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Fields can be represented in a discrete manner from their values at some lo-
cations, the nodes when considering finite element descriptions. Thus, each
discrete scalar solution can be considered as a point in RN (N being the num-
ber of nodes used for approximating the scalar field). Most manifold learning
techniques (linear and nonlinear) are based on the fact that those solutions define
a slow manifold of dimension n� N embedded in the space RN . This paper ex-
plores such a behavior in systems exhibiting phase transitions in order to analyze
the evolution of the local dimensionality n when the system moves from one side
of the critical behavior to the other. For that purpose we consider the Ising model.

1. Introduction

Physical models usually involve unknown continuous scalar or vector fields. If
we consider without any loss of generality a model involving a scalar field approxi-
mated on a mesh or grid involving N nodes, the discrete solution can be represented
as a point belonging to RN . However, existing correlations lead to solutions that,
instead of filling the whole space RN , define a slow n-dimensional manifold, with
n� N , embedded into RN .

This fact is at the origin of manifold learning approaches that consist of extract-
ing the uncorrelated (latent) dimensions describing the slow manifold representing
the original states into a reduced form. Principal component analysis (PCA) was
specially designed to find a linear subspace of lower dimensionality than the origi-
nal space; however, it fails when the manifold becomes extremely nonlinear. Non-
linear dimensionality reduction techniques were proposed for circumventing this
limitation. Among the many existing techniques (an abundant literature is available
on the topic, and the interested reader can refer to [Lee and Verleysen 2007] and
the references therein) kernel-based PCA (kPCA) [Wang 2014; Schölkopf et al.
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1998; 1999] and locally linear embedding (LLE) [Roweis and Saul 2000] will be
considered in the present work. The latter can be considered as a particular case
of the former, for a particular kernel choice [Zimmer et al. 2015].

These techniques that automatically extract the latent dimensions have been ex-
tensively and successfully applied in many domains; however, few works addressed
the issue of phase transition and in particular the way in which that transition af-
fects the manifold dimensionality and the possibility of characterizing the transition
from a geometrical point of view. To address that issue, we consider in the present
work a well established and widely studied equation exhibiting phase transition,
the Ising model.

In the context of the microscopic theory of critical behavior [Koonin and Mered-
ith 1990; Fisher 1965], the Ising model [Newell and Montroll 1953] addresses a
ferromagnetic lattice in a quite simple statistical description, including phase tran-
sition. Ferromagnetic materials exhibit long-range spin ordering at the atomic level.
When a magnetic field is applied to a ferromagnetic material, atomic spins align
along the direction of the applied field. However, when the temperature becomes
higher than the so-called critical temperature, a phase change occurs. The Ising
model allows describing such materials [Myers 1997]. This model initially pro-
posed by Lenz was solved in 1D by Ising [1925]. The 2D model without magnetic
field was then developed by Onsager [1944], and it is this one that we are consid-
ering in the present work. Its solution that will be addressed by using the Monte
Carlo method [Metropolis et al. 1953] concerns a binary property called spin, given
each point of a 2D grid, and more specifically its time evolution with respect to
the applied temperature. When reaching the so-called critical temperature, phase
transition occurs. Even if complex variants of the Ising model were proposed
[Bellettini et al. 2007; De Masi et al. 2009; 2008], in the present work we consider
its simplest version.

Our feeling is that applying usual manifold learning techniques on the spin field
itself, consisting of a binary variable defined at each grid (mesh) node, is neither the
best nor the optimal representation because those techniques are based on the use
of euclidean metrics and two similar microstructures can significantly differ when
calculating the euclidean distance between both of them. For that reason, a first
contribution of the present work is to propose a better microstructure representation
much less sensitive to local distributions. In that sense, considering Fourier-based
representations, where space dependencies are described from their frequency con-
tent, seems a much better alternative, in particular, the 2D fast Fourier transform
(FFT) 2D-FFT that has been widely considered in image analysis to identify biolog-
ical damage [Fung et al. 2010], extract ordered structures from microtomography
[Jeulin and Moreaud 2008], analyze complex microstructures [Lebensohn et al.
2011; Zhu et al. 2018], etc.
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When applying the FFT to solutions coming from the Ising model, one expects
low frequencies at low temperatures, where long-range correlation exists, whereas
at high temperatures, where entropic effects dominate, higher frequency contents
are expected. However, at the transition in between, richer structures with its
a priori higher dimensionality are expected. Thus, we would like to locally de-
fine the manifold dimensionality, and instead of using global manifold learning
techniques, local extractors seem more appropriate. In particular local principal
component analysis (lPCA) [Kambhatla and Leen 1997] seems specially appealing
for that purpose. It is important to note that lPCA encountered limited interest as
a manifold learning technique because of the difficulty of defining a continuous
mapping throughout the manifold. However, it has been widely employed in other
domains where the main goal, as in the present case, was to estimate the local
dimensionality [Fukunaga and Olsen 1971].

