twice Gâteaux differentiable at A,

will be called a nonsmooth potential from A. A smooth potential is the special case
in which φ is also twice differentiable at A. A nonsmooth potential

(iv) strictly increasing along every direction H ,

λ > µ≥ 0 =⇒ φ(A+ λH) > φ(A+µH) for all H ∈L \ {0}, (2-14)

will be called a dissipation potential. We point out that (iv) implies

∇̆φ(A) F H > 0 for all H ∈L \ {0}. (2-15)

A dissipation potential is homogeneous from A ∈L if13

φ(A+ εH)= εφ(A+ H) for all H ∈L and ε ≥ 0. (2-16)

For a homogeneous potential from A, from (2-13)1 we have

φ(A+ H)= ∇̆φ(A) F H, ∇̆
2φ(A){H} F H = 0 for all H ∈L . (2-17)

3. The incremental problem

3.1. From the equilibrium problem to the evolution problem. Let �R be the re-
gion occupied by a continuous body in the reference placement. Suppose that
on �R is prescribed a system of external loads, consisting of a body force field bR

at the interior of �R and of a surface traction field sR on a given portion ∂s�R of
the boundary ∂�R .

A stress field TR on �R is said to be equilibrated with the given loads if it
satisfies the virtual work equation14∫

�R

TR · ∇v dVR =

∫
�R

bR · v dVR +

∫
∂s�R

sR · v d AR (3-1)

for all vector fields v on �R which vanish on ∂�R \ ∂s�R . The Piola stress tensor
TR is related to the deformation gradient ∇ f by a response law. The equilibrium
problem consists of finding the deformation f from �R produced by the given
loads. The weak formulation of the problem is obtained substituting the response
law into the virtual work equation and imposing the boundary condition of place

f (x)= f̂ (x), x ∈ ∂�R \ ∂s�R. (3-2)

13See, e.g., [Eve et al. 1990; Martin and Reddy 1993]. Here, nonhomogeneous potentials appear
in the dilatational plasticity models in Section 6. A dissipation potential is also frequently assumed
to be convex, but this assumption is not essential; see, e.g., [Petryk 2003, Remark 1]. In fact, non-
convexity is required to describe the softening response; see Section 6.1 below.

14See, e.g., [Ciarlet 1988, §2.6]. For simplicity, the variable of integration x is omitted.
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For an elastic body, the response law is a functional relation between the punctual
values of TR and ∇ f :

TR(x)= G(∇ f (x)), x ∈�R. (3-3)

For nonelastic bodies, the response law is less simple. In the class of simple mate-
rials it is assumed that, at each point x , the stress TR(x) is determined by the past
history of the gradient of f at x [Truesdell and Noll 1965, §28; Noll 1972]. By
consequence, the final deformation does not only depend on the final load (bR, sR),
but also on the loading path along which this load has been reached.

To follow the evolution of the load, the equilibrium problem is replaced by an
evolution problem, which can be formulated as follows. Let an initial placement f0

of the body, an initial stress TR0, a loading path t 7→ (bRt , sRt), and a family t 7→ f̂t

of constraints be given.15 The initial placement is required to satisfy the constraint
f̂0 on the constrained part of the boundary, and the initial stress is required to be
equilibrated with the initial load (bR0, sR0). The problem consists of determining
a deformation process t 7→ ft such that, for each t > 0, ft satisfies the constraint f̂t

and the stress TRt is equilibrated with the loads (bRt , sRt).

3.2. From the evolution problem to the incremental problem. In the evolution
problem, t varies over a finite interval [0, t†

]. In the incremental equilibrium
problem, this interval is restricted by taking the limit of t† to 0+. Then, from
the expansions

bRt=bR0+tδbR+o(t), sRt=sR0+tδsR+o(t), TRt=TR0+tδTR+o(t), (3-4)

the incremental version of the virtual work equation (3-1)∫
�R

δTR · ∇v dVR =

∫
�R

δbR · v dVR +

∫
∂s�R

δsR · v d AR (3-5)

follows. The weak formulation of the problem is completed by the prescription of
an incremental constraint û on ∂�R \ ∂s�R and of an incremental response law of
the form

δTR = h(∇u), (3-6)

where u(x) = f (x)− x is the displacement vector and h is a homogeneous map
depending on a set of variables which define the current state of each specific
continuum.16

15The parameter t is an internal time which describes the deformation path. It need not be related
to the physical time.

16This map is an evolution function in the sense of W. Noll’s new theory of simple materials [Noll
1972].
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For the solution of the evolution problem, a natural strategy is to subdivide the
interval [0, t†

] into subintervals, and to solve the incremental problem on each
subinterval, using the solution of each problem as the input for the next one. It is
expected that, in the presence of sufficient regularity, the solution to the evolution
problem would be achieved in the limit, when the lengths of all subintervals tend
uniformly to zero. There is, however, a difficulty in passing from a subinterval to
the next. Indeed, in this passage the initial deformation f0, the loads bR, sR , and
the constraint û change. By consequence, the response function h and the Piola
stress TR must be updated. This is perhaps the most difficult part of the solution
procedure. It will be not considered in the present paper, which is restricted to the
formulation of a single incremental problem.

The assumption of infinitesimal deformations, by which these changes are ne-
glected, drastically simplifies the problem. However, since the increments obey dif-
ferent laws in small and in large deformations, the incremental problem is different
in the two cases. Here, only the formulation in the context of large deformations
will be considered.

3.3. The energetic formulation. An alternative formulation of the equilibrium prob-
lem consists of transforming it into a minimum problem for the total energy of the
body. In this approach the equilibrium placements of the body are characterized by
the stationarity of the energy, that is, by the nonnegativeness of the first variation.
As already said in the Introduction, the stability of the equilibrium, which is decided
by the sign of the second variation, will not be considered here.

The energy of a body is assumed to be the sum of an internal strain energy plus
the energy communicated by the external loads:

Etot = Eint+ Eext. (3-7)

A classical continuum is a continuum with an external energy of the form17

Eext(bR, sR, u)=−
∫
�R

bR · u dVR −

∫
∂�R

sR · u d AR. (3-8)

The internal energy has the form of a volume integral, with an energy density
depending on the strain measures which characterize each specific continuum. In
particular, the class of two-scale, or micromorphic, continua is characterized by
two strain measures, the macroscopic deformation f and the local microscopic
deformation F .18 For a two-scale deformation ( f, F) we assume an internal energy

17In a nonclassical, or generalized continuum, the external energy has supplementary terms in-
volving external actions associated with the state variables.

18Here local means that the function F is not in general the gradient of a function defined over
the whole body.
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of the form

Eint( f, F)=
∫
�R

(ϕ(F)+φ(Fd)) dVR, (3-9)

where

Fd
=∇ f − F (3-10)

is the deformation due to the disarrangements [Owen 1995] which occur at the
microscopic scale, and the energy densities ϕ and φ are a smooth and a nonsmooth
potential, respectively.

This energy is the relaxed limit of the energies associated with the discontinuities
in a sequence of piecewise continuous macroscopic deformations approximating
( f, F).19 The existence of such approximating sequences for any two-scale de-
formation is ensured by the approximation theorem of the theory of structured
deformations [Del Piero and Owen 1993].20

3.4. Incremental minimization. Let t 7→ ( ft , Ft) be a solution of the incremental
problem from an initial placement which, for convenience, we take as the refer-
ence placement. Then f0 and F0 are the identity map ı and the identity tensor I ,
respectively, and ft and Ft have the expansions

ft = ı + t∇u+ o(t), Ft = I + t L + o(t). (3-11)

The region �R is now the region �0 occupied by the body at t = 0, and the loads
and stresses (3-4) are now

bt = b0+ tδbR + o(t), st = s0+ tδsR + o(t), Tt = T0+ tδTR + o(t). (3-12)

For Fd
t =∇ ft − Ft we have

Fd
0 = 0, Fd

t = t Ld
+ o(t), Ld

=∇u− L , (3-13)

19The dependence of the relaxed energy on the pair (F, Fd ) was proved by Choksi and Fonseca
[1997] for a model of defective crystals. They also found that the sum decomposition (3-9) holds in
some special cases, and conjectured that it may hold in general. In [Del Piero 2001; Owen 2000]
their conjecture was proved to be true in one dimension. Later this result was extended to three
dimensions, under different regularity assumptions. In the papers [Baía et al. 2012; Owen and Paroni
2015; Šilhavý 2017], φ was found to be a homogeneous potential. For plastic materials, we shall
see later that the homogeneous potentials can only describe a perfectly plastic response. To describe
work-hardening, more general potentials have been obtained either assuming special forms of φ
[Deseri and Owen 2002] or taking the relaxed limit of approximating sequences for second-order
structured deformations [Barroso et al. 2017].

