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A MODEL FOR INTERFACES AND ITS MESOSCOPIC LIMIT

MICHELE ALEANDRI AND VENANZIO DI GIULIO

We study a system of N layers with a Kac horizontal interaction of parameter
γ > 0 and a Kac vertical interaction of parameter γ 1/2. We shall prove that
the limit free energy functional is the rate function of the large deviations of the
Gibbs measure (of a canonical constrained magnetization). The limit free energy
functional is achieved as a 0-limit for γ → 0 for magnetizations with fixed aver-
age. Among all such magnetizations there exists a quasiconstant magnetization
that minimizes the energy.

1. Introduction

Equilibrium and dynamics of interfaces is a very well studied issue both in physics
and mathematics. In several instances to simplify the problem it is supposed that
the interface is a graph, an assumption which is not at all unrealistic if the interface
is studied locally. In the SOS models of statistical mechanics the interface is a
graph over a lattice Zd ; namely for each site i ∈ Zd we draw a vertical line and
the position of the interface on the line (its height) is represented by a real-valued
spin Si . One then introduces a Hamiltonian which describes the interactions among
the spins so that the equilibrium properties of the interface are derived from the
Gibbs properties of the Hamiltonian. The difficulty in this approach arises from the
fact that the Hamiltonian is massless, which corresponds to the fact that vertical
translations of the interface do not cost energy. The theory of DLR states is then
quite more involved than in the classical Ising model; a breakthrough was achieved
in [Funaki and Spohn 1997], followed by many other papers.

In this paper we take a step back towards microscopic scalar; namely we suppose
that on each horizontal line there is an Ising system so that instead of a real-valued
spin Si we have a configuration σ(x, i), x ∈ Z, of ±1-valued spins. We actually
consider a finite system with i = 1, . . . , N and x ∈ [0, L] ∩Z, L = γ−1`, γ > 0,
` > 0 (L an integer). To simulate a phase transition the spins on each horizontal
line interact via a Kac potential Jγ (x, y) (the same on each line), whose strength
is 1 and whose range is γ−1 (see Section 2 for a precise definition). The spins
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between nearest neighbor horizontal lines (say (x, i) and (y, i + 1)) interact via
the Kac potential λJγ 1/2(x, y), λ > 0; that is, the vertical interaction is much more
local than the horizontal one.

We study the mesoscopic limit γ → 0. The mesoscopic state of the system
is a collection m ≡ {m(r, i) : r ∈ [0, `], i = 1, . . . , N } of measurable functions
with values in [−1, 1]. Its statistical properties are then described by a free energy
functional F(m). According to the Gibbs theory such a functional is the limit as
γ → 0 of −1/β times the log of a constrained partition function where the spin
configurations are required to be “close” to the mesoscopic state m (this involves
a coarse grain procedure which is specified in Section 2). This is not as in the
classical Lebowitz–Penrose [1966; Penrose and Lebowitz 1971] procedure because
there are two scales, γ−1 for the horizontal interaction and γ−1/2 for the vertical
one. Thus, there could be oscillations on the scale γ−1/2 which do not appear in m
because the latter is defined by averages over ≈ γ−1 but which could affect the
free energy of m. These oscillations actually do not occur if λ is small; indeed by
Theorem 4.1 the optimal profile is quasiconstant on the scale γ−α with α ∈ (0, 1).
However, if λ is large enough we can provide an example where such a phenomena
occurs.

The paper is organized as follows. In Section 2 we introduce the microscopic
and mesoscopic models and enunciate the main results. In Section 3 we intro-
duce the coarse graining procedure used to prove the Lebowitz–Penrose limit. In
Section 4 we prove a key result, that is, Theorem 4.1, in which we provide a
technique to minimize the free energy. This theorem is needed to prove the main
results in Section 2. In Section 5 we prove the Lebowitz–Penrose limit for our
model. In Section 6 we prove the 0-limit result. The proofs of Theorem 2.4 and
Proposition 3.1 are deferred to Appendix A. In Appendix B, finally, we illustrate
the case in which Theorem 2.3 fails for the parameter λ large enough.

Similar model have been studied in [Cassandro et al. 2016; Fontes et al. 2014;
2015]. A numerical investigation of the mesoscopic limit for lattice gas model was
also recently tackled in [Colangeli et al. 2016; 2017].

This work is the first step of a research program pointed towards the charac-
terization of the surface tension associated to free energy in the thermodynamic
limit.