The paper is structured as follows. Section 2 revisits the main concepts related
to the Ising model, as well as its solution using the Metropolis-based Monte Carlo
algorithm. Section 3 addresses the application of LLE for constructing the man-
ifold on which data will be classified using the procedure proposed in Section 4.
Finally, Section 5 presents and discusses different numerical solutions, proving the
potential of the proposed approach.

2. The Ising model and its Monte Carlo solution

The Ising model describes a ferromagnetic behavior and is able to capture phase
transitions [Niss 2005]. In this model, the discrete variables called “spins” are
defined on a lattice. Each lattice site has only one spin with value either −1 (spin
down) or +1 (spin up), interacting only with its nearest neighbors. By considering
the 2D Ising model introduced by Onsager [1944], the Hamiltonian H reads

H =−J
∑

i

∑
j

|i− j |=1

Si S j , (1)

J being the dimensionless interaction strength. Si and S j are the spin states at
lattice sites i and j , respectively. As can be noticed, the sum of products reduces
to the nearest-neighbor pair of spins. Every spin will interact with four other spins
(up, down, left, and right). If spins are aligned and J > 0, the energy of the system
will be minimal.

The partition function Z can be computed from the Hamiltonian

Z =
∑

i

e−Hi , (2)
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where the sum applies over all the particles in the lattice. Then, we compute the
probability of finding the system in a particular state S from

p(S)=
e−H(S)

Z
. (3)

Some important outputs are the magnetization Ma

Ma=
∑

S

p(S)
∑

i

Si , (4)

and the system energy E

E =
∑

S

p(S)βH(S), (5)

where β = kB T , with the Boltzmann constant kB = 1.380658× 10−23 J/K and T
the temperature.

Usually the solution of the Ising model is performed by using a Monte Carlo
method. In this paper, we consider a variant of the Monte Carlo method, the so-
called Metropolis algorithm [Fricke 2006]. For a given temperature, at each time
step, a trial spin configuration is generated. The algorithm computes the system
energy associated with the trial state. If the change of energy is negative, it means
that the system evolution has brought the system to a state of lower energy, so we
allow the change and put the spins in their new state. On the other hand, if the
change of energy is positive, we allow the change with a probability given by p(S)
computed from (3).

3. Manifold construction

It is well known that microstructures do not allow simple reduced descriptions
[Lopez et al. 2018]. In fact the main concern is how to quantify similarities or
resemblances, and how to take profit of them.

In this paper we consider and analyze a route based on the use of the locally
linear embedding (LLE) technique [Roweis and Saul 2000], a member of the large
family of the so-called manifold learning techniques.

The remainder of this section describes the procedure directly on the problem
we are interested in. The procedure consists of two steps: the analysis of the Ising
samples in order to obtain a discriminative description of the microstructures (in
this case as previously said, we do not work directly on the Ising microstructures
but on their fast Fourier transform), followed by a dimensionality reduction able to
discriminate the three temperature zones that characterize the Ising model behavior.

3.1. Applying the fast Fourier transform on the Ising microstructures. First we
assume the existence of M microstructures Mm , m = 1, . . . ,M , coming from the
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Ising model defined on the domain ω. In what follows and without loss of gener-
ality, we consider 2D microstructures and the 2D fast Fourier transform (2D-FFT).
Moreover, we assume the existence of two phases, the spins with value 1 and
the others with value −1, occupying the domains ωm

1 and ωm
−1, respectively, with

ωm
1 ∪ω

m
−1 = ω, m = 1, . . . ,M . A regular mesh is associated with each microstruc-

ture consisting of N nodes (N = N 2
n , with Nn the number of nodes along the x and y

directions). The coordinates of each node are xi , i = 1, . . . , N (xT
i = (xi , yi )).

For each microstructure Mm we define the phase field χ(x;Mm) as

χ(x;Mm)=

{
1 if x ∈ ωm

1 ,

−1 if x ∈ ωm
−1.

(6)

As is well known, these microstructure descriptions do not allow simple re-
duced descriptions. Thus, the objective is to geometrically characterize them in
order to obtain reduced descriptions. Concerning geometrical characterization and
microstructural descriptions, there are several tools proposed for signal processing
purposes. Concerning the type of microstructures we are dealing with, it seems
more appropriate to work in the frequency domain instead of using their physical
space description. In particular we propose to apply the 2D-FFT to characterize
the microstructures in the frequency domain.

We now apply the 2D-FFT on each microstructure Mm , m = 1, . . . ,M , defined
by its phase field χ(x;Mm). Thus, the 2D-FFT of the Ising microstructures can be
represented in a discrete way from vectors χ̂m,Mm , m = 1, . . . ,M . Vectors χ̂m are
defined in RN ; i.e., the dimension coincides with the number of nodes considered
in the discrete microscopic description.