20That Fd is an independent energetic variable is due to the fact that, in the limit, the discon-
tinuities in the piecewise continuous approximating deformations have a volume density, which is
exactly Fd ; see [Del Piero and Owen 1995].
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and, for the energy densities ϕ and φ,

ϕ(Ft)= t∇ϕ(I ) · L + 1
2 t2
∇

2ϕ(I )[L] · L + o(t2),

φ(Fd
t )= t∇̆φ(0) F Ld

+
1
2 t2
∇̆

2φ(0)[Ld
] F Ld

+ o(t2).
(3-14)

For fixed t > 0, the solution ( ft , Ft) is the minimum of the total energy in the class
of all deformations ( fε, Fε) such that

fε = ft + εv, Fε = Ft + εL, Fd
ε = Fd

t + εLd , (3-15)

with (v,L) a field of virtual velocities on �0 and ε > 0 a scalar parameter. The
total energy of ( fε, Fε) is

Etot( fε, Fε)= Etot( ft , Ft)+ ε

∫
�0

(∇ϕ(Ft) ·L+∇̆φ(Fd
t ) FLd) dV0

− ε

(∫
�0

bt · v dV0+

∫
∂�0

st · v d A0

)
+ o(ε). (3-16)

The energy is said to be stationary at ( f, F) if

lim
ε→0+

1
ε
(Etot( fε, Fε)− Etot( ft , Ft))≥ 0 (3-17)

for all perturbations (v,L). In particular, for L = ∇v we have Ld
= 0, and for

v = 0 on ∂�0 \ ∂s�0 we get∫
�0

∇ϕ(Ft) · ∇v dV0 =

∫
�0

bt · v dV0+

∫
∂s�0

st · v d A0, (3-18)

with the equality sign because the inequality holds for both v and −v. A compari-
son with the virtual work equation (3-1) then leads to the identification

Tt =∇ϕ(Ft) (3-19)

of ∇ϕ with a stress field Tt equilibrated with the loads (bt , st). Therefore, at every
stationarity point of the energy there is a stress field Tt equilibrated with the given
loads. In particular, the same relation at t = 0

T0 =∇ϕ(I ) (3-20)

provides the stress T0 associated with the initial deformation F0 = I .
As a consequence of (3-18), all terms in v cancel from (3-16) with L replaced

by ∇v−Ld . Then (3-17) reduces to the inequality∫
�0

∇̆φ(Fd
t ) FLd dV0−

∫
�0

Tt ·Ld dV0 ≥ 0. (3-21)
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The punctual inequality

Tt ·Ld
≤ ∇̆φ(Fd

t ) FLd for all Ld
∈L (3-22)

follows almost everywhere in �R .21 This is a necessary condition for the station-
arity of the energy.

Since the left-hand side of (3-21) is the first-order approximation of the differ-
ence between the energy of ( fε, Fε) and the energy of the minimizer ( ft , Ft), the
minimum of this difference is zero and is attained for Ld

= Ld . Then for Ld
= Ld

inequality (3-22) is satisfied as an equality

Tt · Ld
= ∇̆φ(Fd

t ) F Ld . (3-23)

4. Incremental minimization in plasticity

Classical plasticity deals with continua which are both classical and micromorphic.
That is, the deformations are two-scale deformations ( f, F), and the total energy is
the sum of the energies (3-8) and (3-9). The difference ∇ f − F is the plastic strain
Fd , and inequality (3-22) is the plastic stationarity condition. In what follows,
this condition is used to characterize the incremental response law. This requires a
preliminary definition of the set of the admissible plastic strain rates and the deter-
mination of the restrictions imposed on the energy densities ϕ and φ by material
indifference.

4.1. Admissible plastic strain rates. The definition Fd
= ∇ f − F of the plastic

strain can be read as the additive decomposition

∇ f = F + Fd (4-1)

of the macroscopic deformation gradient into the sum of an elastic and a plastic
part.22 The choice of the additive decomposition has notable consequences on
the structure of the plastic strain rate and, consequently, on the restrictions on the
plastic potential φ imposed by material indifference.

Consider a deformation process t 7→ ( ft , Ft) with the initial placement as ref-
erence placement. In the polar decomposition Fd

t = Rd
t U d

t of the plastic strain,

21Indeed, if for some Ld the punctual inequality were violated on a region of positive volume, the
integral inequality would be violated by any perturbation with support in that region and with Ld (x)
parallel to Ld .

22This decomposition is standard in infinitesimal plasticity, while in finite plasticity the Kröner–
Lee multiplicative decomposition ∇ f = Fe F p is largely preferred. The reason for the present choice
of the additive decomposition is the form (3-9) assumed for the energy of a micromorphic continuum.
For a detailed discussion on additive and multiplicative decompositions in plasticity, see the present
author’s paper [Del Piero 2018].
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at t = 0 we have Fd
0 = 0. Then U d

0 is zero, Rd
0 is indeterminate, and Rd

t and U d
t

have the expansions23

Rd
t = Rd

0 (I + tW d)+ o(t), U d
t = t Dd

+ o(t). (4-2)

Then, by consequence,
Ld
= Rd

0 Dd . (4-3)

Thus, in the additive decomposition the plastic strain rate Ld and the plastic stretch-
ing Dd differ by the rotation Rd

0 . This rotation is determined by a constitutive
assumption.24 Then either a set S d

0 of admissible plastic stretchings for the initial
deformation is selected a priori and the set of the admissible plastic strain rates
L d

0 = Rd
0 S d

0 is deduced, or vice versa.
The most common constitutive choice is Rd

0 = I , which corresponds to assuming
the symmetry of the plastic strain rate.25 In the following we keep this choice. The
important exception of crystal plasticity is treated separately in Section 7.

4.2. Indifference requirements. Like every scalar-valued function, the potentials
ϕ, φ must be invariant under distance-preserving changes of placement.26 This
results in the indifference conditions

ϕ(F)= ϕ(QF), φ(Fd)= φ(QFd) (4-4)

to be satisfied by all F, Fd in L and by all proper orthogonal tensors Q.27 For the
function ϕ, from the polar decomposition F = RU of F , taking Q = RT we get
the condition

ϕ(F)= ϕ(U ), (4-5)

23In the multiplicative decomposition, F p
t is defined in an intermediate placement at which both

F p
0 and R p

0 are equal to I and therefore are nonsingular. In the additive decomposition there is no
such placement, since both f and F are defined on the reference placement.

24In the multiplicative decomposition, F p
t = I + t L p implies R p

0 = I . Nevertheless, the decompo-
sition is determined only to within an indeterminate rotation; see [Dashner 1986; Green and Naghdi
1971; Lubarda and Lee 1981] and the paper [Del Piero 2018] by the present author. Therefore, a
constitutive assumption on a rotation has to be made anyway. Note also that, if R p

t = I + tW p

and U p
t = I + t D p , the plastic stretching D p and the plastic spin W p are the symmetric and skew-

symmetric parts of L p , respectively. This property is not preserved in the additive decomposition.
25In the multiplicative decomposition, the corresponding constitutive choice is the irrotationality

assumption W p
= 0 [Gurtin and Anand 2005; Reddy 2011; Reddy et al. 2008]. This assumption

has been made, tacitly or explicitly, in classical textbooks [Hill 1950; Prager 1949; 1955], as well as
in some more recent models of gradient plasticity [Fleck and Hutchinson 2001; Gurtin and Anand
2005; Gudmundson 2004].

26See, e.g., [Truesdell and Noll 1965, §17].
27The transformation law for Fd is a consequence of the laws ∇ f → Q∇ f and F→ QF . In the

multiplicative decomposition, while the transformation law Fe
→ QFe was universally accepted,

the question of the transformation law to be adopted for F p has a long and controversial history
[Dashner 1986; Green and Naghdi 1971; Lubarda and Lee 1981; Gurtin et al. 2010, §95.2].
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according to which ϕ is insensitive to the rotation R which follows the pure stretch U
in the microscopic deformation. This condition can be used to determine an indif-
ference restriction on ϕ at F = I . Indeed, for R and U consider the expansions

R = I + εW + 1
2ε

2(W 2
+ W̃ )+ o(ε2), U = I + εD+ 1

2ε
2 D̃+ o(ε2), (4-6)

with D, D̃ symmetric and W, W̃ skew-symmetric. Then,

F = RU = I + ε(W + D)+ 1
2ε

2(W 2
+ W̃ + D̃+ 2W D)+ o(ε2), (4-7)

and therefore,

ϕ(F)=∇ϕ(I ) · (ε(W + D)+ 1
2ε

2(W 2
+ W̃ + D̃+ 2W D))

+
1
2ε

2C[W + D] · (W + D)+ o(ε2), (4-8)

where C is the fourth-order tensor

C=∇2ϕ(I ), (4-9)

which, by the interchangeability of the order of differentiation, has the symmetry
property

C[H ] · K = C[K ] · H. (4-10)

The expansion of ϕ(U ) is the same as (4-8), with W = 0. Subtracting the two
expansions, from (4-5) we get

∇ϕ(I ) · (εW + ε2W̃ )+ ε2(C[W ] −W∇ϕ(I )) · ( 1
2 W + D)= 0, (4-11)

and due to the arbitrariness of ε, W , and D, the separate conditions

∇ϕ(I ) ·W = 0,

(C[W ] −W∇ϕ(I )) ·W = 0,

(C[W ] −W∇ϕ(I )) · D = 0,

for all W ∈W and D ∈S , (4-12)

follow. The last two conditions merge in the single condition

C[W ] =W∇ϕ(I ) for all W ∈W , (4-13)

according to which the restriction of C to W is determined by ∇ϕ(I ).
For the nonsmooth potential φ, for ft and Ft as in (3-11) and from (3-13)2 and

(4-3) we have

φ(Fd
t )= φ(t Ld)+ o(t)= φ(t Rd

0 Dd)+ o(t), (4-14)

and from the indifference condition (4-4)2 the condition

φ(Fd
t )= φ(t Dd)+ o(t) (4-15)
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follows. Then from the representations

φ(Fd
t )= t∇̆φ(0) F Ld

+
1
2 t2
∇̆

2φ(0){Ld
} F Ld ,

φ(Fd
t )= t∇̆φ(0) F Dd

+
1
2 t2
∇̆

2φ(0){Dd
} F Dd ,

(4-16)

we get

∇̆φ(0) F Ld
= ∇̆φ(0) F Dd , ∇̆

2φ(0){Ld
} F Ld

= ∇̆
2φ(0){Dd

} F Dd . (4-17)

Since Rd
0 = I implies Ld

= Dd , the indifference conditions on φ are trivially satis-
fied assuming Rd

0 = I . Effective restrictions on φ follow from any other constitutive
choice of Rd

0 .

