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THE VARIATIONAL STRUCTURE
OF CLASSICAL PLASTICITY

GIANPIETRO DEL PIERO

A unified approach to classical plasticity, including metal plasticity, geomateri-
als, and crystal plasticity, is presented. A distinctive feature of this approach is
that the basic constitutive elements (yield criterion, flow rule, consistency condi-
tion, and hardening rule), instead of being assumed on a phenomenological basis
or deduced from ad hoc principles, are obtained directly from the stationarity of
the energy. The plastic continuum is regarded as a particular micromorphic con-
tinuum, and its energy has the form resulting from a homogenization procedure
introduced in the theory of structured deformations. This form of the energy
requires an additive decomposition of the deformation gradient, in place of the
multiplicative decomposition usually adopted in finite plasticity. It is shown by
examples that many of the models adopted in classical plasticity can be obtained
from ad hoc specifications of the energy.

1. Introduction

Plasticity is a branch of continuum mechanics characterized by the presence of a
state variable, the plastic strain, which describes rearrangements of the material
structure at the microscopic level. With the progress of microstructural multiscale
theories, it became important to specify the nature of the continuum in which a
plasticity model is embedded. For classical plasticity the underlying continuum
is the classical continuum, that is, a continuum whose external power is produced
by body forces and surface tractions alone. This excludes nonlocal models such
as gradient plasticity, in which the plastic strain is supposed to produce an extra
power when multiplied by microscopic external forces, and the latter produce an
extra stress measure plus a hyperstress represented by a third-order tensor.1 Rate-
dependent theories, and in particular viscoplasticity, are also excluded from the
present treatment.

Communicated by Miroslav Šilhavý.
MSC2010: primary 74C15, 74G65, 74A20; secondary 74E15, 74L10.
Keywords: classical plasticity, quasistatic evolution, incremental energy minimization, plastic

stationarity condition, nonassociated flow rules.
1For this and other models of classical and nonclassical plasticity, see the book by Gurtin, Fried,

and Anand [Gurtin et al. 2010, Part XV] and the references therein.
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The bases of classical plasticity were laid down in the 1940s. Of the basic
constitutive elements of the theory,
• the yield condition,

• the flow rule,

• the consistency condition, and

• the hardening rule,

the first three had been fixed by the end of that decade, and the fourth followed a
few years later.2 Though these elements take origin from experimental observation,
several efforts were made to relate them to general principles, in order to show
that plastic response is not a caprice of nature, but obeys a precise mathematical
structure. In this spirit, Prager [1949] proved that the flow rule, in the form of a
normality law, is a consequence of the uniqueness of the solution of the incremental
equilibrium problem. In a paper published just before, Hill [1948] had proved that
uniqueness is, in turn, a consequence of a principle of maximum plastic work.

Soon afterwards, Drucker [1952] showed that normality is also a consequence
of a quasithermodynamic postulate of material stability. Actually this was not
progress, since Drucker’s postulate came out to be more restrictive than Hill’s prin-
ciple. Progress was also not brought by the postulate of Il’yushin [1961] which,
though less restrictive in general, in the case of classical plasticity is equivalent to
Drucker’s [Lucchesi and Podio-Guidugli 1990]. On the contrary, some progress
came with the introduction of supplementary state variables.3 This opened the way
to the study of nonassociated plasticity, which is in contradiction with Drucker’s
postulate, since by its own definition nonassociated plasticity does not obey the
normality law.4

Several variational principles were formulated at the earlier stages of the the-
ory.5 In the development of such principles, a turning point was marked by the
introduction of the concept of plastic potential.6 In the broader context of classical
continuum mechanics, related concepts of dissipation function and dissipation po-
tential were introduced by Ziegler [1963] and Moreau [1970; 1974]. Incremental
minimum principles involving a strain energy made of the sum of an elastic en-
ergy and a dissipation potential were formulated by Fedelich and Ehrlacher [1989]

2See Prager’s overview [1949]. Prager’s kinematical hardening model [1955] was introduced in
the mid 1950s.

3See [Lemaitre and Chaboche 1990, p. 193] or [Ziegler 1983, §14].
4The interest in nonassociated plasticity was stimulated by the study of geomaterials, such as

soils, concrete, and stones; see, e.g., [Vermeer and de Borst 1984].
5For the variational principles formulated before the 1950s, see Hill’s book [1950].
6See [Hill 1950] for plasticity, and [Rice 1971] for viscoplasticity. Later, the existence of a special

type of potential, called maximal responsive, was proved to be equivalent to Hill’s principle; see the
article by Eve, Reddy, and Rockafellar [Eve et al. 1990, Theorem 4.1].
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and by Petryk [2003]. Subsequent contributions by Dal Maso et al. [2006; 2008],
Mielke [Carstensen et al. 2002; Mielke 2003], and their schools marked substantial
progress in this direction.

The variational approach adopted in the present paper, formally similar to those
in [Fedelich and Ehrlacher 1989; Petryk 2003], has the peculiarity of deducing
all constitutive elements from the stationarity condition on the energy functional.
Indeed, this condition determines the incremental response law without any sup-
plementary assumption, such as the existence or convexity of the elastic range, or
the form of the flow rule.7

After fixing the incremental response law, the incremental equilibrium problem
can be formulated. This is the problem of determining the small deformations
from a given equilibrium placement, due to a conveniently small load increment.
Though the deformations to be determined are small, it is sometimes convenient
to formulate the problem in large deformations.8 This is the case, for example,
when one has in mind to approximate a problem with large load increments by a
sequence of problems with small load increments.

The present study is restricted to stationarity, that is, to the condition of nonnega-
tiveness of the first variation of the energy. In this way only equilibrium conditions
are obtained, without any information about stability. This is a serious limitation.
Indeed, a stability analysis would show that in classical plasticity a softening re-
sponse is unstable, because the plastic strain localizes on arbitrarily small regions of
the body. Initially, this led to considering softening materials as inadmissible. But
this viewpoint, consecrated by Drucker’s postulate, conflicted with the evidence
of the softening response exhibited by many real materials. Later, it was realized
that softening can be described by adding to the energy a nonlocal stabilizing term,
depending on the gradient of the plastic strain rate [Aifantis 1984; Bažant et al.
1984].9

In this paper some preliminary definitions, including a new ad hoc notation
for homogeneous maps, form Section 2, and the transitions from the equilibrium
problem in finite deformation to the evolution problem and from this one to the
incremental equilibrium problem are briefly illustrated in Section 3. This section
deals with two-scale, or micromorphic, continua, of which the plastic continua

7The idea of deducing the constitutive properties from two scalar potentials, an elastic energy
and a dissipation function, had already been exploited by Collins, Houlsby, and coworkers. They
initially applied it to geomaterials [Collins and Houlsby 1997], and then to general rate-independent
dissipative materials [Houlsby and Purzrin 2000; Collins 2003].

8The linearized equations for large deformations differ from those of the linear theory; see
Section 3.2 below.

9More recent one-dimensional analyses of the softening response in the proximity of fracture can
be found in [Pham et al. 2011a; 2011b] for damage and in [Del Piero 2013; Del Piero et al. 2013] for
plasticity.
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are a subclass. For them, in Section 3.4 it is shown that the stationarity of the
energy determines the response law relating the Piola stress to the elastic part of
the deformation, and produces a local stationarity condition which will be shown
to fully characterize the constitutive response.

In Section 4 the incremental problem is reformulated as a minimum problem for
the energy. The selected form of the energy is based on the additive decomposition
of the deformation gradient into an elastic and a plastic part, a rather unusual choice
in the context of large deformations. As shown in Section 4.1, this choice leads to
a particular form of the plastic strain rate, in which a symmetric plastic stretching
is followed by a rotation to be determined by a constitutive assumption. In most
models this rotation is taken equal to the identity. An exception is the crystal
plasticity model discussed in Section 7.10 An indifference argument developed in
Section 4.2 shows that the plastic part of the energy is independent of this rotation.

In the crucial Section 5, the constitutive elements of the theory are deduced from
the local stationarity condition, now called plastic stationarity condition. A major
result in this paper is that this condition determines a bounding map in the stress
space, related to the directional derivatives of a dissipation potential. The values
taken by this map in different directions impose directional limit values for the
stress. This leads to the definition of an elastic range, a region in the stress space
which by its own construction turns out to be closed and convex. From the plastic
stationarity condition it also follows that a plastic strain rate can only occur if the
stress is a boundary point of the elastic range, and that its direction belongs to the
normal cone at that boundary point. This is the normality law which determines
the associated flow rule. Thus, nonassociated flow rules are not provided by the
variational procedure.

In Section 6 some well known plasticity models are reobtained assuming par-
ticular forms of the plastic energy. Section 6.1 deals with the three basic mod-
els of perfect, kinematic, and dilatational plasticity, which include kinematic and
isotropic hardening as special cases. The assumption of isochoricity of the plastic
strain rate is studied in Section 6.2. It is well known that this assumption gives the
opportunity of taking the hydrostatic pressure as a supplementary state variable.11

As a consequence of stationarity, this extra variable generates a pressure-dependent
family of elastic ranges, such that normality holds for each member of the family.
This makes possible to include in the present scheme some plasticity models usu-
ally described by nonassociated flow rules.

10In the models based on the multiplicative decomposition, an equivalent constitutive assumption
is the assumption of plastic irrotationality, by which the plastic spin, which is the skew-symmetric
part of the plastic strain rate, is set to zero. Here, too, crystal plasticity is an exception.

11See, e.g., [Srinivasa 2010; Vermeer and de Borst 1984, Ziegler 1983, §17.6; Ziegler and Wehrli
1987, §VII.A].
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The isotropic case, in which the plastic energy is independent of the direction of
the plastic strain rate, is investigated in Section 6.3. This case includes the energies
of Drucker and Prager and of Mises. These energies are used as paradigms to com-
pare the plastic behaviors of metals and geomaterials. The fact that isochoric plas-
ticity cannot describe some plastic volume changes observed in geomaterials, such
as the dilatancy of soils, motivates the Cam-clay model summarized in Section 6.4,
specifically conceived to describe such phenomena [Roscoe and Poorooshasb 1963;
Roscoe et al. 1958].

Finally, Section 7 deals with the plasticity of crystals. This is a special case of
isochoric plasticity, in which the plastic strain has the form of slips occurring on
predetermined slip planes. As said above, this is the only case considered in this
paper in which the form of the plastic strain is given a priori, so that there is no
need of specifying constitutively any rotation. The single-slip and the multislip
models are illustrated in Sections 7.1 and 7.2, respectively. In Section 7.3, the
periodic energies used to study the two-level shear of single crystals are considered.
Within the exception constituted by crystal plasticity, this model exhibits the further
exception that the plastic potential which governs the evolution of the plastic strain
need not be nonsmooth. Instead of being diffused along the whole process, the
plastic dissipation concentrates on singular instability events of catastrophic nature.
This opens perspectives of revision of the bases of classical plasticity, including the
revisitation of the concept of elastic range and of the other constitutive elements.
For reasons of brevity, only a mention of such perspectives can be made here.

It is the present author’s opinion that the possibility of treating in a unified
way many models reproducing the behavior of materials of different natures, just
acting on the shape of the plastic energy and then looking at the consequences of the
plastic stationarity condition, is a paramount advantage of the variational approach.

2. Notation and preliminaries

2.1. Linear spaces and linear maps. By linear space we mean a finite-dimensional
vector space endowed with an inner product. A linear map from a linear space A

to a linear space B is a map ` : A →B such that

`(αH +βK )= α`(H)+β`(K ) for all H, K ∈ A and α, β ∈ R. (2-1)

The set of all linear maps of A into B is a linear space which will be denoted
by L (A ,B).

If B is the real line R, the elements of L (A ,R) are the linear functionals on A .
By the representation theorem of linear functionals, L (A ,R) is isomorphic to A .
That is, with every ` ∈L (A ,R) one can associate a unique element H of A such
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that
`(K )= H · K for all K ∈ A , (2-2)

with ( · ) the inner product of A .12

For A fixed and B = A , we write L in place of L (A ,A ) and we call its
elements second-order tensors. The linear maps of L into itself are called fourth-
order tensors.

A subspace of a linear space is a subset which is itself a linear space. Proper
subspaces of L are the set S of all symmetric tensors and the set W of all skew-
symmetric tensors.

2.2. Homogeneous and bihomogeneous maps. In plasticity, an important role is
played by homogeneous and bihomogeneous maps. Therefore, it does not seem
inappropriate to recall some basic definitions and to introduce some ad hoc notation.
A map h from a linear space A to a linear space B is homogeneous of order one,
in short, homogeneous, if

h(t H)= th(H) for all H ∈ A and t ≥ 0. (2-3)

The set H (A ,B) of all homogeneous maps from A to B is a vector space, with
obvious definitions of the sum and multiplication by a scalar:

(h+ l)(H)= h(H)+ l(H), (αh)(H)= αh(H) for all α ∈ R and H ∈ A .

(2-4)
If a homogeneous map is additive,

h(H + K )= h(H)+ h(K ) for all H, K ∈ A , (2-5)

it is linear. Therefore, L (A ,B) is a proper subspace of H (A ,B).
If B is the real line R, the elements of H (A ,R) are the homogeneous function-

als on A . In this case we write

h F K in place of h(K ). (2-6)

The operator “F” maps the elements of (H (A ,R)×A ) into the real numbers. In
particular, by (2-2), a linear h can be identified with an element H of A . In this
case, the pairing reduces to the inner product of A :

h ∈L (A ,R) =⇒ h F K = H · K for all K ∈ A . (2-7)

A bihomogeneous map on A is a homogeneous map K from A to H (A ,R). For
any such map, the homogeneous functional on A obtained applying K to K ∈ A

12See, e.g., [Halmos 1942, §67].
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and the real number obtained by applying this homogeneous functional to H ∈A

are denoted by
K{K }, K{K } F H, (2-8)

respectively. For every bihomogeneous map we have

K{λK } FµH = λµK{K } F H for all λ,µ≥ 0. (2-9)

If K is linear, we write K[K ] in place of K{K }. If K is linear and K[K ] is linear
for all K , then K is a linear map from A to itself, that is, a fourth-order tensor K.
In this case, we have

K{K } F H = K[K ] · H. (2-10)

2.3. Directional derivatives. Let A be a linear space, and let φ be a map of L =

L (A ,A ) into the real line R. For A ∈L and H ∈L \ {0}, the limit

∇̆φ(A) F H = lim
ε→0+

φ(A+ εH)−φ(A)
ε

(2-11)

is the directional derivative at A in the direction H . If this limit exists for all H ,
we say that φ is Gâteaux differentiable at A. From its very definition it is clear that
∇̆φ(A) is a homogeneous functional, that is, an element of H (L ,R). If ∇̆φ(A)
is additive, it reduces to the ordinary derivative ∇φ(A), and φ is said to be Fréchet
differentiable, in short, differentiable, at A.

The map φ is twice Gâteaux differentiable at A if ∇̆φ is Gâteaux differentiable
in a neighborhood of A and the limit

∇̆
2φ(A){H} F K = lim

ε→0+

∇̆φ(A+ εH) F K −∇̆φ(A) F K
ε

(2-12)

exists for all H ∈L \ {0}. In this case ∇̆2φ(A) is said to be the second directional
derivative at A in the direction H . It is clear that ∇̆2φ(A){H} is an element of
H (L ,R), and that ∇̆2φ(A) is a homogeneous map from L to H (L ,R), that is,
a bihomogeneous map on L . If ∇̆2φ(A) is linear in both H and K , it reduces
to the second Fréchet derivative ∇2φ(A), which is identified with a fourth-order
tensor. Here we shall be interested in the case H = K , in which the expansions

φ(A+ εH)= φ(A)+ ε∇̆φ(A) F H + 1
2ε

2
∇̆

2φ(A){H} F H + o(ε2),

∇̆φ(A+ εH)= ∇̆φ(A)+ ε∇̆2φ(A){H}+ o(ε)
(2-13)

are direct consequences of the definitions.

2.4. Nonsmooth potentials and dissipation potentials. A function φ from L to
the real line

(i) with φ(A)= 0,
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(ii) twice differentiable at L \ {A},

(iii) twice Gâteaux differentiable at A,

will be called a nonsmooth potential from A. A smooth potential is the special case
in which φ is also twice differentiable at A. A nonsmooth potential

(iv) strictly increasing along every direction H ,

λ > µ≥ 0 =⇒ φ(A+ λH) > φ(A+µH) for all H ∈L \ {0}, (2-14)

will be called a dissipation potential. We point out that (iv) implies

∇̆φ(A) F H > 0 for all H ∈L \ {0}. (2-15)

A dissipation potential is homogeneous from A ∈L if13

φ(A+ εH)= εφ(A+ H) for all H ∈L and ε ≥ 0. (2-16)

For a homogeneous potential from A, from (2-13)1 we have

φ(A+ H)= ∇̆φ(A) F H, ∇̆
2φ(A){H} F H = 0 for all H ∈L . (2-17)

3. The incremental problem

3.1. From the equilibrium problem to the evolution problem. Let �R be the re-
gion occupied by a continuous body in the reference placement. Suppose that
on �R is prescribed a system of external loads, consisting of a body force field bR

at the interior of �R and of a surface traction field sR on a given portion ∂s�R of
the boundary ∂�R .

A stress field TR on �R is said to be equilibrated with the given loads if it
satisfies the virtual work equation14∫

�R

TR · ∇v dVR =

∫
�R

bR · v dVR +

∫
∂s�R

sR · v d AR (3-1)

for all vector fields v on �R which vanish on ∂�R \ ∂s�R . The Piola stress tensor
TR is related to the deformation gradient ∇ f by a response law. The equilibrium
problem consists of finding the deformation f from �R produced by the given
loads. The weak formulation of the problem is obtained substituting the response
law into the virtual work equation and imposing the boundary condition of place

f (x)= f̂ (x), x ∈ ∂�R \ ∂s�R. (3-2)

13See, e.g., [Eve et al. 1990; Martin and Reddy 1993]. Here, nonhomogeneous potentials appear
in the dilatational plasticity models in Section 6. A dissipation potential is also frequently assumed
to be convex, but this assumption is not essential; see, e.g., [Petryk 2003, Remark 1]. In fact, non-
convexity is required to describe the softening response; see Section 6.1 below.

14See, e.g., [Ciarlet 1988, §2.6]. For simplicity, the variable of integration x is omitted.



THE VARIATIONAL STRUCTURE OF CLASSICAL PLASTICITY 145

For an elastic body, the response law is a functional relation between the punctual
values of TR and ∇ f :

TR(x)= G(∇ f (x)), x ∈�R. (3-3)

For nonelastic bodies, the response law is less simple. In the class of simple mate-
rials it is assumed that, at each point x , the stress TR(x) is determined by the past
history of the gradient of f at x [Truesdell and Noll 1965, §28; Noll 1972]. By
consequence, the final deformation does not only depend on the final load (bR, sR),
but also on the loading path along which this load has been reached.

To follow the evolution of the load, the equilibrium problem is replaced by an
evolution problem, which can be formulated as follows. Let an initial placement f0

of the body, an initial stress TR0, a loading path t 7→ (bRt , sRt), and a family t 7→ f̂t

of constraints be given.15 The initial placement is required to satisfy the constraint
f̂0 on the constrained part of the boundary, and the initial stress is required to be
equilibrated with the initial load (bR0, sR0). The problem consists of determining
a deformation process t 7→ ft such that, for each t > 0, ft satisfies the constraint f̂t

and the stress TRt is equilibrated with the loads (bRt , sRt).

3.2. From the evolution problem to the incremental problem. In the evolution
problem, t varies over a finite interval [0, t†

]. In the incremental equilibrium
problem, this interval is restricted by taking the limit of t† to 0+. Then, from
the expansions

bRt=bR0+tδbR+o(t), sRt=sR0+tδsR+o(t), TRt=TR0+tδTR+o(t), (3-4)

the incremental version of the virtual work equation (3-1)∫
�R

δTR · ∇v dVR =

∫
�R

δbR · v dVR +

∫
∂s�R

δsR · v d AR (3-5)

follows. The weak formulation of the problem is completed by the prescription of
an incremental constraint û on ∂�R \ ∂s�R and of an incremental response law of
the form

δTR = h(∇u), (3-6)

where u(x) = f (x)− x is the displacement vector and h is a homogeneous map
depending on a set of variables which define the current state of each specific
continuum.16

15The parameter t is an internal time which describes the deformation path. It need not be related
to the physical time.

16This map is an evolution function in the sense of W. Noll’s new theory of simple materials [Noll
1972].
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For the solution of the evolution problem, a natural strategy is to subdivide the
interval [0, t†

] into subintervals, and to solve the incremental problem on each
subinterval, using the solution of each problem as the input for the next one. It is
expected that, in the presence of sufficient regularity, the solution to the evolution
problem would be achieved in the limit, when the lengths of all subintervals tend
uniformly to zero. There is, however, a difficulty in passing from a subinterval to
the next. Indeed, in this passage the initial deformation f0, the loads bR, sR , and
the constraint û change. By consequence, the response function h and the Piola
stress TR must be updated. This is perhaps the most difficult part of the solution
procedure. It will be not considered in the present paper, which is restricted to the
formulation of a single incremental problem.

The assumption of infinitesimal deformations, by which these changes are ne-
glected, drastically simplifies the problem. However, since the increments obey dif-
ferent laws in small and in large deformations, the incremental problem is different
in the two cases. Here, only the formulation in the context of large deformations
will be considered.

3.3. The energetic formulation. An alternative formulation of the equilibrium prob-
lem consists of transforming it into a minimum problem for the total energy of the
body. In this approach the equilibrium placements of the body are characterized by
the stationarity of the energy, that is, by the nonnegativeness of the first variation.
As already said in the Introduction, the stability of the equilibrium, which is decided
by the sign of the second variation, will not be considered here.

The energy of a body is assumed to be the sum of an internal strain energy plus
the energy communicated by the external loads:

Etot = Eint+ Eext. (3-7)

A classical continuum is a continuum with an external energy of the form17

Eext(bR, sR, u)=−
∫
�R

bR · u dVR −

∫
∂�R

sR · u d AR. (3-8)

The internal energy has the form of a volume integral, with an energy density
depending on the strain measures which characterize each specific continuum. In
particular, the class of two-scale, or micromorphic, continua is characterized by
two strain measures, the macroscopic deformation f and the local microscopic
deformation F .18 For a two-scale deformation ( f, F) we assume an internal energy

17In a nonclassical, or generalized continuum, the external energy has supplementary terms in-
volving external actions associated with the state variables.

18Here local means that the function F is not in general the gradient of a function defined over
the whole body.
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of the form

Eint( f, F)=
∫
�R

(ϕ(F)+φ(Fd)) dVR, (3-9)

where

Fd
=∇ f − F (3-10)

is the deformation due to the disarrangements [Owen 1995] which occur at the
microscopic scale, and the energy densities ϕ and φ are a smooth and a nonsmooth
potential, respectively.

This energy is the relaxed limit of the energies associated with the discontinuities
in a sequence of piecewise continuous macroscopic deformations approximating
( f, F).19 The existence of such approximating sequences for any two-scale de-
formation is ensured by the approximation theorem of the theory of structured
deformations [Del Piero and Owen 1993].20

3.4. Incremental minimization. Let t 7→ ( ft , Ft) be a solution of the incremental
problem from an initial placement which, for convenience, we take as the refer-
ence placement. Then f0 and F0 are the identity map ı and the identity tensor I ,
respectively, and ft and Ft have the expansions

ft = ı + t∇u+ o(t), Ft = I + t L + o(t). (3-11)

The region �R is now the region �0 occupied by the body at t = 0, and the loads
and stresses (3-4) are now

bt = b0+ tδbR + o(t), st = s0+ tδsR + o(t), Tt = T0+ tδTR + o(t). (3-12)

For Fd
t =∇ ft − Ft we have

Fd
0 = 0, Fd

t = t Ld
+ o(t), Ld

=∇u− L , (3-13)

19The dependence of the relaxed energy on the pair (F, Fd ) was proved by Choksi and Fonseca
[1997] for a model of defective crystals. They also found that the sum decomposition (3-9) holds in
some special cases, and conjectured that it may hold in general. In [Del Piero 2001; Owen 2000]
their conjecture was proved to be true in one dimension. Later this result was extended to three
dimensions, under different regularity assumptions. In the papers [Baía et al. 2012; Owen and Paroni
2015; Šilhavý 2017], φ was found to be a homogeneous potential. For plastic materials, we shall
see later that the homogeneous potentials can only describe a perfectly plastic response. To describe
work-hardening, more general potentials have been obtained either assuming special forms of φ
[Deseri and Owen 2002] or taking the relaxed limit of approximating sequences for second-order
structured deformations [Barroso et al. 2017].

20That Fd is an independent energetic variable is due to the fact that, in the limit, the discon-
tinuities in the piecewise continuous approximating deformations have a volume density, which is
exactly Fd ; see [Del Piero and Owen 1995].
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and, for the energy densities ϕ and φ,

ϕ(Ft)= t∇ϕ(I ) · L + 1
2 t2
∇

2ϕ(I )[L] · L + o(t2),

φ(Fd
t )= t∇̆φ(0) F Ld

+
1
2 t2
∇̆

2φ(0)[Ld
] F Ld

+ o(t2).
(3-14)

For fixed t > 0, the solution ( ft , Ft) is the minimum of the total energy in the class
of all deformations ( fε, Fε) such that

fε = ft + εv, Fε = Ft + εL, Fd
ε = Fd

t + εLd , (3-15)

with (v,L) a field of virtual velocities on �0 and ε > 0 a scalar parameter. The
total energy of ( fε, Fε) is

Etot( fε, Fε)= Etot( ft , Ft)+ ε

∫
�0

(∇ϕ(Ft) ·L+∇̆φ(Fd
t ) FLd) dV0

− ε

(∫
�0

bt · v dV0+

∫
∂�0

st · v d A0

)
+ o(ε). (3-16)

The energy is said to be stationary at ( f, F) if

lim
ε→0+

1
ε
(Etot( fε, Fε)− Etot( ft , Ft))≥ 0 (3-17)

for all perturbations (v,L). In particular, for L = ∇v we have Ld
= 0, and for

v = 0 on ∂�0 \ ∂s�0 we get∫
�0

∇ϕ(Ft) · ∇v dV0 =

∫
�0

bt · v dV0+

∫
∂s�0

st · v d A0, (3-18)

with the equality sign because the inequality holds for both v and −v. A compari-
son with the virtual work equation (3-1) then leads to the identification

Tt =∇ϕ(Ft) (3-19)

of ∇ϕ with a stress field Tt equilibrated with the loads (bt , st). Therefore, at every
stationarity point of the energy there is a stress field Tt equilibrated with the given
loads. In particular, the same relation at t = 0

T0 =∇ϕ(I ) (3-20)

provides the stress T0 associated with the initial deformation F0 = I .
As a consequence of (3-18), all terms in v cancel from (3-16) with L replaced

by ∇v−Ld . Then (3-17) reduces to the inequality∫
�0

∇̆φ(Fd
t ) FLd dV0−

∫
�0

Tt ·Ld dV0 ≥ 0. (3-21)
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The punctual inequality

Tt ·Ld
≤ ∇̆φ(Fd

t ) FLd for all Ld
∈L (3-22)

follows almost everywhere in �R .21 This is a necessary condition for the station-
arity of the energy.

Since the left-hand side of (3-21) is the first-order approximation of the differ-
ence between the energy of ( fε, Fε) and the energy of the minimizer ( ft , Ft), the
minimum of this difference is zero and is attained for Ld

= Ld . Then for Ld
= Ld

inequality (3-22) is satisfied as an equality

Tt · Ld
= ∇̆φ(Fd

t ) F Ld . (3-23)

4. Incremental minimization in plasticity

Classical plasticity deals with continua which are both classical and micromorphic.
That is, the deformations are two-scale deformations ( f, F), and the total energy is
the sum of the energies (3-8) and (3-9). The difference ∇ f − F is the plastic strain
Fd , and inequality (3-22) is the plastic stationarity condition. In what follows,
this condition is used to characterize the incremental response law. This requires a
preliminary definition of the set of the admissible plastic strain rates and the deter-
mination of the restrictions imposed on the energy densities ϕ and φ by material
indifference.

4.1. Admissible plastic strain rates. The definition Fd
= ∇ f − F of the plastic

strain can be read as the additive decomposition

∇ f = F + Fd (4-1)

of the macroscopic deformation gradient into the sum of an elastic and a plastic
part.22 The choice of the additive decomposition has notable consequences on
the structure of the plastic strain rate and, consequently, on the restrictions on the
plastic potential φ imposed by material indifference.

Consider a deformation process t 7→ ( ft , Ft) with the initial placement as ref-
erence placement. In the polar decomposition Fd

t = Rd
t U d

t of the plastic strain,

21Indeed, if for some Ld the punctual inequality were violated on a region of positive volume, the
integral inequality would be violated by any perturbation with support in that region and with Ld (x)
parallel to Ld .

22This decomposition is standard in infinitesimal plasticity, while in finite plasticity the Kröner–
Lee multiplicative decomposition ∇ f = Fe F p is largely preferred. The reason for the present choice
of the additive decomposition is the form (3-9) assumed for the energy of a micromorphic continuum.
For a detailed discussion on additive and multiplicative decompositions in plasticity, see the present
author’s paper [Del Piero 2018].
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at t = 0 we have Fd
0 = 0. Then U d

0 is zero, Rd
0 is indeterminate, and Rd

t and U d
t

have the expansions23

Rd
t = Rd

0 (I + tW d)+ o(t), U d
t = t Dd

+ o(t). (4-2)

Then, by consequence,
Ld
= Rd

0 Dd . (4-3)

Thus, in the additive decomposition the plastic strain rate Ld and the plastic stretch-
ing Dd differ by the rotation Rd

0 . This rotation is determined by a constitutive
assumption.24 Then either a set S d

0 of admissible plastic stretchings for the initial
deformation is selected a priori and the set of the admissible plastic strain rates
L d

0 = Rd
0 S d

0 is deduced, or vice versa.
The most common constitutive choice is Rd

0 = I , which corresponds to assuming
the symmetry of the plastic strain rate.25 In the following we keep this choice. The
important exception of crystal plasticity is treated separately in Section 7.

4.2. Indifference requirements. Like every scalar-valued function, the potentials
ϕ, φ must be invariant under distance-preserving changes of placement.26 This
results in the indifference conditions

ϕ(F)= ϕ(QF), φ(Fd)= φ(QFd) (4-4)

to be satisfied by all F, Fd in L and by all proper orthogonal tensors Q.27 For the
function ϕ, from the polar decomposition F = RU of F , taking Q = RT we get
the condition

ϕ(F)= ϕ(U ), (4-5)

23In the multiplicative decomposition, F p
t is defined in an intermediate placement at which both

F p
0 and R p

0 are equal to I and therefore are nonsingular. In the additive decomposition there is no
such placement, since both f and F are defined on the reference placement.