3.2. Nonlinear dimensionality reduction. Each vector χ̂m defines a point in a
space of dimension N , and then the data set of M 2D-FFTs related to the M
Ising microstructures represents a set of M points in RN . Hence, the question:
do all these points belong to a particular low-dimensional manifold embedded in
the high-dimensional space RN ?

Imagine that, despite the impressive space dimension N , the M points belong to
a curve, a surface, or a hypersurface of dimension n� N . When N = 3 a simple
observation suffices to check if these points are located on a curve (1D manifold)
or on a surface (2D manifold). However, when dealing with spaces of thousands
of dimensions, simple visual observation is unsuitable.

Instead, appropriate techniques are needed to extract the underlying manifold
(when it exists) when dealing with extremely multidimensional spaces. There is
a variety of techniques to accomplish this task. The interested reader can refer to
[Tenenbaum et al. 2000; Roweis and Saul 2000; Polito and Perona 2001; Wang
2014; Amsallem and Farhat 2008]. In this work we focus on the LLE (locally
linear embedding) technology [Roweis and Saul 2000]. It proceeds as follows.
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• Each point χ̂m , m = 1, . . . ,M , is linearly reconstructed from its K -nearest
neighbors. In principle K should be greater than the expected dimension n
of the underlying manifold and the points should be close enough to ensure
the validity of the linear approximation. In general, a large-enough number
of neighbors K and a dense-enough sampling M ensure a satisfactory recon-
struction as shown later. For each point χ̂m we can write the locally linear
data reconstruction as

χ̂m
=

∑
i∈Sm

Wmi χ̂
i , (7)

where Wmi are the unknown weights and Sm is the set of the K -nearest neigh-
bors of χ̂m .

Weights, grouped in vector W , result from the minimization of functional

F(W)=

M∑
m=1

∥∥∥∥χ̂m
−

M∑
i=1

Wmi χ̂
i
∥∥∥∥2

, (8)

where here Wmi is zero if χ̂ i does not belong to the set of K -nearest neighbors
of χ̂m .

The minimization of F(W) allows us to determine all the weights involved
in all the locally linear data reconstruction.

• We suppose now that each linear patch around χ̂m , for all m, is mapped into
a lower-dimensional embedding space of dimension n, n� N . Because of
the linear mapping of each patch, weights remain unchanged. The problem
now becomes the determination of the coordinates of each point χ̂m when it
is mapped into the low-dimensional space, ξm

∈ Rn .
For this purpose a new functional G is introduced that depends on the

searched coordinates ξ 1, . . . , ξM :

G(ξ 1, . . . , ξM)=

M∑
m=1

∥∥∥∥ξm
−

M∑
i=1

Wmiξ
i
∥∥∥∥2

, (9)

where now the weights are known and the reduced coordinates ξm are un-
known.

The minimization of functional G results in an M ×M eigenvalue problem
whose n-bottom nonzero eigenvalues define the set of orthogonal coordinates
in which the manifold is mapped.

4. Discriminating criteria

Once the manifold composed by the reduced coordinates ξm is known, the goal
is to cluster in some way the three temperature zones to be able to classify them
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in low, transition, and high temperature. For this purpose, we propose a criterion
based on a variant of the principal component analysis (PCA), the so-called local
principal component analysis (lPCA) that allows us to compute the manifold local
dimension, and then infer the dimension at low, high, and critical temperatures.

Principal components analysis (PCA) attempts to find a linear subspace of lower
dimensionality than the original space. If data exhibit more complex structures
which cannot be well represented in a linear subspace, standard PCA fails to ac-
complish the reduction. However, such reduction can be successfully performed
by using nonlinear dimensionality reduction techniques, like the lPCA here con-
sidered. In what follows we revisit first the standard PCA before focusing on its
local counterpart.

Let us consider n observed variables defining the vector (snapshot) ξ ∈ Rn . We
assume that these variables are therefore not totally uncorrelated and, notably, that
there exists a linear transformation L defining the vector ξ red

∈ Rnred
, nred

≤ n, that
represents the so-called latent reduced variables, according to

ξ = Lξ red. (10)

We assume the existence of M different snapshots ξ1, . . . , ξM that can be stored
in the columns of the n×M matrix X. The associated nred

×M reduced matrix Y

contains the associated reduced vectors ξ red
i , i = 1, . . . ,M .