2. Model and main results

We consider an Ising spin system in a rectangle TL ,N = {(x, i)∈Z2
: x ∈ [0, L−1],

i ∈ [1, N ]}, L = γ−1`, with γ−1
∈ {2n

: n ∈ N} and ` ∈ {2k
: k ∈ Z}. We will

eventually take the limit γ → 0 keeping ` and N fixed. We denote by σ a spin
configuration σ ={σ(x, i)∈{−1, 1} : (x, i)∈TL ,N }∈ {−1, 1}TL ,N , and since we will
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consider periodic boundary conditions we extend periodically σ to a configuration
on Z2 (denoted by the same symbol) by setting σ(x, i)= σ(y, j) if (x, i)∼ (y, j)
where

(x, i)∼ (y, j) if y = x + kL and j = i + k ′N , k, k ′ ∈ Z. (2-1)

The interaction among spins is given by a highly anisotropic Kac potential which
will be defined in terms of a function J (r), r ∈ R: we suppose that J (r) is a
nonnegative C2 function with

∫
J (r) dr = 1 supported by |r | ≤ 1. We then define

for any x, y in R

Jγ 1/2(x, y) := γ 1/2 J (γ 1/2
|x − y|), Jγ (x, y) := γ J (γ |x − y|). (2-2)

The Hamiltonian of the system (with periodic boundary conditions) is then defined
as

Hγ,λ(σ )=
N∑

i=1

[
−

1
2

∑
x,y∈[0,L−1]∩Z

{
1{x 6=y} Jγ (x, y)σ (x, i)σ (y, i)

−λJγ 1/2(x, y)σ (x, i)(σ (y, i−1)+σ(y, i+1))
}

−

∑
x∈[0,L−1]∩Z
y /∈[0,L−1]∩Z

{
Jγ (x, y)σ (x, i)σ (y, i)

−λJγ 1/2(x, y)(σ (y, i−1)+σ(y, i+1))
}]
. (2-3)

Thus, the range of the vertical interaction is much shorter than the range of the
horizontal one.

We denote by µβ,γ,λ the Gibbs measure at inverse temperature β:

µβ,γ,λ(σ )=
e−βHγ,λ(σ )

Zβ,γ,λ
with

Zβ,γ,λ =
∑
σ

e−βHγ,λ(σ ),

being interested in the mesoscopic limit γ → 0. The aim is to compute the limiting
free energy and the probability of mesoscopic states.

A mesoscopic state is a measurable function m on T`,N =[0, `]×{1, . . . , N }with
values in [−1, 1]. We extend m periodically by setting m(r, i)=m(r ′, j) if (r, i)∼
(r ′, j), which means r ′ = r + k` and j = i + k ′N , k, k ′ ∈ Z. The correspondence
between spin configurations σ and mesoscopic states m is via coarse graining,
namely by comparing averages. The “microscopic length” used for averaging is
γ−α, α ∈ (0, 1), and to avoid taking integer parts we suppose α a rational number.
We tacitly suppose that γ is small enough so that γ−1 and therefore also L are
integer multiples of γ−α.
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Definition 2.1 (partition and empirical averages). Let α and γ as above. We define
for any k ∈ Z

C (α)
k,i := {(x, i) ∈ R×Z : kγ−α ≤ x < (k+ 1)γ−α}.

The collection C(α) of all C (α)
k,i defines a partition of R×Z. Moreover, C(α) ∩Z2

paves exactly TL ,N : namely any C (α)
k,i ∩ Z2 is either contained in TL ,N or in its

complement.
Given a spin configuration σ we then define

σ (α)(x, i) := γ α
∑

y∈C (α)
k,i ∩Z2

σ(y, i), where k is such that (x, i) ∈ C (α)
k,i (2-4)

and σ (α) is a function with values in M (α) where

M (α)
:=

{
−1,−1+

2
γ−α

, . . . , 1−
2
γ−α

, 1
}
. (2-5)

Analogously, given a mesoscopic state m ∈ L∞(T`,N ; [−1, 1]) we set

m(α)(x, i) := γ α
∫ (k+1)γ−α

kγ−α
m(γ r, i) dr (2-6)

where k is such that (x, i) ∈ C (α)
k,i and m(α) is a function with values in [−1, 1].

We next specify in which sense a spin configuration σ “recognizes” a meso-
scopic state m and use this notion to define the free energy and the probability
associated to a mesoscopic state.