5. Construction of the incremental response law

The purpose of this section is to deduce the incremental response law from the
plastic stationarity condition (3-22). From (3-19), (3-12)3, and (3-14)1 we have

T0+ tδT =∇ϕ(I )+ t∇2ϕ(I )[L] + o(t), (5-1)

and from (4-9), (3-13)3, and (4-3) with Rd
0 = I ,

δT = C[L] = C[∇u− Ld
] = C[∇u− Dd

]. (5-2)

By comparison with the incremental stress-strain relation (3-6), we get

C[∇u− Dd
] = h(∇u). (5-3)

This is a homogeneous map g from ∇u to Dd

Dd
= g(∇u). (5-4)

Therefore, the determination of the incremental stress-strain relation (3-6) is re-
duced to the determination of the map g. With this goal in mind, we proceed to
the characterization of the basic constitutive elements of the theory, in the order in
which they are listed in the Introduction.

5.1. The yield condition. With the identification Ld
= Dd due to the assumption

Rd
0 = I , the plastic stationarity condition (3-22) at t = 0 becomes

T0 ·Dd
≤ Φ̆0 FDd , Φ̆0 = ∇̆φ(0), (5-5)

for all Dd in a given set S d
0 of admissible plastic stretchings.28 This inequality

imposes the upper bound Φ̆0 FDd on the projection of T0 in the direction of Dd .

28Usually, S d
0 is assumed to be a cone in S , that is, a subset of S such that Dd

∈ S d
0 =⇒

λDd
∈S d

0 for all λ > 0.
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Then, Φ̆0 is a bounding map for T0. Indeed, inequality (5-5) says that for every
direction N = Dd/|Dd

| in S d
0 the stress T0 must belong to the set 29

HN
0 = {T ∈S | T · N ≤ Φ̆0 F N }, (5-6)

which is the closed half-space of S bounded by the hyperplane with exterior unit
normal N , placed at the distance Φ̆0 F N from the origin. Since this holds for all
directions in S d

0 , T0 must belong to the intersection

C0 =
⋂

N∈S d
0 , |N |=1

HN
0 (5-7)

of all HN
0 . Thus, a first consequence of (3-22) is the yield condition30

T0 ∈ C0. (5-8)

Since all HN
0 are closed convex sets, their intersection C0 is also a closed convex

set. Moreover, if φ is a dissipation potential, then Φ̆0 F N > 0 by (2-15), and the
inequality in (5-6) is strict at T = 0. That is, the null tensor is an interior point
of HN

0 . Since this holds for all N , the point T = 0 also belongs to the interior of C0.
The boundary of C0 consists of all T0 ∈ S at which the inequality in (5-6) is

satisfied as an equality:

T0 ∈ ∂C0 ⇐⇒ there is N0 ∈S d
0 such that T0 · N0 = Φ̆0 F N0. (5-9)

By (5-6), T0 also belongs to the boundary of the half-space HN0
0 . Since C0 is

included in HN0
0 , it follows that T · N0 ≤ Φ̆0 F N0 for all T ∈ C0. Then subtracting

from the previous equation we get

(T0− T ) · N0 ≥ 0 for all T ∈ C0; (5-10)

that is, N0 belongs to the normal cone to C0 at T0.
From (5-6) and (5-7) we see that C0 is determined by φ. Conversely, for a given

C0 the relation (5-10) associates with every direction N0 a (possibly nonunique)

29We recall that T0 =∇ϕ(I ) is a symmetric tensor by the indifference condition (4-12)1.
30In the terminology of convex analysis, inequality (5-2) says that the map Φ̆0 is subdifferentiable

at Dd
= 0 and T0 belongs to the subdifferential of Φ̆0 at 0. Moreover, if S d

0 is a proper subset of
S , then C0 is unbounded, and S d

0 and the recession cone of C0 are polar to each other [Rockafellar
1970, Theorem 14.6]. In particular, if S d

0 is a subspace, then the recession cone of C0 is its orthogonal
complement. Equation (5-11) below also says that Φ̆0 is the support function, that is, the conjugate
of the indicator function, of C0; see [Eve et al. 1990] or [Rockafellar 1970, Theorem 13.2]. Though
the formalism of convex analysis fully captures the mathematical structure of classical plasticity, I
prefer to keep the present exposition at a more elementary level.
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boundary point T0 of C0 such that

T0 · N0 = sup
T∈C0

T · N0. (5-11)

Then Φ̆0 F N0 is specified by (5-9). Since this can be repeated for all directions N ,
the whole restriction of Φ̆0 to S d

0 is specified in this way. Thus, there is a one-to-
one correspondence between the closed convex sets C0 of S and the homogeneous
maps Φ̆0 on S d

0 .31 On the contrary, the correspondence between directions N
in S d

0 and boundary points of C0 need not be one-to-one.32

5.2. The flow rule. At t = 0 and for Rd
0 = I , (4-17)1 holds and (3-23) takes the

form
T0 · Dd

= Φ̆0 F Dd . (5-12)

By consequence, a nonnull plastic stretching may occur only if T0 is a boundary
point of C0. The flow rule is a law prescribing the direction of Dd at each boundary
point. For example, the associated flow rule states that Dd belongs to the normal
cone of C0 at T0. This is indeed the rule provided by the variational approach, since
(5-12) says precisely that Dd belongs to the normal cone at T0. Calling N0 the unit
tensor Dd/|Dd

|, the normality rule

Dd
=

{
λd N0, λ

d
≥ 0 if T0 ∈ ∂C0,

0 if T0 ∈ C0 \ ∂C0
(5-13)

is obtained. The fact that Dd is zero at the interior point justifies the name of elastic
range given to C0.

The product T0 · Dd is the plastic power. According to (5-11), we have

(T0− T ) · N0 ≥ 0 for all T ∈ C0. (5-14)

This is Hill’s principle of maximum plastic work.33 The inequality is strict for
T = 0, because the origin of S is an interior point of C0. Then the strict inequality

T0 · Dd > 0 (5-15)

31If φ is a homogeneous map, then Φ̆0 F N is equal to φ(N ) by (2-17)1. Therefore, there is a one-
to-one correspondence between closed convex sets and homogeneous dissipation potentials. Eve et al.
[1990] called canonical yield function the homogeneous dissipation potential associated with C0.

32For example, if C0 is polyhedral, the normal to a face is a normal at the infinitely many points
which belong to that face, and at each point on an edge or vertex of C0 there are the infinitely many
normals which form the normal cone at that point.

33According to Srinivasa [2010], the existence and convexity of the elastic range is a consequence
of Ziegler’s principle of maximum rate of dissipation [1963], of which Hill’s principle is a special
case. That the elastic range is a derived concept was also pointed out by Martin and Reddy [1993].
In the present context, elastic range and Hill’s principle are both derived concepts, since both are
consequences of the plastic stationarity condition.
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holds. This is the dissipation inequality which establishes the dissipative character
of the plastic power T0 · Dd .

5.3. The consistency condition. Equation (3-23) states that, in the limit t→ 0+,
the stress Tt and the bounding map ∇̆φ(Fd

t ) have the same projection in the direc-
tion of the plastic stretching Dd . This is the consistency condition, which says that
for t→ 0+ and Dd

6= 0 the stress Tt is a boundary point of the elastic range Ct at t
[Prager 1949].34

With the identification Ld
= Dd due to the assumption Rd

0 = I , for Ld
= Ld

from (3-23) and (5-12) we have

δT · Dd
= K̆{Dd

} F Dd , K̆ = ∇̆2φ(0), (5-16)

and since Dd
= λd N0 we get

λd(δT · N0− λ
dK̆{N0} F N0)= 0. (5-17)

This complementarity condition, which states that either λd or the term within
parentheses is zero, is the mathematical form taken by the consistency condition.

5.4. The incremental response law. Due to the normality rule (5-13), the incre-
mental relation (5-2) takes the form

δT = C[∇u] − λdC[N0]. (5-18)

On the right-hand side, only the plastic multiplier λd is unknown. For its deter-
mination we have at our disposal the inequality λd

≥ 0 and the complementarity
condition (5-17). Together with (5-18) multiplied by N0,

δT · N0 = C[∇u] · N0− λ
dC[N0] · N0, (5-19)

they form a system in the unknowns δT · N0 and λd . If C[∇u] · N0 < 0, the last
equation implies δT · N0 < 0, and then λd

= 0 by the complementarity condition.
If λd > 0, from (5-17) and (5-19) by elimination of δT · N0 we get

λd(C[N0] · N0+ K̆{N0} F N0)= C[∇u] · N0. (5-20)
Then, assuming

C[N0] · N0+ K̆{N0} F N0 > 0, (5-21)

it follows that C[∇u] ·N0 ≥ 0 for λd
≥ 0. Then the problem has the unique solution

λd(N0)=
〈C[N0] · ∇u〉

C[N0] · N0+ K̆{N0} F N0
, (5-22)

34Since Tt is not symmetric in general, Ct is not, in general, a subset of S . The symmetry of Tt
and the inclusion of Ct in S can be recovered by a change of reference placement, taking at each t
the current placement as reference placement.
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where 〈α〉 =max{α, 0} denotes the positive part of a real number α, and C[∇u] ·
N0 = C[N0] · ∇u by the symmetry property (4-10). This is a homogeneous rela-
tion between λd(N0) and ∇u, and its substitution into (5-18) provides the desired
incremental law (3-6).