PCA proceeds by enforcing the fact that latent variables must be as much as
possible uncorrelated, and allows us to extract both the dimension nred and the
mapping L. For that purpose the covariance matrix Cxx ,

Cxx = E
{
(X− E{X})(X− E{X})T

}
, (11)

is factorized as

Cxx = V3V T , (12)

equivalent to applying the singular value decomposition (SVD) to X. In (12), V
contains the orthonormal eigenvectors and 3 is the diagonal matrix containing the
eigenvalues (nonnegative real numbers), assumed to be in descending order. Thus,
the nred columns of L are the nred first columns of V [Lee and Verleysen 2007].

From this summary of the PCA rationale, we can now briefly explain its local
counterpart. For that purpose, we consider each snapshot ξi , for i = 1, . . . ,M , and
for each of them, its K -nearest neighbors. From those and by proceeding as just
indicated, we can compute the local transformation matrix Li , i = 1, . . . ,M , as
well as the local reduced dimensionality nred

i .
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Figure 1. Energy versus temperature.

5. Numerical results

Ising microstructures have been generated using the Metropolis-based Monte Carlo
method proposed in [Fricke 2006]. We have run M = 741 simulations to obtain our
microstructure data set (snapshots), Mm , m = 1, . . . ,M . The parameters considered
in those simulations are a 200×200 grid (N = 40000 nodes) with the dimensionless
temperature T randomly chosen between 0 and 5. Figure 1 shows the energy per
site E of the final configuration of each simulation. The magnetization per site in
turn is shown in Figure 2.

It is clear that a phase transition occurs in between T = 1 and T = 1.5. At lower
temperatures, T < 1, the system tends to any of the two ground states Ma = −1
or Ma = +1. At higher temperatures, T > 1.5, the spins tend to align randomly,
leading to an almost vanishing magnetization (Ma≈ 0).

To illustrate the Ising microstructures configuration, Figure 3 depicts microstruc-
tures associated with low, transition, and high temperature. In the one associated
with low temperature, approximately half of the spins are up and the other half
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Figure 2. Magnetization versus temperature.
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Figure 3. Low, transition, and high temperature microstructures
(clockwise from top left).

down, with aligned spins forming a sort of clusters called “metastable states”, with
Ma≈ 0. Around the transition temperature, the number of down spins has increased
(up spins consequently decreasing) compared to the previous scenario. This means
that the system has enough energy and the Metropolis algorithm easily accepts
antiparallel spins. Finally, in the high-temperature state, almost the same number
of down and up spins are found with a small characteristic length describing the
phases distribution in the microstructures due to the high energy communicated to
the system.

The M samples were described by their phase field vectors χm , m = 1, . . . ,M ,
each defined in RN . But as explained in Section 3.1, microstructures do not allow
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reduced representations and that reason motivated the consideration of 2D-FFT on
the M Ising microstructures in order to obtain the data reduced representation.

Figure 4 illustrates the 2D-FFT representation of three microstructures associ-
ated with low, transition, and high temperature, respectively, considered in Figure 3.
In the low-temperature microstructure, we can appreciate the presence of very few
significant frequencies, almost located at the center of the domain (low frequen-
cies), and the rest of the domain is practically flat.

Figure 4. 3D (left) and 2D (right) representation of the 2D-FFT
for low (top), transition (middle), and high (bottom) temperature
microstructures.
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Figure 5. LLE manifold of the 2D-FFT on the Ising microstruc-
tures. Axes represent a 3D space in which the almost 1D manifold
is embedded.

This result is intuitive since the spins of the microstructures are more clustered
in the low-temperature samples. On the contrary, in the case of 2D-FFT applied to
the high-temperature microstructures, we observe the opposite result. Here, spins
are totally randomly distributed and consequently all frequencies are present. In
the case of microstructures around the transition temperature, its 2D-FFT becomes
a mix of the aforementioned cases, with dominant frequencies located at the center
of the domain but now the rest of the domain is no longer flat, since it is populated
by the contribution of nonnegligible higher frequencies.

We denote by χ̂m , m = 1, . . . ,M , the 2D-FFT of the Ising microstructures. By
applying the locally linear embedding technique on χ̂m , as explained in Section 3.2,
the weights involved in the linear data reconstruction are calculated as well as the
reduced data. The performed analysis allows us to consider a reduced dimension
n = 3 that moreover facilitates the solution’s graphical representation. Figure 5
depicts the resulting points ξm

∈ R3, m = 1, . . . ,M , from which one can realize
that the manifold is almost 1D.

Now in order to properly check the local dimensionality, local principal com-
ponent analysis is applied in locations belonging to low, high, and transition tem-
peratures, whose associated regions can be clearly identified in Figure 5. After
applying the lPCA in these three regions (the solution represented in the manifold
of Figure 5), the highest eigenvalues are extracted determining the local manifold
dimensionality. As shown in Figure 6, the local dimensionality of low and high
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Figure 6. Local dimensionality of the low, transition, and high
temperature zones (top to bottom).

temperatures is one because there is a difference of almost two orders of magnitude
between the values of the first and the second eigenvalues, which means that the
first is much more important than the second.