Definition 2.2. σ “recognizes” m, and we write σ ≈α m if

|σ (α)(x, i)−m(α)(x, i)| ≤ 2γ α for all (x, i) ∈ TL ,N (2-7)

(recall that, by flipping a spin, σ (α)(x, i) changes by 2γ α). We then define the
finite volume free energy of the mesoscopic state m as

F (α)β,γ,λ(m) := −
1

βγ−1 log Z (α)β,γ,λ(m), (2-8)

where
Z (α)β,γ,λ(m) := Zβ,γ,λ({σ ≈α m})=

∑
σ :σ≈αm

e−βHγ,λ(σ ).

Analogously we define the Gibbs probability of the mesoscopic state m as

µβ,λ,γ [σ ≈
α m] =

Z (α)β,γ,λ(m)

Zβ,γ,λ
.

The main result in this paper is this:



A MODEL FOR INTERFACES AND ITS MESOSCOPIC LIMIT 271

Theorem 2.3. For any α ∈ (0, 1), any λ ∈ (0, 1/(8β)), and any mesoscopic state
m ∈ L∞(T`,N , [−1, 1]),

lim
γ→0

F (α)β,γ,λ(m)= Fβ,λ(m) (2-9)

where

Fβ,λ(m)=−
1
2

N∑
i=1

∫ `

0

∫ `

0
J (r, r ′)m(r, i)m(r ′, i) dr dr ′

−
λ

2

N∑
i=1

∫ `

0
m(r, i)(m(r, i + 1)+m(r, i − 1)) dr

−
1
β

N∑
i=1

∫ `

0
I (m(r, i)) dr (2-10)

and

I (m)=−
1+m

2
log

1+m
2
−

1−m
2

log
1−m

2
. (2-11)

The following two theorems are essentially a corollary of Theorem 2.3. The
first one is about free energy.

Theorem 2.4. Let 0< λ < 1/(8β) and α ∈ (0, 1). Then

− lim
γ→0

1
βγ−1 log Zβ,γ,λ = inf

m∈L∞(T`,N ;[−1,1])
Fβ,λ(m). (2-12)

Moreover, if β(1+ 2λ) > 1, then (recalling (2-11) for notation)

inf
m

Fβ,λ(m)= N`
(
−

b
2

m2
bβ −

I (mbβ)

β

)
, b = 1+ 2λ, (2-13)

where mbβ is the positive solution of the equation

mbβ = tanh{βλmbβ}. (2-14)

If instead β(1+ 2λ)≤ 1, then

inf
m

Fβ,λ(m)=
N`
β

log( 1
2). (2-15)

The next theorem is about large deviations; on the general issue see for instance
[Ellis 2006].

Theorem 2.5. Let 0 < λ < 1/(8β), α ∈ (0, 1), and m ∈ L∞(T`,N ; [−1, 1]) be a
mesoscopic state; then

lim
γ→0

γ logµβ,λ,γ [σ ≈(α) m] = −(Fβ,λ(m)− inf
m′

Fβ,λ(m′)). (2-16)
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The theorems are proved in the next sections; here we make some remarks on
Theorem 2.3. We note in particular that the limit free energy of a mesoscopic state
is independent of the coarse graining parameter α, a fact to some extent unexpected.

The point is that the partition function Z (α)β,γ,λ(m) is clearly an increasing function
of α because the constraint σ ≈α m is weakened when increasing α. In particular
the result contained in Theorem 2.3 shows that this effect is negligible in the limit
γ → 0. The basic idea in the proofs goes back to Lebowitz and Penrose, and it is
based on a coarse graining with grain lengths which must be large with respect to
the lattice spacing but small with respect to the range of the interaction. Following
Lebowitz and Penrose we use a coarse graining with grain length γ−α

′

with α′ < 1
2

and γ−α
′

≤ γ−α. We then obtain an estimate for the logarithm of the partition
function characterized to the leading orders (as γ → 0) by a nonrescaled functional

Fβ,γ,λ(m)