24In the multiplicative decomposition, F p
t = I + t L p implies R p

0 = I . Nevertheless, the decompo-
sition is determined only to within an indeterminate rotation; see [Dashner 1986; Green and Naghdi
1971; Lubarda and Lee 1981] and the paper [Del Piero 2018] by the present author. Therefore, a
constitutive assumption on a rotation has to be made anyway. Note also that, if R p

t = I + tW p

and U p
t = I + t D p , the plastic stretching D p and the plastic spin W p are the symmetric and skew-

symmetric parts of L p , respectively. This property is not preserved in the additive decomposition.
25In the multiplicative decomposition, the corresponding constitutive choice is the irrotationality

assumption W p
= 0 [Gurtin and Anand 2005; Reddy 2011; Reddy et al. 2008]. This assumption

has been made, tacitly or explicitly, in classical textbooks [Hill 1950; Prager 1949; 1955], as well as
in some more recent models of gradient plasticity [Fleck and Hutchinson 2001; Gurtin and Anand
2005; Gudmundson 2004].

26See, e.g., [Truesdell and Noll 1965, §17].
27The transformation law for Fd is a consequence of the laws ∇ f → Q∇ f and F→ QF . In the

multiplicative decomposition, while the transformation law Fe
→ QFe was universally accepted,

the question of the transformation law to be adopted for F p has a long and controversial history
[Dashner 1986; Green and Naghdi 1971; Lubarda and Lee 1981; Gurtin et al. 2010, §95.2].
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according to which ϕ is insensitive to the rotation R which follows the pure stretch U
in the microscopic deformation. This condition can be used to determine an indif-
ference restriction on ϕ at F = I . Indeed, for R and U consider the expansions

R = I + εW + 1
2ε

2(W 2
+ W̃ )+ o(ε2), U = I + εD+ 1

2ε
2 D̃+ o(ε2), (4-6)

with D, D̃ symmetric and W, W̃ skew-symmetric. Then,

F = RU = I + ε(W + D)+ 1
2ε

2(W 2
+ W̃ + D̃+ 2W D)+ o(ε2), (4-7)

and therefore,

ϕ(F)=∇ϕ(I ) · (ε(W + D)+ 1
2ε

2(W 2
+ W̃ + D̃+ 2W D))

+
1
2ε

2C[W + D] · (W + D)+ o(ε2), (4-8)

where C is the fourth-order tensor

C=∇2ϕ(I ), (4-9)

which, by the interchangeability of the order of differentiation, has the symmetry
property

C[H ] · K = C[K ] · H. (4-10)

The expansion of ϕ(U ) is the same as (4-8), with W = 0. Subtracting the two
expansions, from (4-5) we get

∇ϕ(I ) · (εW + ε2W̃ )+ ε2(C[W ] −W∇ϕ(I )) · ( 1
2 W + D)= 0, (4-11)

and due to the arbitrariness of ε, W , and D, the separate conditions

∇ϕ(I ) ·W = 0,

(C[W ] −W∇ϕ(I )) ·W = 0,

(C[W ] −W∇ϕ(I )) · D = 0,

for all W ∈W and D ∈S , (4-12)

follow. The last two conditions merge in the single condition

C[W ] =W∇ϕ(I ) for all W ∈W , (4-13)

according to which the restriction of C to W is determined by ∇ϕ(I ).
For the nonsmooth potential φ, for ft and Ft as in (3-11) and from (3-13)2 and

(4-3) we have

φ(Fd
t )= φ(t Ld)+ o(t)= φ(t Rd

0 Dd)+ o(t), (4-14)

and from the indifference condition (4-4)2 the condition

φ(Fd
t )= φ(t Dd)+ o(t) (4-15)
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follows. Then from the representations

φ(Fd
t )= t∇̆φ(0) F Ld

+
1
2 t2
∇̆

2φ(0){Ld
} F Ld ,

φ(Fd
t )= t∇̆φ(0) F Dd

+
1
2 t2
∇̆

2φ(0){Dd
} F Dd ,

(4-16)

we get

∇̆φ(0) F Ld
= ∇̆φ(0) F Dd , ∇̆

2φ(0){Ld
} F Ld

= ∇̆
2φ(0){Dd

} F Dd . (4-17)

Since Rd
0 = I implies Ld

= Dd , the indifference conditions on φ are trivially satis-
fied assuming Rd

0 = I . Effective restrictions on φ follow from any other constitutive
choice of Rd

0 .

5. Construction of the incremental response law

The purpose of this section is to deduce the incremental response law from the
plastic stationarity condition (3-22). From (3-19), (3-12)3, and (3-14)1 we have

T0+ tδT =∇ϕ(I )+ t∇2ϕ(I )[L] + o(t), (5-1)

and from (4-9), (3-13)3, and (4-3) with Rd
0 = I ,

δT = C[L] = C[∇u− Ld
] = C[∇u− Dd

]. (5-2)

By comparison with the incremental stress-strain relation (3-6), we get

C[∇u− Dd
] = h(∇u). (5-3)

This is a homogeneous map g from ∇u to Dd

Dd
= g(∇u). (5-4)

Therefore, the determination of the incremental stress-strain relation (3-6) is re-
duced to the determination of the map g. With this goal in mind, we proceed to
the characterization of the basic constitutive elements of the theory, in the order in
which they are listed in the Introduction.

5.1. The yield condition. With the identification Ld
= Dd due to the assumption

Rd
0 = I , the plastic stationarity condition (3-22) at t = 0 becomes

T0 ·Dd
≤ Φ̆0 FDd , Φ̆0 = ∇̆φ(0), (5-5)

for all Dd in a given set S d
0 of admissible plastic stretchings.28 This inequality

imposes the upper bound Φ̆0 FDd on the projection of T0 in the direction of Dd .

28Usually, S d
0 is assumed to be a cone in S , that is, a subset of S such that Dd

∈ S d
0 =⇒

λDd
∈S d

0 for all λ > 0.
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Then, Φ̆0 is a bounding map for T0. Indeed, inequality (5-5) says that for every
direction N = Dd/|Dd

| in S d
0 the stress T0 must belong to the set 29

HN
0 = {T ∈S | T · N ≤ Φ̆0 F N }, (5-6)

which is the closed half-space of S bounded by the hyperplane with exterior unit
normal N , placed at the distance Φ̆0 F N from the origin. Since this holds for all
directions in S d

0 , T0 must belong to the intersection

C0 =
⋂

N∈S d
0 , |N |=1

HN
0 (5-7)

of all HN
0 . Thus, a first consequence of (3-22) is the yield condition30

T0 ∈ C0. (5-8)

Since all HN
0 are closed convex sets, their intersection C0 is also a closed convex

set. Moreover, if φ is a dissipation potential, then Φ̆0 F N > 0 by (2-15), and the
inequality in (5-6) is strict at T = 0. That is, the null tensor is an interior point
of HN

0 . Since this holds for all N , the point T = 0 also belongs to the interior of C0.
The boundary of C0 consists of all T0 ∈ S at which the inequality in (5-6) is

satisfied as an equality:

T0 ∈ ∂C0 ⇐⇒ there is N0 ∈S d
0 such that T0 · N0 = Φ̆0 F N0. (5-9)

By (5-6), T0 also belongs to the boundary of the half-space HN0
0 . Since C0 is

included in HN0
0 , it follows that T · N0 ≤ Φ̆0 F N0 for all T ∈ C0. Then subtracting

from the previous equation we get

(T0− T ) · N0 ≥ 0 for all T ∈ C0; (5-10)

that is, N0 belongs to the normal cone to C0 at T0.
From (5-6) and (5-7) we see that C0 is determined by φ. Conversely, for a given

C0 the relation (5-10) associates with every direction N0 a (possibly nonunique)

29We recall that T0 =∇ϕ(I ) is a symmetric tensor by the indifference condition (4-12)1.
30In the terminology of convex analysis, inequality (5-2) says that the map Φ̆0 is subdifferentiable

at Dd
= 0 and T0 belongs to the subdifferential of Φ̆0 at 0. Moreover, if S d

0 is a proper subset of
S , then C0 is unbounded, and S d

0 and the recession cone of C0 are polar to each other [Rockafellar
1970, Theorem 14.6]. In particular, if S d

0 is a subspace, then the recession cone of C0 is its orthogonal
complement. Equation (5-11) below also says that Φ̆0 is the support function, that is, the conjugate
of the indicator function, of C0; see [Eve et al. 1990] or [Rockafellar 1970, Theorem 13.2]. Though
the formalism of convex analysis fully captures the mathematical structure of classical plasticity, I
prefer to keep the present exposition at a more elementary level.
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boundary point T0 of C0 such that

T0 · N0 = sup
T∈C0

T · N0. (5-11)

Then Φ̆0 F N0 is specified by (5-9). Since this can be repeated for all directions N ,
the whole restriction of Φ̆0 to S d

0 is specified in this way. Thus, there is a one-to-
one correspondence between the closed convex sets C0 of S and the homogeneous
maps Φ̆0 on S d

0 .31 On the contrary, the correspondence between directions N
in S d

0 and boundary points of C0 need not be one-to-one.32

5.2. The flow rule. At t = 0 and for Rd
0 = I , (4-17)1 holds and (3-23) takes the

form
T0 · Dd

= Φ̆0 F Dd . (5-12)

By consequence, a nonnull plastic stretching may occur only if T0 is a boundary
point of C0. The flow rule is a law prescribing the direction of Dd at each boundary
point. For example, the associated flow rule states that Dd belongs to the normal
cone of C0 at T0. This is indeed the rule provided by the variational approach, since
(5-12) says precisely that Dd belongs to the normal cone at T0. Calling N0 the unit
tensor Dd/|Dd

|, the normality rule

Dd
=

{
λd N0, λ

d
≥ 0 if T0 ∈ ∂C0,

0 if T0 ∈ C0 \ ∂C0
(5-13)

is obtained. The fact that Dd is zero at the interior point justifies the name of elastic
range given to C0.

The product T0 · Dd is the plastic power. According to (5-11), we have

(T0− T ) · N0 ≥ 0 for all T ∈ C0. (5-14)

This is Hill’s principle of maximum plastic work.33 The inequality is strict for
T = 0, because the origin of S is an interior point of C0. Then the strict inequality

T0 · Dd > 0 (5-15)

31If φ is a homogeneous map, then Φ̆0 F N is equal to φ(N ) by (2-17)1. Therefore, there is a one-
to-one correspondence between closed convex sets and homogeneous dissipation potentials. Eve et al.
[1990] called canonical yield function the homogeneous dissipation potential associated with C0.

32For example, if C0 is polyhedral, the normal to a face is a normal at the infinitely many points
which belong to that face, and at each point on an edge or vertex of C0 there are the infinitely many
normals which form the normal cone at that point.

33According to Srinivasa [2010], the existence and convexity of the elastic range is a consequence
of Ziegler’s principle of maximum rate of dissipation [1963], of which Hill’s principle is a special
case. That the elastic range is a derived concept was also pointed out by Martin and Reddy [1993].
In the present context, elastic range and Hill’s principle are both derived concepts, since both are
consequences of the plastic stationarity condition.
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holds. This is the dissipation inequality which establishes the dissipative character
of the plastic power T0 · Dd .

5.3. The consistency condition. Equation (3-23) states that, in the limit t→ 0+,
the stress Tt and the bounding map ∇̆φ(Fd

t ) have the same projection in the direc-
tion of the plastic stretching Dd . This is the consistency condition, which says that
for t→ 0+ and Dd

6= 0 the stress Tt is a boundary point of the elastic range Ct at t
[Prager 1949].34

With the identification Ld
= Dd due to the assumption Rd

0 = I , for Ld
= Ld

from (3-23) and (5-12) we have

δT · Dd
= K̆{Dd

} F Dd , K̆ = ∇̆2φ(0), (5-16)

and since Dd
= λd N0 we get

λd(δT · N0− λ
dK̆{N0} F N0)= 0. (5-17)

This complementarity condition, which states that either λd or the term within
parentheses is zero, is the mathematical form taken by the consistency condition.

5.4. The incremental response law. Due to the normality rule (5-13), the incre-
mental relation (5-2) takes the form

δT = C[∇u] − λdC[N0]. (5-18)

On the right-hand side, only the plastic multiplier λd is unknown. For its deter-
mination we have at our disposal the inequality λd

≥ 0 and the complementarity
condition (5-17). Together with (5-18) multiplied by N0,

δT · N0 = C[∇u] · N0− λ
dC[N0] · N0, (5-19)

they form a system in the unknowns δT · N0 and λd . If C[∇u] · N0 < 0, the last
equation implies δT · N0 < 0, and then λd

= 0 by the complementarity condition.
If λd > 0, from (5-17) and (5-19) by elimination of δT · N0 we get

λd(C[N0] · N0+ K̆{N0} F N0)= C[∇u] · N0. (5-20)
Then, assuming

C[N0] · N0+ K̆{N0} F N0 > 0, (5-21)

it follows that C[∇u] ·N0 ≥ 0 for λd
≥ 0. Then the problem has the unique solution

λd(N0)=
〈C[N0] · ∇u〉

C[N0] · N0+ K̆{N0} F N0
, (5-22)

34Since Tt is not symmetric in general, Ct is not, in general, a subset of S . The symmetry of Tt
and the inclusion of Ct in S can be recovered by a change of reference placement, taking at each t
the current placement as reference placement.
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where 〈α〉 =max{α, 0} denotes the positive part of a real number α, and C[∇u] ·
N0 = C[N0] · ∇u by the symmetry property (4-10). This is a homogeneous rela-
tion between λd(N0) and ∇u, and its substitution into (5-18) provides the desired
incremental law (3-6).

5.5. Elastic unloading. A strain rate ∇u is said to determine a regime of
loading if C[N0] · ∇u > 0,
unloading if C[N0] · ∇u < 0,
neutral loading if C[N0] · ∇u = 0.

(5-23)

By (5-22), the response law can be split into two linear relations, one for loading
and one for unloading. At loading, from (5-22) we have

δT = L[∇u], (5-24)

with

L= C−
C[N0]⊗C[N0]

C[N0] · N0+ K̆{N0} F N0
, (5-25)

and at unloading we have
δT = C[∇u]. (5-26)

The latter is an elastic law, corresponding to λd
= 0. It describes the phenomenon

of elastic unloading, typical of plasticity.

5.6. The hardening rule. In the loading regime, for λd > 0 and for sufficiently
small t > 0, the stress Tt = T0 + tδT + o(t) is placed outside, inside, or on the
boundary of the elastic range C0, depending on the sign of the product δT · N0.
Since by the consistency condition Tt is a boundary point of the elastic range Ct ,
the three possible locations of Tt correspond to an enlargement, to a contraction, or
to invariance of the elastic range at T0. In the three cases we say that the response
at loading is hardening, softening, and perfectly plastic, respectively. From (5-24)
and (5-25) we get the hardening rule35

δT · N0 = L[∇u] · N0 = h(N0)C[∇u] · N0, (5-27)

where

h(N0)=
K̆{N0} F N0

C[N0] · N0+ K̆{N0} F N0
(5-28)

is the hardening modulus. Note that h(N0) < 1 if C restricted to S is positive
definite and that, the denominator being positive by assumption (5-21), h(N0) has
the same sign of K̆{N0} F N0. Then in the loading regime, in which C[∇u] · N0

35See, e.g., [Lemaitre and Chaboche 1990; Lubliner 1990].
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is positive, the response in the direction N0 is hardening, softening, or perfectly
plastic if h(N0) is positive, negative, or zero, respectively.

6. Some models of classical plasticity

After establishing the incremental response law, we now show how the models of
classical plasticity can be obtained taking particular forms of the plastic energy
density φ. Throughout this section we assume Rd

0 = I , that is, Ld
= Dd .

6.1. The three basic models. We assume that the elastic energy density ϕ is a
smooth potential and that the plastic energy density φ is a nonsmooth potential from
Fd
= 0. We consider three basic models of classical plasticity: perfect, kinematic,

and dilatational plasticity, which correspond to the special forms of φ
perfect plasticity φ = φh,

kinematic plasticity φ = ψ +φh,

dilatational plasticity φ = φnh,

(6-1)

with φh a homogeneous dissipation potential, φnh a nonhomogeneous dissipation
potential, and ψ a smooth potential.

6.1.1. Perfect plasticity. If φh is a homogeneous potential from A= 0, from (2-17)1

we have φh(Dd)= ∇̆φh(0) FDd , and inequality (5-5) reduces to

T0 ·Dd
≤ φh(Dd). (6-2)

Then the boundary of each generating half-space HN
0 is placed at the distance φh(N )

from the origin. Moreover, from (2-17)2 we have

K̆{N } F N = 0; (6-3)

that is, the hardening modulus (5-28) is zero. The hardening rule (5-27) then re-
duces to

δT · N0 = 0, (6-4)

in agreement with the definition of a perfectly plastic response given in the preced-
ing section. Therefore,

Tt · N0 = (T0+ tδT ) · N0 = T0 · N0. (6-5)
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Since T0 is a boundary point of C0 and Tt is a boundary point of Ct by the consis-
tency condition, this equation shows that for every direction N0 in S d

0 the generat-
ing half-space HN0 for C0 is also a generating half-space for the projection CS

t of Ct

on S .36 Then C0 and CS
t have the same generating half-spaces; that is, CS

t = C0.

6.1.2. Kinematic plasticity. If φ is the sum of a smooth potential ψ and a homo-
geneous dissipation potential φh , from (4-15) we have

φ(Fd
t )= ψ(t Dd)+φh(t Dd)+ o(t). (6-6)

Let us use the differentiability of ψ to introduce the tensor

TBt =∇ψ(t Dd), (6-7)

for which, from the power expansions

TBt = TB0+ tδTB+o(t), ∇ψ(t Dd)=∇ψ(0)+ t∇2ψ(0)[Dd
]+o(t), (6-8)

we have
TB0 =∇ψ(0), δTB = D[Dd

], D=∇2ψ(0). (6-9)

Inequality (5-5) then takes the form

(T0− TB0) · N ≤ φh(N ) for all N ∈S d
0 , |N | = 1. (6-10)

This tells us that the boundary of each generating half-space HN
0 of C0 is placed

at the distance φh(N ) from the projection T S
B0 of TB0 on S . This distance is the

same as in perfect plasticity, but now is measured from the point T S
B0 and not from

the origin. Moreover, since in the identities

K̆{N0} F N0 = ∇̆
2φ(0){N0} F N0 = D[N0] · N0+∇̆

2φh(0){N0} F N0, (6-11)

the last term is zero by (2-17)2, the plastic multiplier (5-22) and the hardening
modulus (5-28) take the form

λd(N0)=
C[∇u] · N0

(C+D)[N0] · N0
, h(N0)=

D[N0] · N0

(C+D)[N0] · N0
. (6-12)

Then, from (5-27) and (6-9)2,

(δT − δTB) · N0 = h(N0)C[∇u] · N0− λ
d(N0)D[N0] · N0 = 0. (6-13)

This is the same relation (6-4) of perfect plasticity with Tt replaced by (Tt − TBt).
It says that the generating half-spaces for CS

t are the generating half-spaces HN0 for
C0 translated of δT S

B , that is, that CS
t = C0+{δT S

B }. The fact that the translation of the

36We recall that, in general, Ct is not included in S ; see Footnote 34. Here and in the following,
the superscript S denotes the projection on S symmetric part of a tensor. In particular, AS denotes
the symmetric part of a tensor A.
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elastic range is controlled by the translation of TB motivates the name backstress
tensor attributed to TB .

In kinematic plasticity, the response in a direction N0 is hardening, softening,
or perfectly plastic depending on the sign of h(N0). For h(N0) positive, we have
Prager’s kinematic hardening model [1955].37

6.1.3. Dilatational plasticity. As discussed in Section 5.6, to a positive hardening
modulus corresponds an enlargement of the elastic range

h(N0) > 0 for all N0 ∈S d
=⇒ C0 ⊂ CS

t . (6-14)

By (5-21), under assumption (5-28), h(N0) is positive if K̆{N0} F N0 is positive. If
φ is a nonhomogeneous dissipation potential φnh , then K̆ = ∇̆2φnh(0). Therefore,
a hardening response occurs in all directions N0 if φnh is strictly convex. Isotropic
hardening is the special case of h(N0) independent of N0.

If h(N0) is positive at t = 0, it remains positive for sufficiently small t . For
all such t there is no way of producing a contraction, that is, the expansion of the
elastic range is irreversible.

In conclusion, comparing CS
t and C0 we see that a homogeneous dissipation

potential leaves C0 unchanged, a smooth potential produces a rigid translation, and
a nonhomogeneous dissipation potential produces a dilatation or a contraction, de-
pending on the sign of the hardening modulus. More complex evolutions of the
elastic range can be described by combinations of the potentials considered here.38

6.2. Isochoric plasticity. The experiments show that for many materials the plastic
strain rate is practically isochoric. The presence of this internal constraint modifies
the form of the energy, and this requires a nontrivial reformulation of the theory.

6.2.1. The isochoricity constraint. We still consider two-scale deformations ( f, F)
and take the difference (∇ f − F) as the plastic deformation Fd . Isochoricity is the
assumption that the volume changes in the macroscopic and microscopic deforma-
tions are the same:

det F = det∇ f. (6-15)

In a deformation process t 7→ ( ft , Ft) from (ı, I ), from the expansions (3-11),

det∇ ft = 1+ t I · ∇u+ o(t), det Ft = 1+ t I · L + o(t), (6-16)

37The dependence of the backstress tensor on the differentiable part of the plastic strain energy
was pointed out by Aifantis [1987]. See also [Anand and Gurtin 2003].

38In [Gurtin et al. 2010, p. 421], it has been pointed out that “for many metals, the actual strain-
hardening behavior. . . may be approximated by a combination of nonlinear isotropic hardening and
nonlinear kinematic hardening.” In fact, the possibility of more general combinations of kinematic
and dilatational plasticity emerges from the present analysis.
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and since ∇u− L = Ld , isochoricity results in the constraint

I · Ld
= 0. (6-17)

Consider the decomposition of a second-order tensor A into the sum of a hydro-
static and a deviatoric part:

A = AH
+ AD, AH

=
1
3(I · A)I, I · AD

= 0. (6-18)

They are the perpendicular projections of A on the hydrostatic axis and on the
deviatoric hyperplane,

L H
= {A ∈L | A = α I, α ∈ R}, L D

= {A ∈L | I · A = 0}, (6-19)

respectively. Then the constraint (6-17) can be written in any of the equivalent
forms

Ld
∈ LD, Ld

= Ld D, Ld H
= 0. (6-20)

6.2.2. The plastic strain energy. The elastic energy density ϕ is a function of the
variable F , which is not restricted by the constraint (6-17). Then ϕ is not con-
strained as well. On the contrary, the plastic energy density φ̃ depends on the
plastic strain rate Ld , which is now assumed to be deviatoric. It is then appropriate
to assume a dependence on the part of the stress which does no work in any defor-
mation process which satisfies the constraint, that is, on the hydrostatic stress T H .
Here we assume the separate dependence

φ̃(Ld , p)= φ(Ld)ψ(p), Ld
∈L D, p ∈ R, (6-21)

where φ is a dissipation potential, ψ is a smooth potential, and p is the hydrostatic
pressure

p =− 1
3 I · T, (6-22)

related to the hydrostatic stress by

T H
=−pI. (6-23)

6.2.3. The plastic stationarity condition. At each point x , consider a deformation
process t 7→ ( ft , Ft) from the reference placement, and a pressure process t 7→ pt .
To minimize the total energy at the time t , take a family ε 7→ (εv, εL) of perturba-
tions and consider the perturbed process t 7→ ( fε, Fε), with fε and Fε as in (3-15).
The perturbed plastic energy density is φ(Fd

ε )ψ(pt), with pt the pressure at t and

φ(Fd
ε )= φ(F

d
t )+ ε∇̆φ(F

d
t ) FLd . (6-24)
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With the expansions (3-11) of ft and Ft , the perturbed total energy takes the form

Etot( fε, Fε, pt)= Etot( ft , Ft , pt)+ ε

∫
�0

(∇ϕ(Ft) ·L+ψ(pt)∇̆φ(Fd
t ) FLp) dV0

− ε

(∫
�0

bt · v dV0+

∫
∂�0

st · v d A0

)
+ o(ε). (6-25)

From the stationarity condition (3-17), for Ld
= 0 we have L=∇v, and the identifi-

cation (3-19) of ∇ϕ(Ft) with the Piola stress Tt follows. Moreover, by elimination
of all terms in v and subsequent localization, after recalling that Rd

0 = I implies
Ld
= Dd we get the counterpart of the plastic stationarity condition (3-22),

T D
t ·Dd

≤ ψ(pt)∇̆φ(t Dd) FDd , (6-26)

to be satisfied by all Dd belonging to a given subset S d
0 of S D . With the same mo-

tivation used to establish (3-23) in the unconstrained case, for Dd
= Dd inequality

(6-26) reduces to the equality

T D
t · D

d
= ψ(pt)∇̆φ(t Dd) F Dd . (6-27)

6.2.4. The evolution law for the hydrostatic pressure. From (3-19) we still have
the incremental stress-strain relation (5-2), with C the elastic tensor ∇2ϕ(I ). For
this tensor, the identities

C[A] = C[AH
+ AD

] = (C[A])H
+ (C[A])D (6-28)

hold for all A in L . For simplicity, we focus on the special case in which C maps
the hydrostatic tensors into hydrostatic tensors39

C[AH
] = (C[A])H . (6-29)

Then (6-28) implies C[AD
] = (C[A])D; that is, C also maps the deviators into

deviators. Since the hydrostatic tensors are those parallel to the identity tensor I ,
from (6-29) and the linearity of C it follows that

C[AH
] = 3k AH , (6-30)

with k a positive material constant, called the bulk modulus.
For N0 ∈S D , in the incremental stress-strain relation (5-18) we have

δT = C[∇u H
] +C[∇u D

− λd N0] = 3k∇u H
+C[∇u D

− λd N0], (6-31)

and by effect of assumption (6-29) this equation splits into two parts

δT H
= 3k∇u H , δT D

= C[∇u D
− λd N0]. (6-32)

39This relation is satisfied by all orthotropic materials with cubic symmetry, and in particular by
all isotropic materials; see, e.g., [Gurtin 1972, §26].



162 GIANPIETRO DEL PIERO

For the hydrostatic part, recalling the definition (6-22) of the hydrostatic pressure,

δp =− 1
3 I · δT =− 1

3 I · δT H
=−k I · ∇u H

=−k I · ∇u. (6-33)

This is the evolution law for the hydrostatic pressure, according to which p is de-
termined by the hydrostatic part of the macroscopic deformation. We now proceed
to the determination of the evolution law for the deviatoric stress.

6.2.5. Yield conditions, elastic ranges, and admissible stresses. At t = 0, from
(6-26) we have

T D
0 ·Dd

≤ ψ(p0)Φ̆0 FDd , (6-34)

with Φ̆0 as in (5-5). This inequality says that T D
0 , which is symmetric by the indif-

ference condition (4-12)1, belongs to a family of closed half-spaces HN
p0

of S D,
with normals N in S d

0 and with distance from the origin proportional to ψ(p0).
The intersection Cp0 = ψ(p0)C0 of all HN

p0
is the elastic range associated with the

pressure p0, and the condition

T D
0 ∈ ψ(p0) C0 (6-35)

is the yield condition for the pressure p0. Thus, with the initial deformation (ı, I )
is associated a family of elastic ranges p 7→ Cp = ψ(p) C0, in which each Cp is a
homothetic transformation of C0 with center at the origin and ratio ψ(p).

In the space S , each Cp belongs to the hyperplane lying at the (signed) distance
p from S D . Then the Cp are pairwise disjoint subsets of S . Their union K0 is the
set of all admissible stresses for the initial deformation.40

6.2.6. Flow rule and consistency condition. At t = 0, (6-27) reduces to

T D
0 · D

d
= ψ(p0)Φ̆0 F Dd . (6-36)

Since both Dd and Cp0 are in the space of the symmetric deviators, this equation
tells us that T D

0 is a boundary point of Cp0 relative to this space, and that Dd belongs
to the normal cone of Cp0 at T D

0 . Thus, the normality rule

D p
=

{
λd N0, λ

d
≥ 0 if T D

0 ∈ ∂Cp0,

0 if T D
0 ∈ Cp0 \ ∂Cp0

(6-37)

is established.

40The idea of considering as the set of admissible stresses a one-parameter family of elastic ranges
is not new. Families of yield regions enclosed by a bounding surface [Dafalias and Popov 1975] were
used to describe the work-hardening of metals [Phillips and Sierakowski 1965] and their response
to cyclic loading [Mróz 1969]. Later, the same idea was applied to geomaterials by Vermeer and
de Borst [1984] and by Roscoe and coworkers [Roscoe and Burland 1968; Roscoe and Poorooshasb
1963]. See also [Ziegler and Wehrli 1987, p. 223].
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According to this rule, the plastic strain rate is zero at all interior points of Cp0 .
Since the interior points of Cp0 are also interior points of the set K0 of the admis-
sible stresses, one is tempted to consider K0 as the real elastic range. This choice,
which has been actually made in several plasticity models, is incompatible with
the normality law, because the direction N0 is normal to Cp0 but not, in general,
to K0. This inconvenience has been circumvented by rejecting the normality law,
that is, by adopting a nonassociated flow rule. Here we have shown that this choice
contrasts with the result provided by energy minimization.41

For δp 6= 0, D p cannot be zero because (6-27) must be satisfied at t > 0. From
this equation, with the expansions

T D
t = T D

0 + tδT D
+ o(t),

∇̆φ(t D p)= Φ̆0+ t K̆{D p
}+ o(t),

ψ(pt)= ψ(p0)+ψ
′(p0) δp+ o(t),

(6-38)

we get the separate conditions

T D
0 · D

d
= ψ(p0)Φ̆0 F Dd ,

δT D
· Dd
= ψ(p0)K̆{Dd

} F Dd
+ψ ′(p0) δpΦ̆0 F D p.