5.5. Elastic unloading. A strain rate ∇u is said to determine a regime of
loading if C[N0] · ∇u > 0,
unloading if C[N0] · ∇u < 0,
neutral loading if C[N0] · ∇u = 0.

(5-23)

By (5-22), the response law can be split into two linear relations, one for loading
and one for unloading. At loading, from (5-22) we have

δT = L[∇u], (5-24)

with

L= C−
C[N0]⊗C[N0]

C[N0] · N0+ K̆{N0} F N0
, (5-25)

and at unloading we have
δT = C[∇u]. (5-26)

The latter is an elastic law, corresponding to λd
= 0. It describes the phenomenon

of elastic unloading, typical of plasticity.

5.6. The hardening rule. In the loading regime, for λd > 0 and for sufficiently
small t > 0, the stress Tt = T0 + tδT + o(t) is placed outside, inside, or on the
boundary of the elastic range C0, depending on the sign of the product δT · N0.
Since by the consistency condition Tt is a boundary point of the elastic range Ct ,
the three possible locations of Tt correspond to an enlargement, to a contraction, or
to invariance of the elastic range at T0. In the three cases we say that the response
at loading is hardening, softening, and perfectly plastic, respectively. From (5-24)
and (5-25) we get the hardening rule35

δT · N0 = L[∇u] · N0 = h(N0)C[∇u] · N0, (5-27)

where

h(N0)=
K̆{N0} F N0

C[N0] · N0+ K̆{N0} F N0
(5-28)

is the hardening modulus. Note that h(N0) < 1 if C restricted to S is positive
definite and that, the denominator being positive by assumption (5-21), h(N0) has
the same sign of K̆{N0} F N0. Then in the loading regime, in which C[∇u] · N0

35See, e.g., [Lemaitre and Chaboche 1990; Lubliner 1990].
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is positive, the response in the direction N0 is hardening, softening, or perfectly
plastic if h(N0) is positive, negative, or zero, respectively.

6. Some models of classical plasticity

After establishing the incremental response law, we now show how the models of
classical plasticity can be obtained taking particular forms of the plastic energy
density φ. Throughout this section we assume Rd

0 = I , that is, Ld
= Dd .

6.1. The three basic models. We assume that the elastic energy density ϕ is a
smooth potential and that the plastic energy density φ is a nonsmooth potential from
Fd
= 0. We consider three basic models of classical plasticity: perfect, kinematic,

and dilatational plasticity, which correspond to the special forms of φ
perfect plasticity φ = φh,

kinematic plasticity φ = ψ +φh,

dilatational plasticity φ = φnh,

(6-1)

with φh a homogeneous dissipation potential, φnh a nonhomogeneous dissipation
potential, and ψ a smooth potential.

6.1.1. Perfect plasticity. If φh is a homogeneous potential from A= 0, from (2-17)1

we have φh(Dd)= ∇̆φh(0) FDd , and inequality (5-5) reduces to

T0 ·Dd
≤ φh(Dd). (6-2)

Then the boundary of each generating half-space HN
0 is placed at the distance φh(N )

from the origin. Moreover, from (2-17)2 we have

K̆{N } F N = 0; (6-3)

that is, the hardening modulus (5-28) is zero. The hardening rule (5-27) then re-
duces to

δT · N0 = 0, (6-4)

in agreement with the definition of a perfectly plastic response given in the preced-
ing section. Therefore,

Tt · N0 = (T0+ tδT ) · N0 = T0 · N0. (6-5)
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Since T0 is a boundary point of C0 and Tt is a boundary point of Ct by the consis-
tency condition, this equation shows that for every direction N0 in S d

0 the generat-
ing half-space HN0 for C0 is also a generating half-space for the projection CS

t of Ct

on S .36 Then C0 and CS
t have the same generating half-spaces; that is, CS

t = C0.

6.1.2. Kinematic plasticity. If φ is the sum of a smooth potential ψ and a homo-
geneous dissipation potential φh , from (4-15) we have

φ(Fd
t )= ψ(t Dd)+φh(t Dd)+ o(t). (6-6)

Let us use the differentiability of ψ to introduce the tensor

TBt =∇ψ(t Dd), (6-7)

for which, from the power expansions

TBt = TB0+ tδTB+o(t), ∇ψ(t Dd)=∇ψ(0)+ t∇2ψ(0)[Dd
]+o(t), (6-8)

we have
TB0 =∇ψ(0), δTB = D[Dd

], D=∇2ψ(0). (6-9)

Inequality (5-5) then takes the form

(T0− TB0) · N ≤ φh(N ) for all N ∈S d
0 , |N | = 1. (6-10)

This tells us that the boundary of each generating half-space HN
0 of C0 is placed

at the distance φh(N ) from the projection T S
B0 of TB0 on S . This distance is the

same as in perfect plasticity, but now is measured from the point T S
B0 and not from

the origin. Moreover, since in the identities

K̆{N0} F N0 = ∇̆
2φ(0){N0} F N0 = D[N0] · N0+∇̆

2φh(0){N0} F N0, (6-11)

the last term is zero by (2-17)2, the plastic multiplier (5-22) and the hardening
modulus (5-28) take the form

λd(N0)=
C[∇u] · N0

(C+D)[N0] · N0
, h(N0)=

D[N0] · N0

(C+D)[N0] · N0
. (6-12)

Then, from (5-27) and (6-9)2,

(δT − δTB) · N0 = h(N0)C[∇u] · N0− λ
d(N0)D[N0] · N0 = 0. (6-13)

This is the same relation (6-4) of perfect plasticity with Tt replaced by (Tt − TBt).
It says that the generating half-spaces for CS

t are the generating half-spaces HN0 for
C0 translated of δT S

B , that is, that CS
t = C0+{δT S

B }. The fact that the translation of the

36We recall that, in general, Ct is not included in S ; see Footnote 34. Here and in the following,
the superscript S denotes the projection on S symmetric part of a tensor. In particular, AS denotes
the symmetric part of a tensor A.
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elastic range is controlled by the translation of TB motivates the name backstress
tensor attributed to TB .

In kinematic plasticity, the response in a direction N0 is hardening, softening,
or perfectly plastic depending on the sign of h(N0). For h(N0) positive, we have
Prager’s kinematic hardening model [1955].37

6.1.3. Dilatational plasticity. As discussed in Section 5.6, to a positive hardening
modulus corresponds an enlargement of the elastic range

h(N0) > 0 for all N0 ∈S d
=⇒ C0 ⊂ CS

t . (6-14)

By (5-21), under assumption (5-28), h(N0) is positive if K̆{N0} F N0 is positive. If
φ is a nonhomogeneous dissipation potential φnh , then K̆ = ∇̆2φnh(0). Therefore,
a hardening response occurs in all directions N0 if φnh is strictly convex. Isotropic
hardening is the special case of h(N0) independent of N0.

If h(N0) is positive at t = 0, it remains positive for sufficiently small t . For
all such t there is no way of producing a contraction, that is, the expansion of the
elastic range is irreversible.

In conclusion, comparing CS
t and C0 we see that a homogeneous dissipation

potential leaves C0 unchanged, a smooth potential produces a rigid translation, and
a nonhomogeneous dissipation potential produces a dilatation or a contraction, de-
pending on the sign of the hardening modulus. More complex evolutions of the
elastic range can be described by combinations of the potentials considered here.38

6.2. Isochoric plasticity. The experiments show that for many materials the plastic
strain rate is practically isochoric. The presence of this internal constraint modifies
the form of the energy, and this requires a nontrivial reformulation of the theory.

6.2.1. The isochoricity constraint. We still consider two-scale deformations ( f, F)
and take the difference (∇ f − F) as the plastic deformation Fd . Isochoricity is the
assumption that the volume changes in the macroscopic and microscopic deforma-
tions are the same:

det F = det∇ f. (6-15)

In a deformation process t 7→ ( ft , Ft) from (ı, I ), from the expansions (3-11),

det∇ ft = 1+ t I · ∇u+ o(t), det Ft = 1+ t I · L + o(t), (6-16)

37The dependence of the backstress tensor on the differentiable part of the plastic strain energy
was pointed out by Aifantis [1987]. See also [Anand and Gurtin 2003].