This result was expected, since looking at the manifold of Figure 5, it could
be clearly seen that the points corresponding to these two zones defined a rather
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1D manifold. In the transition region the first two eigenvalues have practically the
same value and differ from the third by four orders of magnitude, which clearly
means that the local dimensionality of this region is almost two. This result was
also expected, since the points in this zone mix the 1D behaviors of low and high
temperatures and being not collinear increases the dimensionality. Local dimension
is not able to distinguish between the two phases of the system. Descriptions able
to differentiate them constitute a work in progress.

6. Conclusions

This paper proposes a methodology to interpret phase transition from a geometrical
point of view, from the local dimensionality of the manifold defined from different
microscopic fields. For that purpose the Ising model is simulated by varying the
temperature from one side to other of the critical temperature associated with the
phase transition.

Using the Metropolis algorithm, a group of microstructures related to the solu-
tion of the Ising model has been created, encompassing samples corresponding to
low, high, and transition temperatures. Unable to deal directly with the microstruc-
tures’ characteristic function, the 2D-FFT has been applied to those because the
frequency content is expected to exacerbate the difference between microstructures
at low, high, and transition temperatures. The manifold was then created on the
2D-FFT representations of phases distribution, and then a local PCA was applied
locally in the different regions to extract the local dimensionality.

The performed analysis reveals that the dimensionality slightly increases in the
transition region where complex microstructures mixing low and high temperature
patterns coexist. Below and above that transition temperature the solution seems to
be explained by only one latent variable that in the present case can be associated
with the temperature. In the transition region solutions seem a bit richer and cannot
be explained by a single latent variable.

References

[Amsallem and Farhat 2008] D. Amsallem and C. Farhat, “Interpolation method for adapting reduced-
order models and application to aeroelasticity”, AIAA J. 46:7 (2008), 1803–1813.

[Bellettini et al. 2007] G. Bellettini, A. De Masi, N. Dirr, and E. Presutti, “Tunneling in two dimen-
sions”, Comm. Math. Phys. 269:3 (2007), 715–763.

[De Masi et al. 2008] A. De Masi, I. Merola, E. Presutti, and Y. Vignaud, “Potts models in the
continuum: uniqueness and exponential decay in the restricted ensembles”, J. Stat. Phys. 133:2
(2008), 281–345.

[De Masi et al. 2009] A. De Masi, I. Merola, E. Presutti, and Y. Vignaud, “Coexistence of ordered
and disordered phases in Potts models in the continuum”, J. Stat. Phys. 134:2 (2009), 243–306.

[Fisher 1965] M. E. Fisher, “The nature of critical points”, pp. 1–159 in Lectures in theoretical
physics, vol. VIIC, edited by W. E. Brittin, University of Colorado, 1965.

http://dx.doi.org/10.2514/1.35374
http://dx.doi.org/10.2514/1.35374
http://dx.doi.org/10.1007/s00220-006-0143-9
http://dx.doi.org/10.1007/s00220-006-0143-9
http://dx.doi.org/10.1007/s10955-008-9603-2
http://dx.doi.org/10.1007/s10955-008-9603-2
http://dx.doi.org/10.1007/s10955-008-9677-x
http://dx.doi.org/10.1007/s10955-008-9677-x


264 E. LOPEZ, A. SCHEUER, E. ABISSET-CHAVANNE AND F. CHINESTA

[Fricke 2006] T. Fricke, “Monte Carlo investigation of the Ising model”, preprint, 2006, Available
at https://www.physics.ohio-state.edu/~braaten/statphys/Ising_MatLab.pdf.

[Fukunaga and Olsen 1971] K. Fukunaga and D. R. Olsen, “An algorithm for finding intrinsic di-
mensionality of data”, IEEE T. Comput. C-20:2 (1971), 176–183.

[Fung et al. 2010] D. T. Fung, J. B. Sereysky, J. Basta-Pljakic, D. M. Laudier, R. Huq, K. J. Jepsen,
M. B. Schaffler, and E. L. Flatow, “Second harmonic generation imaging and Fourier transform
spectral analysis reveal damage in fatigue-loaded tendons”, Ann. Biomed. Eng. 38:5 (2010), 1741–
1751.

[Ising 1925] E. Ising, “Beitrag zur Theorie des Ferromagnetismus”, Z. Phys. 31 (1925), 253–258.

[Jeulin and Moreaud 2008] D. Jeulin and M. Moreaud, “Segmentation of 2D and 3D textures from
estimates of the local orientation”, Image Anal. Stereol. 27:3 (2008), 183–192.