(6-39)

The first equation is (6-34). Substituting it into the second equation, recalling the
normality rule Dd

= λd N0 and setting

κ(p0)= ψ
′(p0)/ψ(p0), (6-40)

we get the consistency condition for isochoric plasticity

λd
(
δT D
· N0− λ

dψ(p0)K̆{N0} F N0− κ(p0)(T D
0 · N0) δp

)
= 0. (6-41)

6.2.7. The incremental response law and the hardening rule. Comparing the con-
sistency condition with (6-32)2 multiplied by N0 and recalling the expression (6-33)
of δp, we find

λd(N0, p0)=
〈C[N0] · ∇u D

〉− κ(p0)(T D
0 · N0) δp

C[N0] · N0+ψ(p0)K̆{N0} F N0
. (6-42)

41Another inconvenience of the nonassociated flow rules emerges from a comparison between
isochoric plasticity and kinematic hardening. In both cases there is a family t 7→ Cp of elastic
ranges, and their union is the set K0 of the admissible stresses. However, in kinematic hardening the
regions Cp are not pairwise disjoint. Then a boundary point of a region can be an interior point of
another region, and therefore of K0. It is then inconceivable to restrict the plastic stretching to the
boundary points of K0, since a nonnull plastic stretching is allowed at the boundary points of all Cp .
On the contrary, this is perfectly conceivable in isochoric plasticity, in which the boundary points of
all Cp are also boundary points of K0. Thus, the choice of a nonassociated flow rule is possible in
the second case but not in the first. Since there is no reason for choosing different flow rules in the
two cases, the motivations for choosing nonassociated flow rules in the second case are not clear.
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Then the incremental response law is (6-32)2 with λd as above.
At loading, C[N0] · ∇u D > 0, the response is hardening, softening, or perfectly

plastic if the product δT D
· N0 is positive, negative, or zero, respectively. From

(6-41) and (6-42) we have

δT D
· N0 = h(N0, p0)C[N0] · ∇u D

+ (1− h(N0, p0))κ(p0)(T D
0 · N0)δp, (6-43)

with the hardening modulus

h(N0, p0)=
ψ(p0) K̆{N0} F N0

C[N0] · N0+ψ(p0) K̆{N0} F N0
. (6-44)

Note that, assuming both the denominator and C[N0] · N0 are positive, we have
h(N0, p0) < 1.

From (6-43) we see that h(N0, p0)measures the evolution of the elastic range Cp0

at constant pressure, that is, under a purely deviatoric loading C[N0] · ∇u D > 0. In
this case the sign of h(N0, p0), which assuming ψ(p0) > 0 is the same of the sign
of K̆{N0} F N0, is positive, negative, or zero when Cp0 expands, shrinks, or remains
unchanged. In the three cases the response is hardening, softening, or perfectly
plastic, respectively.

Under a purely hydrostatic loading, that is, for ∇u D
= 0, from (6-43) we see

that the pressure change δp determines a change δT D of the deviatoric stress, such
that

δT D
· N0 = (1− h(N0, p0)) κ0(p0)(T D

0 · N0)δp. (6-45)

This is the change of T D required to keep the total stress T on the boundary of
the elastic range during its evolution from Cp0 to Cp0+δp. Since h(N0, p0) < 1 and
T D

0 · N0 > 0 by the dissipation inequality (5-15), δT D
· N0 has the same sign of δp

if κ0(p0) > 0 and the opposite sign if κ0(p0) < 0. In the first case, a positive δp
produces a dilatation of the elastic range, and in the second case it produces a
contraction.

6.3. Isotropic isochoric plasticity. A special case of isochoric plasticity is the case
in which the plastic energy density (6-21) depends only on the modulus of Ld :

φ̃(t Ld , pt)= φ(t |Ld
|)ψ(pt). (6-46)

The linearized forms of this energy corresponding to the Drucker–Prager and to
the Mises yield conditions are helpful for understanding some basic differences
between the plastic behaviors of metals and of geomaterials.

6.3.1. The yield condition. For an energy of the form (6-46) and with φ such that
Φ̆0 FDd

= |Dd
|, the plastic stationarity condition (6-34) reduces to

T D
0 ·D p

≤ ψ(p0)|D p
|, (6-47)
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and for any direction N = D p/|D p
| in S d D we have

T D
0 · N ≤ ψ(p0). (6-48)

This inequality tells us that the generating half-spaces HN
p0

of the elastic range Cp0

are all placed at the same distance ψ(p0) from the origin. If S d D
= S D, then

Cp0 is the ball of S D centered at the origin and with radius ψ(p0), and at every
boundary point T D

0 of Cp0 the normal N0 is parallel to T D
0 :

T D
0 = ψ(p0)N0. (6-49)

Then, by the normality rule, T D
0 has the same direction as D p

= λd N0.

6.3.2. The Drucker–Prager and the Mises conditions. For the energies of the form
(6-46), consider the special case in which

φ(|Ld
|)= |Ld

|, ψ(p)= αp+β, α, β > 0. (6-50)

For such energies the radius ψ(p) of Cp vanishes for p =−β/α. Then the set K0

of the admissible stresses

K0 = {T ∈S | T = T D
− pI, p ≥−β/α, |T D

| ≤ αp+β} (6-51)

is a circular cone of S with vertex at T = (β/α)I and with axis on the hydro-
static axis. This is the set of the admissible stresses of the Drucker–Prager yield
condition.

In the limit case α = 0, the radius becomes equal to β, and K0 becomes the
cylinder

K0 = {T ∈S | T = T D
− pI, p ∈ R, |T D

| ≤ β}, (6-52)

which is the set of the admissible stresses of the Mises yield condition.

6.3.3. The plastic behavior of metals and geomaterials. When comparing the be-
havior of metals and geomaterials, one sees that the latter exhibit a much lower
strength in tension than in compression, while for metals the two strengths are of
the same order of magnitude. Moreover, under increasing pressure the elastic range
enlarges in geomaterials, and remains almost constant in metals.

These differences are captured by isotropic energies of the form (6-50). Indeed,
in the Drucker–Prager cone the hydrostatic stress in tension cannot exceed the
value −β/α attained at the vertex of the cone but is unbounded in compression,
and the size of the elastic range increases with pR . In Mises’s cylinder, both tensile
and compressive hydrostatic stresses are unbounded, and the size of the elastic
range does not depend on the pressure. Therefore, the cone and the cylinder seem
to be well suited to describe, at least in a first approximation, the behavior of
geomaterials and of metals, respectively.
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That the Mises criterion is appropriate to metals is almost universally recog-
nized.42 Large consensus was also initially met on adopting yield conditions of the
Drucker–Prager type for geomaterials. In particular, favored by its analogy with
Coulomb’s theory of friction, the Mohr–Coulomb yield condition43 was applied ex-
tensively in soil mechanics [Lubliner 1990, §6.1.3].44 These models were coupled
with normality in the deviatoric plane, and since the elastic range was identified
with the set of the admissible stresses, this led to the adoption of nonassociated
flow rules. In the present paper, in line with some earlier proposals [Ziegler and
Wehrli 1987, p. 223; Srinivasa 2010], the associated character of these flow rules
has been recovered regarding the hydrostatic pressure as an extra state variable. In
this way, the assumption of normality in the deviatoric space is fully legitimated
from the variational viewpoint.

Unfortunately, experimental evidence turned against the isochoricity assump-
tion, since most geomaterials exhibit a form of inelastic volume change called
dilatancy,45 which fits neither normality with respect to the deviatoric plane nor
normality with respect to the set of the admissible stresses.46

6.4. The Cam-clay model. An experiment-based model expressly conceived to de-
scribe the dilatancy of soils is the Cam-clay model [Roscoe et al. 1958; Roscoe and
Poorooshasb 1963].47 Here we show that this is a special case of the dilatational
model described in Section 6.1.3.

6.4.1. The plastic energy. In the Cam-clay model we keep the irrotationality con-
dition Rd

0 = I by which, due to condition (4-15), the plastic energy φ reduces to a
function of the plastic stretching Dd . The assumed form of φ is

φ(Dd)= φ( p̃, q̃), (6-53)
where

p̃ =− 1
3 I · Dd

=−
1
3 I · Dd H , q̃ = |Dd

+ p̃ I | = |Dd D
|. (6-54)

42“. . . Most modern discussions of plasticity (of metals) are based on generalizations and struc-
tural variations of the theory of Lévy, Mises, Prandtl, and Reuss. . . ” [Gurtin et al. 2010, §76.1].

43For this condition, which can be regarded as a variant of the Drucker–Prager condition, see,
e.g., [Lubliner 1990, §3.3.3].

44For other models of the Drucker–Prager type, see [Ziegler and Wehrli 1987, §VII.A, §VII.B].
45For plastic volume changes in geomaterials, see, e.g., [Lubliner 1990; Vermeer and de Borst

1984]. For metals, unexpected plastic volume changes were revealed by the experiments reported in
[Wilson 2002].

46The volume increase due to normality with respect to K0 is measured by the friction angle, and
the volume increase due to normality with respect to Cp is zero. The experiments show that the angle
which measures the volume increase due to dilatancy has an intermediate value which is far both
from the friction angle and from zero; see, e.g., [Lubliner 1990, §6.1.3], or [Vermeer and de Borst
1984, §2].

47The model was modified in [Roscoe and Burland 1968].
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The dependence on the modulus of Dd D describes an isotropic response to the
deviatoric strain rates.

6.4.2. The yield condition. For an energy of the form (6-53), the elastic range C0

is a solid of revolution with axis on the hydrostatic axis. It is assumed that C0 is
represented in the plane ( p̃, q̃) by the line48

q̃ = χ( p̃), p̃ ∈ (0, p†), (6-55)
with

χ( p̃) ∈ (0, q†), χ(0)= χ(p†)= 0, p†, q† <+∞. (6-56)

Let us determine the homogeneous dissipation potential φh associated with this
elastic range.49 Let ep, eq be unit vectors in the directions of the axes p̃ and q̃ . At
a boundary point ( p̃, q̃) of C0, the unit normal is

n( p̃)=
eq
−χ ′( p̃) ep√
1+χ ′2( p̃)

, (6-57)

and

d( p̃)= ( p̃ep
+χ( p̃) eq) · n( p̃)=

χ( p̃)− p̃χ ′( p̃)√
1+χ ′2( p̃)

(6-58)

is the distance of ( p̃, q̃) from the origin, measured in the direction of n( p̃). This is
the value taken by the homogeneous potential φh at the boundary points of C0:50

φh( p̃, q̃)= φh( p̃, χ( p̃))= d( p̃). (6-59)

6.4.3. Flow rule and hardening rule. The flow rule assumed in the Cam-clay model
is the normality rule. Accordingly, the plastic stretching at the boundary point
( p̃, χ( p̃)) of C0 has the direction n( p̃). Since n( p̃) has a nonnull component in the
direction ep, this implies that the plastic stretching is not isochoric. In particular,
the volume change is positive (dilatancy) at points at which χ ′( p̃) is negative.

The homogeneous potential (6-59) corresponds to a perfectly plastic response.
To get a hardening response, it is necessary to add to φh a nonhomogeneous part.
For the quadratic potential

φ(λn( p̃))= (λ+ 1
2 kλ2)d( p̃), λ≥ 0, (6-60)

we have

∇̆φ(0) F n( p̃)= d( p̃), ∇̆
2φ(0){n( p̃)} F n( p̃)= kd( p̃). (6-61)

48This line is a parabolic arc in the original Cam-clay model [Roscoe et al. 1958; Roscoe and
Poorooshasb 1963] and a half-ellipse in the modified model [Roscoe and Burland 1968].

49Here we take advantage of the one-to-one correspondence between elastic ranges and homoge-
neous dissipation potentials; see Footnote 31.

50See Section 5.1.
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Then denoting by t̃0 = ( p̃, q̃) and by δt̃ the representatives of T0 and δT on the
plane ( p̃, q̃), from the plastic stationarity condition (5-12) and from the consistency
condition (5-17), we get

t̃0 · n( p̃)= d( p̃), δt̃ · n( p̃)= kλdd( p̃), (6-62)

respectively. That is, for every direction n the generating half-planes Hn
0 of C0

undergo a translation proportional to the distance d( p̃) of the boundary point t̃0
from the origin. This defines a new elastic range, obtained from C0 by a homothetic
transformation with center at the origin and ratio 2kλd . This is the evolution law
for the elastic range currently assumed in the literature.51 Clearly, a positive k
corresponds to hardening and a negative k corresponds to softening.

7. Crystal plasticity

In materials with a crystalline structure, the plastic deformation consists of mi-
croslips occurring along some preferred directions on some preferred slip planes.
A plastic slip is a plastic deformation of the form

Ld
= λds⊗m, λd

≥ 0, (7-1)

where m is the unit normal to the slip plane, λd is the slip intensity, and s, the slip
direction, is a unit vector in the slip plane. The pair (s,m) is a slip system, and
the tensor (s⊗m) is the corresponding Schmid tensor. By the orthogonality of s
and m, Ld is a deviator. Then the plastic deformation is isochoric; that is, crystal
plasticity is a special case of isochoric plasticity.52

Below, I consider first the case of a single slip system, and then the case of a
finite number of slip systems. Finally, I describe the two-level shear model based
on the theory of structured deformations, in which the macroscopic features of
plastic response can be reproduced without the use of nonsmooth potentials.

7.1. The single-slip model. The plastic slip (7-1) is a deformation of the form (4-3),
Ld
= Rd

0 Dd , with53

Rd
0 m = s, Dd

= λdm⊗m, λd
≥ 0. (7-2)

What distinguishes this model from the preceding ones is precisely that the con-
stitutive assumption Rd

0 = I is replaced by an assumption on the direction of Ld

51See, e.g., [Schofield and Wroth 1968].
52In crystal plasticity the energy is usually assumed to be independent of the hydrostatic pressure,

that is, the function ψ(p) in (6-21) is taken equal to one. For basic reference to the plasticity of
crystals, see, e.g., [Gurtin et al. 2010, §102.1].

53In principle, Rd
0 may be any rotation which maps m into s. For definiteness, one may add

the prescription Rd
0 s = −m, which characterizes Rd

0 as the rotation of amount π/2 about an axis
perpendicular to both s and m.
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dictated by the geometry of the crystal.54 Due to this peculiarity, the procedure for
the determination of the incremental response law slightly departs from the path
followed in the previous sections.

7.1.1. The plastic stationarity condition. From (7-1) and (7-2) and from the indif-
ference conditions (4-14) and (4-15), neglecting the terms of order o(t), for the
plastic strain energy we have

φ(Fd
t )= φ(t Ld)= φ(tλds⊗m)= φ(tλd Rd

0 m⊗m)= φ(tλdm⊗m), (7-3)

and since m is fixed we may set

φ(Fd
t )= φm(tλd). (7-4)

Thus, the only admissible plastic stretchings are those directed as m⊗m, and the
plastic energy is a function, depending on m, of their modulus tλd . Then from the
definition of directional derivative we have

∇φ(Fd
t ) F s⊗m = lim

ε→0+

φ((tλd
+ ε) s⊗m)−φ(tλds⊗m)

ε

= lim
ε→0+

φm(tλd
+ ε)−φm(tλd)

ε
= φ′m(tλ

d), (7-5)

and the plastic stationarity condition (3-22) takes the form

τt ≤ φ
′

m(tλ
d), (7-6)

where the resolved shear stress

τt = Tt · s⊗m = Tt m · s (7-7)

is the tangential component in the direction s of the stress vector Tt m acting on the
slip plane.

7.1.2. Yield condition, flow rule, and consistency condition. According to (7-1)
and (7-2), the only direction allowed for the plastic stretching is m⊗m. That is,
the set of the admissible plastic stretchings is the half-line

S d
0 = {λm⊗m | λ≥ 0}. (7-8)

Then there is only one generating half-space Hm⊗m
0 . It coincides with the elastic

range C0, and the flow rule trivially says that the plastic stretching is directed as
m⊗m. In view of the expansions

τt = τ0+ tδτ + o(t), φ′m(tλ
d)= φ′m(0)+ tλdφ′′m(0)+ o(t), (7-9)

54Here only the case of Ld directed as s⊗m is discussed. A more extended analysis in the context
of the multiplicative decomposition was made by Reina and coauthors [Reina and Conti 2014; Reina
et al. 2016].
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from the plastic stationarity condition at t = 0 we have the inequality

τ0 ≤ φ
′

m(0), (7-10)

which shows that φ′m(0) is the distance of the boundary of C0 from the origin. It
also tells us that no plastic slip occurs as long as the resolved shear stress is below
the activation threshold φ′m(0). When this threshold is attained, a plastic slip may
occur in the direction s. In this case (7-10) is satisfied as an equality, and from
(7-6) and (7-9) we have

δτ ≤ λdφ′′m(0). (7-11)

This inequality becomes an equality when λd > 0. Then we have the consistency
condition

λd(δτ − λdφ′′m(0))= 0. (7-12)

7.1.3. Incremental response law and hardening rule. From (7-12) and from the
incremental stress-strain relation (5-2)

δτ = δT · (s⊗m)= C[∇u− λds⊗m] · (s⊗m), (7-13)

by elimination of δτ we get

λd
=

〈C[∇u] · (s⊗m)〉
C[s⊗m] · (s⊗m)+φ′′m(0)

, (7-14)

and substitution into (7-13) provides the incremental response law. In particular,
for λd > 0 we have

δτ = hmC[∇u] · (s⊗m), (7-15)

with the hardening modulus

hm =
φ′′m(0)

C[s⊗m] · (s⊗m)+φ′′m(0)
. (7-16)

The numerator φ′′m(0) is positive if φm is strictly convex. On the contrary, nothing
can be said a priori about the positiveness of the denominator. Indeed, because
of the indifference condition (4-13), one can control only the restriction of C to
the symmetric tensors. For all previous models this was enough, because only
this restriction appears in the expressions (5-22) and (6-42) of λd . Here, from the
indifference condition (4-13) we have

C[s⊗m] · (s⊗m)= C[(s⊗m)S
] · (s⊗m)S

+ 2(s⊗m)W T0 · (s⊗m)S
+ (s⊗m)W T0 · (s⊗m)W . (7-17)

The two terms involving T0 can be transformed into

−T0 · (s⊗m)W (2(s⊗m)S
+ (s⊗m)W )= 1

4 T0 · (3m⊗m− s⊗ s). (7-18)
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Denoting by c0 the smallest eigenvalue of C restricted to S and setting

σm = T0 · (m⊗m), σs = T0 · (s⊗ s), (7-19)
we get

C[s⊗m] · (s⊗m)≥ 1
2 c0+

3
4σm −

1
4σs . (7-20)

Therefore, C[s ⊗m] · (s ⊗m) is positive if c0 > 0 and σm and σs are small with
respect to c0, and if c0 > 0, the normal stress σm acting on the slip plane is tensile,
and the in-plane normal stress σs is compressive.

7.2. The multislip model. A multislip system is defined as a finite set of slip sys-
tems (sα,mα).55 For each of them the plastic deformation has the form

Ldα
= λdαsα ⊗mα, λdα

≥ 0, (7-21)

and the corresponding energy is

φα(Ldα)= φα(λdαmα
⊗mα)= φmα (λdα). (7-22)

The total plastic deformation and the total energy are

L p
=

∑
α

λdαsα ⊗mα, φ(Ld)=
∑
α

φmα (λdα), (7-23)

respectively. The gradient of φ is the homogeneous map which with every Ld
=∑

β µ
βsβ ⊗mβ associates the number

∇φ(Fd
t ) FLd

=∇φ

(∑
α

λdαsα ⊗mα

)
F

∑
β

µβsβ ⊗mβ

=

∑
α

µαφ′mα (λ
dα), (7-24)

with the last identification preformed proceeding as in (7-5). The plastic stationarity
condition (3-22) then takes the form∑

α

µαταt ≤
∑
α

µαφ′mα (tλdα), µα ≥ 0, (7-25)

where
ταt = Tt · (sα ⊗mα) (7-26)

is the resolved shear stress for the slip system (sα,mα). At t = 0, taking all µα

equal to zero except one, we get n inequalities

τα0 ≤ φ
′

mα (0), (7-27)

55This model is based on Koiter’s model of singular yield surfaces [1953]. See also [Martin and
Reddy 1993].
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one for each slip system. Each of them defines a half-space HNα

0 of S D with
normal Nα

= mα
⊗mα and with boundary at the distance φ′mα (0) from the origin.

The intersection of the HNα

0 is the elastic range C0. It is a polyhedral convex subset
of S D , whose faces have the normals Nα and whose vertices have normal cones
consisting of positive combinations of the Nα.

For each α, the expansions (7-9) hold. When for some τα0 the activation thresh-
old φ′mα (0) is reached, by the consistency condition in analogy with (7-12) we have

λdα(δτα − λdαφ′′mα (0))= 0. (7-28)

If T0 is on a face of C0, this occurs only for the α corresponding to that face. If T0

is on a vertex of C0, this occurs for the α corresponding to the faces which concur
at that vertex. Denoting by α̂(T0) the set of such α, the normal cone at T0 is

Dd
=

∑
α∈α̂(T0)

λdαNα, (7-29)

and the incremental relation (5-2) takes the form

δT = C[∇u] −
∑

α∈α̂(T0)

λdαC[Nα
]. (7-30)

Then for all β in α̂(T0),

δτβ = δT · (sβ ⊗mβ)=

(
C[∇u] −

∑
α∈α̂(T0)

λdαC[sα ⊗mα
]

)
· (sβ ⊗mβ). (7-31)

Together with the constraints λdα
≥ 0 and the complementarity conditions (7-28),

these equations form a linear complementarity problem of the dimension of α̂(T0).
In particular, if T0 belongs to the relative interior of a face of Cp0 , this dimension
is one and we are back to the one-dimensional problem of the previous sections.

If the dimension is larger than one, the existence and uniqueness of the solution
is guaranteed if the matrix {C[sα ⊗mα

] · (sβ ⊗mβ)} is positive definite. In this
case the problem can be solved with the Gauss–Seidel iterative method or with
any other nonlinear programming algorithm. But, like in the case of a single slip
system, the positive definiteness is ensured only for suitable values of the initial
stress T0.

7.3. Periodic energies and two-level shears. In single crystals, a relative transla-
tion of an atomic unit along a slip plane maps the two halves of a crystal into a
placement energetically indistinguishable from the initial one.56 This suggests the

56See, e.g., [Gurtin et al. 2010, Figure 102.2].
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use of periodic energies. In general, the energy φ is assumed to be of the form

φ = ψ +φnh, (7-32)

with ψ a smooth periodic potential and φnh a nonhomogeneous nonsmooth poten-
tial. Here we consider the simple case of φnh

= 0.57

A two-level shear is a deformation process t 7→ ( ft , Ft) in which the macro-
scopic deformation ft is a simple shear

ft(x)= x + γ t x s⊗m, γ > 0, (7-33)

and the deformation due to the disarrangements58 is a single slip

Fd
t (x)= γ

d
t s⊗m. (7-34)

When φ reduces to a smooth potential ψ , the directional derivative ∇̆φ reduces
to the ordinary derivative ∇ψ . Moreover, in the virtual strain rates Ld

= αs⊗m
the multiplier α is not anymore constrained to be positive. Then the stationarity
condition (3-22) reduces to the equality

Tt · (s⊗m)=∇ψ(γ d
t s⊗m) · (s⊗m). (7-35)

The left-hand side is the resolved shear stress (7-7). For the right-hand side, using
the indifference condition (7-3) we define

ψ(Fd
t )= ψ(γ

d
t m⊗m)= ψm(γ

d
t ), (7-36)

and proceeding as in (7-5) we find that the right-hand side of (7-35) is equal
to ψ ′m(γ

d
t ). Then (7-35) reduces to

τt = ψ
′

m(γ
d
t ). (7-37)

On the other hand, for the energy without disarrangements ϕ, from (3-19), (7-33),
and (7-34) we have

Tt =∇ϕ(Ft)=∇ϕ(∇ ft − Fd
t )=∇ϕ(I + (γ t − γ d

t )s⊗m). (7-38)

Multiplying by (s⊗m), on the left side we get again τt . Then, after defining

Φs
m(γ t − γ d

t )=∇ϕ(I + (γ t − γ d
t )s⊗m) · (s⊗m), (7-39)

we get
τt =Φ

s
m(γ t − γ d

t ). (7-40)

57For two-scale continua, the use of smooth potentials in the study of plasticity and fracture was
initiated in [Choksi et al. 1999, §4, §5], and continued by Deseri and Owen [2002] for the plasticity
of single crystals. The specular case φ = φnh of a purely nonsmooth potential was advanced in
[Del Piero 1998; 2018], without subsequent developments.

58In the presence of a smooth potential, I prefer to avoid calling Fd
t a plastic deformation.
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By elimination of γ d
t between this equation and (7-37), a relation between the shear

stress τt and the macroscopic shear γ t is obtained. For example, in the case of Φs
m

linear and ψm trigonometric of period p,

Φs
m(ξ)= kξ, ψm(ξ)=

kd p
2π

(
1− cos

2πξ
p

)
, (7-41)

with k and kd positive material constants, we get

γ t =
τt

k
+

p
2π

sin−1
(
τt

kd

)
. (7-42)

This determines a curve γ t = F(τt), in which F is a multivalued function with
domain (−kd , kd). The slope of the curve is

dγ t
dτt
=

1
k
±

p

2π
√

kd2− τ 2
t

, (7-43)

with the plus sign for the branch from the origin to its first intersection with the
line τt = kd , the minus sign for the following branch up to the first intersection
with the line τt =−kd , and so on.

The slope of the first branch is positive and increases from 1/k + p/2πkd at
τt = 0 to +∞ at τt = kd . The slope of the second branch increases from −∞ at
τt = kd , to zero at59

τt =

√
kd2−

k2 p2

4π2 . (7-44)

At this point the curve attains a local maximum. Then for a further increase of γ t
there is no solution near the maximum point, and equilibrium for the increased γ t
can be attained only jumping to another branch of the curve. This jump is a form
of catastrophic instability, consisting of a sudden decrease of τt at constant γ t .

Taking the macroscopic shear γ t as independent variable, the stress-strain re-
sponse curve is τt = F−1(γ t). The function F−1 is periodic with period p, since if
γ t is a solution of (7-42) for some τt , then γ t +np is a solution for the same τt for
all n. In the equilibrium branch starting from (τt , γ t) = (0, 0), τt increases with
γ t up to the upper limit kd , and then decreases up to the lower limit −kd . When
in the descending branch the local maximum of F is attained, γt suddenly jumps
downward at constant γ t , to reach the next ascending branch of F−1. Due to the
periodicity of F−1, the same jump occurs at each period. The resulting stress-strain

59This value is attained only if 2πkd > kp. But this condition is satisfied in practice, since p is a
very small length, of the order of the interatomic distance [Choksi et al. 1999, §4].
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diagram then shows an initial increase of γt from zero to kd , followed by a periodic
oscillation between kd and the value at which the maximum of F is attained.60

Macroscopically, this looks like a typical elastic-perfectly plastic response con-
sisting of an initial growth followed by a horizontal plateau. A peculiarity of this
model is that the plateau is made of microscopic oscillations.61 By consequence,
while in all previous models yielding is activated when a threshold determined by a
nonsmooth potential is attained, in the present model yielding is due to catastrophic
instability. When φ is a smooth potential there is no dissipation associated with the
equilibrium branches, the whole dissipation being concentrated on the jumps.62

Closure

I conclude with a summary of the main results.

(i) By imposing the nonnegativeness of the first variation of the energy, all consti-
tutive elements of the theory become dependent on a single punctual inequal-
ity, the plastic stationarity condition.

(ii) From this condition the yield condition, the flow rule, the hardening rule, and
the incremental response law can be deduced without any additional assump-
tion.

(iii) A plastic energy made of a smooth potential plus a homogeneous dissipation
potential determines a model of kinematic plasticity which includes Prager’s
kinematic hardening as a special case.

(iv) A plastic energy with the properties of a nonhomogeneous dissipation po-
tential determines a model of dilatational hardening which includes isotropic
hardening as a special case.

(v) The assumption of isochoricity of the plastic strain rate leads to the definition
of a one-parameter family of pairwise disjoint elastic ranges, the parameter
being the hydrostatic pressure. In each elastic range the normality rule holds.
This renders unnecessary the nonassociated flow rules introduced by the many
authors for which the elastic range is the union of all individual elastic ranges.

(vi) The Cam-clay model for soils is a particular case of isotropic dilatational
plasticity.

60See, e.g., [Choksi et al. 1999, Figure 6].
61This may reproduce the oscillations exhibited by testing machines operating with the “hard

device”, that is, by controlling the deformation. The oscillations are much less sensible in the “soft”
testing machines, which control the applied load. This difference is well reproduced by the present
model, see Figures 6 and 8 in [Choksi et al. 1999].

62See [Choksi et al. 1999, §4]. This alternative description of yielding led the present author to
distinguish two types of yielding, which he called reversible and irreversible [Del Piero 1998; 2013].
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(vii) Crystal plasticity is a special case of isochoric plasticity, with a particular
form of the plastic stretching. The two-level shear model is a special case
of crystal plasticity, with diffuse plastic dissipation replaced by concentrated
catastrophic instability.
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FAR-REACHING HELLENISTIC GEOGRAPHICAL
KNOWLEDGE HIDDEN IN PTOLEMY’S DATA

LUCIO RUSSO

The paper summarizes and discusses the main theses exposed in a previous book
(L’America dimenticata, Mondadori Università, 2013; in Italian) in light of more
recent results. Specifically, the work addresses the problem of explaining the
origin of the systematic error on longitudes in Ptolemy’s Geographia and its
logical relation with the reduced estimate for the dimension of the Earth given
there. The thesis is sustained that, contrary to a frequently advanced conjecture,
the shrinking of the dimension of the Earth is a consequence of a scale error in
longitudes, which, in turn, was originated by a misidentification of the Islands of
the Blessed. The location of the Islands of the Blessed according to the source
of Ptolemy is identified in the Caribbean. The analysis of a passage of Pliny
provides an independent and quantitative confirmation of the proposed identifi-
cation, which sheds new light on possible contact among civilizations.

1. The shrinking of the Earth
and the dilation of longitudes

in Ptolemy’s Geographia

It is well known that Eratosthenes, in the 3rd century BC, measured the circum-
ference of the Earth, obtaining the value of 252,000 stadia (corresponding to 700
stadia per degree). Four centuries later Ptolemy, accepting a value suggested by
Posidonius in the 1st century BC, estimated the same circumference in 180,000
stadia (500 stadia per degree). The method employed by Eratosthenes is described,
in outline at least,1 by Cleomedes (Caelestia, I, 7, 48–120), while we have no
information about the origin of the smaller value. Almost all scholars have always
believed that Eratosthenes and Ptolemy were using the same stadium, even if this

Communicated by Francesco dell’Isola.
MSC2010: 01A20.
Keywords: Hellenistic geography, Ptolemy, Fortunate Islands, Islands of the Blessed.