38In [Gurtin et al. 2010, p. 421], it has been pointed out that “for many metals, the actual strain-
hardening behavior. . . may be approximated by a combination of nonlinear isotropic hardening and
nonlinear kinematic hardening.” In fact, the possibility of more general combinations of kinematic
and dilatational plasticity emerges from the present analysis.
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and since ∇u− L = Ld , isochoricity results in the constraint

I · Ld
= 0. (6-17)

Consider the decomposition of a second-order tensor A into the sum of a hydro-
static and a deviatoric part:

A = AH
+ AD, AH

=
1
3(I · A)I, I · AD

= 0. (6-18)

They are the perpendicular projections of A on the hydrostatic axis and on the
deviatoric hyperplane,

L H
= {A ∈L | A = α I, α ∈ R}, L D

= {A ∈L | I · A = 0}, (6-19)

respectively. Then the constraint (6-17) can be written in any of the equivalent
forms

Ld
∈ LD, Ld

= Ld D, Ld H
= 0. (6-20)

6.2.2. The plastic strain energy. The elastic energy density ϕ is a function of the
variable F , which is not restricted by the constraint (6-17). Then ϕ is not con-
strained as well. On the contrary, the plastic energy density φ̃ depends on the
plastic strain rate Ld , which is now assumed to be deviatoric. It is then appropriate
to assume a dependence on the part of the stress which does no work in any defor-
mation process which satisfies the constraint, that is, on the hydrostatic stress T H .
Here we assume the separate dependence

φ̃(Ld , p)= φ(Ld)ψ(p), Ld
∈L D, p ∈ R, (6-21)

where φ is a dissipation potential, ψ is a smooth potential, and p is the hydrostatic
pressure

p =− 1
3 I · T, (6-22)

related to the hydrostatic stress by

T H
=−pI. (6-23)

6.2.3. The plastic stationarity condition. At each point x , consider a deformation
process t 7→ ( ft , Ft) from the reference placement, and a pressure process t 7→ pt .
To minimize the total energy at the time t , take a family ε 7→ (εv, εL) of perturba-
tions and consider the perturbed process t 7→ ( fε, Fε), with fε and Fε as in (3-15).
The perturbed plastic energy density is φ(Fd

ε )ψ(pt), with pt the pressure at t and

φ(Fd
ε )= φ(F

d
t )+ ε∇̆φ(F

d
t ) FLd . (6-24)
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With the expansions (3-11) of ft and Ft , the perturbed total energy takes the form

Etot( fε, Fε, pt)= Etot( ft , Ft , pt)+ ε

∫
�0

(∇ϕ(Ft) ·L+ψ(pt)∇̆φ(Fd
t ) FLp) dV0

− ε

(∫
�0

bt · v dV0+

∫
∂�0

st · v d A0

)
+ o(ε). (6-25)

From the stationarity condition (3-17), for Ld
= 0 we have L=∇v, and the identifi-

cation (3-19) of ∇ϕ(Ft) with the Piola stress Tt follows. Moreover, by elimination
of all terms in v and subsequent localization, after recalling that Rd

0 = I implies
Ld
= Dd we get the counterpart of the plastic stationarity condition (3-22),

T D
t ·Dd

≤ ψ(pt)∇̆φ(t Dd) FDd , (6-26)

to be satisfied by all Dd belonging to a given subset S d
0 of S D . With the same mo-

tivation used to establish (3-23) in the unconstrained case, for Dd
= Dd inequality

(6-26) reduces to the equality

T D
t · D

d
= ψ(pt)∇̆φ(t Dd) F Dd . (6-27)

6.2.4. The evolution law for the hydrostatic pressure. From (3-19) we still have
the incremental stress-strain relation (5-2), with C the elastic tensor ∇2ϕ(I ). For
this tensor, the identities

C[A] = C[AH
+ AD

] = (C[A])H
+ (C[A])D (6-28)

hold for all A in L . For simplicity, we focus on the special case in which C maps
the hydrostatic tensors into hydrostatic tensors39

C[AH
] = (C[A])H . (6-29)

Then (6-28) implies C[AD
] = (C[A])D; that is, C also maps the deviators into

deviators. Since the hydrostatic tensors are those parallel to the identity tensor I ,
from (6-29) and the linearity of C it follows that

C[AH
] = 3k AH , (6-30)

with k a positive material constant, called the bulk modulus.
For N0 ∈S D , in the incremental stress-strain relation (5-18) we have

δT = C[∇u H
] +C[∇u D

− λd N0] = 3k∇u H
+C[∇u D

− λd N0], (6-31)

and by effect of assumption (6-29) this equation splits into two parts

δT H
= 3k∇u H , δT D

= C[∇u D
− λd N0]. (6-32)

39This relation is satisfied by all orthotropic materials with cubic symmetry, and in particular by
all isotropic materials; see, e.g., [Gurtin 1972, §26].
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For the hydrostatic part, recalling the definition (6-22) of the hydrostatic pressure,

δp =− 1
3 I · δT =− 1

3 I · δT H
=−k I · ∇u H

=−k I · ∇u. (6-33)

This is the evolution law for the hydrostatic pressure, according to which p is de-
termined by the hydrostatic part of the macroscopic deformation. We now proceed
to the determination of the evolution law for the deviatoric stress.

6.2.5. Yield conditions, elastic ranges, and admissible stresses. At t = 0, from
(6-26) we have

T D
0 ·Dd

≤ ψ(p0)Φ̆0 FDd , (6-34)

with Φ̆0 as in (5-5). This inequality says that T D
0 , which is symmetric by the indif-

ference condition (4-12)1, belongs to a family of closed half-spaces HN
p0

of S D,
with normals N in S d

0 and with distance from the origin proportional to ψ(p0).
The intersection Cp0 = ψ(p0)C0 of all HN

p0
is the elastic range associated with the

pressure p0, and the condition

T D
0 ∈ ψ(p0) C0 (6-35)

is the yield condition for the pressure p0. Thus, with the initial deformation (ı, I )
is associated a family of elastic ranges p 7→ Cp = ψ(p) C0, in which each Cp is a
homothetic transformation of C0 with center at the origin and ratio ψ(p).

In the space S , each Cp belongs to the hyperplane lying at the (signed) distance
p from S D . Then the Cp are pairwise disjoint subsets of S . Their union K0 is the
set of all admissible stresses for the initial deformation.40

6.2.6. Flow rule and consistency condition. At t = 0, (6-27) reduces to

T D
0 · D

d
= ψ(p0)Φ̆0 F Dd . (6-36)

Since both Dd and Cp0 are in the space of the symmetric deviators, this equation
tells us that T D

0 is a boundary point of Cp0 relative to this space, and that Dd belongs
to the normal cone of Cp0 at T D

0 . Thus, the normality rule

D p
=

{
λd N0, λ

d
≥ 0 if T D

0 ∈ ∂Cp0,

0 if T D
0 ∈ Cp0 \ ∂Cp0

(6-37)

is established.

40The idea of considering as the set of admissible stresses a one-parameter family of elastic ranges
is not new. Families of yield regions enclosed by a bounding surface [Dafalias and Popov 1975] were
used to describe the work-hardening of metals [Phillips and Sierakowski 1965] and their response
to cyclic loading [Mróz 1969]. Later, the same idea was applied to geomaterials by Vermeer and
de Borst [1984] and by Roscoe and coworkers [Roscoe and Burland 1968; Roscoe and Poorooshasb
1963]. See also [Ziegler and Wehrli 1987, p. 223].
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According to this rule, the plastic strain rate is zero at all interior points of Cp0 .
Since the interior points of Cp0 are also interior points of the set K0 of the admis-
sible stresses, one is tempted to consider K0 as the real elastic range. This choice,
which has been actually made in several plasticity models, is incompatible with
the normality law, because the direction N0 is normal to Cp0 but not, in general,
to K0. This inconvenience has been circumvented by rejecting the normality law,
that is, by adopting a nonassociated flow rule. Here we have shown that this choice
contrasts with the result provided by energy minimization.41

For δp 6= 0, D p cannot be zero because (6-27) must be satisfied at t > 0. From
this equation, with the expansions

T D
t = T D

0 + tδT D
+ o(t),

∇̆φ(t D p)= Φ̆0+ t K̆{D p
}+ o(t),

ψ(pt)= ψ(p0)+ψ
′(p0) δp+ o(t),

(6-38)

we get the separate conditions

T D
0 · D

d
= ψ(p0)Φ̆0 F Dd ,

δT D
· Dd
= ψ(p0)K̆{Dd

} F Dd
+ψ ′(p0) δpΦ̆0 F D p.

(6-39)

The first equation is (6-34). Substituting it into the second equation, recalling the
normality rule Dd

= λd N0 and setting

κ(p0)= ψ
′(p0)/ψ(p0), (6-40)

we get the consistency condition for isochoric plasticity

λd
(
δT D
· N0− λ

dψ(p0)K̆{N0} F N0− κ(p0)(T D
0 · N0) δp

)
= 0. (6-41)

6.2.7. The incremental response law and the hardening rule. Comparing the con-
sistency condition with (6-32)2 multiplied by N0 and recalling the expression (6-33)
of δp, we find

λd(N0, p0)=
〈C[N0] · ∇u D

〉− κ(p0)(T D
0 · N0) δp

C[N0] · N0+ψ(p0)K̆{N0} F N0
. (6-42)

41Another inconvenience of the nonassociated flow rules emerges from a comparison between
isochoric plasticity and kinematic hardening. In both cases there is a family t 7→ Cp of elastic
ranges, and their union is the set K0 of the admissible stresses. However, in kinematic hardening the
regions Cp are not pairwise disjoint. Then a boundary point of a region can be an interior point of
another region, and therefore of K0. It is then inconceivable to restrict the plastic stretching to the
boundary points of K0, since a nonnull plastic stretching is allowed at the boundary points of all Cp .
On the contrary, this is perfectly conceivable in isochoric plasticity, in which the boundary points of
all Cp are also boundary points of K0. Thus, the choice of a nonassociated flow rule is possible in
the second case but not in the first. Since there is no reason for choosing different flow rules in the
two cases, the motivations for choosing nonassociated flow rules in the second case are not clear.
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Then the incremental response law is (6-32)2 with λd as above.
At loading, C[N0] · ∇u D > 0, the response is hardening, softening, or perfectly

plastic if the product δT D
· N0 is positive, negative, or zero, respectively. From

(6-41) and (6-42) we have

δT D
· N0 = h(N0, p0)C[N0] · ∇u D

+ (1− h(N0, p0))κ(p0)(T D
0 · N0)δp, (6-43)

with the hardening modulus

h(N0, p0)=
ψ(p0) K̆{N0} F N0

C[N0] · N0+ψ(p0) K̆{N0} F N0
. (6-44)

Note that, assuming both the denominator and C[N0] · N0 are positive, we have
h(N0, p0) < 1.