=−
1
2

N∑
i=1

∫ γ−1`

0

∫ γ−1`

0
Jγ (r, r ′)m(r, i)m(r ′, i) dr dr ′

−
λ

2

N∑
i=1

∫ γ−1`

0

∫ γ−1`

0
Jγ 1/2(r, r ′)m(r, i)(m(r ′, i − 1)+m(r ′, i + 1)) dr dr ′

−
1
β

N∑
i=1

∫ γ−1`

0
I (m(r, i)) dr, (2-17)

where m is constant on the scale γ−α
′

used in the coarse graining.
To simplify the argument, let us assume that the mesoscopic profile m(r, i)= 0

for all r and i . If the constraint σ ≈(α) m with α < 1
2 , then by letting α′ = α (so

that m ≡ 0) the functional F becomes F after rescaling.
If instead α > 1

2 , we cannot take α′ = α and there may be vertical energy gains
via suitable oscillations of the magnetization within the constraint σ ≈(α) m. This
is not just a theoretical possibility as it may indeed occur when λ is large. Let
βλ > 1; then

Fβ,γ,λ(m ≡ 0)=−N`
I (0)
β
.

Fix m =+mβλ (the positive solution of (2-14)) in the left half of each interval of
length γ−α and equal to −mβλ in the right half. Note that m satisfies the constraint
{σ ≈α m}. In Appendix B we prove that the rescaled free energy of m in the limit
of γ → 0 is equal to

N`
(
−λm2

βλ−
I (mβλ)

β

)
,

which is smaller than Fβ,γ,λ(0).
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Instead when λ is small as in Theorem 2.3, then the optimal m is constant on the
scale γ−α (when γ → 0). The proof of Theorem 2.3 is then reduced to prove that
the functional in (2-17) 0-converges [Braides 2002] to the functional in (2-10).

3. Coarse graining procedure

In this section we prove some estimates for the logarithm of the partition function
log Z (α)β,λ,γ (m) in terms of Fβ,λ,γ defined in (2-17). These estimates will be used in
the Lebowitz–Penrose limit discussed in the Section 5. A different coarse graining
procedure from the classical Lebowitz–Penrose result will be used. This is needed
due to the presence of two different scales of interaction along the horizontal and
vertical directions.

The partition function Zβ,λ,γ ( · ) is defined on the space of the configurations
while Fβ,λ,γ ( · ) is defined on the space of measurable functions. Recalling Defini-
tion 2.2, we consider M(α) the space of all functions which are constant on {C (α)

i,k }i,k∈Z

with values in M (α). For each empirical average m(α)( · ) there exists a function
m ∈M(α) such that |m(α)(x, i)−m(x, i)| ≤ 2γ−α for all (x, i)∈ T`,N . Furthermore,
given a function m ∈M(α) we define the set

{σ (α) := m} = {σ ∈ {−1, 1}TL ,N : σ (α)(x, i)= m(x, i) for all (x, i) ∈ TL ,N }.

The next results are the basic steps in establishing the Lebowitz–Penrose limit.

Proposition 3.1. For any α ∈ (0, 1
2), there is a constant c > 0 such that for any

m ∈M(α)

log Zβ,γ,λ({σ (α) = m})≤−βFβ,γ,λ(m)+βcε(γ, λ)|TL ,N |, (3-1)

log Zβ,γ,λ({σ (α) = m})≥−βFβ,γ,λ(m)−βcε(γ, λ)|TL ,N |, (3-2)

where Fβ,γ,λ is defined in (2-17) and

ε(γ, λ) := λγ 1/2−α
+ γ α log γ−α. (3-3)

The proof, which follows the standard techniques, we postpone to Appendix A.
For such choice of m the set {σ ≈α m}= {σ (α)=m}, and for any A⊆M(α) we define

Z (α)β,γ,λ(A)=
∑
m∈A

Zβ,γ,λ({σ (α) = m}).

Proposition 3.2. For any α ∈ (0, 1
2), there is a constant c > 0 such that for any

A⊆M(α)

log Z (α)β,γ,λ(A)≤−β inf
m∈A

Fβ,γ,λ(m)+βcε(γ, λ)|TL ,N |, (3-4)

log Z (α)β,γ,λ(A)≥−β inf
m∈A

Fβ,γ,λ(m)−βcε(γ, λ)|TL ,N |. (3-5)
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Proof. The proof is the same as that of Theorem 4.2.2.2 in [Presutti 2009]. �

Now we consider the case α > 1
2 . We cannot directly apply Proposition 3.1 since

the length of the vertical interaction is less than the length of the coarse graining.
The idea is to write the fixed average of m on the scale of γ−α as an average after
the coarse graining of scale γ−α

′

, α′ ∈ (0, 1
2).