1For a discussion of Eratosthenes’ method see [Russo 2004, 273–276]; concerning the possible
simplifications introduced by Cleomedes in his popular account, see [Russo 2013a, 71–76], which
also contains an attempt to reconstruct the original computation by Eratosthenes.
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has been called into question by certain historians.2

Much more controversial has been the actual value of the stadium considered by
the two. Indeed, many scholars3 have accepted the value of 157.5 m, deduced from
a passage in Pliny,4 while several others have maintained that the Olympic stadium
(ca. 185 m) was employed.5 Other values have also been proposed.6 Assuming
the value of 157.5 m, Eratosthenes would have made an error of less than 1%,
whereas for Ptolemy and Posidonius the error is large, roughly 40%. While these
error estimates rely on the determination of the value of the stadium, another error
in Ptolemy’s Geographia, which can be studied independently of the question of
length units, is the systematic error in longitudes. It is well known that longitude
differences were systematically dilated by Ptolemy; in particular he grossly over-
estimated the longitudinal amplitude of the oikoumene (the inhabited part of the
world).

In [Russo 2013a] the longitudes reported by Ptolemy were used to determine
the “effective” value of Ptolemy’s stadium. The main result of that work was an
independent validation of the substantial exactness of the value 157.5 deduced from
Pliny, which implies that the estimate for the Earth’s circumference by Ptolemy was

2A few scholars have suggested that Ptolemy (and Posidonius before him) replaced Erastosthenes’
stadium with a new stadium corresponding to about 222 meters, so that the two measures of the
circumference of the Earth should coincide [Gossellin 1790; Jomard1817; Valerio 2013]. This con-
jecture is contradicted by the explicit statement by Strabo that Posidonius’ measure of 180,000 stadia
had reduced the dimension of the Earth (Geographica, II, ii, 2). Furthermore, if Ptolemy was using a
stadium 40% longer than that of Eratosthenes, one would be hard pressed to explain why he dilated
in (approximately) the same measure the numerical values of differences of longitude.

3See, among others, [Letronne 1851, 104–119, 212–246; Hultsch 1882, 60–63; Tannery 1893,
109–110; Dreyer 1953, 175; Miller 1919, 6–7; Oxé 1963, 269–270; Aujac 1966, 176–179; Fraser
1972, II, 599, n. 312; Stückelberger 1988, 188; Dutka 1993/94, 63–64; Meuret 1998, 163–164,
Tupikova and Geus 2013, 21.]

4Pliny writes: “schoenus patet Eratosthenis ratione stadia XL, hoc est p. v” (Naturalis Historia,
XII, 53). This sentence, using the known value of the schoenus, gives for the stadium the value of
157.5 meters. It is true that in another passage (N.H., II, 247) Pliny translates Eratosthenes’ result
into 31500 milia passuum (a calculation involving the use of the Olympic stadium of 185 meters),
but this circumstance enhances, in my opinion, the role of the words “Eratosthenis ratione” used in
the first case. Indeed, the Olympic stadium was certainly widely used and its automatic use by Pliny
is not surprising, while his need to clarify, in the other case, that he is considering the particular
unit introduced by Eratosthenes, gives us a precious testimony. Given the enormous influence of Er-
atosthenes’ Geographica, it is not surprising that the new “stadium” introduced by him was adopted
as the standard unit in geographical treatises, while the Olympic stadium remained in use for other
purposes.

5See, among others, [Columba 1895, 63–68; Czwalina 1925, 295; Dicks 1960, 42–46; Rawlins
1981, 218; Pothecary 1995, 49–67; Berggren and Jones 2000, 14, footnote 10].

6Most of them are analyzed in [Tupikova and Geus 2013, 20–22] (where, however, the values out-
side the interval 148–180m are considered quite implausible and the extreme possibility mentioned
in note 2 above is not considered worthy of mention).
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affected by a very large error. That paper was based on the analysis of longitudes of
a sample of 80 cities, chosen as the most renowned among those in the part of the
world best- nown in Hellenistic times. Plotting Ptolemy’s longitudes against the
values currently accepted for them, a graph was obtained which is approximated
remarkably well by means of a linear regression. The equation of the regression
line is

y = 1.428x + 17.06 (1)

and the coefficient of determination is R2
= 0.9935. More recently, in [Shcheglov

2014] a larger sample of 245 locations (including some river’s mouths and capes)
was considered, yielding very similar results. Indeed, in that study the equation of
the regression line is

y = 1.4279x + 16.425, (2)

and the relative coefficient of determination is R2
= 0.9874. This result confirms

that of [Russo 2013a], and the slightly lower value of R2 (still very close to 1) is
likely linked to the inclusion in the sample of locations from lesser known regions
such as Northern Europe and India. In the two papers the slope of the regression
line is virtually identical,7 and it is close to the ratio of 1.4 between Ptolemy’s and
Eratosthenes’ values for the Earth’s circumference. We know that Ptolemy gen-
erally deduced differences of longitudes from distances expressed in stadia along
circles of latitude (mostly taken from Eratosthenes, who in his geographical work,
instead of degrees of longitude, had reported distances between meridians along a
particular parallel of latitude). It is therefore not surprising that Ptolemy’s longitude
differences were dilated in such a way to compensate, for such distances, for the
error in the dimension of the Earth. (We will return later to the slight difference
between 1.4 and the value of the regression coefficient.) Hence it is very likely that
a logical link does exist between the error on the dimension of the Earth and the
error on the differences of longitudes.

Some scholars have interpreted this link by proposing the following implication:

A* : Ptolemy assumed a wrong measure for the Earth’s circumference. As a
consequence he systematically deduced dilated longitudes from his data
involving distances along circles of latitude.8

7The method used in [Russo 2013a] for estimating the value of the stadium was actually based on
the regression coefficient, so a validation of the value of this coefficient by means of the much larger
set of locations considered in [Shcheglov 2014] provides a sounder statistical basis for that estimate.

8This implication is maintained, in particular, in [Rawlins 1985; Rawlins 2008; Tupikova and
Geus 2013; Tupikova 2013]. Strangely enough, in Shcheglov 2014 the same opinion is ascribed also
to [Russo 2013a] (where, in this regard, it is only written that “the distortion operated by Ptolemy
on the longitudes is not independent of the new value he had assumed for the length of the Earth’s
circumference”) and even to [Russo 2013b], where the implication is explicitly criticized.
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This implication is not, however, a necessary consequence of the link we men-
tioned before and in the next section we will show that actually several arguments
allow us to discard it.

2. Rereading the relationship between the two errors by Ptolemy

A first argument against A* consists in observing that it leaves unsolved the prob-
lem of the origin of the error in the Earth’s dimension. The value obtained by
Eratosthenes was indeed well known, and it is transmitted by ten different extant
sources, dating from the I century BC to the V century AD.9 Posidonius gave
two values for the Earth’s circumference. For one of them (240,000 stadia), not
too far from the one by Eratosthenes, we know the actual procedure by which
it was obtained (Cleomedes, Caelestia, I, 7, 1–47). Had the other one (180,000
stadia) been a result of some measurement procedure, one could wonder about
three things:

1. Why is there no source describing it?

2. How could it have produced such a large error?

3. Why should such a grossly wrong estimate, which no extant source consid-
ers worth of being described, have prevailed over the value produced by the
celebrated measurement by Eratosthenes?

A further strong argument against A* was provided in [Shcheglov 2014]. Namely,
if all differences of longitudes were dilated because of an error in the assumed
dimension of the Earth, we should have more or less the same dilation in different
regions (at least for the better known ones). In contrast, splitting his sample in nine
subsets corresponding to different geographic areas, Shcheglov verified that linear
regressions performed on the different subsets give substantially different values
for the slope, in every case with the coefficient R2 very close to 1.

Those arguments are largely sufficient, in my opinion, to reject implication A*.

3. How did Ptolemy actually work?

Ptolemy, in his Geographia, states that the oikoumene is spread over 180◦ of lon-
gitude, from the westernmost locations (four of the six Islands of the Blessed, the
other two being one degree further east) to the easternmost ones (some towns in

9Strabo, Geographica, II, v, 7, 34; Geminus, Introduction to the Phenomena, XVI, 6; Macrobius,
Commentarii in Somnium Scipionis, I, xx, 20; Vitruvius, De Architectura, I, vi, 9; Pliny the Elder,
Naturalis Historia, II, 247; Censorinus, De Die Natali, xiii, 5; Theon of Smyrna, De Utilitate Mathe-
maticae, 124, 10–12 (ed. Hiller); Heron of Alexandria, Dioptra, xxxv, 302, 10–17 (ed. Schöne); Mar-
tianus Capella, De Nuptiis Philologiae et Mercurii, VI, 596; and the already mentioned Cleomedes
(Caelestia, I, 7, 48–120). This last author is the only one giving a round value of 250,000.
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China). He claims (Geographia, I, 12) to have determined the amplitude of the
oikoumene in pieces, by considering a path from the meridian of the Islands of the
Blessed to the Metropolis of the Seres (the capital of China). The path is formed
from twelve portions, whose relative lengths are derived by heavily modifying,
with very rough arguments,10 data given by Marinus of Tyre. The values obtained
after this procedure are finally translated into differences of longitude assuming
the aforementioned estimate for the Earth’s circumference: 500 stadia per degree.
The result is 177◦15′. Since the easternmost locations known to Ptolemy are just
2◦45′ to the east of the Metropolis of the Seres, he eventually gets a total of 180◦.
Clearly Ptolemy is fiddling with the numbers: the likelihood is negligible that he’d
have reached this round value by accident after arbitrarily modifying twelve terms
in a sum.

At the same time, Ptolemy himself, at the beginning of his Geographia, explains
his actual method, when he points out the difference between the subject of his
work and chorography:

The goal of chorography is an impression of a part, as when one makes
an image of just an ear or an eye; but [the goal] of geography is a general
view, analogous to making a portrait of the whole head. That is, whenever
a portrait is to be made, one has to fit in the main parts [of the head] in
a determined pattern and an order of priority. Furthermore the [surfaces]
that are going to hold the drawings ought to be of a suitable size for the
spacing of the visual rays at an appropriate distance, whether the drawing
be of whole or part, so that everything will be grasped by the sense [of
sight].11

From the metaphor it is clear that Ptolemy, having to represent the whole oik-
oumene, wants first to fix the positions of some key locations, and in particular its
global dimension, and only afterwards to add the coordinates of all the remaining
localities.

One may wonder in what sense the positions of these key locations were fixed —
whether by means of their angular coordinates or their relative distances. In this re-
gard, it can be recalled that Ptolemy himself explains that the astronomical method,

10For instance, dividing a value by two to account for tortuous roads.
11^Eqetai dà tä màn qwrografikän tèlos t¨s âpÈ mèrous pro�ol¨s, ±s _an eÒ tis oÞs

mìnon _h æfjalmän mimoØto, tä dà gewgrafikän t¨s kajìlou jewrÐas kat� tä �n�logon toØs
ílhn t�n kefal�n Ípografomènois. P��is g�r taØs Ípotejeimènais eÊkì	 tÀn pr¸twn merÀn
�nagkaÐws kaÈ prohgoumènws âfarmozomènwn, kaÈ êti tÀn dexomènwn t�s graf�s �mmètrwn
æfeilìntwn eÚnai taØs âx �poq¨s aÎt�rqws tÀn îyewn dia���	n, â�n te tèleion ® tä
grafìmenon â�n t�âpi` mèrous, Ñn��pan ai
htÀs paralamb�nhtai [ . . . ] (Ptolemy, Geographia,
I, 1, 2–3; translation adapted from [Berggren and Jones 2000]).
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from which only angular measures can be derived, is to be preferred to the survey-
ing which could provide distances in stadia:

The surveying component is that which indicates the relative positions
of localities solely through measurement of distances; the astronomical
component [is that which does the same] by means of the phenomenon
[obtained] from astronomical sighting and shadow-casting instruments.
Astronomical observation is a self-sufficient thing and less subject to
error, while surveying is cruder and incomplete without [astronomical
observation].12

The order in which the operations were performed is indeed explicitly indicated
in Ptolemy’s Geographia, in the title of chapter I, 4:

That it is necessary to give a priority to the [astronomical] phenomena
over [data] from records of travel.13

Shortly afterward he points out:

It would therefore also be reasonable for one who intended to practice
geography following these [principles] to give priority in his map to the
[features] that have been obtained through the more accurate observa-
tions, as foundations, so to speak, but to fit [the features] that come from
the other [kinds of data] to these, until their positions with respect to each
other and to the first [features] stand as much as possible in agreement
with those reports that are less subject to error.14

From these passages, we can deduce that Ptolemy first fixed a few longitudes
known by astronomical methods (in particular those of some extreme points deter-
mining the amplitude in degrees of the oikoumene), and then he interpolated the
longitudes of the intermediate locations by using known distances along circles of
latitude. Therefore, the first error among the two mentioned in the previous section
has necessarily to be the one on longitudes. Hence, as already said, A* has to be
discarded. Since, on the other hand, Ptolemy’s scale error on longitudes, combined

12gewmetrikän màn tä di� yil¨s t¨s �nametr �ws tÀn dia���wn t�s präs �ll lous
jè�is tÀn tìpwn âmfanÐzon, metewro�opikän dà tä di� tÀn fainomènwn �pä tÀn ��rol�bwn
kaÈ �ioj rwn ærg�nwn; toÜto màn, ±s aÎtotelès ti kaÈ �di�aktìteron, âkeØno dà, ±s
ålo�erè�eron kaÈ toÔtou pro�eìmenon. (Ptolemy, Geographia, I, 1, 2; translation by Berggren
and Jones.)

13VOti deØ t� âk tÀn fainomènwn proôpotÐje
ai tÀn âk t¨s periodik¨s É�orÐas (Ptolemy,
Geographia, I, 4, T; translation by Berggren and Jones).

14eÖlogon _an eÒh kaÈ tän toÔtois �koloÔjws gewgraf �nta t� màn di� tÀn �kribe�èrwn
thr �wn eÊlhmmèna proôpotÐje
ai t¬ katagraf¬ kaj�per jemelÐous, t� d� �pä tÀn �llwn
âfarmìzein toÔtois, éws _an aÉ präs �llhla jè�is aÎtÀn met� tÀn präs t� prÀta thrÀ	n
±s êni m�li�a �mf¸nws t�s �di�aktotèras tÀn paradì�wn. (Ptolemy, Geographia, I, 4, 1;
adapted from the translation by Berggren and Jones.)
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with a set of right distances along circles of latitude, necessarily implies his error
on Earth’s dimension, we are led to propose the following implication:

A** : Ptolemy’s error on the amplitude in longitude of the oikoumene was the
cause of his systematic dilation of the differences of longitude and of
his deduction, from the known data for the distances along circles of
latitude, of an underestimation of the dimension of the Earth.

As for the source of the scale error on longitudes, we start by observing that,
since Ptolemy emphasizes the importance of astronomical data provided by Hip-
parchus (Geographia, I, 4, 1), we can conjecture that he took from him also the
value of 180◦ for the amplitude of the oikoumene. An argument supporting this
is provided once again by Ptolemy himself, in his Almagest, when he states that
the oikoumene occupies approximately one fourth of the earth surface bounded by
half of the equator and the halves of two opposite meridians. The amplitude of
180◦ is justified in the following passage:

In the case of longitude (that is in the east-west direction) the main proof
is that observations of the same eclipse (especially a lunar eclipse) by
those at the extreme western and extreme eastern regions of our part of
the inhabited world (which occur at the same [absolute] time) never differ
by more than twelve equinoctial hours [in local time]; and the quarter [of
the earth] contains a twelve-hour interval in longitude, since it is bounded
by one of the two halves of the equator. 15

The reference to the method proposed by Hipparchus for measuring differences
of longitude from local times of lunar eclipses16 gives a clue in support of our
hypothesis, which is also consistent with the fact that the amplitude of 180◦ for
the oikoumene was already transmitted, before Ptolemy and Marinus, by Strabo.
Indeed, shortly after having recalled the method used by Hipparchus for determin-
ing differences of longitude (Geographica, I, 1, 12), Strabo observes that people
living in the extreme eastern regions are in a sense the antipodes of those living at
the extreme west of Iberia (Geographica, I, 1, 13).

If the amplitude of the oikoumene was taken from Hipparchus, and was at the
origin of the wrong estimate of the Earth’s circumference, it is understandable that

15âpÈ dà toÜs m kous, toutè�in t¨s �pä �natolÀn präs du
�s parìdou, di� toÜ t�s
aut�s âkleÐyeis, m�li�a dà t�s �lhniak�s, par� te toØs âp� �krwn tÀn �natolikÀn merÀn
t¨s kaj��m�s oÊkoumènhs oÊkoÜ	 kaÈ par� toØs âp� �krwn tÀn dutikÀn kat� tän autän qrìnon
jeoroumènas m� plèon d¸deka protereØn ¢ Í�ereØn ±r~n Ê�merinÀn aÎtoÜ kat� m¨kos toÜ
tetarthmorÐou dwdek�wron di��hma perièqontos, âpeid per Íf�ánäs tÀn toÜ Ê�merinoÜ �-
mikuklÐwn �forÐzetai. (Ptolemy, Almagest, II, 1, p.88 Heiberg, 10–19; translation by G. J. Toomer.)

16Obviously it is not possible to observe the same lunar eclipse from two opposite semi-meridians
(or not without assuming unrealistic observations made from points close to a pole), but it is possible
to obtain the total longitude between them by summing two (or more) smaller longitude differences.
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this last error was already made by Posidonius, whose main source in astronomical
and geographical matters was probably Hipparchus himself. 17 Furthermore, the
rejection of the celebrated result by Eratosthenes becomes understandable if it was
girded by a belief that one was following Hipparchus, the famous scientist whose
successful criticism of Eratosthenes was well known.

Finally, we can notice that the discrepancy among the ratio 1.4 between the
two estimates for the Earth’s circumference and the value 1.428 of the regression
coefficient concerning the longitude dilation, though small, is not negligible and
hardly compatible with A*, in view of the high value of R2. This discrepancy
becomes easily understandable by adopting the implication A**. A contraction of
Eratosthenes’ value of 700 stadia per degree by a factor 1.428 leads indeed to a
value of 490.2 stadia per degree, but it is reasonable that Ptolemy (and Posidonius
before him), having to replace an estimate given by a round figure,18 wanted to
select an equally round figure, therefore choosing 500.

4. Global and local errors

Let us go back to chapter I, 4 of Ptolemy’s Geographia:

[ . . . ] most distances, especially the east-west ones, have come down
to us in a less precise form, not through the negligence of those who
devoted themselves to research, but perhaps because they had not yet
understood the usefulness of more scientific methods and because they
had not observed many lunar eclipses at the same time in different places
(such as the one that was seen in Arbela at the fifth hour and at Carthage
at the second hour), from which it would have been clear how many
equinoctial time units separated the localities to the east or west.19

The mention of people who had “not yet” (mhdèpw) understood the usefulness
of the method based on lunar eclipses for determining the longitudes implies that

17We recall that Hipparchus worked in the same Rhodes where Posidonius, a generation later,
established his school.

18The aforementioned passage from Pliny about the stadium according to the “Eratosthenis ratio”
suggests that in the case of Eratosthenes the round figure could have been the result of the definition
of the new stadium as a convenient submultiple of the circumference of the Earth (252,000 is a
particularly convenient number, because it is divisible by all numbers from 1 to 10, whose least
common multiple is in fact 2,520).

19t� dà pleØ�a tÀn dia�hm�twn kaÈ m�li�a tÀn präs �natol�s _h du
�s ålo�ere�è-
ras êtuqe paradì�ws, oÎ ûøjumÐø tÀn âpibalìntwn taØs É�orÐais, �ll� Ò�s tÄ mhdèpw tä
prìqeiron kateil¨fjai t¨s majhmatikwtèras âpi�èyews, kaÈ di� tä m� pleÐous tÀn Ípä tän
aÎtän qrìnon ân diafìrois tìpois tethrhmènwn �lhniakÀn âkleÐyewn, ±s t�n màn >Arb lois
pèmpths ¹ras faneØ�n, ân dà Karqhdìni deutèras, �nagraf¨s �xiÀ
ai, âx Án âfaÐnet� _an
pì�us �pèqou	n �ll lwn oÉ tìpoi qrìnous Ê
erinoÌs präs �natol�s _h du
�s; (Ptolemy,
Geographia, I, 4, 1).
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such usefulness was clear to later scholars. Ptolemy indeed had used such astro-
nomical method in the case of Arbela and Carthage20 and most probably, as already
observed, in some other cases.

Suppose that Ptolemy had obtained all his longitudes by dividing the (wrong)
amplitude of the oikoumene assumed by him in parts proportional to the known
distances along circles of latitude. In this case, and in the absence of large sys-
tematical errors in distances, we should expect that Ptolemy’s longitudes were
well approximated everywhere by the same linear function of the actual ones, i.e.,
all differences of longitude are dilated almost exactly in the same proportion the
oikoumene as a whole is.

But if instead, as suggested by Ptolemy himself, the interpolation procedure
started after the insertion of some milestone astronomical data — which would be
very unlikely to fit well with the linear relation above21 — then the set of all the
locations considered would have been broken into regional subsets such that:

(a) In each subset the longitudes, being obtained with an interpolation procedure,
are very close to a linear function of the actual longitudes, so that we should
get in any case very high values of the coefficients of determination R2.

(b) The regression coefficients corresponding to different subsets should differ
considerably from each other.

(c) The longitudes inserted on an astronomical basis should mark the fracture
points between different subsets.

(d) The deviations of the different regression coefficients from the global dilation
ratio should compensate each other in such a way that the set of all the longi-
tudes can be well approximated by a linear regression with a coefficient equal
to such dilation ratio.

To these points, one can add a further observation. The data given by Ptolemy
are interconnected by a very complex chain of relations. In particular, he states
(Geographia, I, 4, 1) that in some cases he has the information that two locations
are on the same meridian. Considering this kind of interconnection in relation with
the previous reasoning, it is clear that:

(e) There exists the possibility that two sets of data covering more or less the same
longitude area (but coming from different latitudes), are broken in subsets in
such a way that the fracture points are approximately at the same longitude
for both.

This scenario, suggested by Ptolemy’s exposition, describes well the features of
the longitudes reported in his Geographia, as is apparent from the analysis made

20See next page.
21Of course we cannot exclude the possibility that Ptolemy discarded data too far from it.
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in [Shcheglov 2014]. This analysis, which allowed Shcheglov to correctly discard
thesis A*, is not only consistent with A**, but gives a strong argument in its support
once one takes into account that, in addition to the systematic dilation, significant
and well characterized errors due to the insertion of some longitudes deduced from
astronomical data are to be expected. In this regard, the fact that the sample chosen
by Shcheglov as a whole leads to a value of R2 that is close to 1 (0.9874) should
not be, in my opinion, dismissed as “deceptive” (as Shcheglov does), but provides
a key element for the reconstruction of the overall framework.

We cannot hope to identify all the cases in which Ptolemy used astronomical
data concerning longitudes, but in one significant case it is possible to reasonably
conjecture the origin of a local error. Let us start by observing that the presence of
local regression coefficients which largely differ from the global one is especially
significant in areas that were well-known in Hellenistic times. In this regard, the
data coming form the south and north coasts of the Mediterranean sea are particu-
larly relevant. Analyzing the data shown in Figure 6 of [Shcheglov 2014], one can
see that both the southern and the northern coasts of the Mediterranean Sea can
be divided in two parts, eastern and western, which feature substantially different
values for the regression coefficient. Specifically, the regression coefficients are
1.81 and 1.19 for the western and eastern part of the south coast; 1.77 and 1.15
for the western and eastern part of the north coast. It is also striking that the
fracture points between the two different slopes for the north and south coasts22

are situated at approximately the same longitude — in modern terms, slightly more
than 10◦E. A good explanation for that fact would be that, for some location at a
longitude slightly more than 10◦E, Ptolemy had an astronomical datum that was
inconsistent with the systematic dilation of longitudes. It is then perhaps not by
chance that that longitude corresponds very well to one of the endpoints (Carthage,
10◦19′) of the only longitude interval for which Ptolemy explicitly states that he
possessed an astronomical datum. The value given by Ptolemy for the difference
in longitude between Arbela and Carthage (45◦10′) in fact agrees very closely with
the one corresponding to the difference of three hours mentioned in the previous
passage. On the other hand, this value is dilated by a factor of approximately
1.30 with respect to the actual difference, a value which significantly differs from
the global coefficient of regression.23 If one considers that the longitude given
by Ptolemy for Arbela places it almost exactly on the global regression line, this
strongly suggests that Ptolemy, taking into account the astronomical datum for the

22See point (e) on the previous page.
23We notice that, as a consequence, the longitudinal distance of Carthage from the Pillars of

Heracles is dilated by Ptolemy by the factor 1.74, in good agreement with the regression coefficients
(1.81 and 1.77) found by Shcheglov for the western part of the Mediterranean Sea.
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determination of the longitude of Carthage,24 may have had to adjust the other data
which were linked to it by relations between distances or other more complex kinds
of interconnections. This hypothesis can explain:

(i) the different slopes observed for eastern and western areas;

(ii) the high values of R2 for both subsets;

(iii) the fact that the regression coefficient for the union of the considered subsets
agrees with a good approximation with the global dilation ratio;25

(iv) the fact that the northern and southern Mediterranean coasts each break into
different slope subsets more or less at the same longitude.26

A further confirmation of this reconstruction comes from a comparison between
the global regression coefficient (1.428) and the ratio between the actual longitu-
dinal amplitude for the Ptolemy’s oikoumene and the value of 180◦ accepted by
him.

The westernmost locations considered by Ptolemy are the Islands of the Blessed,
which he identified with the Canary Islands.27

In order to estimate the global dilation of the oikoumene, on the other extreme
we consider the Sera Metropolis (today’s Xi’an28), since more eastern locations

24The poor accuracy of this particular value is easily understandable if we take into account that
it relies on non-scientific descriptions of the eclipse, dating to the fourth century BC, two centuries
before that Hipparchus suggested that this kind of data could be used to determine differences of
longitude.

25A linear regression performed over the whole set of locations indicated in [Shcheglov 2014]
as the “north coast” and “south coast” of the Mediterranean gives the line y = 1.437x + 17.00,
with R2

= 0.980. The very low values of the regression coefficients found by Shcheglov for the
eastern part of the Mediterranean Sea (1.19 and 1.15) are thus the right ones to compensate the
overestimation of the dilation on the other side.

26See again point (e) above.
27This identification was usual in imperial times. It appears for the first time implicitly in the

work of Pomponius Mela, who places the Islands of the Blessed in front of the Atlas Mountain
(De chorographia, III, 101–102). In Pliny’s Naturalis Historia (VI, 202–203) the identification is
even clearer, since he places them in front of Mauretania and gives with a good approximation their
distances from Gades (Cadiz). As for Ptolemy (who hardly dares to question knowledge widely
accepted in his days), he gives names and coordinates of six “Islands of the Blessed” (Mak�rwn
n¨�i) (Geographia, IV, 6, 34). Their identification with the Canaries is implied by their longitude,
and more importantly by the names of the islands: three of Ptolemy’s names are obvious Greek
correspondents of latin names given by Pliny: Canaria, Junonia and Pluvialia. The slight discrepancy
between the number given by Ptolemy (six) and the actual number (seven) of the major islands of the
archipelago can be explained in many ways. Almost all scholars agree with this identification; see,
for instance, [Stückelberger and Graßhoff 2006, 455, footnote 200]. Nevertheless, a few scholars
have questioned the identification with the Canaries, on the basis of the latitude given by Ptolemy,
which is very far from that of the Canaries. We shall return to this point.

28For the identification of Sera Metropolis with Xi’an see [Stückelberger and Graßhoff 2006, 669,
note 229].
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are not unanimously identified today. Since the actual longitudes of Xi’an and
the Canary Islands 29 are respectively 108◦54′E and 15◦W, and the corresponding
values given by Ptolemy are 177◦15′ and 0◦, the ratio between their difference of
longitude given by Ptolemy and the corresponding actual value is approximately
1.43, and thus very close to the regression coefficient given in [Russo 2013a] and
[Shcheglov 2014].

Of course a detailed reconstruction of the procedure followed by Ptolemy is
very difficult, and probably impossible, since it should also take into account the
presence of local errors due to the different level of geographical knowledge for
the various regions, and the complex interconnections between his data, already
alluded to. Nevertheless, as we saw, some firm points could be established, the
most important of which is a general dilation of all the differences of longitude by
a mean factor equal to the dilation of the whole oikoumene. The implication A**
is thus confirmed.

However, we still did not tackle the point on which our first criticism to A* was
based, i.e, its failure to explain the origin of the double mistake, which is left by
that hypothesis in the darkest obscurity. We will devote the next section to test the
proposed thesis A** against this last problem.

5. The origin of the error on longitudes by Ptolemy

We conjectured that the value of 180◦ for the amplitude of the oikoumene, i.e., the
difference in longitude between the Islands of the Blessed and the easternmost
regions, was taken from a Hellenistic source (most probably Hipparchus, who
may well have intended it as a rounded value). On the other hand we know that
Hellenistic scientists, and in particular Hipparchus, had accepted the value of Er-
atosthenes for the Earth’s circumference (Strabo, Geographica, I, iv, 1; II, v, 7;
II, v, 34), while the smaller estimate, grossly wrong, was first introduced (as far
as we know) by Posidonius (Strabo, Geographica, II, ii, 2). Why does this value
of 180◦, which according to Hipparchus was consistent with the measurement by
Eratosthenes, coexist with a much “smaller” Earth in (among others) Ptolemy?
Since there is substantial agreement in the distances along the circles of latitude
between Ptolemy’s and Eratosthenes’ data, it is clear that the only possibility is that
there was a misinterpretation on the identification of one of the two extrema of the
oikoumene. Two arguments allow us to exclude that the issue involved locations
in the far East:

29As the modern value for the Canary Islands we take the value of 15◦W, which is the best
rounded value for the average longitude.
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1. It is a priori easier to misinterpret the identification of oceanic islands, for
which no close locations are known for very large distances, than that of a
city which is reachable through a series of intermediate locations.

2. To produce an error of the order of magnitude of that made by Ptolemy, the
original location of some town in China assumed by his source as the eastern
extremum of the oikoumene had to be very far into the Pacific Ocean.

The only remaining possibility, therefore, is that the two errors were originated
by an erroneous identification of the Islands of the Blessed.