From (6-43) we see that h(N0, p0)measures the evolution of the elastic range Cp0

at constant pressure, that is, under a purely deviatoric loading C[N0] · ∇u D > 0. In
this case the sign of h(N0, p0), which assuming ψ(p0) > 0 is the same of the sign
of K̆{N0} F N0, is positive, negative, or zero when Cp0 expands, shrinks, or remains
unchanged. In the three cases the response is hardening, softening, or perfectly
plastic, respectively.

Under a purely hydrostatic loading, that is, for ∇u D
= 0, from (6-43) we see

that the pressure change δp determines a change δT D of the deviatoric stress, such
that

δT D
· N0 = (1− h(N0, p0)) κ0(p0)(T D

0 · N0)δp. (6-45)

This is the change of T D required to keep the total stress T on the boundary of
the elastic range during its evolution from Cp0 to Cp0+δp. Since h(N0, p0) < 1 and
T D

0 · N0 > 0 by the dissipation inequality (5-15), δT D
· N0 has the same sign of δp

if κ0(p0) > 0 and the opposite sign if κ0(p0) < 0. In the first case, a positive δp
produces a dilatation of the elastic range, and in the second case it produces a
contraction.

6.3. Isotropic isochoric plasticity. A special case of isochoric plasticity is the case
in which the plastic energy density (6-21) depends only on the modulus of Ld :

φ̃(t Ld , pt)= φ(t |Ld
|)ψ(pt). (6-46)

The linearized forms of this energy corresponding to the Drucker–Prager and to
the Mises yield conditions are helpful for understanding some basic differences
between the plastic behaviors of metals and of geomaterials.

6.3.1. The yield condition. For an energy of the form (6-46) and with φ such that
Φ̆0 FDd

= |Dd
|, the plastic stationarity condition (6-34) reduces to

T D
0 ·D p

≤ ψ(p0)|D p
|, (6-47)
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and for any direction N = D p/|D p
| in S d D we have

T D
0 · N ≤ ψ(p0). (6-48)

This inequality tells us that the generating half-spaces HN
p0

of the elastic range Cp0

are all placed at the same distance ψ(p0) from the origin. If S d D
= S D, then

Cp0 is the ball of S D centered at the origin and with radius ψ(p0), and at every
boundary point T D

0 of Cp0 the normal N0 is parallel to T D
0 :

T D
0 = ψ(p0)N0. (6-49)

Then, by the normality rule, T D
0 has the same direction as D p

= λd N0.

6.3.2. The Drucker–Prager and the Mises conditions. For the energies of the form
(6-46), consider the special case in which

φ(|Ld
|)= |Ld

|, ψ(p)= αp+β, α, β > 0. (6-50)

For such energies the radius ψ(p) of Cp vanishes for p =−β/α. Then the set K0

of the admissible stresses

K0 = {T ∈S | T = T D
− pI, p ≥−β/α, |T D

| ≤ αp+β} (6-51)

is a circular cone of S with vertex at T = (β/α)I and with axis on the hydro-
static axis. This is the set of the admissible stresses of the Drucker–Prager yield
condition.

In the limit case α = 0, the radius becomes equal to β, and K0 becomes the
cylinder

K0 = {T ∈S | T = T D
− pI, p ∈ R, |T D

| ≤ β}, (6-52)

which is the set of the admissible stresses of the Mises yield condition.

6.3.3. The plastic behavior of metals and geomaterials. When comparing the be-
havior of metals and geomaterials, one sees that the latter exhibit a much lower
strength in tension than in compression, while for metals the two strengths are of
the same order of magnitude. Moreover, under increasing pressure the elastic range
enlarges in geomaterials, and remains almost constant in metals.

These differences are captured by isotropic energies of the form (6-50). Indeed,
in the Drucker–Prager cone the hydrostatic stress in tension cannot exceed the
value −β/α attained at the vertex of the cone but is unbounded in compression,
and the size of the elastic range increases with pR . In Mises’s cylinder, both tensile
and compressive hydrostatic stresses are unbounded, and the size of the elastic
range does not depend on the pressure. Therefore, the cone and the cylinder seem
to be well suited to describe, at least in a first approximation, the behavior of
geomaterials and of metals, respectively.
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That the Mises criterion is appropriate to metals is almost universally recog-
nized.42 Large consensus was also initially met on adopting yield conditions of the
Drucker–Prager type for geomaterials. In particular, favored by its analogy with
Coulomb’s theory of friction, the Mohr–Coulomb yield condition43 was applied ex-
tensively in soil mechanics [Lubliner 1990, §6.1.3].44 These models were coupled
with normality in the deviatoric plane, and since the elastic range was identified
with the set of the admissible stresses, this led to the adoption of nonassociated
flow rules. In the present paper, in line with some earlier proposals [Ziegler and
Wehrli 1987, p. 223; Srinivasa 2010], the associated character of these flow rules
has been recovered regarding the hydrostatic pressure as an extra state variable. In
this way, the assumption of normality in the deviatoric space is fully legitimated
from the variational viewpoint.

Unfortunately, experimental evidence turned against the isochoricity assump-
tion, since most geomaterials exhibit a form of inelastic volume change called
dilatancy,45 which fits neither normality with respect to the deviatoric plane nor
normality with respect to the set of the admissible stresses.46

6.4. The Cam-clay model. An experiment-based model expressly conceived to de-
scribe the dilatancy of soils is the Cam-clay model [Roscoe et al. 1958; Roscoe and
Poorooshasb 1963].47 Here we show that this is a special case of the dilatational
model described in Section 6.1.3.

6.4.1. The plastic energy. In the Cam-clay model we keep the irrotationality con-
dition Rd

0 = I by which, due to condition (4-15), the plastic energy φ reduces to a
function of the plastic stretching Dd . The assumed form of φ is

φ(Dd)= φ( p̃, q̃), (6-53)
where

p̃ =− 1
3 I · Dd

=−
1
3 I · Dd H , q̃ = |Dd

+ p̃ I | = |Dd D
|. (6-54)

42“. . . Most modern discussions of plasticity (of metals) are based on generalizations and struc-
tural variations of the theory of Lévy, Mises, Prandtl, and Reuss. . . ” [Gurtin et al. 2010, §76.1].

43For this condition, which can be regarded as a variant of the Drucker–Prager condition, see,
e.g., [Lubliner 1990, §3.3.3].

44For other models of the Drucker–Prager type, see [Ziegler and Wehrli 1987, §VII.A, §VII.B].
45For plastic volume changes in geomaterials, see, e.g., [Lubliner 1990; Vermeer and de Borst

1984]. For metals, unexpected plastic volume changes were revealed by the experiments reported in
[Wilson 2002].

46The volume increase due to normality with respect to K0 is measured by the friction angle, and
the volume increase due to normality with respect to Cp is zero. The experiments show that the angle
which measures the volume increase due to dilatancy has an intermediate value which is far both
from the friction angle and from zero; see, e.g., [Lubliner 1990, §6.1.3], or [Vermeer and de Borst
1984, §2].

47The model was modified in [Roscoe and Burland 1968].
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The dependence on the modulus of Dd D describes an isotropic response to the
deviatoric strain rates.

6.4.2. The yield condition. For an energy of the form (6-53), the elastic range C0

is a solid of revolution with axis on the hydrostatic axis. It is assumed that C0 is
represented in the plane ( p̃, q̃) by the line48

q̃ = χ( p̃), p̃ ∈ (0, p†), (6-55)
with

χ( p̃) ∈ (0, q†), χ(0)= χ(p†)= 0, p†, q† <+∞. (6-56)

Let us determine the homogeneous dissipation potential φh associated with this
elastic range.49 Let ep, eq be unit vectors in the directions of the axes p̃ and q̃ . At
a boundary point ( p̃, q̃) of C0, the unit normal is

n( p̃)=
eq
−χ ′( p̃) ep√
1+χ ′2( p̃)

, (6-57)

and

d( p̃)= ( p̃ep
+χ( p̃) eq) · n( p̃)=

χ( p̃)− p̃χ ′( p̃)√
1+χ ′2( p̃)

(6-58)

is the distance of ( p̃, q̃) from the origin, measured in the direction of n( p̃). This is
the value taken by the homogeneous potential φh at the boundary points of C0:50

φh( p̃, q̃)= φh( p̃, χ( p̃))= d( p̃). (6-59)

6.4.3. Flow rule and hardening rule. The flow rule assumed in the Cam-clay model
is the normality rule. Accordingly, the plastic stretching at the boundary point
( p̃, χ( p̃)) of C0 has the direction n( p̃). Since n( p̃) has a nonnull component in the
direction ep, this implies that the plastic stretching is not isochoric. In particular,
the volume change is positive (dilatancy) at points at which χ ′( p̃) is negative.