For mα ∈M(α) we define the set

Amα
=

{
mα′∈M(α′)

:
1
γ−α

∫
C (α)

k,i

mα′(r ′, i) dr ′=mα(r, i) for all (r, i)∈T`,N

}
. (3-6)

Using the above definition we prove a same result as in Proposition 3.1:

Proposition 3.3. For any α ∈ (1
2 , 1), there is a constant c> 0 such that for any

mα ∈M(α)

log Zβ,γ,λ({σ (α)=mα})≤−β inf
mα′∈Amα

Fβ,γ,λ(mα′)+βcε(γ, λ)|TL ,N |, (3-7)

log Zβ,γ,λ({σ (α)=mα})≥−β inf
mα′∈Amα

Fβ,γ,λ(mα′)−βcε(γ, λ)|TL ,N |, (3-8)

where Fβ,γ,λ is defined in (2-17) and ε(γ, λ) in (3-3).

Proof. The proof follows by Propositions 3.1 and 3.2 �

4. Minimizer of the free energy functional

In this section we prove a technical result needed to prove Theorem 2.3. This key
theorem tells us that a minimizer of the free energy functional under the constraint∫

\

3
m3
= s is a “quasiconstant” function in a subset of 3⊂ T`,N (see (4-1)). So

there are not oscillations that can affect the minimum of the free energy.
Fix k ∈ηZ∩ [0, `], with η=γ dγ−αe. We define the set 3k=[kη, (k + 1)η] ×
{1, . . . , N }, its complement 3c

k=T`,N \3k , and the set 3k,i as the restriction of 3k

to the i-th column.
Let m3k ∈L∞(3k, [−1, 1]); we define the free energy functional restricted to 3k

F3k
β,γ,λ(m

3k )=−
1
2

N∑
i=1

∫
3k,i

m3k (r, i)
[∫

3k,i

J (r, r ′)m3k (r ′, i) dr ′

+ λ

∫
3k,i

Jγ−1/2(r, r ′)(m3k (r ′, i − 1)+m3k (r ′, i + 1)) dr ′
]

dr

−
1
β

N∑
i=1

∫
3k,i

I (m3k (r, i)) dr.

Let m3c
k ∈ L∞(3c

k, [−1, 1]); we define the conditioned free energy functional
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F3k
β,γ,λ(m

3k |m3c
k )

= F3k
β,γ,λ(m

3k )−

N∑
i=1

∫
3k,i

m3k (r, i)
∫
3c

k,i

J (r, r ′)m3c
k (r ′, i) dr ′ dr

− λ

N∑
i=1

∫
3k,i

m3k (r, i)
[∫

3c
k,i−1

Jγ−1/2(r, r ′)m3c
k (r ′, i−1) dr ′

+

∫
3c

k,i+1

Jγ−1/2(r, r ′)m3c
k (r ′, i+1) dr ′

]
dr,

where the set 3c
k,i is the set 3c

k restricted to the i-th column.
The following theorem is the most relevant contribution of this work.

Theorem 4.1. Take γ > 0, and define η := γ [γ−α] = γ 1/2(1+ γ−εγ−δζ ) where
ε∈ (0, 1

2), δ∈ (0,
1
2 − ε], and ζ >0 is small enough.

If β(η‖J‖∞ + 2λ)≤ 1
4 , then for all k ∈ ηZ ∩ [0, `], s ∈ [−1, 1]N , and m3c

k ∈

L∞(3c
k, [−1,1]) there exists a unique φ3k∈L∞(3k, [−1,1]) such that

∫

\

3k,i
φ3k =si

for all i , and

F3k
β,γ,λ(m

3k |m3c
k )≥ F3k

β,γ,λ(φ
3k |m3c

k ),

for any m3k ∈ L∞(3k, [−1, 1]) such that
∫

\

3k,i
m3k =si for all i .

Moreover, there exists a constant C>0 such that, for any r ∈3k,i ,

|φ3k (r, i)− si |≤C‖∇rφ‖∞,3k,i
η (4-1)

where 3k,i=[kη+ γ 1/2(1+ γ−ε), (k+ 1)η− γ 1/2(1+ γ−ε)].

Proof. If si=±1 for all i , we have m3k =±1 almost everywhere and the theorem
follows easily. Now we take |si |<1 for all i and we use Lagrange multipliers. In
the following we omit the dependence on k and we keep only the dependence on
the column i ; then we take 3=3k and 3i=3k,i .