The previous reasoning, which up to now was intended at analyzing the origin
of the errors in Ptolemy’s Geographia, can also disclose new possibilities in a more
general (and possibly more relevant) issue. We are indeed led to the conclusion
that the Islands of the Blessed, to which the Hellenistic source of Ptolemy (most
probably Hipparchus) referred, can be found approximately on the opposite semi-
meridian with respect to the more eastern locations cited in the Geographia. This
entails the need to consider longitudes that are much farther on the west than those
believed as known in Hellenistic times. We arrived at this conclusion by elimina-
tion, after having considered and discarded every possible alternative. Therefore, in
my opinion, we should seriously consider the extreme consequences of the previous
reasoning. As a renowned investigator used to say, when you have eliminated the
impossible, whatever remains, however improbable, must be the truth.

6. The Islands of the Blessed and the Caribbean

The elimination process illustrated before conduced us to the conclusion that the
first cause for the errors made by Ptolemy was the wrong identification of the
Islands of the Blessed with the Canary Islands. One may wonder how such a mis-
interpretation of the sources was possible. It is therefore useful, in my opinion, to
briefly recall some historical processes which played a key role in this connection.

Mentions of travels in the Atlantic Ocean are not negligible in ancient sources.30

However, between the Hellenistic age and Ptolemy, a significant loss of geographic
knowledge concerning this Ocean occurred, and in a short time even well known
descriptions of voyages started to be considered unreliable. The report of the fa-
mous expedition made by Pytheas, for instance, in which he described the iced sea
and the midnight sun, was considered trustworthy by Hellenistic scientists such as
Eratosthenes and Hipparchus,31 but was later rejected by Strabo (Geographica, II,
iv, 1; II, iv, 2; II, iii, 5), was not copied and transmitted anymore, and finally lost.

30For a review of classical sources on travels in the Atlantic Ocean see [Roller 2006].
31See, among other passages, Hipparchus, In Arati et Eudoxi phaenomena commentariorum libri

iii, I, 4, 1; Strabo, Geographica, I, 1, 9; II, 1, 12; II, 4, 2.
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The error made by Ptolemy according to our reconstruction was made possible
by the combination of the loss of knowledge about the Atlantic Ocean with a gen-
eral weakening of science in the Roman world with respect to the Hellenistic age.
32 Geography, in particular, was transformed radically, from the mathematically
founded subject it was in Hellenistic times to the purely descriptive one it became
in works like those by Strabo and Polybius. An error like the misidentification
of an archipelago became clearly much more probable once the use of spherical
coordinates (latitude and longitude) for the identification of the locations had been
abandoned, as it was in the first century BC. The oldest evidence concerning the
identification of the Islands of the Blessed with the Canaries dates indeed from
the first century BC, 33 and then was inherited by Ptolemy when he attempted at
reconstructing quantitatively the mathematical geography for the first time after the
methodological crisis had occurred. Posidonius seems the most probable candidate
as the source of the misidentification. He is, to our knowledge, the oldest source
giving the length of 500 stadia per degree for the Earth’s circumference, which
tends to suggest that the transition from the “old” to the “new” value occurred in
his work.

A quantitative analysis of the data given by Ptolemy strongly supports the idea
of a mistaken identification of the archipelago. Indeed:

1. The latitude he gives for the Islands is wrong by about 15◦, a huge error which
can be regarded as incompatible with any data coming from real measurements
and can be only explained as the result of a confusion between two different
archipelagos.

2. The Canaries are spread over a total longitude of about four and a half degrees,
while the archipelago considered by Ptolemy covers just one degree in west-
east direction; moreover, the Canary Islands cover less than two degrees in
north-south direction, while Ptolemy’s Islands five and a half. In conclusion,
both archipelagos have a strip-like shape, but they are approximately oriented
in orthogonal directions.

A decisive test in order to check the proposed thesis is at this point possible.
We can indeed compute the original longitude of the Islands of the Blessed simply
taking a difference of longitude of 180◦ with respect of Ptolemy’s eastern extreme
locations, and verify whether we come close to some archipelago. The longitude
of the eastern bound of Ptolemy’s oikoumene can be computed by the regression
line (1) given on page 183, solving the equation

180= 1.428x + 17.06.

32On this point see [Russo 2004, passim].
33See note 27 above.
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Figure 1. White dots indicate the original locations of the Islands
of the Blessed as computed in the text.

In this way, we eventually get the following coordinates for the Islands:

65◦54′W, 16◦N; 64◦54′W, 15◦15′N; 65◦54′W, 14◦15′N;
65◦54′W, 12◦30′N; 64◦54′W, 11◦N; 65◦54′W, 10◦30′N.

These locations are marked by circles in Figure 1.
As the reader can see, not only do we come very close to an actual archipelago

(formed by the Leeward Islands and the Windward Islands, in the Lesser Antilles),
but also its dimension, shape and orientation correspond well to the dots. If we
compute the eastern extreme using the regression line (2), given in [Shcheglov
2014], we obtain an even slightly better match with the Leeward and Windward
Islands, since all the points move east by about 0.44 degrees.

The available descriptions of the Islands of the Blessed in the sources can pro-
vide further arguments in support of this proposed (and admittedly surprising)
identification. In this regard, one can observe that there is a substantial consistency
between the numerous descriptions we have dating from the archaic and classical
periods, and that these descriptions are hardly reconcilable with the identification
with the Canaries. The issue was examined in detail in [Manfredi 1993]; in his
opinion, some striking characteristics mentioned frequently in the sources (and
especially the presence of lush and evergreen foliage) can exclude the possibility
that they referred to the Canaries, which are generally bleak, and would rather
suggest islands in the Caribbean sea [Manfredi 1993, p. 204].
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In the following section a further independent and quantitative confirmation of
the proposed thesis will be provided.

7. A passage from Pliny

The following passage by Pliny has eluded, until now, any reasonable interpreta-
tion:

Regarding the length and the breadth this is what I deem worthy of men-
tion. For the whole circumference, Eratosthenes, a man highly regarded
by all and surpassing others in every subtlety of learning, and especially
in the present matter, gave the value of 252,000 stadia. [ . . . ] Hipparchus,
a man to be admired for taking issue with him and for much more besides,
then added to that number a little less than 26,000 stadia.34

The last statement by Pliny is contradicted by passages in Strabo to the effect that
Hipparchus accepted the value given by Eratosthenes for the Earth’s circumference
(Geographica, I, iv, 1; II, v, 7; II, v, 34). The key to understanding the passage
above, in my opinion, lies in its first words. Just before that passage Pliny’s topic
was the dimensions of the oikoumene. Since it makes no sense to talk of the length
and the breadth of a spherical Earth, it is therefore very plausible that Pliny’s source
was still discussing the oikoumene when talking about the 26,000 stadia, and that
Pliny misunderstood the reference as being about the earth’s circumference because
that was Eratosthenes’ most celebrated measurement. The length and breadth of
the oikoumene were typically discussed in geographical works, and we know from
Strabo (Geographica, I, iv, 5) that Eratosthenes did calculate the length of the
oikoumene along the parallel of Athens, getting the result of 77,800 stadia, of
which 5,000 to the west of the Pillars of Heracles. Pliny’s passage can therefore be
explained if we conjecture that Hipparchus extended the oikoumene in longitude
by adding just under 26,000 stadia to the value given by Eratosthenes. Since this
extension could hardly have concerned the Pacific Ocean, we must conclude that
the western boundary of the oikoumene according to Hipparchus was at 31,000
(26,000 + 5000) stadia from the Pillars of Heracles along the parallel of Athens.
Since the cosine of the latitude of Athens is about 0.788, a degree of longitude along
this parallel, according to Eratosthenes, corresponds to about 700 × 0.788 = 552
stadia, which yields a location approximately 56◦10′ the west of Gibraltar, corre-
sponding to a longitude of 61◦31′W. The corresponding semi-meridian is shown in

34De longitude ac latitude haec sunt, quae digna memoratu putem. Universum autem circuitum
Eratosthenes, in omnium quidem literarum subtilitate, et in hac utique praeter ceteros sollers, quem
cunctis probari video, CCLII milium stadiorium prodidit, [ . . . ] Hipparchus, et in coarguendo eo, et
in reliqua omni diligentia mirus, adicit stadiorum paulo minus XXVI milia (Pliny, Naturalis Historia,
II, 247).
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Figure 2. The westernmost longitude of the oikoumene according
to Hipparchus, as recovered from Pliny’s passage.

Figure 2, and represents a striking confirmation of the thesis that Hipparchus knew
the coordinates of the Leeward and Windward Islands, and also of the correctness
of our reconstruction of the meaning of the passage by Pliny. Moreover, it indirectly
supports the idea that the source of Ptolemy on the Islands of the Blessed was
Hipparchus. We notice that it is not surprising that the match between theoretical
previsions and actual geographical data is much better in Figure 2 than in Figure 1,
since the reconstruction underlying Figure 1 had a statistical basis and relied on the
value of 180◦ for the amplitude of the oikoumene, which was possibly rounded off,
while in the case of Figure 2 the method only uses one quantitative datum taken
from the sources.

Of course, the addition of 26,000 stadia by Hipparchus should be considered
not as a correction to the value given by Eratosthenes, but rather an update due to
new geographical discoveries.

8. Conclusions

We want here to summarize the conclusions of the present paper and the arguments
that can be considered in their support.

The main thesis can be expressed as follows:

Some source of Ptolemy’s Geographia knew with remarkable precision
the position of some locations in the Caribbean Sea, i.e. the Leeward and
Windward Islands. These islands were the locations originally intended
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as the “Islands of the Blessed”. Their misidentification with the Canaries
first occurred in the first century BC and was then accepted by Ptolemy.

This thesis, which is plausible in view of the loss of knowledge concerning
the Atlantic Ocean and the lapse into disuse of spherical coordinates between
Hipparchus and Ptolemy, is justified by abductive inference based on its ability
to explain a number of facts for which so far no explanation had been offered:

1. The thesis is implied by a procedure performed by Ptolemy which is suggested
by his own words and in turn explains both (i) the very high values for the deter-
mination coefficient (and the virtually identical regression coefficients) found in
[Russo 2013a] and [Shcheglov 2014], and (ii) the significant differences between
regression coefficients relative to different regions shown in [Shcheglov 2014].

2. It explains why the archaic and classical descriptions of the Islands of the
Blessed match better with Caribbean islands rather than the Canaries (as discussed
in [Manfredi 1993]).

3. It explains why Ptolemy’s coordinates for the Canary Islands describe an elon-
gated archipelago whose orientation is basically orthogonal to the actual one — in
other words, as wrong as it could be).

4. It explains the huge error of 15◦ made by Ptolemy in the latitude of the Canary
Islands.

5. It provides a simple, and quantitatively accurate, explanation of the systematic
dilation of differences of longitudes operated by Ptolemy.

6. It explains as a simple consequence of the previous point the new estimate in the
measure of the Earth accepted by Posidonius and Ptolemy — even more so because
the ratio between the old and the new estimates is close to, but not identical with,
the dilation coefficient.

7. It explains the striking match between the shape and the position of the Leeward
and Windward Islands and the locations indicated by Ptolemy as the “Islands of
the Blessed”, once their original coordinates are reconstructed by means of the
statistical approach herein considered.

8. It provides a simple (and quantitatively accurate) explanation for the passage of
Pliny discussed above.
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GENERATION OF SH-TYPE WAVES DUE TO SHEARING
STRESS DISCONTINUITY IN AN ANISOTROPIC LAYER

OVERLYING AN INITIALLY STRESSED
ELASTIC HALF-SPACE

SANTOSH KUMAR AND DINBANDHU MANDAL

The paper investigates the generation of SH-type waves due to a sudden applica-
tion of a stress discontinuity which moves after creation at the anisotropic layer
of finite thickness overlying an initially stressed isotropic half-space. The dis-
placements are obtained in exact form by the method due to Cagniard modified
by de Hoop. Two cases of shearing stress discontinuities are considered. The
numerical results are obtained for a particular model and discussed by plotting
graphs for displacement component with the elapsed time of the disturbance for
different values of initial stress and also for different values of initial time at
which pulses arrive.

1. Introduction

The notion of initial stress is essential to the study of seismic wave propagation.
Biot [1940] is largely responsible for the notion’s introduction and initial applica-
tions to elastic wave propagation; in [Biot 1965] he further developed the notion
of initial stress. Many authors have used that book as fundamental to the study of
wave propagation in an initially stressed medium. Abd-Alla and Ahmed [1999]
analyzed Love waves propagation in a non-homogeneous orthotropic elastic layer
under initial stress overlying semi-infinite medium. Khurana [2001] considered
the effect of initial stress on the propagation of Love wave. Further significant
steps were taken in [Das and Dey 1968; 1970, Dey 1971; Dey and Addy 1978;
Chattopadhyay and De 1981; Chattopadhyay and Kar 1978; Majhi et al. 2016;
2017] to cite but a few works.

In addition to initial stress, shearing stress discontinuity also plays a vital role
in the study of seismic wave propagation. Pal [1983] considered the problem of
generation and propagation of SH-type waves due to non-uniformly moving stress
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technique.
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discontinuity in layered anisotropic elastic half-space using Garvin’s [1956] tech-
niques, which are a modification of Cagniard’s [1939] technique. Pal and Kumar
[2000] considered the generation of SH waves by a moving stress discontinuity in
an anisotropic soil layer over an elastic half-space using the Cagniard–de Hoop
special reduction technique [de Hoop 1960]. Next de Hoop [2002] considered
the reflection and transmission properties of an elastic interfacial bonding of two
semi-infinite solids, investigated for the simplest possible case of a line-source
excited two-dimensional SH-wave. Pal and Mandal [2014] studied the generation
of SH-type waves due to sudden application of a stress discontinuity which moves
after creation at the sandy layer of finite thickness overlying an isotropic and in-
homogeneous elastic half-space. Mandal et al. [2014] considered the disturbance
and propagation of SH-type waves in an anisotropic soil layer overlying an inho-
mogeneous elastic half-space by a moving stress discontinuity. All authors have
considered the effect of initial stress and shearing stress discontinuity separately
but haven’t considered the initial stress and shearing stress discontinuity together.

In the present problem our intention is to investigate the two dimensional prob-
lem of generation of SH-type waves at the free surface of an anisotropic layer due to
an impulsive stress discontinuity moving with uniform velocity along the interface
of initially stressed isotropic medium. The displacement is calculated numerically
for two particular distances on the surface for two different types of the discontinu-
ity in the shearing stress for different value of initial stress. It involves Laplace and
Fourier transform and the inversion is based on Garvin’s [1956] method. The prob-
lem discussed may be of importance in connection with the propagation of cracks
in the layer. Two cases of stress discontinuity are considered and the numerical
results are shown graphically.

2. Formulation of problem

We consider an anisotropic elastic layer of thickness h with elastic constants L1, N1

and density ρ1 over an initially stressed isotropic half-space with elastic constant
µ2 and density ρ2. The interface of these two media is considered at z = 0 whereas
free surface is at z =−h. Here, z axis is directed vertically downward and x axis is
assumed in the direction of the propagation of wave with velocity c. For SH-type of
waves the displacement does not depend on y and if (u, v, w) be the displacement
at any point P(x, y, z) into the medium then u = w = 0 and v are function of x ,
z and t . The two equations of motion are identically satisfied. The geometrical
configuration is depicted in Figure 1.

The equation of motion for the anisotropic layer (Medium I) without body forces
is given by

N1
∂2v1

∂x2 + L1
∂2v1

∂z2 = ρ1
∂2v1

∂t2 . (1)
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Figure 1. Geometry of problem.

The stress strain relation is given by (τxy)I = N1
∂v1
∂x and (τyz)I = L1

∂v1
∂x .

The equation of motion for initially stressed isotropic half-space (Medium II)
without body forces is given by

∂(τxy)II

∂x
+
∂(τyz)II

∂z
−

P
2
∂v2

∂x2 =
∂2

∂t2 (ρ2v2). (2)

The stress strain relation is given by (τxy)II = µ2
∂v2
∂x and (τyz)II = µ2

∂v2
∂z .

The boundary conditions are

(τyz)I = 0 at z =−h, (3)

v1 = v2 at z = 0, (4)

(τyz)I− (τyz)II = S(x, t)H(t) at z = 0, (5)

where S(x, t) is a function of x and t ; H(t) is the Heaviside unit function of time t .

3. Method of solution

The above problem can readily be solved by using the Laplace and Fourier trans-
forms combined with the modified Cagniard–de Hoop [1960] method. The Laplace
transform with respect to t and the Fourier transform with respect to x are defined
by

'
v =

∫
∞

−∞

e−iξ x dx
∫
∞

0
e−ptv(x, z; t) dt. (6)

We can easily get the upper and lower layer with v2→ 0 as z→∞ in the form

v̄1(x, z; p)=
∫
∞

−∞

(A cosh s1z+ B sinh s1z) eiξ x dξ, (7)

v̄2 =

∫
∞

−∞

Ce(iξ x−s2z)dξ, (8)

where the constants A, B and C are to be determined from the boundary conditions
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(3)–(5):

s1 =

(
φ2

1ξ
2
+

p2

β2
1

)1
2

, s2 =

(
φ2

2ξ
2
+

p2

β2
2

)1
2

, (9)

where β2
1 =

L1
ρ1

, β2
2 =

µ2
ρ2

, φ2
1 =

N1
L1

and φ2
2 = 1− P

2µ2
.

It follows from the boundary conditions (3) and (4) that

A = C, A cosh s1h = B sinh s1h. (10)

Case I. Let

S(x, t)=
{

Q, a ≤ x ≤ b+ V t,
0, elsewhere,

(11)

where Q is constant.
This definition of stress discontinuity shows that it is created in the region x = a

to x = b and then expands with the uniform velocity V in the x direction. In
particular, when a = b = 0, the discontinuity is created at the origin and expands
with uniform velocity V in the x direction.

From the boundary condition (5) one gets, with the help of (11),

BL1s1+Cµ2s2 =
Q

2πp

[
e−iξa

− e−iξb

iξ
+

e−iξb

iξ + p
V

]
. (12)

Solving for A, B and C from (10) and (12), we get the displacement function
at the free surface at z =−h in the form

v̄1(x,−h; p)

=
Q

2πp

∫
∞

−∞

eiξ x

(L1s1 sinh s1h+µ2s2 cosh s1h)

[
e−iξa

− e−iξb

iξ
+

e−iξb

iξ + p
V

]
dξ

=
Q
πp

∫
∞

−∞

e(iξ x−hs1)

(L1s1+µ2s2)

[
e−iξa

− e−iξb

iξ
+

e−iξb

iξ + p
V

](
1− K e−2hs1

)−1dξ,

(13)
where

K =
L1s1−µ2s2

L1s1+µ2s2
< 1, (14)

represents the reflection coefficient of SH-waves incident from the sandy medium
at the interface between two half-spaces. The coefficients of different power of
K in series of (13) are associated with the pulses undergoing repeated reflection
in the upper layer. Using the inverse Laplace transform, we can rewrite (13) in a
convenient form:

v1(x,−h; p)= L−1(I1+ I2+ I3)= L−1(I1)+ L−1(I2)+ L−1(I3), (15)
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where I1, I2 and I3 are defined in the Appendix. The inverse Laplace transforms of
I1, I2 and I3 are obtained by following [Garvin 1956]; details are in the Appendix.

Equation (15) gives the exact value of the surface displacement field v1(x,−h, t)
surface.

Case II. Let

S(x, t)= Qhδ(x − V t), (16)

where Q is a constant and δ(x−V t) is Dirac’s delta function of argument (x−V t).
A term h is included on the right-hand side of (16) so as to give S as the dimension
of a stress.

The boundary condition (5) gives

BL1s1+Cµ2s2 =
Qh

2πV
(
iξ + p

V

) . (17)

Solving for A, B and C from (10) and (17) one gets

v̄1(x,−h; p)=
Qh
πV

∫
∞

−∞

e(iξ x−hs1)(1+ K e−2hs1 + K 2e−4hs1 + · · · )(
iξ + p

V

)
(L1s1+µ2s2)

dξ (18)

Proceeding similarly as in Case I we obtain

v1(x,−h, t)=
2Qβ1h
πL1

∑
n=1,3,5,...

∫ t

0
Gn[ζn(λ)] dλ, (19)

where

Gn[ζn(t)] = Re
[{

1+φ2
1ζ

2
n (t)

}1
2 +µ

(
ε2
+φ2

2ζ
2
n (t)

)1
2
]−1
×

[β1

V
+ iζn(t)

]−1

×K
n−1

2 [ζn(t)]
dζn(t)

dt
H
[
t − (x2

+ n2h2)
1
2 β−1

1

]
(20)

and

ζn(t)=
β1

x2+ n2h2φ
2
1

[
i t x + nh

{
t2
−
(
x2
+ n2h2φ2

1
)
β−2

1

}1
2
]
, n = 1, 3, 5, . . . .

(21)
If the stress discontinuity is taken as H(x)− H(x − V t) in place of δ(x − V t)
the corresponding expression on the right-hand side of (18) will differ only by a
constant factor from I3 (with a = b = 0).
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4. Numerical results and discussion

For numerical results, we have taken data for anisotropic layer and initially stressed
half-space from [Babuska and Cara 1991]:

N1 = 175 GPa, L1 = 202 GPa, ρ1 = 4408 kg/m3

µ2 = 91.6 GPa, ρ2 = 3582 kg/m3.

The values of K1v1(x,−h, t) for x = 7h and x = 14h have been plotted against
τ1 = τ − τ0, where τ0 denotes the time at which the disturbance arrives at the point
of observation with K1=

πL1
2Qβ1h , τ = tβ1

h is the time of the disturbance to arrive from
source to initial point. The value of τ at x = 7h is (72

+n2φ2
1)

1/2, n= 1, 3, 5, . . . and
τ0 = 7.06 at n = 1 and the value of τ at x = 14h is (142

+n2φ2
1)

1/2, n = 1, 3, 5, . . .
and τ0 = 14.03 at n = 1.

When x = 7h, for six initial values, we have

K1v1(x,−h, t)=
∑

n=1,3,5,7,9,11

A0(θn) cosh−1
(
τ
/√

72+n2φ2
1

)
H
(
τ−

√
72+n2φ2

1

)
,

where

A0(θn)= Re

[
(1−φ2

1 cos2 θn)
1
2 −µ(ε2

−φ2
2 cos2 θn)

1
2
] n−1

2 sin θn[
(1−φ2

1 cos2 θn)
1
2 +µ(ε2−φ2

2 cos2 θn)
1
2
] n−3

2
(
β1
V − cos θn

) ;
represents the reflection coefficient of SH-type waves incident from the anisotropic
medium to initially stressed isotropic half-space. When x = 14h, for six initial
values, we have the same expression for K1v1(x,−h, t), with 72 replaced by 142.

Figures 2 and 3 show graphs of the variation of displacement with elapsed time
τ1 for different values of initial stress and for different values of initial time at
which pulses arrive.

In Figure 2, top, the graph is plotted for the disturbance effect for x = 7h and
x = 14h and fixed value of P = 1 GPa. From the figure it can be observed that all
the curves start from the origin with sharp changes in their slope and after sometime
the curves get smooth. Also, it reflects that the disturbance is more prominent for
early arrival of pulses i.e. for x = 7h has more jumping effect than for x = 14h. If
the place of observation has more distance from the source the impact of pluses is
less. In Figure 2, bottom, the graph is plotted for the disturbance effect for x = 7h
and x = 14h and fixed value of P = 10 GPa. The nature of the curves remains the
same, but the magnitude of disturbance increases to a large extent as initial stress
increases.

In Figure 3, top, the graph is plotted for the disturbance for x = 7h and different
values of P (1 GPa, 10 GPa and 100 GPa). The nature of the curves is oscillating
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Figure 2. Variation of K1v1(x,−h, t) with τ1 for x = 7h and
x = 14h, for P = 1 GPa (top) and P = 10 GPa.

and after some time the curves become smooth and steady. As we increase the
values of initial stress, the jumping effect increases. In Figure 3, bottom, the graph
is plotted for the disturbance for x = 14h and the same values of P . The nature
of the curves remains the same, but the effect of disturbance is reduced to a large
extent due to the late arrival of the pulses.

5. Conclusions

The generation of SH-type waves at the free surface of an anisotropic layer due to
an impulsive stress discontinuity moving with uniform velocity along the interface
of initially stressed isotropic medium has been considered. The displacement is
calculated numerically for two particular distances on the surface for two different
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and x = 14h (bottom) for different values of P .

types of the discontinuity in the shearing stress for different value of initial stress.
It involves Laplace and Fourier transform and the inversion is based on Garvin’s
[1956] method. The numerical results are obtained for a particular model. From the
figures it can be observed that initial stress and initial time at which pulses arrive
has a significant effect. From the graph it is visible that that the displacement factor
starts oscillating and after sometime it gets stable. The results are more comprising
with the real scenario as we see that the disturbance arrives at the surface, it shakes
the surface for a while and slowly gets stable. Also, from the figures it is visible
that if the observer is nearer to the source then pulses arrive early and produce
more disturbance and if the medium is highly pre-stressed then it produces more
disturbance.
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Appendix

We have

I1 =
Q
πp

∫
∞

−∞

(1− K e−2hs1)−1

iξ(L1s1+µ2s2)
e(iξ x1−hs1) dξ,

I2 =
Q
πp

∫
∞

−∞

(1− K e−2hs1)−1

iξ(L1s1+µ2s2)
e(iξ x2−hs1)dξ,

I3 =
Q
πp

∫
∞

−∞

(1− K e−2hs1)−1(
iξ + p

V

)
(L1s1+µ2s2)

e(iξ x2−hs1) dξ,

with x1 = x − a and x2 = x − b. In order to evaluate the Laplace inversion integral,
we have used Garvin’s method; see [Garvin 1956] for discussion of the contour
integration and mapping.

Next for non-dimensionalisation, we substitute ξ = ζ p
β1

, µ = µ2
L1

, β1
β2
= ε in the

integral above so that s1 =
p
β1
(1+φ2

1ζ
2)

1
2 , s2 =

p
β2
(ε2
+φ2

2ζ
2)

1
2 and

K =
(1+φ2

1ζ
2)

1
2 −µ(ε2

+φ2
2ζ

2)
1
2

(1+φ2
1ζ

2)
1
2 +µ(ε2+φ2

2ζ
2)

1
2

.

Thus we obtain

I1 =
2Q
πp

Im
∫
∞

0

e(iξ x1−hs1)(1+ K e−2hs1 + K 2e−4hs1 + · · · )

ξ(L1s1+µ2s2)
dξ. (A.1)

The first term in I1 is

I1,1 =
2Qβ1

πpL1
Im
∫
∞

0

exp
[
−p

{
−iζ x1+ h

(
1+φ2

1ζ
2
)1

2
}/
β1

]
pζ
[(

1+φ2
1ζ

2
)1

2 +µ
(
ε2+φ2

2ζ
2
)1

2
] dζ. (A.2)

The integrand (A.2) has singularities at ζ = 0,± i
φ1
,± iε

φ2
. Let t =

{
−iζ x1+ h(1+

φ2
1ζ

2)
1
2
}
/β1. Then by inversion ζ(t)= β1

x2
1+φ

2
1 h2

[
i t x1+ h

{
t2
− (x2

1 +φ
2
1h2)β−2

1

}1
2
]
.

The mapping of the ζ -plane into the t-plane is shown in Figure 4.
Making the reference to the Figure 4 and the paper of [Pal 1983], we find

L−1 I1,1 =
2Qβ1

πL1

∫ t

0
(t − λ1)G1,1[ζ1,1(λ1)] dλ1, (A.3)

where L[t H(t)] = 1
p2 and

G1,1[ζ1,1(t)] = Im
[(

1+φ2
1ζ

2
1,1
)1

2 +µ
(
ε2
+φ2

2ζ
2
1,1
)1

2
]−1

ζ−1
1,1 (t)

×
dζ1,1(t)

dt
H
[
t −

{
η
(
x2

1 + h2φ2
1
)}1

2β−1
1

]
.
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Figure 4. The t-plane showing the mapping and the contour of integration.

Since for φ1h
β1
< t < (x2

1+h2φ2
1 )

1
2

β1
,
[(

1+φ2
1ζ

2
1,1

)1
2 +µ

(
ε2
+φ2

2ζ
2
1,1

)1
2
]
ζ−1

1,1 (t)×
dζ1,1(t)

dt
is real. In general,

L−1 I1,n =
2Qβ1

πL1

∫ t

0
(t − λ1)G1,n[ζ1,n(λ1)] dλ1, (A.4)

where

G1,n[ζ1,n(t)] = Im
[{

1+φ2
1ζ

2
1,n(t)

}1
2 +µ

(
ε2
+φ2

2ζ
2
1,n(t)

)1
2
]−1

ζ−1
1,n (t)

× K
n−1

2 [ζ1,n(t)]
dζ1,n(t)

dt
H
[
t −

{(
x2

1 + h2φ2
1
)}1

2β−1
1

]
,

and

ζ1,n(t)=
β1

x2
1 + n2h2φ2

1

[
i t x1+ nh

{
t2
−
(
x2

1 + n2h2φ2
1
)
β−2

1

}1
2
]
, n = 1, 3, 5, . . . .

So that

L−1 I1 =
∑

n=1,3,5,...

L−1 I1,n. (A.5)

Similarly

L−1 I2 =
∑

n=1,3,5,...

L−1 I2,n, (A.6)

where x1 is replaced by x2.
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Proceeding in the same way, we get

L−1 I3 =
∑

n=1,3,5,...

L−1 I3,n, (A.7)

where

L−1 I3,n =
2Qβ1

πL1

∫ t

0
(t − λ1)G3,n[ζ2,n(λ1)] dλ1 (A.8)

G3,n[ζ2,n(t)] = Re
[{

1+φ2
1ζ

2
2,n(t)

}1
2 +µ

(
ε2
+φ2

2ζ
2
2,n(t)

)1
2
]−1
×

[β1

V
+ iζ2,n(t)

]−1

× K
n−1

2 [ζ2,n(t)]
dζ2,n(t)

dt
H
[
t −

(
x2

2 + n2h2φ2
1
)1

2β−1
1

]
,

and ζ2,n(t) is given by Appendix with x2 in place of x1.
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We determine the effective behavior of periodic structures made of welded elas-
tic bars. Taking into account the fact that flexural and torsional stiffnesses are
much smaller than the extensional one, we bypass classical homogenization
formulas and obtain totally different types of effective energies. We work in
the framework of linear elasticity. We give different examples of 2D or 3D
microstructures which lead to generalized 1D, 2D, or 3D continua like the Timo-
shenko beam, Mindlin–Reissner plate, strain gradient, or Cosserat or micromor-
phic continua.
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1. Introduction

Composite materials have proved to be so useful in structural design that homogeni-
zation techniques have received considerable attention over the past few decades
both in mechanics and mathematics. More recently researchers realized that ho-
mogenization of composites made of very highly contrasted materials could lead
to exotic effective behaviors. On the other hand the new manufacturing processes,
which allow for extremely fine designs, gave birth to the new research field of
metamaterials (or architected materials).