The homogeneous potential (6-59) corresponds to a perfectly plastic response.
To get a hardening response, it is necessary to add to φh a nonhomogeneous part.
For the quadratic potential

φ(λn( p̃))= (λ+ 1
2 kλ2)d( p̃), λ≥ 0, (6-60)

we have

∇̆φ(0) F n( p̃)= d( p̃), ∇̆
2φ(0){n( p̃)} F n( p̃)= kd( p̃). (6-61)

48This line is a parabolic arc in the original Cam-clay model [Roscoe et al. 1958; Roscoe and
Poorooshasb 1963] and a half-ellipse in the modified model [Roscoe and Burland 1968].

49Here we take advantage of the one-to-one correspondence between elastic ranges and homoge-
neous dissipation potentials; see Footnote 31.

50See Section 5.1.



168 GIANPIETRO DEL PIERO

Then denoting by t̃0 = ( p̃, q̃) and by δt̃ the representatives of T0 and δT on the
plane ( p̃, q̃), from the plastic stationarity condition (5-12) and from the consistency
condition (5-17), we get

t̃0 · n( p̃)= d( p̃), δt̃ · n( p̃)= kλdd( p̃), (6-62)

respectively. That is, for every direction n the generating half-planes Hn
0 of C0

undergo a translation proportional to the distance d( p̃) of the boundary point t̃0
from the origin. This defines a new elastic range, obtained from C0 by a homothetic
transformation with center at the origin and ratio 2kλd . This is the evolution law
for the elastic range currently assumed in the literature.51 Clearly, a positive k
corresponds to hardening and a negative k corresponds to softening.

7. Crystal plasticity

In materials with a crystalline structure, the plastic deformation consists of mi-
croslips occurring along some preferred directions on some preferred slip planes.
A plastic slip is a plastic deformation of the form

Ld
= λds⊗m, λd

≥ 0, (7-1)

where m is the unit normal to the slip plane, λd is the slip intensity, and s, the slip
direction, is a unit vector in the slip plane. The pair (s,m) is a slip system, and
the tensor (s⊗m) is the corresponding Schmid tensor. By the orthogonality of s
and m, Ld is a deviator. Then the plastic deformation is isochoric; that is, crystal
plasticity is a special case of isochoric plasticity.52

Below, I consider first the case of a single slip system, and then the case of a
finite number of slip systems. Finally, I describe the two-level shear model based
on the theory of structured deformations, in which the macroscopic features of
plastic response can be reproduced without the use of nonsmooth potentials.

7.1. The single-slip model. The plastic slip (7-1) is a deformation of the form (4-3),
Ld
= Rd

0 Dd , with53

Rd
0 m = s, Dd

= λdm⊗m, λd
≥ 0. (7-2)

What distinguishes this model from the preceding ones is precisely that the con-
stitutive assumption Rd

0 = I is replaced by an assumption on the direction of Ld

51See, e.g., [Schofield and Wroth 1968].
52In crystal plasticity the energy is usually assumed to be independent of the hydrostatic pressure,

that is, the function ψ(p) in (6-21) is taken equal to one. For basic reference to the plasticity of
crystals, see, e.g., [Gurtin et al. 2010, §102.1].

53In principle, Rd
0 may be any rotation which maps m into s. For definiteness, one may add

the prescription Rd
0 s = −m, which characterizes Rd

0 as the rotation of amount π/2 about an axis
perpendicular to both s and m.
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dictated by the geometry of the crystal.54 Due to this peculiarity, the procedure for
the determination of the incremental response law slightly departs from the path
followed in the previous sections.

7.1.1. The plastic stationarity condition. From (7-1) and (7-2) and from the indif-
ference conditions (4-14) and (4-15), neglecting the terms of order o(t), for the
plastic strain energy we have

φ(Fd
t )= φ(t Ld)= φ(tλds⊗m)= φ(tλd Rd

0 m⊗m)= φ(tλdm⊗m), (7-3)

and since m is fixed we may set

φ(Fd
t )= φm(tλd). (7-4)

Thus, the only admissible plastic stretchings are those directed as m⊗m, and the
plastic energy is a function, depending on m, of their modulus tλd . Then from the
definition of directional derivative we have

∇φ(Fd
t ) F s⊗m = lim

ε→0+

φ((tλd
+ ε) s⊗m)−φ(tλds⊗m)

ε

= lim
ε→0+

φm(tλd
+ ε)−φm(tλd)

ε
= φ′m(tλ

d), (7-5)

and the plastic stationarity condition (3-22) takes the form

τt ≤ φ
′

m(tλ
d), (7-6)

where the resolved shear stress

τt = Tt · s⊗m = Tt m · s (7-7)

is the tangential component in the direction s of the stress vector Tt m acting on the
slip plane.

7.1.2. Yield condition, flow rule, and consistency condition. According to (7-1)
and (7-2), the only direction allowed for the plastic stretching is m⊗m. That is,
the set of the admissible plastic stretchings is the half-line

S d
0 = {λm⊗m | λ≥ 0}. (7-8)

Then there is only one generating half-space Hm⊗m
0 . It coincides with the elastic

range C0, and the flow rule trivially says that the plastic stretching is directed as
m⊗m. In view of the expansions

τt = τ0+ tδτ + o(t), φ′m(tλ
d)= φ′m(0)+ tλdφ′′m(0)+ o(t), (7-9)

54Here only the case of Ld directed as s⊗m is discussed. A more extended analysis in the context
of the multiplicative decomposition was made by Reina and coauthors [Reina and Conti 2014; Reina
et al. 2016].
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from the plastic stationarity condition at t = 0 we have the inequality

τ0 ≤ φ
′

m(0), (7-10)

which shows that φ′m(0) is the distance of the boundary of C0 from the origin. It
also tells us that no plastic slip occurs as long as the resolved shear stress is below
the activation threshold φ′m(0). When this threshold is attained, a plastic slip may
occur in the direction s. In this case (7-10) is satisfied as an equality, and from
(7-6) and (7-9) we have

δτ ≤ λdφ′′m(0). (7-11)

This inequality becomes an equality when λd > 0. Then we have the consistency
condition

λd(δτ − λdφ′′m(0))= 0. (7-12)

7.1.3. Incremental response law and hardening rule. From (7-12) and from the
incremental stress-strain relation (5-2)

δτ = δT · (s⊗m)= C[∇u− λds⊗m] · (s⊗m), (7-13)

by elimination of δτ we get

λd
=

〈C[∇u] · (s⊗m)〉
C[s⊗m] · (s⊗m)+φ′′m(0)

, (7-14)

and substitution into (7-13) provides the incremental response law. In particular,
for λd > 0 we have

δτ = hmC[∇u] · (s⊗m), (7-15)

with the hardening modulus

hm =
φ′′m(0)

C[s⊗m] · (s⊗m)+φ′′m(0)
. (7-16)

The numerator φ′′m(0) is positive if φm is strictly convex. On the contrary, nothing
can be said a priori about the positiveness of the denominator. Indeed, because
of the indifference condition (4-13), one can control only the restriction of C to
the symmetric tensors. For all previous models this was enough, because only
this restriction appears in the expressions (5-22) and (6-42) of λd . Here, from the
indifference condition (4-13) we have

C[s⊗m] · (s⊗m)= C[(s⊗m)S
] · (s⊗m)S

+ 2(s⊗m)W T0 · (s⊗m)S
+ (s⊗m)W T0 · (s⊗m)W . (7-17)

The two terms involving T0 can be transformed into

−T0 · (s⊗m)W (2(s⊗m)S
+ (s⊗m)W )= 1

4 T0 · (3m⊗m− s⊗ s). (7-18)
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Denoting by c0 the smallest eigenvalue of C restricted to S and setting

σm = T0 · (m⊗m), σs = T0 · (s⊗ s), (7-19)
we get

C[s⊗m] · (s⊗m)≥ 1
2 c0+

3
4σm −

1
4σs . (7-20)

Therefore, C[s ⊗m] · (s ⊗m) is positive if c0 > 0 and σm and σs are small with
respect to c0, and if c0 > 0, the normal stress σm acting on the slip plane is tensile,
and the in-plane normal stress σs is compressive.

7.2. The multislip model. A multislip system is defined as a finite set of slip sys-
tems (sα,mα).55 For each of them the plastic deformation has the form

Ldα
= λdαsα ⊗mα, λdα

≥ 0, (7-21)

and the corresponding energy is

φα(Ldα)= φα(λdαmα
⊗mα)= φmα (λdα). (7-22)

The total plastic deformation and the total energy are

L p
=

∑
α

λdαsα ⊗mα, φ(Ld)=
∑
α

φmα (λdα), (7-23)

respectively. The gradient of φ is the homogeneous map which with every Ld
=∑

β µ
βsβ ⊗mβ associates the number

∇φ(Fd
t ) FLd

=∇φ

(∑
α

λdαsα ⊗mα

)
F

∑
β

µβsβ ⊗mβ

=

∑
α

µαφ′mα (λ
dα), (7-24)

with the last identification preformed proceeding as in (7-5). The plastic stationarity
condition (3-22) then takes the form∑

α

µαταt ≤
∑
α

µαφ′mα (tλdα), µα ≥ 0, (7-25)

where
ταt = Tt · (sα ⊗mα) (7-26)

is the resolved shear stress for the slip system (sα,mα). At t = 0, taking all µα

equal to zero except one, we get n inequalities

τα0 ≤ φ
′

mα (0), (7-27)

55This model is based on Koiter’s model of singular yield surfaces [1953]. See also [Martin and
Reddy 1993].
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one for each slip system. Each of them defines a half-space HNα

0 of S D with
normal Nα

= mα
⊗mα and with boundary at the distance φ′mα (0) from the origin.