For all h∈RN we define

F3,hβ,γ,λ(m
3,m3c

)= F3β,γ,λ(m
3
|m3c

)−

N∑
i=1

hi

∫
3i

m3(r, i) dr.

For all r ∈[kη, (k+ 1)η) we define the vectors

m3(r)= (m3
i (r))

N
i=1= (m

3(r, 1), . . . ,m3(r, N ))

and

(J ∗m3)(r)= ((J ∗m3
i )(r))

N
i=1=

(∫
3i

J (r, r ′)m3(r, i) dr
)N

i=1
.
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In this notation the free energy becomes

F3,hβ,γ,λ(m
3
|m3c

)

=−
1
2

N∑
i=1

∫
3i

m3
i (r)((J ∗m3

i )(r)+ λ(Jγ−1/2 ∗ (m3
i−1+m3

i+1))(r)) dr

−

N∑
i=1

∫
3i

m3
i (r)[(J ∗m3c

i )(r)− λ((Jγ−1/2 ∗m3c

i+1)(r)+ (Jγ−1/2 ∗m3c

i−1)(r))] dr

−

N∑
i=1

hi

∫
3i

m3
i (r) dr −

1
β

N∑
i=1

∫
3i

I (m3
i (r)) dr.

Let Ah(m3)= (Ai (m3))N
i=1, where

Ai (m3)= tanh(β[J ∗(m3
i +m3c

i )+λJγ−1/2 ∗(m3
i−1+m3c

i−1+m3
i+1+m3c

i+1)+hi ])

= Ai (mi ,mi+1,mi−1).

From general results1 the infimum of F3,hβ,γ,λ( · |m
3c
) is a minimum attained on

functions such that Ah(ψ
3)=ψ3. Thus, the set

Gh,m3c ={ψ3∈ L∞(3, [−1, 1]N ) :ψ3= Ah(ψ
3)}

is nonempty. We want to show that G is actually a singleton.

Step 1. Ah is a contraction.

Proof. We define the norm ‖Ah(m3)‖∞,N = max{i=1,...,N }‖Ai (m3)‖∞. Given
m3,m′3 we have, by the triangle inequality, the Lagrange theorem, and properties
of J ,

‖Ai (m3)− Ai (m′3)‖∞≤β(η‖J‖∞+ 2λ)‖m3
−m′3‖∞,N .

We observe that in this framework we can identify the set 3i+1 with the set 3i ,
and with an abuse of notation we call it 3. Then A is a contraction and there exists
a unique fixed point φ3,h such that

φ3,h= lim
n→∞

Ah(un) with un= Ah(un−1) and u0=s13.

The convergence is in the sup norm, and then it is uniform in h. �

Step 2. φ3,h is differentiable in h.

Proof. We prove by induction on n that un is differentiable in h with derivative

∂

∂h j
un,3

i = pi,n
[

J∗
∂

∂h j
un−1,3

i +λJγ−1/2∗

(
∂

∂h j
un−1,3

i−1 +
∂

∂h j
un−1,3

i+1

)
+δi, j

]
(4-2)

1See [Presutti 2009, Theorem 6.2.6.2].
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where

pi,n
=β cosh−2[β(J ∗ (u3,n−1

i +m3c

i )

+ λJγ−1/2 ∗ (u3,n−1
i−1 + u3,n−1

i+1 +m3c

i−1+m3c

i+1)+ hi
)]
.

Indeed Du0=0 and if un−1 is differentiable, Dun exists and it is given by (4-2).
Suppose ‖ ∂

∂h j
un−1,3

i ‖∞≤2β; then∥∥∥∥ ∂

∂h j
un,3

i

∥∥∥∥
∞

≤β(‖J‖∞η2β + 4λβ + 1)

by hypothesis 2β(‖J‖∞η+ 2λ)+ 1≤2.
Then φ3,h is differentiable on h and

∇hφ
3,h
= lim

n→∞
∇hun. �

Step 3. For all λ small enough, there exists exactly one function h(λ) such that

• φ3,h is the minimum of F3,hβ,γ,λ and

• H(λ, h(λ))=
∫

\

3
φ3,h dr − s=0.

Proof. If λ=0, every column is independent of the other columns; then for each
column we can find h0

i such that
∫

\

3
φλ,h

0
i dr=si .2 This implies that H(0, h0)=0. In

order to apply the implicit function theorem, we prove the invertibility of ∂H(λ,h(λ))
∂h .