[Kambhatla and Leen 1997] N. Kambhatla and T. K. Leen, “Dimension reduction by local principal
component analysis”, Neural Comput. 9:7 (1997), 1493–1516.

[Koonin and Meredith 1990] S. E. Koonin and D. Meredith, Computational physics: FORTRAN
version, Addison-Wesley, 1990.

[Lebensohn et al. 2011] R. A. Lebensohn, A. D. Rollett, and P. Suquet, “Fast Fourier transform-
based modeling for the determination of micromechanical fields in polycrystals”, J. Mater. 63:3
(2011), 13–18.

[Lee and Verleysen 2007] J. A. Lee and M. Verleysen, Nonlinear dimensionality reduction, Springer,
2007.

[Lopez et al. 2018] E. Lopez, D. Gonzalez, J. V. Aguado, E. Abisset-Chavanne, E. Cueto, C. Bi-
netruy, and F. Chinesta, “A manifold learning approach for integrated computational materials
engineering”, Arch. Comput. Methods Eng. 25:1 (2018), 59–68.

[Metropolis et al. 1953] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller,
“Equation of state calculations by fast computing machines”, J. Chem. Phys. 21:6 (1953), 1087–
1092.

[Myers 1997] H. P. Myers, Introductory solid state physics, 2nd ed., Taylor & Francis, 1997.

[Newell and Montroll 1953] G. F. Newell and E. W. Montroll, “On the theory of the Ising model of
ferromagnetism”, Rev. Modern Physics 25 (1953), 353–389.

[Niss 2005] M. Niss, “History of the Lenz–Ising model 1920–1950: from ferromagnetic to coopera-
tive phenomena”, Arch. Hist. Exact Sci. 59:3 (2005), 267–318.

[Onsager 1944] L. Onsager, “Crystal statistics, I: A two-dimensional model with an order-disorder
transition”, Phys. Rev. (2) 65 (1944), 117–149.

[Polito and Perona 2001] M. Polito and P. Perona, “Grouping and dimensionality reduction by lo-
cally linear embedding”, pp. 1255–1262 in Advances in Neural Information Processing Systems 14
(Vancouver, 2001), edited by T. G. Dietterich et al., MIT, 2001.

[Roweis and Saul 2000] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally
linear embedding”, Science 290:5500 (2000), 2323–2326.

[Schölkopf et al. 1998] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis
as a kernel eigenvalue problem”, Neural Comput. 10:5 (1998), 1299–1319.

[Schölkopf et al. 1999] B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel principal component
analysis”, Chapter 20, pp. 327–352 in Advances in kernel methods, edited by C. J. C. Burges et al.,
MIT, 1999.

[Tenenbaum et al. 2000] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction”, Science 290:5500 (2000), 2319–2323.

https://www.physics.ohio-state.edu/~braaten/statphys/Ising_MatLab.pdf
http://dx.doi.org/10.1109/T-C.1971.223208
http://dx.doi.org/10.1109/T-C.1971.223208
http://dx.doi.org/10.1007/s10439-010-9976-7
http://dx.doi.org/10.1007/s10439-010-9976-7
http://dx.doi.org/10.1007/BF02980577
http://dx.doi.org/10.5566/ias.v27.p183-192
http://dx.doi.org/10.5566/ias.v27.p183-192
http://dx.doi.org/10.1162/neco.1997.9.7.1493
http://dx.doi.org/10.1162/neco.1997.9.7.1493
http://dx.doi.org/10.1007/s11837-011-0037-y
http://dx.doi.org/10.1007/s11837-011-0037-y
http://dx.doi.org/10.1007/978-0-387-39351-3
http://dx.doi.org/10.1007/s11831-016-9172-5
http://dx.doi.org/10.1007/s11831-016-9172-5
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1103/RevModPhys.25.353
http://dx.doi.org/10.1103/RevModPhys.25.353
http://dx.doi.org/10.1007/s00407-004-0088-3
http://dx.doi.org/10.1007/s00407-004-0088-3
http://dx.doi.org/10.1103/PhysRev.65.117
http://dx.doi.org/10.1103/PhysRev.65.117
https://papers.nips.cc/paper/2033-grouping-and-dimensionality-reduction-by-locally-linear-embedding
https://papers.nips.cc/paper/2033-grouping-and-dimensionality-reduction-by-locally-linear-embedding
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1162/089976698300017467
http://dx.doi.org/10.1162/089976698300017467
http://dx.doi.org/10.1126/science.290.5500.2319
http://dx.doi.org/10.1126/science.290.5500.2319


ON THE EFFECT OF PHASE TRANSITION ON THE MANIFOLD DIMENSIONALITY 265

[Wang 2014] Q. Wang, “Kernel principal component analysis and its applications in face recognition
and active shape models”, preprint, 2014. arXiv

[Zhu et al. 2018] J. Zhu, R. Balieu, X. Lu, and N. Kringos, “Microstructure evaluation of polymer-
modified bitumen by image analysis using two-dimensional fast Fourier transform”, Mater. Design
137 (2018), 164–175.