From the mathematical point of view, asymptotic homogenization of periodic
media is now well founded. It consists of taking into account the fact that the size
of the periodic cell is much smaller than the characteristic size of the considered
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sample and of passing to the limit when the ratio ε between these two lengths
tends to zero. This problem has been widely studied in static or dynamic cases, for
conduction or elasticity problems, when the cell is made of a material with varying
properties [Bensoussan et al. 1978; Sánchez-Palencia 1980; Allaire 1992; Oleı̆nik
et al. 1992]. Whenever the elastic energy of the material is a convex functional
of the displacement field — and that is the case here where only linear elasticity
is considered — a formula (see for instance [Allaire 1992, (3.6)] or [Milton 2002,
p. 10]) gives the effective (i.e., limit) behavior of the medium in terms of a local
minimization problem set in a rescaled cell. In this approach one lets ε tend to zero
alone, while all other parameters of the system remain fixed. However, in many
cases some other small parameters are present and the relative convergence speeds
are crucial for the effective behavior of the material. The case when the cell is made
of materials with very different properties is called “high contrast homogenization”
[Cherednichenko et al. 2006]. Closely related is the case (which could be called the
“infinitely high contrast” case) when holes are present (see for instance [Tartar 2009,
Chapter 16]). But a small parameter can also derive from strong anisotropy or from
geometric considerations. It is known that the effective behavior can then strongly
differ [Pideri and Seppecher 1997; Bouchitté and Bellieud 2002; Bellieud and
Gruais 2005; Bellieud et al. 2016; Bellieud 2017] from the initial behavior of the
materials of which the structure is made. The first results in this direction were deal-
ing with conduction problems, and a nonlocal limit energy was found [Tartar 1989;
Khruslov 1991]. We are more interested by limit energies involving higher deriva-
tives than the initial ones. Indeed materials with such energies are seldom found in
nature [Barbagallo et al. 2017a; 2017b] and are expected to have a very special be-
havior [dell’Isola et al. 2015a; Eringen 2001; Mindlin 1965]. Their most distinctive
feature is that they do not enter the framework of Cauchy stress theory (the internal
mechanical interactions are not described by a Cauchy stress tensor) [dell’Isola et al.
2015b; 2016b; 2017]. However, such models are frequently used for regularizing
the singularities which may arise in fracture, plasticity, interfaces, etc. (see for
instance [Triantafyllidis and Aifantis 1986; Polizzotto and Borino 1998; Aifantis
1992; 1999; Mazière and Forest 2015; Sciarra et al. 2007; Yang and Misra 2012]).

Here we deal with static linear elasticity. In this framework a general closure
result [Camar-Eddine and Seppecher 2003] states that all regular enough objective
quadratic energies can be obtained through homogenization of highly contrasted
media. In particular energies depending on the second gradient of the displace-
ment (or equivalently on the strain gradient) or nonlocal energies [Bellieud and
Gruais 2005] like energies associated to generalized continua [Forest 1999] can be
obtained. But the result stated in [Camar-Eddine and Seppecher 2003] does not
provide any reasonably applicable procedure for designing a microstructure with
these exotic effective properties.
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Note that we are interested here in the actual effective (i.e., limit) energy and
not in corrections at order ε of a classical effective energy. The controversy about
the sign of such corrective terms [Allaire et al. 2016; Le 2015] shows that they are
difficult to interpret and to apply. Moreover, the fact that these corrective terms are
present in conduction problems as well as in elasticity problems while it has been
proved that no second gradient effect can appear in the limit energy for conductivity
[Camar-Eddine and Seppecher 2002] shows that they are a very different notion.

A few structures have been described with a second gradient effective energy.
Many of them [Pideri and Seppecher 1997; Bouchitté and Bellieud 2002; Bellieud
et al. 2016; Bellieud 2017; Briane and Camar-Eddine 2007] lead to a couple-
stress model, that is, to an energy depending only on the gradient of the skew-
symmetric part of the gradient of the displacement [Toupin 1962; 1964; Mindlin
1963; Mindlin and Tiersten 1962; Bouyge et al. 2002] . Some discrete structures
[Alibert et al. 2003; Alibert and Della Corte 2015; Boutin 1996; Seppecher et al.
2011; Boutin et al. 2017] lead to a more general second gradient energy.

In a recent paper [Abdoul-Anziz and Seppecher 2018] we have provided the
first rigorous homogenization result in continuous elasticity which led to a general
second gradient energy. We have considered periodic structures made by a single
very stiff linear elastic material and void. The geometry of the structure consists
of connected slender bars. They are so slender that the ratio of the section of these
bars with respect to the size of the cell is comparable to ε. We have been able to
prove that the 2D elasticity problem was, as expected, asymptotically similar to a
frame lattice whose bars have a much smaller flexural stiffness than extensional
stiffness. Then we have established a general formula for computing the effective
energy of the medium. This result differs from the ones given in [Martinsson and
Babuška 2007b; 2007a; Gonella and Ruzzene 2008] where very similar discrete
systems are studied. The point is that, in these works, the orders of magnitude
of the different types of interactions are assumed, as is generally done (see [Mar-
tinsson and Babuška 2007b, Remark 7.5], [Meunier et al. 2012, (2.7)], or [Braides
and Gelli 2002]) not to interfere with the homogenization asymptotic process. In
[Pastukhova 2005] or [Zhikov and Pastukhova 2003] the authors have assumed,
like we do, that the ratio of the section of the bars with respect to the size of the
cell is of order ε, but they considered like in [Zhikov 2002] a too soft material for
obtaining generalized continuum limits.

In this paper, we start with a discrete lattice and extend the homogenization result
of [Abdoul-Anziz and Seppecher 2018] to dimension 3. We also study concomitant
homogenization and reduction of dimension in order to describe beam or plate mod-
els. We precisely describe the algebraic computation needed for making explicit
the effective behavior of the considered lattices. Then we explore the wide variety
of models which can be obtained. We feel that these examples provide academic
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microscopic mechanisms enlightening the behavior of generalized materials. Our
homogenization formula is a tool, which was up to now missing, for explaining
how the strain or microdeformation can propagate in a strain gradient material or
in a micromorphic material, respectively.

The paper is organized as follows. In Section 2 we fix the notation and the way of
describing lattices. In Section 3 we recall the homogenization result and show that
it can be recovered by using a formal expansion procedure. In Section 4 we present
the algebraic computation needed for making explicit the effective energy in a suf-
ficiently detailed way for enabling the reader to follow (and eventually check) the
Octave/MATLAB package that we provide in [Abdoul-Anziz and Seppecher 2017].
Section 5 is devoted to the description of many examples, leading successively to
beams, membranes, plates, and 3D materials. We recover classical models like
Euler or Timoshenko beams, the Cosserat model for membranes, or the Kirchoff–
Love or Mindlin–Reissner plate, but we also get strain gradient models with the
possibility of mixing different effects.

2. Initial problem, description of the geometry, and notation

2.1. The frame lattice. In the physical space R3, we consider a periodic discrete
lattice (see an example in Figure 1) defined by

• a bounded open domain �⊂ R3,

• a small dimensionless parameter ε which we will let tend to zero (this param-
eter compares the size of the periodic cell εY of the lattice with the size of
the macroscopic domain �),

• a prototype cell containing a finite number K of nodes, the positions of which
are denoted ys ∈ R3, s ∈ {1, . . . , K },1 and

• a family of N independent periodicity vectors tα, α ∈ {1, . . . , N }, with 1 ≤
N ≤ 3.

The case N = 3 corresponds to standard 3D homogenization while the cases N = 2
and N = 1 correspond to 3D-2D and 3D-1D concomitant homogenization and
reduction of dimension, respectively. They lead to plate or beam models.2

We assume with no loss of generality that the vector space RN spanned by the
vectors tα coincides with the space spanned by the N first vectors of the canonical
basis (e1, e2, e3) of the physical space. The intersection of � with RN is denoted �,
and we assume (a simple choice of the unit length) that its N -dimensional volume
satisfies |�| = 1.

1Note that lower-dimension cases ys ∈ R or ys ∈ R2 can be treated by simply embedding R or R2

in R3.
2Note that 2D-2D and 2D-1D are also treated by using the previous remark.
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"t2

"t1

y1

y2

t1

t2

�

Figure 1. A prototype cell in a typical planar geometry when K = 2
and N = 2.

For I = (i1, . . . , iN ) ∈ ZN , consider the points yεI,s := ε(ys + i1t1+ · · ·+ iN tN ).
We use yεI := (1/K )

∑K
s=1 yεI,s as a reference point in the cell I . The nodes of the

considered lattice are those nodes which lie sufficiently inside the domain �: more
precisely the nodes yεI,s with s ∈ {1, . . . , K } and I ∈ Iε where

Iε := {I : yεI ∈�, d(yεI , ∂�) >
√
ε}. (1)

The cardinal of this set, denoted N ε, is of order ε−N . In the sequel, for any
field 8I,s defined at the nodes of the structure, we will denote by

∑
I 8I,s the

mean values ∑
I

8I,s :=
1

N ε

∑
I∈Iε

8I,s ∼ ε
N
∑
I∈Iε

8I,s . (2)

For any fixed cell I , the number of closest neighboring cells is 3N
−1. Counting

the cell I itself, these cells are the cells I ± p with p ∈ P (the cardinal of P is
n = (3N

+ 1)/2). When N = 1, 2, or 3 we can choose

P := {0,1}, (3)

P := {(0,0), (1,0), (0,1), (1,1), (1,−1)}, (4)

P := {(0,0,0), (1,0,0), (0,1,0), (1,1,0), (1,−1,0), (0,0,1), (0,1,1), (0,1,−1),

(1,0,1), (1,0,−1), (1,1,1), (1,1,−1), (1,−1,1), (1,−1,−1)}, (5)

respectively. In all cases, respecting the order given above, we identify P with
{1, . . . ,n}. For any p = (p1, . . . , pN ) ∈ P , we denote by p := p1t1 + ·· · + pN tN

the corresponding vector so that yεI+p,s = yεI,s + ε p.
For any pair of distinct nodes (yεI,s, yεI+p,s′), we denote

`p,s,s′ := ε
−1
‖yεI+p,s′ − yεI,s‖, τp,s,s′ := (yεI+p,s′ − yεI,s)/‖y

ε
I+p,s′ − yεI,s‖.

2.2. Mechanical interactions. To make precise the mechanical structure we are
considering, we have to make precise the mechanical interactions between the
nodes. The structures we want to model are periodic grids or frames made of
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welded elastic bars. Essentially, the nodes behave like small rigid bodies and the
interactions between these bodies can be divided in two parts. The extensional
stiffness of one bar controls the relative displacements of its extremity nodes in the
direction of the bar while the flexural and torsional stiffnesses control the relative
rotations of its extremity nodes and the difference between these rotations and the
global rotation of the bar.

Without loss of generality we assume that a cell is interacting only with its
closest neighbors: indeed we can always choose a prototype cell large enough for
this assumption to become true. Taking into account the symmetry, it is enough
to fix the interactions between the nodes of cell I and between the nodes of cell I
and half of its closest neighbors I + p with p ∈ P (see Figure 2).

y1

y2

Cell I

p D 1

y1

y2

I C .1; 0/

p D 2

y1

y2

I C .0; 1/

p D 3

y1

y2

I C .1; 1/

p D 4

y1

y2

I C .1; �1/

p D 5

Figure 2. Fixing the interactions between a cell and its neighbors: here
K = 2 and N = 2 and nonvanishing interactions are represented by blue
lines, namely an internal (p = 1) interaction between nodes y1 and y2

(a1,1,2 6= 0), three interactions with the cell on the right (p = 2) between
node y1 and nodes y1 and y2 and between nodes y2 (a2,1,1 6= 0, a2,1,2 6= 0,
and a2,2,2 6= 0), and a last interaction with the cell above (a3,2,1 6= 0). In this
example there is no interaction with neighbor cells p= 4 nor p= 5, but such
interactions could have been considered. Interactions with the cells below
or on the left do exist. Owing to periodicity they do not need to be fixed.
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• Extensional interactions. These interactions between the nodes of the lattice
are determined by nK 2 nonnegative coefficients ap,s,s′ . We introduce the set of
multi-indices corresponding to all pairs of nodes in interaction:

A := {(p,s,s ′) : p ∈ P, 1≤ s ≤ K , 1≤ s ′ ≤ K , ap,s,s′ 6= 0}.

For any displacement field U of the lattice, that is, a vector field UI,s defined on
Iε × {1, . . . ,K }, we call the “extension” between nodes (I,s) and (I + p,s ′) the
quantity

(ρU )I,p,s,s′ :=
UI+p,s′ −UI,s

ε
· τp,s,s′ . (6)

The extensional energy of the lattice has the form

Eε(U ) := ε−2
∑

I

∑
(p,s,s′)

ap,s,s′

2
(ρU )

2
I,p,s,s′

= ε−2
∑

I

∑
(p,s,s′)∈A

ap,s,s′

2
(ρU )

2
I,p,s,s′ . (7)

• Flexural/torsional interactions. We attach to each node (I,s) of the structure a
rigid motion: in addition to the displacement UI,s , each node is endowed with a
rotation vector3 θI,s . Let us introduce the vector

(αU )I,p,s,s′ := τp,s,s′ ×
UI+p,s′ −UI,s

ε`p,s,s′
.

As mechanical interactions need to be objective (i.e., invariant when adding both
a constant value 8 to the field θI,s and the field 8× yεI,s to the displacement field
UI,s), flexural/torsional interaction between nodes (I,s) and (I + p,s ′) has to be a
positive quadratic form of two vectors θI,s − (αU )I,p,s,s′ and θI+p,s′ − (αU )I,p,s,s′ .
It can be represented by a nonnegative 6× 6 matrix.4

Thus, flexural/torsional interactions are determined by 3nK 2 nonnegative matri-
ces Bp,s,s′ , C p,s,s′ , Dp,s,s′ whose elements are 3× 3 matrices, so that the flexural
energy reads

Fε(U,θ) :=∑
I

∑
(p,s,s′)

[
(θI,s − (αU )I,p,s,s′) ·

Bp,s,s′

2
· (θI,s − (αU )I,p,s,s′)

+ (θI,s − (αU )I,p,s,s′) ·C p,s,s′ · (θI+p,s′ − (αU )I,p,s,s′)

+ (θI+p,s′ − (αU )I,p,s,s′) ·
Dp,s,s′

2
· (θI+p,s′ − (αU )I,p,s,s′)

]
. (8)

3Remember that we are in the framework of linear elasticity and that rotations are represented by
skew-symmetric matrices which can be identified by vectors.

4Note that objectivity implies also that the rank of this matrix cannot exceed 5.
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We assume that flexural/torsional interaction is present only in conjunction with
extensional interaction:

ap,s,s′ > 0 ⇐⇒

(
Bp,s,s′ C p,s,s′

C t
p,s,s′ Dp,s,s′

)
> 0.

Our choice of the order of magnitude of these interactions needs some comment.
We first emphasize that speaking of the order of magnitude of the stiffness of a
structure makes sense only if we compare it to some force. In other words, making
an assumption about the elastic rigidity is equivalent to making an assumption
about the order of magnitude of the applied external forces.

Our aim is to consider structures for which classical homogenization would lead
to a degenerated material. As usual a rescaling process is needed if one wants to
capture a finite limit energy. Different assumptions can be made which correspond
to different experiments. This is not surprising: the reader accustomed for instance
to the 3D-2D or 3D-1D reduction of models for plates or beams knows that chang-
ing the assumptions about the order of magnitude of the elasticity stiffness of the
material drastically changes the limit model. If the structure cannot resist some
applied forces (like a membrane cannot resist transverse forces), it may resist them
after a suitable scaling of the material properties (like the membrane model is
replaced by the Kirchhoff–Love plate model). Simultaneously some mobility may
disappear (like the Kirchhoff–Love plate becomes inextensible). Our choice of the
order of magnitude of the extensional interactions means that the applied external
forces are not sufficient to significantly extend the bonds between nodes. On the
other hand, we have assumed that the flexural rigidities were much smaller than
the extensional ones. This is unavoidable when considering structures in which
mechanical interactions are due to slender parts. The chosen order of magnitude
(ε0) is critical. Other cases can be deduced from our results by letting in a fur-
ther step (bp,cp,dp) tend to zero or to infinity. The assumption that the ratio
between bending and extension stiffnesses is comparable to the homogenization
small parameter ε is essential: we emphasize that one cannot capture all interesting
asymptotic effects by homogenizing the structure in a first step and letting the ratio
bending stiffness/extension stiffness tend to zero in a second step; see [Martinsson
and Babuška 2007b].

Example. Assume the lattice consists of slender cylinders joining the interacting
nodes. Assume that all the cylinders have a circular basis of radius r ε = βε2

and are made of a homogeneous isotropic elastic material with Young modulus Y
and Poisson coefficient ν. Extension, bending, and torsion rigidities of an elastic
cylindrical bar of radius r ε are classical results of mechanics [Germain 1973]. In-
tegrating along the bar, one can deduce the values of the interactions due to the
elasticity of a bar of length `ε. We get
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Bp,s,s′ = Dp,s,s′ = ap,s,s′( f Id+(t − f )τp,s,s′ ⊗ τp,s,s′),

2C p,s,s′ = ap,s,s′( f Id−(2t + f )τp,s,s′ ⊗ τp,s,s′)

with

ap,s,s′ =
Yπβ2ε7 N ε

`p,s,s′
, f = β2, t =

β2

4(1+ ν)
.

This case satisfies our assumptions as soon as one assumes that the Young mod-
ulus of the material is of order εN−7. Note that f and t are of order 1 and thus
ap,s,s′ , Bp,s,s′ , and C p,s,s′ have the same order. Indeed the difference of order
between extensional and flexural/torsional stiffnesses, due to the slenderness βε of
the bars, has already been taken into account by the factor ε−2 introduced in the
definition of Eε.

Example. The case of a 2D lattice can also be treated in our framework. It is
enough to fix ys,3=0 for all s ∈{1, . . . ,K } and tα,3=0 for all α≤ N ≤2 and to focus
only on planar displacements UI,s,3 = 0 and θI,s,1 = θI,s,2 = 0 at all nodes. Let us
assume that the nodes are linked by slender rectangles of thickness βε2. Textbooks
in mechanics give the extension and bending rigidities of a slender rectangle. We
still can use the matrices Bp,s,s′ , C p,s,s′ , and Dp,s,s′ defined in the previous example
but modifying ap,s,s′ and f in

ap,s,s′ =
Yβε3 N ε

`p,s,s′
, f =

4β2

3
.

Note that t plays no role in this example. This case satisfies again our assumptions
as soon as one assumes that the Young modulus of the material is of order εN−5.

• Boundary conditions. We do not intend to study the way the different boundary
conditions which could be imposed to our lattices pass to the limit. The richness
[dell’Isola and Seppecher 1997; Seppecher et al. 2011] of the boundary conditions
associated to generalized continua is such that trying to describe them in a general
way is a real challenge. On the other hand, we cannot adopt the frequently used
Dirichlet boundary conditions: indeed the lattices we consider generally present in
the limit some inextensibility constraint and Dirichlet boundary conditions could
lead to a trivial set of admissible deformations. So we consider here only free
boundary conditions. So, in order to ensure uniqueness of the equilibrium solution,
we impose a zero mean rigid motion:

∑
I

1
K

K∑
s=1

UI,s = 0,
∑

I

1
K

K∑
s=1

θI,s = 0. (9)

• Connectedness. We are not interested in structures made of different unconnected
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parts: we assume that mechanical interactions make a connected network. This has
to be checked before using our results. This checking is generally obvious but is
actually difficult to automate [Babuška and Sauter 2004].

3. Homogenization result

In a recent paper [Abdoul-Anziz and Seppecher 2018] we have rigorously derived
the model (7)–(8) from a 2D linear elastic problem by analyzing the behavior of
the slender substructures: we have then identified the effective energy through a 0-
convergence theorem (for a simple definition of this notion the reader can refer to
[Braides 2002] or [Dal Maso 1993]) using tools of double scale convergence (see
[Nguetseng 1989] or [Allaire 1992]). This has been done in the 2D-2D case. The
extension of the proof to other dimensions does not need new arguments. We will
provide here neither the proof which can be found in [Abdoul-Anziz and Seppecher
2018] nor the technical but straightforward extension to other dimensions. The
goal of this paper is to explore the diversity of possible limit models. However,
for the readers who do not desire to enter into the mathematical developments of
[Abdoul-Anziz and Seppecher 2018], we show below that formal expansions of
the kinematic variables actually give the right effective energy.

Assume that there exist smooth enough functions (u,vs,ws,θs) (for any s ∈
{1, . . . ,K }) such that

U ε
I,s := u(yεI )+ εvs(yεI )+ ε

2ws(yεI )+ o(ε2),

θ εI,s := θs(yεI )+ o(1).
(10)

Then

U ε
I+p,s′−U ε

I,s=ε∇u(yεI )· p+
ε2

2
∇∇u(yεI )· p· p+ε(vs′(yεI )+ε∇vs′(yεI )· p−vs(yεI ))

+ ε2(ws′(yεI )−ws(yεI ))+ o(ε2)

and thus

ε2 Eε(U ε)=
∑

I

∑
(p,s,s′)∈A

ap,s,s′

2

(U ε
I+p,s′ −U ε

I,s

ε
· τp,s,s′

)2

=

∑
I

∑
(p,s,s′)∈A

ap,s,s′

2
((∇u(yεI ) · p+ vs′(yεI )− vs(yεI )) · τp,s,s′)

2
+ o(1)

=

∫
�

∑
(p,s,s′)∈A

ap,s,s′

2
((∇u(x) · p+ vs′(x)− vs(x)) · τp,s,s′)

2 dx + o(1)

= E(v,ηu)+ o(1),
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where we define for any functions vs and ηp,s

E(v,η) :=
∫
�

∑
p,s,s′

ap,s,s′

2
((ηp,s′(x)+ vs′(x)− vs(x)) · τp,s,s′)

2 (11)

and
ηu := ∇u · p. (12)

As we are only interested by situations in which the energy Eε(U ε)+Fε(U ε,θ ε)

remains bounded, ε2 Eε(U ε) tends to zero and we get the constraint

E(v,ηu)= 0. (13)

This implies that, for any (p,s,s ′) ∈A,

(vs′ − vs +∇u · p) · τp,s,s′ = 0,

from which we deduce that

(∇vs′ · p−∇vs · p+∇∇u · p · p) · τp,s,s′ = 0.

Using the two last equations, we get for any (p,s,s ′) ∈A

ε−2(U ε
I+p,s′−U ε

I,s)·τp,s,s′ =
( 1

2∇∇u(yεI )· p· p+∇vs′(yεI )· p+(ws′(yεI )−ws(yεI ))
)

· τp,s,s′ + o(1)

and thus

Eε(U ε)=
∑

I

∑
(p,s,s′)∈A

ap,s,s′

2

(U ε
I+p,s′ −U ε

I,s

ε2 · τp,s,s′

)2

=

∫
�

∑
(p,s,s′)∈A

ap,s,s′

2

((1
2∇∇u(x) · p · p+∇vs′(x) · p

+ (ws′(x)−ws(x))
)
· τp,s,s′

)2dx + o(1)

= E(w,ξu,v)+ o(1)

where E is the functional defined in (11) and ξu,v is the quantity

ξu,v :=
1
2∇∇u · p · p+∇vs′ · p. (14)

On the other hand

(αU )
ε
I,p,s,s′ := ε

−1τp,s,s′ × (U ε
I+p,s′ −U ε

I,s)

= ε−1τp,s,s′ × ((u(yεI+p)− u(yεI ))+ ε(vs′(yεI+p)− vs(yεI ))+ o(ε))

= τp,s,s′ × (∇u(yεI ) · p+ vs′(yεI )− vs(yεI ))+ o(1).
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Using also the fact that θ εI+p,s′ = θ(y
ε
I+p)= θ(y

ε
I )+ o(1) we get

Fε(U ε,θ ε) :=∑
I

∑
(p,s,s′)

[
(θ εI,s − (αU )

ε
I,p,s,s′) ·

Bp,s,s′

2
· (θ εI,s − (αU )

ε
I,p,s,s′)

+ (θ εI,s − (αU )
ε
I,p,s,s′) ·C p,s,s′ · (θ

ε
I+p,s′ − (αU )

ε
I,p,s,s′)

+ (θ εI+p,s′ − (αU )
ε
I,p,s,s′) ·

Dp,s,s′

2
· (θ εI+p,s′ − (αU )

ε
I,p,s,s′)

]
= F(v,ηu,θ)+ o(1),

where we define

F(v,η,θ) :=
∫
�

∑
p,s,s′

[(
θs(x)−

τp,s,s′

`p,s,s′
× (vs′(x)−vs(x)+ηp,s′(x))

)

·
Bp,s,s′

2
·

(
θs(x)−

τp,s,s′

`p,s,s′
× (vs′(x)−vs(x)+ηp,s′(x))

)
+

(
θs(x)−

τp,s,s′

`p,s,s′
× (vs′(x)−vs(x)+ηp,s′(x))

)
·C p,s,s′ ·

(
θs′(x)−

τp,s,s′

`p,s,s′
× (vs′(x)−vs(x)+ηp,s′(x))

)
+

(
θs′(x)−

τp,s,s′

`p,s,s′
× (vs′(x)−vs(x)+ηp,s′(x))

)
·

Dp,s,s′

2
·

(
θs′(x)−

τp,s,s′

`p,s,s′
× (vs′(x)−vs(x)+ηp,s′(x))

)]
. (15)

To summarize, the effective energy is E(w,ξu,v)+ F(v,ηu,θ) under the con-
straint E(v,ηu)= 0. As w is an internal variable and as, in general, we also have
no external action on θ , it is better to write the effective energy in terms of the
macroscopic displacement u only:

Theorem 1. The limit (effective) energy associated with the microscopic energy
Eε + Fε is

E (u) := inf
w,v,θ
{E(w,ξu,v)+ F(v,ηu,θ) : E(v,ηu)= 0}. (16)

We remark that the constraint E(v,ηu) = 0 may induce a constraint on the
strain tensor e(u) (i.e., the symmetric part of ∇u). Indeed we will see that the
effective behavior of the considered structure is often subject to some constraints
(like inextensibility in some direction, incompressibility, or even total rigidity).
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We also expect that the effective energy corresponds to a strain gradient model.
Indeed the second gradient of u enters the expression of E(w,ξu,v) directly through
the definition (14) of ξu,v . Moreover, the constraint E(v,ηu)= 0 establishes a linear
relation between v and ∇u; thus, the dependence of ξu,v on the gradient of v can
be a second source for strain gradient terms. However, it is not so simple to find
structures for which such strain gradient effects arise and are not concealed by
the constraint. In the next section we explain how to compute explicitly the limit
energy, and we apply this procedure to many examples in Section 5.

Note that we prefer to describe the homogenized behavior of the considered
structures in terms of the limit elastic energy only. Beyond the fact that it is very
concise, it has the advantage of being written without considering any applied
external forces. Indeed external forces have little to do with the constitutive law
of the new material. Equilibrium equations under the action of a (reasonable) ex-
ternal force field f can then be obtained by simply writing the Euler equations
of the minimization of the total energy E (u)−

∫
�

f (x) · u(x)dx . Properties of
0-convergence [Braides 2002; Dal Maso 1993] ensure that the equilibrium states
of the considered structure converge towards this minimum.

4. Explicit computation of the homogenized stiffness matrices

Let us describe the algorithm which makes explicit the limit energy. We give here
all the details needed for understanding the Octave/MATLAB software we provide
in [Abdoul-Anziz and Seppecher 2017].

Note first that in the computations leading to Theorem 1, we have assumed
|Y | = 1. As it is sometimes clearer to describe the structure using a prototype cell
which does not satisfy |Y | = 1, all geometric quantities have to be rescaled (i.e.,
divided by |Y |1/N ) before using the following algorithm.

Both limit energies E(v,ηu) and F(v,ηu,θ) are quadratic forms of their vari-
ables. A priori the variables v and θ are K × 3 matrices vs,i and θs,i with s ∈
{1, . . . ,K } and i ∈ {1,2,3}, while the variable η is an n× K × 3 tensor ηp,s,i with
p ∈ P . From now on we identify them with 3K or 3nK vectors v(s,i), θ(s,i), and
η(p,s,i) without modifying the notation. In the same way (∇u)i,γ and (∇∇u)i,γ,γ ′
are identified with the 3N and 3N 2 vectors (∇u)(i,γ ) and (∇∇u)(i,γ,γ ′) without
modifying the notation.

Step 1 (rewriting the energies (11) and (15) in canonical form).

E(v,η)=
1
2

∫
�

vt
· A·v+ηt

·B ·η+2vt
·C ·η,

F(v,η,θ)=
1
2

∫
�

vt
·D ·v+ηt

·E ·η+θ t
·F ·θ+2vt

·G ·η+2θ t
·H ·v+2θ t

· J ·η.
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This is a simple assembly process. Indeed, denoting ãp,s,r,i, j := ap,s,rτp,s,r,iτp,s,r, j ,{
A(s,i),(r, j) := −

∑
p∈P(ãp,s,r,i, j + ãp,r,s,i, j ) if r 6= s,

A(s,i),(s, j) := −
∑

r 6=s A(s,i),(r, j),{
B(p,s,i),(q,r, j) := 0 if (q,r) 6= (p,s),
B(p,s,i),(p,s, j) :=

∑
r ãp,r,s,i, j .{

C(s,i),(p,r, j) := −ãp,s,r,i, j if r 6= s,
C(s,i),(p,s, j) := −

∑
r 6=s C(s,i),(p,r, j),

and using the Levi-Civita symbol ε and denoting

b̃p,s,r,i, j :=
∑

k,k′,l,l ′

1
`2

p,s,r
εi,k,lε j,k′,l ′(b+ 2c+ d)p,s,r,k,k′τp,s,r,lτp,s,r,l ′,

we have{
D(s,i),(r, j) := −

∑
p∈P(b̃p,s,r,i, j + b̃p,r,s,i, j ) if r 6= s,

D(s,i),(s, j) := −
∑

r 6=s D(s,i),(r, j),{
E(p,s,i),(q,r, j) := 0 if (q,r) 6= (p,s),
E(p,s,i),(p,s, j) :=

∑
r b̃p,r,s,i, j .{

G(s,i),(p,r, j) := −b̃p,s,r,i, j if r 6= s,
G(s,i),(p,s, j) := −

∑
r 6=s G(s,i),(p,r, j),{

F(s,i),(r, j) := 2
∑

p∈P cp,s,r,i, j if r 6= s,
F(s,i),(s, j) :=

∑
p∈P

(
2cp,s,s,i, j +

∑
r (bp,s,r,i, j + dp,r,s,i, j )

)
,

H(s,i),(r, j) := −
∑

p∈P
∑

k,l(1/`p,s,r )ε j,l,k((b+c)p,s,r,l,i+(d+c)p,r,s,l,i )τp,s,r,k

if r 6= s,
H(s,i),(s, j) := −

∑
r 6=s H(s,i),(r, j),

J(s,i),(p,r, j) :=
∑

p∈P
∑

k,l(1/`p,s,r )ε j,l,k(b+ c)p,s,r,l,iτp,s,r,k if r 6= s,
J(s,i),(p,s, j) :=

∑
p∈P

∑
k,l(1/`p,s,s)ε j,l,k

(
(b+ c)p,s,s,l,i

+
∑

r 6=s(c+ d)p,s,r,l,i
)
τp,s,r,k .