The intersection of the HNα

0 is the elastic range C0. It is a polyhedral convex subset
of S D , whose faces have the normals Nα and whose vertices have normal cones
consisting of positive combinations of the Nα.

For each α, the expansions (7-9) hold. When for some τα0 the activation thresh-
old φ′mα (0) is reached, by the consistency condition in analogy with (7-12) we have

λdα(δτα − λdαφ′′mα (0))= 0. (7-28)

If T0 is on a face of C0, this occurs only for the α corresponding to that face. If T0

is on a vertex of C0, this occurs for the α corresponding to the faces which concur
at that vertex. Denoting by α̂(T0) the set of such α, the normal cone at T0 is

Dd
=

∑
α∈α̂(T0)

λdαNα, (7-29)

and the incremental relation (5-2) takes the form

δT = C[∇u] −
∑

α∈α̂(T0)

λdαC[Nα
]. (7-30)

Then for all β in α̂(T0),

δτβ = δT · (sβ ⊗mβ)=

(
C[∇u] −

∑
α∈α̂(T0)

λdαC[sα ⊗mα
]

)
· (sβ ⊗mβ). (7-31)

Together with the constraints λdα
≥ 0 and the complementarity conditions (7-28),

these equations form a linear complementarity problem of the dimension of α̂(T0).
In particular, if T0 belongs to the relative interior of a face of Cp0 , this dimension
is one and we are back to the one-dimensional problem of the previous sections.

If the dimension is larger than one, the existence and uniqueness of the solution
is guaranteed if the matrix {C[sα ⊗mα

] · (sβ ⊗mβ)} is positive definite. In this
case the problem can be solved with the Gauss–Seidel iterative method or with
any other nonlinear programming algorithm. But, like in the case of a single slip
system, the positive definiteness is ensured only for suitable values of the initial
stress T0.

7.3. Periodic energies and two-level shears. In single crystals, a relative transla-
tion of an atomic unit along a slip plane maps the two halves of a crystal into a
placement energetically indistinguishable from the initial one.56 This suggests the

56See, e.g., [Gurtin et al. 2010, Figure 102.2].
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use of periodic energies. In general, the energy φ is assumed to be of the form

φ = ψ +φnh, (7-32)

with ψ a smooth periodic potential and φnh a nonhomogeneous nonsmooth poten-
tial. Here we consider the simple case of φnh

= 0.57

A two-level shear is a deformation process t 7→ ( ft , Ft) in which the macro-
scopic deformation ft is a simple shear

ft(x)= x + γ t x s⊗m, γ > 0, (7-33)

and the deformation due to the disarrangements58 is a single slip

Fd
t (x)= γ

d
t s⊗m. (7-34)

When φ reduces to a smooth potential ψ , the directional derivative ∇̆φ reduces
to the ordinary derivative ∇ψ . Moreover, in the virtual strain rates Ld

= αs⊗m
the multiplier α is not anymore constrained to be positive. Then the stationarity
condition (3-22) reduces to the equality

Tt · (s⊗m)=∇ψ(γ d
t s⊗m) · (s⊗m). (7-35)

The left-hand side is the resolved shear stress (7-7). For the right-hand side, using
the indifference condition (7-3) we define

ψ(Fd
t )= ψ(γ

d
t m⊗m)= ψm(γ

d
t ), (7-36)

and proceeding as in (7-5) we find that the right-hand side of (7-35) is equal
to ψ ′m(γ

d
t ). Then (7-35) reduces to

τt = ψ
′

m(γ
d
t ). (7-37)

On the other hand, for the energy without disarrangements ϕ, from (3-19), (7-33),
and (7-34) we have

Tt =∇ϕ(Ft)=∇ϕ(∇ ft − Fd
t )=∇ϕ(I + (γ t − γ d

t )s⊗m). (7-38)

Multiplying by (s⊗m), on the left side we get again τt . Then, after defining

Φs
m(γ t − γ d

t )=∇ϕ(I + (γ t − γ d
t )s⊗m) · (s⊗m), (7-39)

we get
τt =Φ

s
m(γ t − γ d

t ). (7-40)

57For two-scale continua, the use of smooth potentials in the study of plasticity and fracture was
initiated in [Choksi et al. 1999, §4, §5], and continued by Deseri and Owen [2002] for the plasticity
of single crystals. The specular case φ = φnh of a purely nonsmooth potential was advanced in
[Del Piero 1998; 2018], without subsequent developments.

58In the presence of a smooth potential, I prefer to avoid calling Fd
t a plastic deformation.



174 GIANPIETRO DEL PIERO

By elimination of γ d
t between this equation and (7-37), a relation between the shear

stress τt and the macroscopic shear γ t is obtained. For example, in the case of Φs
m

linear and ψm trigonometric of period p,

Φs
m(ξ)= kξ, ψm(ξ)=

kd p
2π

(
1− cos

2πξ
p

)
, (7-41)

with k and kd positive material constants, we get

γ t =
τt

k
+

p
2π

sin−1
(
τt

kd

)
. (7-42)

This determines a curve γ t = F(τt), in which F is a multivalued function with
domain (−kd , kd). The slope of the curve is

dγ t
dτt
=

1
k
±

p

2π
√

kd2− τ 2
t

, (7-43)

with the plus sign for the branch from the origin to its first intersection with the
line τt = kd , the minus sign for the following branch up to the first intersection
with the line τt =−kd , and so on.

The slope of the first branch is positive and increases from 1/k + p/2πkd at
τt = 0 to +∞ at τt = kd . The slope of the second branch increases from −∞ at
τt = kd , to zero at59

τt =

√
kd2−

k2 p2

4π2 . (7-44)

At this point the curve attains a local maximum. Then for a further increase of γ t
there is no solution near the maximum point, and equilibrium for the increased γ t
can be attained only jumping to another branch of the curve. This jump is a form
of catastrophic instability, consisting of a sudden decrease of τt at constant γ t .

Taking the macroscopic shear γ t as independent variable, the stress-strain re-
sponse curve is τt = F−1(γ t). The function F−1 is periodic with period p, since if
γ t is a solution of (7-42) for some τt , then γ t +np is a solution for the same τt for
all n. In the equilibrium branch starting from (τt , γ t) = (0, 0), τt increases with
γ t up to the upper limit kd , and then decreases up to the lower limit −kd . When
in the descending branch the local maximum of F is attained, γt suddenly jumps
downward at constant γ t , to reach the next ascending branch of F−1. Due to the
periodicity of F−1, the same jump occurs at each period. The resulting stress-strain

59This value is attained only if 2πkd > kp. But this condition is satisfied in practice, since p is a
very small length, of the order of the interatomic distance [Choksi et al. 1999, §4].
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diagram then shows an initial increase of γt from zero to kd , followed by a periodic
oscillation between kd and the value at which the maximum of F is attained.60

Macroscopically, this looks like a typical elastic-perfectly plastic response con-
sisting of an initial growth followed by a horizontal plateau. A peculiarity of this
model is that the plateau is made of microscopic oscillations.61 By consequence,
while in all previous models yielding is activated when a threshold determined by a
nonsmooth potential is attained, in the present model yielding is due to catastrophic
instability. When φ is a smooth potential there is no dissipation associated with the
equilibrium branches, the whole dissipation being concentrated on the jumps.62

Closure

I conclude with a summary of the main results.

(i) By imposing the nonnegativeness of the first variation of the energy, all consti-
tutive elements of the theory become dependent on a single punctual inequal-
ity, the plastic stationarity condition.

(ii) From this condition the yield condition, the flow rule, the hardening rule, and
the incremental response law can be deduced without any additional assump-
tion.

(iii) A plastic energy made of a smooth potential plus a homogeneous dissipation
potential determines a model of kinematic plasticity which includes Prager’s
kinematic hardening as a special case.

(iv) A plastic energy with the properties of a nonhomogeneous dissipation po-
tential determines a model of dilatational hardening which includes isotropic
hardening as a special case.

(v) The assumption of isochoricity of the plastic strain rate leads to the definition
of a one-parameter family of pairwise disjoint elastic ranges, the parameter
being the hydrostatic pressure. In each elastic range the normality rule holds.
This renders unnecessary the nonassociated flow rules introduced by the many
authors for which the elastic range is the union of all individual elastic ranges.

(vi) The Cam-clay model for soils is a particular case of isotropic dilatational
plasticity.

60See, e.g., [Choksi et al. 1999, Figure 6].
61This may reproduce the oscillations exhibited by testing machines operating with the “hard

device”, that is, by controlling the deformation. The oscillations are much less sensible in the “soft”
testing machines, which control the applied load. This difference is well reproduced by the present
model, see Figures 6 and 8 in [Choksi et al. 1999].

62See [Choksi et al. 1999, §4]. This alternative description of yielding led the present author to
distinguish two types of yielding, which he called reversible and irreversible [Del Piero 1998; 2013].
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(vii) Crystal plasticity is a special case of isochoric plasticity, with a particular
form of the plastic stretching. The two-level shear model is a special case
of crystal plasticity, with diffuse plastic dissipation replaced by concentrated
catastrophic instability.
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