[Zimmer et al. 2015] V. A. Zimmer, K. Lekadir, C. Hoogendoorn, A. F. Frangi, and G. Piella, “A
framework for optimal kernel-based manifold embedding of medical image data”, Comput. Med.
Imag. Grap. 41 (2015), 93–107.

Received 6 Jan 2018. Revised 20 Mar 2018. Accepted 15 May 2018.

ELENA LOPEZ: elena.lopez-tomas@ec-nantes.fr
Institut de Calcul Intensif, École Centrale de Nantes, Nantes, France

ADRIEN SCHEUER: adrien.scheuer@ec-nantes.fr
Institut de Calcul Intensif, École Centrale de Nantes, Nantes, France

and

Institute of Information and Communication Technologies, Electronics and Applied Mathematics,
Université catholique de Louvain, Louvain-la-Neuve, Belgium

EMMANUELLE ABISSET-CHAVANNE: emmanuelle.abisset-chavanne@ec-nantes.fr
Institut de Calcul Intensif, École Centrale de Nantes, Nantes, France

FRANCISCO CHINESTA: francisco.chinesta@ensam.eu
Procédés et Ingénierie en Mécanique et Matériaux, Arts et Métiers ParisTech, Paris, France

MM ∩
msp

http://msp.org/idx/arx/1207.3538v3
http://dx.doi.org/10.1016/j.matdes.2017.10.023
http://dx.doi.org/10.1016/j.matdes.2017.10.023
http://dx.doi.org/10.1016/j.compmedimag.2014.06.001
http://dx.doi.org/10.1016/j.compmedimag.2014.06.001
mailto:elena.lopez-tomas@ec-nantes.fr
mailto:adrien.scheuer@ec-nantes.fr
mailto:emmanuelle.abisset-chavanne@ec-nantes.fr
mailto:francisco.chinesta@ensam.eu
http://www.univaq.it
http://memocs.univaq.it/
http://msp.org


MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS
msp.org/memocs

EDITORIAL BOARD
ANTONIO CARCATERRA Università di Roma “La Sapienza”, Italia

ERIC A. CARLEN Rutgers University, USA
FRANCESCO DELL’ISOLA (CO-CHAIR) Università di Roma “La Sapienza”, Italia

RAFFAELE ESPOSITO (TREASURER) Università dell’Aquila, Italia
ALBERT FANNJIANG University of California at Davis, USA

GILLES A. FRANCFORT (CO-CHAIR) Université Paris-Nord, France
PIERANGELO MARCATI Università dell’Aquila, Italy

JEAN-JACQUES MARIGO École Polytechnique, France
PETER A. MARKOWICH DAMTP Cambridge, UK, and University of Vienna, Austria

MARTIN OSTOJA-STARZEWSKI (CHAIR MANAGING EDITOR) Univ. of Illinois at Urbana-Champaign, USA
PIERRE SEPPECHER Université du Sud Toulon-Var, France

DAVID J. STEIGMANN University of California at Berkeley, USA
PAUL STEINMANN Universität Erlangen-Nürnberg, Germany

PIERRE M. SUQUET LMA CNRS Marseille, France

MANAGING EDITORS
MICOL AMAR Università di Roma “La Sapienza”, Italia

CORRADO LATTANZIO Università dell’Aquila, Italy
ANGELA MADEO Université de Lyon–INSA (Institut National des Sciences Appliquées), France

MARTIN OSTOJA-STARZEWSKI (CHAIR MANAGING EDITOR) Univ. of Illinois at Urbana-Champaign, USA

ADVISORY BOARD
ADNAN AKAY Carnegie Mellon University, USA, and Bilkent University, Turkey

HOLM ALTENBACH Otto-von-Guericke-Universität Magdeburg, Germany
MICOL AMAR Università di Roma “La Sapienza”, Italia
HARM ASKES University of Sheffield, UK

TEODOR ATANACKOVIĆ University of Novi Sad, Serbia
VICTOR BERDICHEVSKY Wayne State University, USA

GUY BOUCHITTÉ Université du Sud Toulon-Var, France
ANDREA BRAIDES Università di Roma Tor Vergata, Italia

ROBERTO CAMASSA University of North Carolina at Chapel Hill, USA
MAURO CARFORE Università di Pavia, Italia

ERIC DARVE Stanford University, USA
FELIX DARVE Institut Polytechnique de Grenoble, France

ANNA DE MASI Università dell’Aquila, Italia
GIANPIETRO DEL PIERO Università di Ferrara and International Research Center MEMOCS, Italia