Step 2 (computing the constraint). Using the canonical form it is easy to compute
the minimum of E(v,ηu) with respect to v. When the minimum is attained, v
satisfies A · v+C · ηu = 0. The vector v := −A+ ·C · ηu where A+ stands for the
pseudoinverse of A is a possible solution5 and the minimal value is

∫
�

1
2η

t
u · X · ηu

where
X := B−C t

· A+ ·C. (17)

Note that the minimum with respect to w of E(w,ξu,v) is computed in a similar
way and becomes

∫
�

1
2(ξu,v)

t
· X · ξu,v.

5The properties of the Moore–Penrose pseudoinverse imply that this vector v belongs to the
orthogonal to the kernel of A and so satisfies

∑
k vk = 0.
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Let us now introduce a linear operator L by setting, for any p ∈P , s ∈ {1, . . . ,K },
1≤ i, j ≤ 3, and 1≤ γ ≤ n,

L(p,s,i),( j,γ ) := δi, j ( p · tγ ), (18)

where δ stands for the Kronecker delta so that

ηu = L · ∇u. (19)

Setting Q := Lt
· X · L and K := −A+ ·C · L, the constraint E(v,ηu)= 0 reads

Q · ∇u = 0, (20)

v = K · ∇u+ ṽ with ṽ ∈ Ker(A). (21)

Note that the matrix Q would have been the homogenized stiffness matrix of our
structure if we had assumed a less stiff behavior of the interactions: we recover here
results which have been obtained recently by [Martinsson and Babuška 2007b]. As
we are, on the contrary, interested here in structures made by a very stiff material,
we have to focus only on the kernel of Q. Objectivity implies that it contains at
least the skew-symmetric matrices,6 but in the most interesting cases it is much
larger.

We introduce an orthonormal basis (W ξ )dξ=1 of Ker(Q) (N (5−N )/2≤ d ≤ 3N ).
The matrix P(i,γ ),( j,γ ′) :=

∑
ξ W ξ

(i,γ )W
ξ

( j,γ ′) represents the projection onto Ker(Q),
and constraint (20) reads

∇u = P · ∇u. (22)

On the other hand, in order to represent ṽ, we introduce a basis (V ξ )d̃ξ=1 of
Ker(A) (3≤ d̃ ≤ 3K ): we set ṽ =

∑d̃
ξ=1 bξ (x)V ξ , that is, ṽ = V ·b with V(s,i),ξ :=

V ξ

(s,i).

Remark. Surprisingly enough, the variable b which is introduced at this step may
play an important role. It represents ṽ that is internal degrees of freedom (free
only with respect to the highest-order energy). In classical homogenization ṽ is
constant in the unit cell Y , and thus, its value has no effect on the homogenized
energy. That is why one usually fixes, without loss of generality, the mean value
of v to be zero. Here the situation is completely different: due to high contrast and
for special geometries, the set in which ṽ lives may be much richer and the effect
of this extra kinematic variable on the homogenized energy may be fundamental.
This fact is illustrated by some examples in Section 5.

6By saying that a 3 × N matrix M is skew-symmetric we mean that, for all 1 ≤ γ,γ ′ ≤ N ,
Mγ,γ ′ +Mγ ′,γ = 0.
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Step 3 (computing the extensional part of the energy). Owing to (20), we have
(∇v)s,i,γ =

∑
j,γ ′(K(s,i),( j,γ ′)(∇∇u) j,γ ′,γ )+(∇ṽ)s,i,γ . Using (22) and expressing ṽ

in the base (V ξ ), we can rewrite (14) as

ξu,v = M · ∇∇u+ N · ∇b

with
M(p,s,i),( j,γ,γ ′) =

∑
ζ

∑
k

(K(s,i),(k,ζ )+ 1
2 pζ δi,k)P(k,ζ ),( j,γ ) pγ ′,

N(p,s,i),(ξ,γ ) = V ξ

(s,i) pγ .

The extensional energy infw E(w,ξu,v)=
1
2

∫
�
(ξu,v)

t
· X · ξu,v becomes

1
2

∫
�

(∇∇u)t ·M t
·X ·M ·∇∇u+(∇b)t ·N t

·X ·N ·∇b+2(∇∇u)t ·M t
·X ·N ·∇b.

We prefer to rewrite it as the sum of two nonnegative terms:

inf
w

E(w,ξu,v)=
1
2

∫
�

(∇∇u)t ·R·∇∇u+(∇b+T ·∇∇u)t ·S ·(∇b+T ·∇∇u) (23)

where

S := N t
· X ·N, T := S+ ·N t

· X ·M, and R := M t
· X ·M−M t

· X ·N ·T .

Step 4 (computing the flexural part of the energy). We can also easily compute
the minimum with respect to θ of F(v,ηu,θ). When the minimum is attained, θ
satisfies F · θ + H · v + J · ηu = 0. The vector θ := −F+ · (H · v + J · ηu) is a
possible solution, and the minimal value is

inf
θ

F(v,ηu,θ)=
1
2

∫
�

vt
· (D− H t

· F+ · H) · v+ ηt
u · (E− J t

· F+ · J) · ηu

+ 2vt
· (G− H t

· F+ · J) · ηu .

Using (22), let us replace ηu by L · ∇u = L · P · ∇u and v by K · P · ∇u+ V · b.
We get

inf
θ

F(v,ηu,θ)=
1
2

∫
�

bt
· S · b+ (∇u)t · Z · ∇u+ 2bt

·Y · ∇u

with

S := V t
· (D− H t

· F+ · H) · V ,
Z := P t

·
(
K t
· (D− H t

· F+ · H) · K + Lt
· (E− J t

· F+ · J) · L

+ K t
· (G− H t

· F+ · J) · L+ Lt
· (Gt
− J t
· F+ · K ) · L

)
· P,

Y := V t
· ((D− H t

· F+ · H) · K + (G− H t
· F+ · J) · L) · P .
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Again we prefer to write this energy as the sum of two nonnegative terms:

inf
θ

F(v,ηu,θ)=
1
2

∫
�

(∇u)t · R · ∇u+ (b+ T · ∇u)t · S · (b+ T · ∇u) (24)

with
T := S+ ·Y and R := Z−Y t

· T .

Collecting the results. The limit energy E obtained by collecting (23) and (24),
namely

E = inf
b

1
2

∫
�

(∇∇u)t ·R · ∇∇u+ (∇b+ T · ∇∇u)t ·S · (∇b+ T · ∇∇u)

+ (∇u)t · R · ∇u+ (b+ T · ∇u)t · S · (b+ T · ∇u), (25)

appears to be the integral of a quadratic form depending on the first and second
gradients of the macroscopic displacement and on an extra kinematic variable b and
its first gradient. The limit model is both a second gradient model (or strain gradient
model) and a generalized continuum. From now on, we will call “microadjustment”
the variable b.

In general we cannot go further because the microadjustment cannot be com-
puted locally. The equilibrium equations are a coupled linear system of partial
differential equations for u and b. This system is fixed as soon as the matrices Q,
R, S, T , R, S, and T are fixed.

Step 5 (when possible, eliminating the extra kinematic variable). However, it is
sometimes still possible to eliminate the microadjustment. That is the case when,
for any field u, there exists a field b such that

S · (∇b+ T · ∇∇u)= 0 and S · (b+ T · ∇u)= 0. (26)

Note that this operation would lead to serious difficulties if nonfree boundary
conditions were considered. This field b clearly minimizes the energy and the
homogenized energy reduces to

E (u)=
1
2

∫
�

(∇∇u)t ·R ·∇∇u+(∇u)t ·R ·∇u under the constraint Q ·∇u=0.
(27)

Let us emphasize that the cases where the microadjustment b cannot be elimi-
nated are also very relevant: we will see in the examples given in Section 5 that we
recover many models of generalized continua which are widely used by mechani-
cians in practical situations.

Implementation. The algorithm we just described for determining the homoge-
nized energy (25) or (27) is pure linear algebra dealing with very low-dimension
matrices. It is very easy to implement in languages like Octave or MATLAB (an
Octave/MATLAB package can be found in [Abdoul-Anziz and Seppecher 2017])



230 HOUSSAM ABDOUL-ANZIZ AND PIERRE SEPPECHER

for getting numerical results or like Maxima for obtaining analytical results. As
no optimization is needed, it can even be implemented in JavaScript (an online
JavaScript tool is in development).

However, two points are not automated. Before using the algorithm, one has to
manually check that the connectedness condition is satisfied. Then for using (27)
one also has to check that equations (26) admit a solution; otherwise, one has to
deal with the generalized continuum model given by (25).

In view of our results, the effective energy may correspond to a second gradient
model (i.e., a strain gradient model) possibly coupled with an extra kinematic vari-
able and subject to some first gradient constraints. However, few periodic structures
exhibit such a behavior. Indeed most of them present a nondegenerate energy E ;
in that case the strong constraint Q · ∇u = 0 hides any second gradient effect. But
even when Q is degenerate, it happens frequently that R= 0: the model remains
degenerate after rescaling. Different cases will be illustrated in the next section. We
have no way, other than the algorithm we just described, for predicting whether a
limit energy model will correspond to a classical model or a second gradient one
or even a generalized continuum.

5. Examples

We apply the procedure described in the previous section to different 2D or 3D ex-
amples following the cases described in the introduction. To fix the ideas we always
choose ap,s,r = 1 whenever two nodes are interacting (i.e., when ap,s,r 6= 0). Note
that this assumption means that the sections of the bars differ when their lengths
differ. We also always choose f = 1 (and, in the 3D case, t = 0.25). We classify
our examples by the dimension N = 1,2,3 of the space in which the homogenized
energy lives, leading thus to beams, membranes or plates, or 3D materials. In the
cases N = 1 or N = 2 we successively consider 2D and 3D examples. We write
the effective energy in terms of the components ei, j (u) of the strain tensor e(u)
and of the components ∂2ui/∂x j ∂xk of the second gradient of the displacement.
Translating the results in terms of the strain gradient is straightforward. Mind that
the presence of constraints allows us to write different forms for the expression of
the limit energy.

5.1. Beams. For sake of simplicity let us start by considering structures in R2 with
one vector of periodicity (N = 1).

5.1.1. 2D Warren beam. We consider the geometry (see Figure 3) � = (0,1),
K = 2, y1= (0,0), y2= (0,1), t1= (1,0), and a1,1,2=a2,1,1=a2,2,2=a2,1,2=1; all
other components ap,s,s′ vanish. For this well known structure, the constraint (22)
reads e1,1(u)= 0: the beam is inextensible. A simple solution for condition (26)
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"t1

Figure 3. Warren beam.

"t1

Figure 4. Square periodic beam.

is b = 0 and the limit energy reads

E (u)=
1
2

∫ 1

0
λ

(
∂2u2

∂x2
1

)2

dx1

(with λ= 1
2 ) and thus corresponds to an inextensible Euler–Bernoulli beam model.

Remark. The inextensibility constraint deserves a comment. This constraint is
due to the order of magnitude we have assumed for the stiffness of the material
the structure is made of. We already noticed that this assumption is actually an
assumption for the order of magnitude of the forces which act on the structure.
In other words we have implicitly assumed that the applied forces are not strong
enough for extending the beam but that they are strong enough for bending it. Of
course, different assumptions corresponding to different practical situations could
be considered. The constraints which arise in all the following examples must be
interpreted in this way.

5.1.2. Square periodic beam. The geometry is similar to the previous example (see
Figure 4). We simply delete the diagonal bars by setting a2,1,2 = 0. The constraint
(22) still reads e1,1(u)= 0, but the homogenized energy now reads

E (u)= inf
b

1
2

∫ 1

0

((
∂b2

∂x1

)2

+

(
∂b1

∂x1

)2

+ 2
(
−b1+ b2+

∂u2

∂x1

)2)
dx1.

Denoting ϕ :=b1−b2 and minimizing with respect to b1+b2 (by choosing b1+b2=

0), the limit energy becomes

E (u)= inf
ϕ

1
2

∫ 1

0

(
λ

(
∂ϕ

∂x1

)2

+ ζ

(
∂u2

∂x1
−ϕ

)2)
dx1

(with λ= 1
2 and ζ = 2) and thus corresponds to an inextensible Timoshenko beam

model. It is well known that this model is nonlocal (in terms of u only) and that
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"t1

Figure 5. Pantographic beam Pe1,e2 .

the extra kinematic variable ϕ cannot be locally eliminated. The remaining part
of our “microadjustment” coincides with the Timoshenko extra variable usually
interpreted as the “rotation of the section”.

5.1.3. Pantographic beam. Structures based on a pantograph have been the first
(and almost the only ones) to give a microscopic interpretation to the propagation
of dilatation, a characteristic feature of complete second gradient models. The
structures have been studied using formal homogenization techniques [Rahali et al.
2015; Seppecher et al. 2011; Madeo et al. 2017], 0-convergence tools [Alibert et al.
2003; Alibert and Della Corte 2015], numerical simulations [Giorgio 2016; Turco
et al. 2016a], and even experiments [dell’Isola et al. 2016a; Turco et al. 2016b].
Our procedure makes their study easy.

We consider a planar beam with a cell made of six nodes y1 =
1
6 e2, y2 =−

1
6 e2,

y3 =
1
6 e1, y4 =

1
6(3e1+2e2), y5 =

1
6(3e1−2e2), and y6 =

5
6 e1; a periodicity vector

t1 = e1; and a1,1,3 = a1,1,4 = a1,2,3 = a1,2,5 = a1,3,4 = a1,3,5 = a1,4,6 = a1,5,6 =

a2,4,1 = a2,5,2 = a2,6,1 = a2,6,2 = 1; all other components of the matrices a1 and a2

vanish.
This beam (see Figure 5) which lies along the line (0,e1) and belongs to the

plane (e1,e2) is denoted Pe1,e2 for further purpose.
In that case (22) gives no constraint. A possible solution for condition (26) is

b = (4,0,−1,−1,1,1)/4× ∂u3
∂x1

. The limit energy reads

E (u)=
1
2

∫ 1

0

(
λ

(
∂2u1

∂x2
1

)2

+µ

(
∂2u2

∂x2
1

)2

+ ζ

(
∂u1

∂x1

)2)
dx1

(with λ= 2
23 , µ= 2

63 , and ζ = 324). We recover the results obtained in [Seppecher
et al. 2011; Alibert et al. 2003; Alibert and Della Corte 2015] where the exotic
properties of this pantographic structure have been detailed. Its main specificity
lies in the fact that a dilatation imposed in a part of the beam tends to spread on
the whole beam. This phenomenon is due to the term

(
∂2u1
∂x2

1

)2 and damped by the
term

(
∂u1
∂x1

)2. This competition endows the model with intrinsic length
√
λ/ζ .

5.1.4. 3D Warren beam. The previous examples deal with planar beams. In that
case the energy is, of course, degenerate with respect to out-of-plane displace-
ments. Let us give a single example of a Warren-type 3D beam leading to an



STRAIN GRADIENT AND GENERALIZED CONTINUA 233

"t1

Figure 6. 3D Warren beam.

Euler–Bernoulli beam. The geometry (see Figure 6) is now � = (0,1), K = 3,
y1 = (0,0,−1

2), y2 = (0,0, 1
2), y3 = (

1
2 ,0,
√

2/2), t1 = (1,0), and a1,1,2 = a1,1,3 =

a1,2,3 = a2,1,1 = a2,2,2 = a2,3,3 = a2,3,1 = a2,3,2 = 1; all other components of the
matrices a1 and a2 vanish. Again the beam is not extensible (e1,1 = 0) and b = 0
is a possible solution for the microadjustment. The limit energy reads

E (u)=
1
2

∫ 1

0

(
λ

(
∂2u2

∂x2
1

)2

+ ζ

(
∂2u3

∂x2
1

)2)
dx1

(with λ= 1
3 and ζ = 1

2 ) and corresponds to a nondegenerate Euler–Bernoulli beam.
The bending stiffnesses in the two transverse directions are uncoupled. This is due
to the symmetry of our structure.

5.2. Membranes.

5.2.1. Regular triangle lattice. The regular triangular truss (see Figure 7) is de-
fined by a cell Y made of only one node (K = 1); two vectors t1 = (1,0) and
t2 = (−1

2 ,
√

3/2) for translating the cell; and five 1× 1 matrices ap, defining the
interactions between the node of cell YI and the one of its neighbors YI+p, given
by a1 = [0], a2 = [1], a3 = [1], a4 = [1], and a5 = [0].

We know that the constraint Q · ∇u = 0 involves only the symmetric part of ∇u.
In terms of e(u) it reads

√
3

4

3 1 0
1 3 0
0 0 4

 ·
e1,1(u)

e2,2(u)
e1,2(u)

= 0.

We already noticed that the matrix Q corresponds to the homogenized behavior
which would have been obtained if assuming a smaller order of magnitude for the
mechanical interactions. The result above is consistent with this remark and with

"t2

"t1

Figure 7. Regular triangle truss.
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"t2

"t1

"t2

"t1

Figure 8. The regular square lattice and its admissible shear deformation.

the result given by [Martinsson and Babuška 2007b]. It corresponds, as expected,
to a 2D isotropic material. Its Lamé coefficients are µ= λ=

√
3/4, and its Poisson

ratio is ν = 1
3 . As the matrix above is nondegenerate, the constraint imposes the

homogenized material to behave like a rigid body. As we have E = 0 for rigid
motions, there is no need for supplementary computations for the energy. We get
the same uninteresting result for many structures (like, for instance, the Kagome
(trihexagonal) lattice studied in [Leung and Guest 2007]). From now on, we will
focus only on structures which have more degrees of mobility.

5.2.2. Square grid. The geometry of the regular square lattice (see Figure 8) is
determined by a single node (K = 1), two vectors t1 = (1,0) and t2 = (0,1) for
translating the cell, and five 1× 1 matrices ap defining the interactions between the
node yεI,1 and its neighbors yεI+p,1 given by a1 = [0], a2 = [1], a3 = [1], a4 = [0],
and a5 = [0].

Constraint (22) reads e1,1(u) = e2,2(u) = 0: the structure is inextensible in
directions e1 and e2 and only shear is allowed. Microadjustment b = 0 is optimal,
and the limit energy is

E (u)=
1
2

∫
�

λ(e1,2(u))2 dx1 dx2

(with λ= 6). Contrarily to its 1D analog, this structure is a classical elastic material.
It presents neither any second gradient effect nor generalized continuum effect.

5.2.3. Square grid without constraints. The reader may be frustrated by the fact
that almost all our examples present a homogenized behavior subject to strong
constraints. We show in this example that constraints can be avoided. Let us
replace in the previous example the direct interactions by zigzags (see Figure 9): we
consider a cell made of three nodes y1 = (0,0), y2 = (0.5,0.3), and y3 = (0.3,0.5).
All components of the five interaction 3×3 matrices ap vanish but a1,1,2 = a1,1,3 =

a2,2,1 = a3,3,1 = 1.
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"t2

"t1

Figure 9. A square structure with unconstrained limit energy.

Figure 10. The honeycomb structure.

Constraint (22) disappears, and the limit energy reads

E (u)=
1
2

∫
�

(λ(e1,1(u))2+ λ(e2,2(u))2+ ζ(e1,2(u))2)dx1 dx2

(with λ= 50
3 and ζ = 3).

In the sequel, for sake of simplicity, we will not try to avoid all constraints:
we let the reader check whether a suitable modification of the proposed structures
could provide an unconstrained limit energy.

5.2.4. Honeycomb structure. The honeycomb structure (see Figure 10) is frequently
put forward for its mechanical properties. It is defined by a cell Y made of two
nodes (K = 2), two vectors t1 = ( 3

2 ,−
√

3/2) and t2 = (0,
√

3) for translating
the cell, and five 2× 2 matrices ap defining the interactions between the nodes
of cell YI and the ones of its neighbors YI+p. All their components vanish but
a1,1,2= a2,1,2= a3,2,1= 1. Constraint (22) reads e1,1(u)+e2,2(u)= 0: the structure
is incompressible. The microadjustment can be eliminated, and the limit energy is

E (u)=
1
2

∫
�

λ‖e(u)‖2 dx1 dx2

(with λ = 9). Contrarily to what was expected, this structure is a classical 2D
elastic material which presents neither any second gradient effect nor generalized
continuum effect. Incompressibility is its only specificity. This geometry has
been studied in [Gibson and Ashy 1997; Davini and Ongaro 2011; Davini 2013;
Dos Reis and Ganghoffer 2010]. Our result is in concordance with these results
but differs due to different assumptions: in these works bending and extensional
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"t2

"t1

Figure 11. A layered structure.

stiffnesses have the same order of magnitude. It differs also from [Raoult et al.
2008; Le Dret and Raoult 2013] where nonlinearity has been taken into account
but where bending stiffness has been chosen either weaker or stronger than we have.

5.2.5. A couple-stress membrane. We add a diagonal bar in one square cell over
two in the square lattice described in Section 5.2.2 (see Figure 11). The lattice
is now defined by a cell Y made of two nodes (K = 2) at points y1 = (0,0) and
y2= (0,1), the periodicity vectors t1= (1,0) and t2= (0,2), and five 2×2 matrices
ap. All components of these matrices vanish but a1,1,2 = a2,1,1 = a2,2,2 = a2,1,2 =

a3,2,1 = 1.
This structure, when homogenized, is again subject to the constraint e1,1(u)=

e2,2(u)= 0. An optimal microadjustment can be found, and the limit energy reads

E (u)=
1
2

∫
�

(
λ

(
∂2u2

∂x2
1

)2

+ ζ

(
e1,2(u)

)2)
dx1 dx2

(with λ= 1
8 and ζ = 192

5 ). From the mechanical point of view, the horizontal sub-
structures behave like bending beams and their resistance to bending is responsible
for the second gradient part of the limit energy. The model enters the framework of
couple-stress models. Indeed, owing to the constraint, the energy can be rewritten

E (u)=
1
2

∫
�

(
λ

(
∂

∂x1

(
∂u2

∂x1
−
∂u1

∂x2

))2

+ ζ(e1,2(u))2
)

dx1 dx2

and depends only on the gradient of the skew-symmetric part of the gradient of u.
As the energy can alternatively be written E (u) = 1

2

∫
�
(4λ(∂e1,2(u)/∂x1)

2
+

ζ(e1,2(u))2)dx1 dx2, the model is clearly endowed with the internal length
√

4λ/ζ .

5.2.6. Pantographic membrane. This structure is made by a connected array of
pantographic structures quite similar to those studied in Section 5.1.3 (see Figures
12 and 13). It is defined by a cell Y made of six nodes (K = 6) at points y1 = (0,1),
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"t2

"t1

Figure 12. Pantographic membrane and its two admissible deforma-
tions (bending of the bars are not represented in the deformed config-
urations).

Figure 13. Experiment: traction of a pantographic membrane.

y2 = (0,−1), y3 = (1,0), y4 = (2,2), y5 = (2,−2) and y6 = (3,0); two vectors
t1 = (4,0) and t2 = (−2,4) for translating the cell; and five 6× 6 matrices ap

defining the mechanical interactions. All components of these matrices vanish but

a1,1,3 = a1,1,4 = a1,2,3 = a1,2,5 = a1,3,4 = a1,3,5 = a1,4,6 = a1,5,6 = 1,

a2,4,1 = a2,5,2 = a2,6,1 = a2,6,2 = a3,1,5 = a4,4,2 = 1.

Constraint (22) reads e2,2(u) = 0. Both horizontal dilatation and shear are ad-
missible. Indeed, these macroscopic displacements, as shown in Figure 12, can be
performed without extending any bar. A microadjustment satisfying (26) can be
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"t2

"t1

Figure 14. Planar structure leading to Cosserat model.

found, and the homogenized energy is

E (u)=
1
2

∫
�

(
ζ(e1,1(u))2+ σ(e1,2(u))2+µ

((
∂2u1

∂x2
1

)2

+

(
∂2u2

∂x2
1

)2

+ λ

(
∂2u1

∂x1∂x2
+ κ

∂2u2

∂x2
1

)2))
dx1 dx2

(with λ = 484
131 , κ = 13

44 , µ = 3
44 , σ = 288, and ζ = 144). This model which has

been studied in [Abdoul-Anziz and Seppecher 2018] is the prototype of complete
second gradient models (indeed it does not enter the framework of couple-stress
models because of the term

(
∂2u1/∂x2

1

)2). The very special behavior of this model
has been described in [Seppecher et al. 2011]. Due to the strong anisotropy of
the structure, it is difficult to distinguish the several intrinsic lengths contained in
the model. Structures based on pantographic mechanisms have been intensively
studied from theoretical [Placidi et al. 2016] but also numerical [Turco et al. 2017;
Harrison 2016] and experimental [Placidi et al. 2017] points of view.

5.2.7. A Cosserat model. We consider the lattice described in Figure 14. It is a
planar structure in which we have authorized crossing interactions. The periodic
cell is made of two nodes at points y1 = (0,0) and y2 = (0.5,0.5); the periodicity
vectors are t1 = (1,0) and t2 = (0,1). All components of the five 2× 2 matrices ap

vanish but a1,1,2 = a2,1,1 = a2,2,2 = a3,1,1 = 1.
The constraint (22) is again e1,1(u)= e2,2(u)= 0, and only shear is admissible.

The limit energy takes the form

E (u)= inf
ϕ

1
2

∫
�

[
ζ

(
∂ϕ

∂x1

)2

+ γ

(
ϕ−

1
2

(
∂u2

∂x1
−
∂u1

∂x2

))2

+ κ(e1,2(u))2
]

dx1 dx2

(with ζ = 800
729 , γ = 1600

333 , and κ = 56
9 ). The extra variable ϕ plays the role of a

Cosserat variable. The reader can understand by considering Figure 14 that the
rotation of the bars [yεI,1, yεI,2] tends to be uniform and that it is coupled to the
global displacement owing to the welding of the bars at each node.
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Figure 15. Planar structure leading to both second gradient and
Cosserat effects.

5.2.8. Second gradient and Cosserat effects together. Let us combine in Figure 15
the structures of Figures 11 and 14: the periodic cell is now made of three nodes at
points y1= (0,0), y2= (0,1), and y3= (0.5,1.5); the periodicity vectors t1= (1,0)
and t2 = (0,2); and five 3×3 matrices ap. All components of these matrices vanish
but a1,1,2 = a1,2,3 = a2,1,1 = a2,1,2 = a2,2,2 = a2,3,3 = a3,2,1 = 1.

The constraint (22) is still e1,1(u)= e2,2(u)= 0. Shear is admissible. The limit
energy takes now the form

E (u)= inf
ϕ

1
2

∫
�

[
λ

(
∂2u2

∂x2
1

)2

+ ζ

(
∂ϕ

∂x1

)2

+ γ

(
ϕ−

1
2

(
∂u2

∂x1
−
∂u1

∂x2

))2

+ κ(e1,2(u))2
]

dx1 dx2,

thus mixing second gradient and Cosserat effects.

5.3. Plates. Up to now we have only considered planar structures which, of course,
are completely degenerate with respect to transverse displacement. Let us now
consider structures with a nonzero thickness.

5.3.1. Kirchhoff–Love plate. The considered lattice is made by two superposed
regular triangular lattices (see Figure 16). It is defined by a cell Y made of two
nodes (K = 2) at points y1 = (0,0,0) and y2 = (0,0,1), the periodicity vectors
t1 = (1,0,0) and t2 = (−1

2 ,
√

3/2,0), and five 2× 2 matrices ap. All components
of these matrices vanish but a1,1,2 = a2,1,1 = a2,2,2 = a2,1,2 = a2,2,1 = a3,1,1 =

a3,2,2 = a3,1,2 = a3,2,1 = a4,1,1 = a4,2,2 = a4,1,2 = a4,2,1 = 1.
The homogenized model is subject to the constraints e11(u)= e22(u)= e12(u)=

0 (as a membrane, it is undeformable). The microadjustment b = 0 is optimal, and
the limit energy reads

E (u)=
1
2

∫
�

(λ‖∇∇u3‖
2
+ ζ(1u3)

2)dx1 dx2
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Figure 16. A Kirchoff–Love plate.

Figure 17. A Mindlin–Reissner plate.

(with λ= 1
2 and ζ = 1

4 ) which corresponds to an isotropic inextensible Kirchhoff–
Love bending plate.

5.3.2. Mindlin–Reissner plate. Let us consider the same geometry as in the pre-
vious example but where all diagonals joining the lower nodes to the upper ones
are deleted (see Figure 17): it is enough to set a2,1,2 = a2,2,1 = a3,1,2 = a3,2,1 =

a4,1,2 = a4,2,1 = 0.
The inextensibility constraint e11(u) = e22(u) = e12(u) = 0 remains, but now

the microadjustment b cannot be completely eliminated. The homogenized energy
still involves two extra kinematic variables which can be written ϕ = (ϕ1,ϕ2) and
reads

E (u)= inf
ϕ

1
2

∫
�

(λ‖∇u3−ϕ‖
2
+ ζ‖e(ϕ)‖2)dx1 dx2

(with λ= 9
4 and ζ = 1

2 ). This corresponds to an isotropic Mindlin–Reissner plate
[Reissner 1985; Sab and Lebée 2015]. Generally, in this theory, ϕ is interpreted as
the rotation of the “fiber” which differs from the rotation of the “mid-surface”.