EMMANUELE DI BENEDETTO Vanderbilt University, USA
BERNOLD FIEDLER Freie Universität Berlin, Germany

IRENE M. GAMBA University of Texas at Austin, USA
DAVID Y. GAO Federation University and Australian National University, Australia

SERGEY GAVRILYUK Université Aix-Marseille, France
TIMOTHY J. HEALEY Cornell University, USA
DOMINIQUE JEULIN École des Mines, France
ROGER E. KHAYAT University of Western Ontario, Canada

CORRADO LATTANZIO Università dell’Aquila, Italy
ROBERT P. LIPTON Louisiana State University, USA
ANGELO LUONGO Università dell’Aquila, Italia
ANGELA MADEO Université de Lyon–INSA (Institut National des Sciences Appliquées), France

JUAN J. MANFREDI University of Pittsburgh, USA
CARLO MARCHIORO Università di Roma “La Sapienza”, Italia
GÉRARD A. MAUGIN Université Paris VI, France
ROBERTO NATALINI Istituto per le Applicazioni del Calcolo “M. Picone”, Italy

PATRIZIO NEFF Universität Duisburg-Essen, Germany
ANDREY PIATNITSKI Narvik University College, Norway, Russia

ERRICO PRESUTTI Università di Roma Tor Vergata, Italy
MARIO PULVIRENTI Università di Roma “La Sapienza”, Italia

LUCIO RUSSO Università di Roma “Tor Vergata”, Italia
MIGUEL A. F. SANJUAN Universidad Rey Juan Carlos, Madrid, Spain

PATRICK SELVADURAI McGill University, Canada
ALEXANDER P. SEYRANIAN Moscow State Lomonosov University, Russia

MIROSLAV ŠILHAVÝ Academy of Sciences of the Czech Republic
GUIDO SWEERS Universität zu Köln, Germany

ANTOINETTE TORDESILLAS University of Melbourne, Australia
LEV TRUSKINOVSKY École Polytechnique, France

JUAN J. L. VELÁZQUEZ Bonn University, Germany
VINCENZO VESPRI Università di Firenze, Italia
ANGELO VULPIANI Università di Roma La Sapienza, Italia

MEMOCS (ISSN 2325-3444 electronic, 2326-7186 printed) is a journal of the International Research Center for
the Mathematics and Mechanics of Complex Systems at the Università dell’Aquila, Italy.

Cover image: “Tangle” by © John Horigan; produced using the Context Free program (contextfreeart.org).

PUBLISHED BY
mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/

© 2018 Mathematical Sciences Publishers

http://msp.org/memocs/
www.contextfreeart.org
http://msp.org/
http://msp.org/


Mathematics and Mechanics of Complex Systems

vol. 6 no. 3 2018

137The variational structure of classical plasticity
Gianpietro Del Piero

181Far-reaching Hellenistic geographical knowledge hidden in
Ptolemy’s data

Lucio Russo

201Generation of SH-type waves due to shearing stress
discontinuity in an anisotropic layer overlying an initially
stressed elastic half-space

Santosh Kumar and Dinbandhu Mandal

213Strain gradient and generalized continua obtained by
homogenizing frame lattices

Houssam Abdoul-Anziz and Pierre Seppecher

251On the effect of phase transition on the manifold
dimensionality: application to the Ising model

Elena Lopez, Adrien Scheuer, Emmanuelle
Abisset-Chavanne and Francisco Chinesta

MEMOCS is a journal of the International Research Center for
the Mathematics and Mechanics of Complex Systems
at the Università dell’Aquila, Italy.

MM ∩

M
A

T
H

E
M

A
T

IC
S

A
N

D
M

E
C

H
A

N
IC

S
O

F
C

O
M

P
L

E
X

SY
ST

E
M

S
vol.

6
no.

3
2

0
1

8

http://dx.doi.org/10.2140/memocs.2018.6.137
http://dx.doi.org/10.2140/memocs.2018.6.181
http://dx.doi.org/10.2140/memocs.2018.6.181
http://dx.doi.org/10.2140/memocs.2018.6.201
http://dx.doi.org/10.2140/memocs.2018.6.201
http://dx.doi.org/10.2140/memocs.2018.6.201
http://dx.doi.org/10.2140/memocs.2018.6.213
http://dx.doi.org/10.2140/memocs.2018.6.213
http://dx.doi.org/10.2140/memocs.2018.6.251
http://dx.doi.org/10.2140/memocs.2018.6.251

	1. Introduction
	2. The Ising model and its Monte Carlo solution
	3. Manifold construction
	3.1. Applying the fast Fourier transform on the Ising microstructures
	3.2. Nonlinear dimensionality reduction

	4. Discriminating criteria
	5. Numerical results
	6. Conclusions
	References
	
	