5.3.3. Generalized Mindlin–Reissner plate. We are not limited to the extra kine-
matic variable ϕ introduced in the previous section. We get two such variables
when considering three superposed triangular lattices instead of two (see Figure 18),
for instance assuming that the lattice is defined by a cell Y made of three nodes at
points y1 = (0,0,0), y2 = (0,0,1), and y3 = (0,0,−2) and the periodicity vectors
t1 = (1,0,0) and t2 = (− 1

2 ,
√

3/2,0). All components of the matrices ap vanish
but a1,1,2 = a2,1,1 = a2,2,2 = a3,1,1 = a3,2,2 = a4,1,1 = a4,2,2 = a1,1,3 = a2,3,3 =

a3,3,3 = a4,3,3 = 1.
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Figure 18. A generalized Mindlin–Reissner plate.

Figure 19. An “origami” plate.

In that case we obtain a model with two “rotation” vectors ϕ and ψ and an
energy of type

E (u)= inf
ϕ

1
2

∫
�

(λ‖∇u3−ϕ‖
2
+ ζ‖∇u3−ψ‖

2
+ Q(ϕ,ψ,∇ϕ,∇ψ))dx1 dx2

where Q is a nonnegative quadratic form. It is not worth giving here the precise
values of λ and ζ nor detailing Q.

Multiple layers could also be considered leading to more extra kinematic vari-
ables. These models correspond to the generalized Mindlin–Reissner plates re-
cently described in [Lebée and Sab 2017].

Another way for generalizing Reissner models is to mix the structures described
in Figures 18 and 14 in order to mix the in-plane Cosserat effect obtained in
Section 5.2.7 and Reissner effect. Then we would get a model similar to Reissner
but with ϕ living in R3 like described in [Altenbach and Eremeyev 2009].

5.3.4. Origami-type plate. We consider now a lattice made of four nodes at points
y1 = (0,0,0), y2 = (1,0,1), y3 = (−1,1,0), and y4 = (0,1,1) with periodicity
vectors t1 = (2,0,0) and t2 = (0,2,0); the interaction matrices are defined by
a1,1,2 = a1,1,3 = a1,2,3 = a1,2,4 = a1,3,4 = a2,2,1 = a2,2,3 = a2,4,1 = a2,4,3 = a3,3,1 =

a3,3,2 = a3,3,2 = a3,4,2 = a4,4,1 = a5,2,3 = 1 (all other components vanish). This
simulates a Miura fold which is suspected to have exotic mechanical properties
[Lebée and Sab 2012]: nodes correspond to wedges of the fold while interactions
correspond to edges and diagonals of the faces (see Figure 19).
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Constraint (22) reads e1,2(u)= 0 and e1,1(u)= e2,2(u). Microadjustment b = 0
is optimal, and the limit energy reads

E (u)=
1
2

∫
�

(λ(1u3)
2
+ ζ(e1,1(u)+ e2,2(u))2)dx1 dx2

(with λ= 1
64 and ζ = 61

9 ). As a membrane, only isotropic dilatation is admissible
and no in-plane second gradient effects are present. As far as transverse displace-
ments are concerned, the structure is degenerated: a curvature is possible with zero
elastic energy provided the total curvature vanishes (this behavior is clearly visible
when one manipulates this type of fold). From the mathematical point of view,
compactness is not ensured and the homogenization result can only be applied
when some extra confinement potential is present.

5.3.5. Reinforced origami plate. In the previous example the faces of the structure,
made by a planar parallelogram with one diagonal, are very easy to bend. Let us
reinforce each of them by adding an out-of-plane node and linking it to the four
corners of the face. We add y5 = (0,0,1), y6 = (1,0,0), y7 = (−1,1,1), and
y8 = (0,1,0), and we add the interactions a1,1,5 = a1,2,5 = a1,3,5 = a1,4,5 = a1,2,6 =

a1,4,6 = a2,6,1 = a2,6,3 = a1,4,8 = a1,3,8 = a3,8,1 = a3,8,2 = a1,3,7 = a5,2,7 = a3,7,1 =

a2,4,7 = 1. The constraint is unchanged, but the effective energy E (u) becomes

1
2

∫
�

(
λ

(
(1u3)

2
+

(
∂2u3

∂x1∂x2

)2

+

(
∂2u2

∂x1∂x2

)2

+

(
∂2u2

∂x2
1

)2)
+µ

(
∂2u3

∂x2
1
−
∂2u3

∂x2
2

)2

+ ζ(e1,1(u)+ e2,2(u))2
)

dx1 dx2

(with λ= 1
64 , µ= 1

192 , and ζ ≈ 14.06). Now the plate is nondegenerate: transverse
displacement is controlled. As far as in-plane displacement is concerned, the strain
tensor takes the form e = k Id (note that compatibility conditions induce strong
constraints for the second derivatives of k) and the corresponding part of the energy
reads ∫

�

(
λ

(
∂k
∂x1

)2

+ ζk2
)

dx1 dx2.

The effective membrane is endowed with the intrinsic length
√
λ/ζ .

5.4. Materials. It is difficult to describe clearly and even more to draw periodic
lattices with a 3D periodicity. Indeed the number of nodes and edges increases
considerably. So we limit ourselves to studying the simple regular cubic lattice and
the lattice obtained by replacing each “fiber” of this cubic lattice by a pantographic
structure as described in Section 5.1.3.
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"t3

"t1

"t2

Figure 20. The regular cubic lattice.

5.4.1. Cubic lattice. Let us extend Section 5.2.2 to dimension 3 by considering
a periodic lattice (see Figure 20) made by a single node (K = 1); three vectors
t1 = (1,0,0), t2 = (0,1,0), and t3 = (0,0,1), for translating the cell; and fourteen
1× 1 matrices ap defining the interactions between the node yεI,1 and its neighbors
yεI+p,1 given by a1 = [0], a2 = [1], a3 = [1], a4 = [1], and ap = [0] for p > 4.

Constraint (22) reads e1,1(u)= e2,2(u)= e3,3(u)= 0: the structure is inextensible
in directions e1, e2, and e3. Only shear is allowed. Again b = 0 is an optimal
microadjustment, and the limit energy is

E (u)=
1
2

∫
�

λ‖e(u)‖2 dx1 dx2 dx3

(with λ= 3). This structure is a classical elastic material which presents no second
gradient effect nor generalized continuum effect.

5.4.2. Weaved pantographs. We can see the structure of Section 5.4.1 as made by
three families of parallel fibers. Now let us replace the fibers with direction e1 by
pantographic beams Pe1,e3 and those with direction e2 or e3 by pantographic beams
Pe2,e1 or Pe3,e2 , respectively. These beams share the common node y3 = 0, so our
new structure is made of a cell containing 16 nodes with 24 internal edges and 12
edges linking it to its neighbors (see Figure 21).

The effective material resulting from the homogenization of this structure is not
subject to any constraint. Microadjustment b = 0 is still optimal, and the limit

Figure 21. Weaved pantographs.
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energy reads

E (u)=
1
2

∫
�

[
λ

((
∂2u1

∂x2
1

)2

+

(
∂2u2

∂x2
2

)2

+

(
∂2u3

∂x2
3

)2)
+µ

((
∂2u1

∂x2
2

)2

+

(
∂2u2

∂x2
3

)2

+

(
∂2u3

∂x2
1

)2)
+ ξ((e3,1(u))2+ (e2,3(u))2+ (e1,2(u))2)

+ ζ((e1,1(u))2+ (e2,2(u))2+ (e3,3(u))2)
]

dx1 dx2 dx3,

with λ= 2
23 , µ= 2

63 , ζ = 324, and ξ ≈ 3.91.
We obtain here a complete strain gradient 3D material. This example illustrates

the huge variety of models which can be obtained by homogenizing lattice struc-
tures.

6. Conclusion

Let us conclude with some remarks.
Our starting point is a lattice made of welded bars with extensional, flexural,

and torsional rigidities. The reader could think that, as bending stiffness is by
itself a second gradient effect, it is the source of the effective second gradient
effects. Surprisingly enough, it is not the case: second gradient effects are due to
the extensional stiffness of the bars and to particular designs of the periodic cell
while the bending stiffness of the bars is, on the contrary, the source of the first
gradient effects in the homogenized energy. Ostoja-Starzewski [2002] has foreseen
that lattices can be very useful for giving a micromechanical insight of nonclassical
continua, but the role played by the nonextensional part of the mechanical interac-
tions there is overestimated.

Strain gradient and micromorphic models are often presented as competing mod-
els. For some researchers, strain gradient models correspond simply to the limit
case of micromorphic models in which the coupling between strain and microde-
formation is infinitely strong. For other ones, generalized continuum models are
regularizations of strain gradient models. Our results show that both effects appear
generally together and at the same level.

It is also remarkable that, in our results, strain and strain gradient are never
coupled. There is no fundamental reason which prevents such a coupling in a
strain gradient model. Some symmetries could explain this absence of coupling
[Auffray et al. 2009; Poncelet et al. 2017], but our general homogenization result
does not ask for any symmetry in the design of the structure. The point is that
strain gradient terms and classical strain terms come from two different sources
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(extensional and flexural/torsional energies) which are assumed at the very begin-
ning to be uncoupled. We think that considering nonhomogeneous or nonisotropic
bars would likely lead to coupled models.

The general closure result [Camar-Eddine and Seppecher 2003] allows for effec-
tive models more exotic than the ones we have presented in this paper, for instance
with an elastic energy depending on the third gradient of the displacement. Indeed
we already mentioned that we can design our structures in order to get a degenerate
effective energy. In that case, it is natural to rescale again the original energy by
multiplying it by ε−2 (or equivalently to act with much lighter forces on the sample),
and hope that the limit energy will become nondegenerate. Moreover, one would
have to assume that the bars are still slenderer in order to get a compatible flexural
energy. In that case, increasing the formal expansion (10) up to order 3, one should
likely get third-order models. And, of course, the process can be pushed further. It
is not clear whether one can get any reachable effective model by homogenizing
frame lattices. Such inverse problem has been addressed in the dynamic case in
[Carcaterra et al. 2015].

We have tried to get experimental evidence of second gradient effects (see
Figure 13) for the structures described in Section 5.2.6. Up to now, our efforts
have been unsuccessful. We think that the major reason for that is twofold: (i)
geometrical nonlinearities arise very quickly in these microstructures and (ii) the
limit model is extremely sensitive to design; indeed we have checked that a small
modification of the position of one node of the periodic cell is enough to change the
effective model from strain gradient model to a totally rigid body. Hence, the basic
assumption of linear elasticity that current and initial configurations coincide is too
strong and the extension of our study to nonlinear elasticity should be undertaken.
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ON THE EFFECT OF PHASE TRANSITION
ON THE MANIFOLD DIMENSIONALITY:
APPLICATION TO THE ISING MODEL

ELENA LOPEZ, ADRIEN SCHEUER,
EMMANUELLE ABISSET-CHAVANNE AND FRANCISCO CHINESTA

Fields can be represented in a discrete manner from their values at some lo-
cations, the nodes when considering finite element descriptions. Thus, each
discrete scalar solution can be considered as a point in RN (N being the num-
ber of nodes used for approximating the scalar field). Most manifold learning
techniques (linear and nonlinear) are based on the fact that those solutions define
a slow manifold of dimension n� N embedded in the space RN . This paper ex-
plores such a behavior in systems exhibiting phase transitions in order to analyze
the evolution of the local dimensionality n when the system moves from one side
of the critical behavior to the other. For that purpose we consider the Ising model.

1. Introduction

Physical models usually involve unknown continuous scalar or vector fields. If
we consider without any loss of generality a model involving a scalar field approxi-
mated on a mesh or grid involving N nodes, the discrete solution can be represented
as a point belonging to RN . However, existing correlations lead to solutions that,
instead of filling the whole space RN , define a slow n-dimensional manifold, with
n� N , embedded into RN .

This fact is at the origin of manifold learning approaches that consist of extract-
ing the uncorrelated (latent) dimensions describing the slow manifold representing
the original states into a reduced form. Principal component analysis (PCA) was
specially designed to find a linear subspace of lower dimensionality than the origi-
nal space; however, it fails when the manifold becomes extremely nonlinear. Non-
linear dimensionality reduction techniques were proposed for circumventing this
limitation. Among the many existing techniques (an abundant literature is available
on the topic, and the interested reader can refer to [Lee and Verleysen 2007] and
the references therein) kernel-based PCA (kPCA) [Wang 2014; Schölkopf et al.

Communicated by Francesco dell’Isola.
PACS2010: 05.10.Ln.
Keywords: Ising equation, phase transition, manifold learning.
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1998; 1999] and locally linear embedding (LLE) [Roweis and Saul 2000] will be
considered in the present work. The latter can be considered as a particular case
of the former, for a particular kernel choice [Zimmer et al. 2015].

These techniques that automatically extract the latent dimensions have been ex-
tensively and successfully applied in many domains; however, few works addressed
the issue of phase transition and in particular the way in which that transition af-
fects the manifold dimensionality and the possibility of characterizing the transition
from a geometrical point of view. To address that issue, we consider in the present
work a well established and widely studied equation exhibiting phase transition,
the Ising model.

In the context of the microscopic theory of critical behavior [Koonin and Mered-
ith 1990; Fisher 1965], the Ising model [Newell and Montroll 1953] addresses a
ferromagnetic lattice in a quite simple statistical description, including phase tran-
sition. Ferromagnetic materials exhibit long-range spin ordering at the atomic level.
When a magnetic field is applied to a ferromagnetic material, atomic spins align
along the direction of the applied field. However, when the temperature becomes
higher than the so-called critical temperature, a phase change occurs. The Ising
model allows describing such materials [Myers 1997]. This model initially pro-
posed by Lenz was solved in 1D by Ising [1925]. The 2D model without magnetic
field was then developed by Onsager [1944], and it is this one that we are consid-
ering in the present work. Its solution that will be addressed by using the Monte
Carlo method [Metropolis et al. 1953] concerns a binary property called spin, given
each point of a 2D grid, and more specifically its time evolution with respect to
the applied temperature. When reaching the so-called critical temperature, phase
transition occurs. Even if complex variants of the Ising model were proposed
[Bellettini et al. 2007; De Masi et al. 2009; 2008], in the present work we consider
its simplest version.

Our feeling is that applying usual manifold learning techniques on the spin field
itself, consisting of a binary variable defined at each grid (mesh) node, is neither the
best nor the optimal representation because those techniques are based on the use
of euclidean metrics and two similar microstructures can significantly differ when
calculating the euclidean distance between both of them. For that reason, a first
contribution of the present work is to propose a better microstructure representation
much less sensitive to local distributions. In that sense, considering Fourier-based
representations, where space dependencies are described from their frequency con-
tent, seems a much better alternative, in particular, the 2D fast Fourier transform
(FFT) 2D-FFT that has been widely considered in image analysis to identify biolog-
ical damage [Fung et al. 2010], extract ordered structures from microtomography
[Jeulin and Moreaud 2008], analyze complex microstructures [Lebensohn et al.
2011; Zhu et al. 2018], etc.
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When applying the FFT to solutions coming from the Ising model, one expects
low frequencies at low temperatures, where long-range correlation exists, whereas
at high temperatures, where entropic effects dominate, higher frequency contents
are expected. However, at the transition in between, richer structures with its
a priori higher dimensionality are expected. Thus, we would like to locally de-
fine the manifold dimensionality, and instead of using global manifold learning
techniques, local extractors seem more appropriate. In particular local principal
component analysis (lPCA) [Kambhatla and Leen 1997] seems specially appealing
for that purpose. It is important to note that lPCA encountered limited interest as
a manifold learning technique because of the difficulty of defining a continuous
mapping throughout the manifold. However, it has been widely employed in other
domains where the main goal, as in the present case, was to estimate the local
dimensionality [Fukunaga and Olsen 1971].

The paper is structured as follows. Section 2 revisits the main concepts related
to the Ising model, as well as its solution using the Metropolis-based Monte Carlo
algorithm. Section 3 addresses the application of LLE for constructing the man-
ifold on which data will be classified using the procedure proposed in Section 4.
Finally, Section 5 presents and discusses different numerical solutions, proving the
potential of the proposed approach.

2. The Ising model and its Monte Carlo solution

The Ising model describes a ferromagnetic behavior and is able to capture phase
transitions [Niss 2005]. In this model, the discrete variables called “spins” are
defined on a lattice. Each lattice site has only one spin with value either −1 (spin
down) or +1 (spin up), interacting only with its nearest neighbors. By considering
the 2D Ising model introduced by Onsager [1944], the Hamiltonian H reads

H =−J
∑

i

∑
j

|i− j |=1

Si S j , (1)

J being the dimensionless interaction strength. Si and S j are the spin states at
lattice sites i and j , respectively. As can be noticed, the sum of products reduces
to the nearest-neighbor pair of spins. Every spin will interact with four other spins
(up, down, left, and right). If spins are aligned and J > 0, the energy of the system
will be minimal.

The partition function Z can be computed from the Hamiltonian

Z =
∑

i

e−Hi , (2)
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where the sum applies over all the particles in the lattice. Then, we compute the
probability of finding the system in a particular state S from

p(S)=
e−H(S)

Z
. (3)

Some important outputs are the magnetization Ma

Ma=
∑

S

p(S)
∑

i

Si , (4)

and the system energy E

E =
∑

S

p(S)βH(S), (5)

where β = kB T , with the Boltzmann constant kB = 1.380658× 10−23 J/K and T
the temperature.

Usually the solution of the Ising model is performed by using a Monte Carlo
method. In this paper, we consider a variant of the Monte Carlo method, the so-
called Metropolis algorithm [Fricke 2006]. For a given temperature, at each time
step, a trial spin configuration is generated. The algorithm computes the system
energy associated with the trial state. If the change of energy is negative, it means
that the system evolution has brought the system to a state of lower energy, so we
allow the change and put the spins in their new state. On the other hand, if the
change of energy is positive, we allow the change with a probability given by p(S)
computed from (3).

3. Manifold construction

It is well known that microstructures do not allow simple reduced descriptions
[Lopez et al. 2018]. In fact the main concern is how to quantify similarities or
resemblances, and how to take profit of them.

In this paper we consider and analyze a route based on the use of the locally
linear embedding (LLE) technique [Roweis and Saul 2000], a member of the large
family of the so-called manifold learning techniques.

The remainder of this section describes the procedure directly on the problem
we are interested in. The procedure consists of two steps: the analysis of the Ising
samples in order to obtain a discriminative description of the microstructures (in
this case as previously said, we do not work directly on the Ising microstructures
but on their fast Fourier transform), followed by a dimensionality reduction able to
discriminate the three temperature zones that characterize the Ising model behavior.

3.1. Applying the fast Fourier transform on the Ising microstructures. First we
assume the existence of M microstructures Mm , m = 1, . . . ,M , coming from the
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Ising model defined on the domain ω. In what follows and without loss of gener-
ality, we consider 2D microstructures and the 2D fast Fourier transform (2D-FFT).
Moreover, we assume the existence of two phases, the spins with value 1 and
the others with value −1, occupying the domains ωm

1 and ωm
−1, respectively, with

ωm
1 ∪ω

m
−1 = ω, m = 1, . . . ,M . A regular mesh is associated with each microstruc-

ture consisting of N nodes (N = N 2
n , with Nn the number of nodes along the x and y

directions). The coordinates of each node are xi , i = 1, . . . , N (xT
i = (xi , yi )).

For each microstructure Mm we define the phase field χ(x;Mm) as

χ(x;Mm)=

{
1 if x ∈ ωm

1 ,

−1 if x ∈ ωm
−1.

(6)

As is well known, these microstructure descriptions do not allow simple re-
duced descriptions. Thus, the objective is to geometrically characterize them in
order to obtain reduced descriptions. Concerning geometrical characterization and
microstructural descriptions, there are several tools proposed for signal processing
purposes. Concerning the type of microstructures we are dealing with, it seems
more appropriate to work in the frequency domain instead of using their physical
space description. In particular we propose to apply the 2D-FFT to characterize
the microstructures in the frequency domain.

We now apply the 2D-FFT on each microstructure Mm , m = 1, . . . ,M , defined
by its phase field χ(x;Mm). Thus, the 2D-FFT of the Ising microstructures can be
represented in a discrete way from vectors χ̂m,Mm , m = 1, . . . ,M . Vectors χ̂m are
defined in RN ; i.e., the dimension coincides with the number of nodes considered
in the discrete microscopic description.

3.2. Nonlinear dimensionality reduction. Each vector χ̂m defines a point in a
space of dimension N , and then the data set of M 2D-FFTs related to the M
Ising microstructures represents a set of M points in RN . Hence, the question:
do all these points belong to a particular low-dimensional manifold embedded in
the high-dimensional space RN ?

Imagine that, despite the impressive space dimension N , the M points belong to
a curve, a surface, or a hypersurface of dimension n� N . When N = 3 a simple
observation suffices to check if these points are located on a curve (1D manifold)
or on a surface (2D manifold). However, when dealing with spaces of thousands
of dimensions, simple visual observation is unsuitable.

Instead, appropriate techniques are needed to extract the underlying manifold
(when it exists) when dealing with extremely multidimensional spaces. There is
a variety of techniques to accomplish this task. The interested reader can refer to
[Tenenbaum et al. 2000; Roweis and Saul 2000; Polito and Perona 2001; Wang
2014; Amsallem and Farhat 2008]. In this work we focus on the LLE (locally
linear embedding) technology [Roweis and Saul 2000]. It proceeds as follows.
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• Each point χ̂m , m = 1, . . . ,M , is linearly reconstructed from its K -nearest
neighbors. In principle K should be greater than the expected dimension n
of the underlying manifold and the points should be close enough to ensure
the validity of the linear approximation. In general, a large-enough number
of neighbors K and a dense-enough sampling M ensure a satisfactory recon-
struction as shown later. For each point χ̂m we can write the locally linear
data reconstruction as

χ̂m
=

∑
i∈Sm

Wmi χ̂
i , (7)

where Wmi are the unknown weights and Sm is the set of the K -nearest neigh-
bors of χ̂m .

Weights, grouped in vector W , result from the minimization of functional

F(W)=

M∑
m=1

∥∥∥∥χ̂m
−

M∑
i=1

Wmi χ̂
i
∥∥∥∥2

, (8)

where here Wmi is zero if χ̂ i does not belong to the set of K -nearest neighbors
of χ̂m .

The minimization of F(W) allows us to determine all the weights involved
in all the locally linear data reconstruction.

• We suppose now that each linear patch around χ̂m , for all m, is mapped into
a lower-dimensional embedding space of dimension n, n� N . Because of
the linear mapping of each patch, weights remain unchanged. The problem
now becomes the determination of the coordinates of each point χ̂m when it
is mapped into the low-dimensional space, ξm

∈ Rn .
For this purpose a new functional G is introduced that depends on the

searched coordinates ξ 1, . . . , ξM :

G(ξ 1, . . . , ξM)=

M∑
m=1

∥∥∥∥ξm
−

M∑
i=1

Wmiξ
i
∥∥∥∥2

, (9)

where now the weights are known and the reduced coordinates ξm are un-
known.

The minimization of functional G results in an M ×M eigenvalue problem
whose n-bottom nonzero eigenvalues define the set of orthogonal coordinates
in which the manifold is mapped.

4. Discriminating criteria

Once the manifold composed by the reduced coordinates ξm is known, the goal
is to cluster in some way the three temperature zones to be able to classify them
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in low, transition, and high temperature. For this purpose, we propose a criterion
based on a variant of the principal component analysis (PCA), the so-called local
principal component analysis (lPCA) that allows us to compute the manifold local
dimension, and then infer the dimension at low, high, and critical temperatures.

Principal components analysis (PCA) attempts to find a linear subspace of lower
dimensionality than the original space. If data exhibit more complex structures
which cannot be well represented in a linear subspace, standard PCA fails to ac-
complish the reduction. However, such reduction can be successfully performed
by using nonlinear dimensionality reduction techniques, like the lPCA here con-
sidered. In what follows we revisit first the standard PCA before focusing on its
local counterpart.

Let us consider n observed variables defining the vector (snapshot) ξ ∈ Rn . We
assume that these variables are therefore not totally uncorrelated and, notably, that
there exists a linear transformation L defining the vector ξ red

∈ Rnred
, nred

≤ n, that
represents the so-called latent reduced variables, according to

ξ = Lξ red. (10)

We assume the existence of M different snapshots ξ1, . . . , ξM that can be stored
in the columns of the n×M matrix X. The associated nred

×M reduced matrix Y

contains the associated reduced vectors ξ red
i , i = 1, . . . ,M .

PCA proceeds by enforcing the fact that latent variables must be as much as
possible uncorrelated, and allows us to extract both the dimension nred and the
mapping L. For that purpose the covariance matrix Cxx ,

Cxx = E
{
(X− E{X})(X− E{X})T

}
, (11)

is factorized as

Cxx = V3V T , (12)

equivalent to applying the singular value decomposition (SVD) to X. In (12), V
contains the orthonormal eigenvectors and 3 is the diagonal matrix containing the
eigenvalues (nonnegative real numbers), assumed to be in descending order. Thus,
the nred columns of L are the nred first columns of V [Lee and Verleysen 2007].

From this summary of the PCA rationale, we can now briefly explain its local
counterpart. For that purpose, we consider each snapshot ξi , for i = 1, . . . ,M , and
for each of them, its K -nearest neighbors. From those and by proceeding as just
indicated, we can compute the local transformation matrix Li , i = 1, . . . ,M , as
well as the local reduced dimensionality nred

i .
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Figure 1. Energy versus temperature.

5. Numerical results

Ising microstructures have been generated using the Metropolis-based Monte Carlo
method proposed in [Fricke 2006]. We have run M = 741 simulations to obtain our
microstructure data set (snapshots), Mm , m = 1, . . . ,M . The parameters considered
in those simulations are a 200×200 grid (N = 40000 nodes) with the dimensionless
temperature T randomly chosen between 0 and 5. Figure 1 shows the energy per
site E of the final configuration of each simulation. The magnetization per site in
turn is shown in Figure 2.

It is clear that a phase transition occurs in between T = 1 and T = 1.5. At lower
temperatures, T < 1, the system tends to any of the two ground states Ma = −1
or Ma = +1. At higher temperatures, T > 1.5, the spins tend to align randomly,
leading to an almost vanishing magnetization (Ma≈ 0).

To illustrate the Ising microstructures configuration, Figure 3 depicts microstruc-
tures associated with low, transition, and high temperature. In the one associated
with low temperature, approximately half of the spins are up and the other half
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Figure 2. Magnetization versus temperature.
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Figure 3. Low, transition, and high temperature microstructures
(clockwise from top left).

down, with aligned spins forming a sort of clusters called “metastable states”, with
Ma≈ 0. Around the transition temperature, the number of down spins has increased
(up spins consequently decreasing) compared to the previous scenario. This means
that the system has enough energy and the Metropolis algorithm easily accepts
antiparallel spins. Finally, in the high-temperature state, almost the same number
of down and up spins are found with a small characteristic length describing the
phases distribution in the microstructures due to the high energy communicated to
the system.

The M samples were described by their phase field vectors χm , m = 1, . . . ,M ,
each defined in RN . But as explained in Section 3.1, microstructures do not allow
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reduced representations and that reason motivated the consideration of 2D-FFT on
the M Ising microstructures in order to obtain the data reduced representation.

Figure 4 illustrates the 2D-FFT representation of three microstructures associ-
ated with low, transition, and high temperature, respectively, considered in Figure 3.
In the low-temperature microstructure, we can appreciate the presence of very few
significant frequencies, almost located at the center of the domain (low frequen-
cies), and the rest of the domain is practically flat.

Figure 4. 3D (left) and 2D (right) representation of the 2D-FFT
for low (top), transition (middle), and high (bottom) temperature
microstructures.
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Figure 5. LLE manifold of the 2D-FFT on the Ising microstruc-
tures. Axes represent a 3D space in which the almost 1D manifold
is embedded.

This result is intuitive since the spins of the microstructures are more clustered
in the low-temperature samples. On the contrary, in the case of 2D-FFT applied to
the high-temperature microstructures, we observe the opposite result. Here, spins
are totally randomly distributed and consequently all frequencies are present. In
the case of microstructures around the transition temperature, its 2D-FFT becomes
a mix of the aforementioned cases, with dominant frequencies located at the center
of the domain but now the rest of the domain is no longer flat, since it is populated
by the contribution of nonnegligible higher frequencies.

We denote by χ̂m , m = 1, . . . ,M , the 2D-FFT of the Ising microstructures. By
applying the locally linear embedding technique on χ̂m , as explained in Section 3.2,
the weights involved in the linear data reconstruction are calculated as well as the
reduced data. The performed analysis allows us to consider a reduced dimension
n = 3 that moreover facilitates the solution’s graphical representation. Figure 5
depicts the resulting points ξm

∈ R3, m = 1, . . . ,M , from which one can realize
that the manifold is almost 1D.

Now in order to properly check the local dimensionality, local principal com-
ponent analysis is applied in locations belonging to low, high, and transition tem-
peratures, whose associated regions can be clearly identified in Figure 5. After
applying the lPCA in these three regions (the solution represented in the manifold
of Figure 5), the highest eigenvalues are extracted determining the local manifold
dimensionality. As shown in Figure 6, the local dimensionality of low and high
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Figure 6. Local dimensionality of the low, transition, and high
temperature zones (top to bottom).

temperatures is one because there is a difference of almost two orders of magnitude
between the values of the first and the second eigenvalues, which means that the
first is much more important than the second.

This result was expected, since looking at the manifold of Figure 5, it could
be clearly seen that the points corresponding to these two zones defined a rather
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1D manifold. In the transition region the first two eigenvalues have practically the
same value and differ from the third by four orders of magnitude, which clearly
means that the local dimensionality of this region is almost two. This result was
also expected, since the points in this zone mix the 1D behaviors of low and high
temperatures and being not collinear increases the dimensionality. Local dimension
is not able to distinguish between the two phases of the system. Descriptions able
to differentiate them constitute a work in progress.

6. Conclusions

This paper proposes a methodology to interpret phase transition from a geometrical
point of view, from the local dimensionality of the manifold defined from different
microscopic fields. For that purpose the Ising model is simulated by varying the
temperature from one side to other of the critical temperature associated with the
phase transition.

Using the Metropolis algorithm, a group of microstructures related to the solu-
tion of the Ising model has been created, encompassing samples corresponding to
low, high, and transition temperatures. Unable to deal directly with the microstruc-
tures’ characteristic function, the 2D-FFT has been applied to those because the
frequency content is expected to exacerbate the difference between microstructures
at low, high, and transition temperatures. The manifold was then created on the
2D-FFT representations of phases distribution, and then a local PCA was applied
locally in the different regions to extract the local dimensionality.

The performed analysis reveals that the dimensionality slightly increases in the
transition region where complex microstructures mixing low and high temperature
patterns coexist. Below and above that transition temperature the solution seems to
be explained by only one latent variable that in the present case can be associated
with the temperature. In the transition region solutions seem a bit richer and cannot
be explained by a single latent variable.
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