We start by explicitly writing the derivative

∂H
∂h
=

∫

\

3

∂

∂h
Ah(φ

3,h) dr

=

∫

\

3

∂

∂h

(
tanh

{
β
[
J ∗ (φ3i +m3c

i )

+ λJγ−1/2 ∗ (φ3i−1+m3c

i−1+φ
3
i+1+m3c

i+1)+ hi
]})N

i=1 dr.

We define the square matrices P, K ∈MN (R):

Pi, j=

{
0 if i 6= j,
pi if i= j,

Ki, j= pi [J ∗ bi, j + λJγ−1/2 ∗ (bi+1, j + bi−1, j )]

where bi, j=
∂φ

3,h
i
∂h j

and

pi=β cosh−2
[β(J ∗ (φ3,hi +m3c

i )+λJγ−1/2 ∗ (φ
3,h
i−1 +φ

3,h
i+1 +m3c

i−1+m3c

i+1)+hi )].

We write the derivative with respect to h of H in terms of P and K :

∂

∂h
H=

∫

\

3

(K + P) dr=K + P= P(P−1K + I ).

2This follows from [Presutti 2009, Theorem 6.4.1.1].



278 MICHELE ALEANDRI AND VENANZIO DI GIULIO

We observe that

|(P−1K )i, j |≤
1∫

\

3
pi dr

∫

\

3

|Ki, j | dr

≤
1∫

\

3
pi dr

∫

\

3

pi‖(P−1K )i, j‖∞ dr≤‖(P−1K )i, j‖∞.

To prove the existence of the matrix (P−1K+I )−1 we show that
∑
∞

n=0(−P−1K )n<
∞, proving that supi

∑N
j=0(P

−1K )i, j ≤c<1.
We give an estimate for ‖bi, j‖∞. We recall that

bi, j= pi (J ∗ bi, j + λJγ−1/2 ∗ (bi−1, j + bi+1, j )+ δi, j ).

Then

‖bi, j‖∞≤
‖pi‖∞

1−‖pi‖∞η‖J‖∞
(λ(‖bi−1, j‖∞+‖bi+1, j‖∞)+ δi, j ). (4-3)

We define for all i ∈{1, . . . , N } and a∈N

qi=
‖pi‖∞

1−‖pi‖∞η‖J‖∞
,

�i
a={σ ∈Za

:σ(0)= i, σ (k)≡σ(k− 1)± 1 mod N }.

We observe that
qi ≤

β

1−βη‖J‖∞
, |�i

a|=2a.

Iterating the inequality (4-3) a times we obtain

‖bi, j‖∞≤
∑
σ∈�i

a

qσ(0) · · · qσ(a)‖bσ(a), j‖∞λ
a
+

a−1∑
n=0

∑
σ∈�i

n

qσ(0) · · · qσ(n)λnδσ(n), j

≤

(
2βλ

1− η‖J‖∞β

)a

‖bσ(a), j‖∞+ qσ(0)
a−1∑
n=0

(
2βλ

1− η‖J‖∞β

)n

δσ(n), j .

If the number of iterations is big enough, then the Dirac delta is 1. We define
n :=n(i − j) where

n(i − j)=
{
|i − j | if |i − j |≤dN/2e,
N − |i − j | otherwise.

(4-4)

Then δσ(n), j = 1 if the number of iterations is at least n(i − j). Taking the limit
a→∞,

‖bi, j‖∞≤qσ(0)
∞∑

n=[i− j]

(
2βλ

1− η‖J‖∞β

)n

δσ(n), j ≤qi
θn(i− j)

1− θ
, (4-5)

with θ=2βλ/(1− η‖J‖∞β)<1.
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Let r ∈3, and consider

(P−1K )i, j (r)= (J ∗ bi, j )(r)+ λ(Jγ−1/2 ∗ (bi+1, j + bi−1, j ))(r).

Using (4-5) we have

N∑
j=1

‖(P−1K )i, j‖∞≤
α

1− θ

N∑
j=1

θ (minr=i−1,i,i+1 n(r− j))

1− θ
≤

2α
(1− θ)2

where α= (η‖J‖∞+ 2λ)β/(1− η‖J‖∞β).
Now keeping in mind that β(η‖J‖∞+ 2λ)≤ 1

4 we obtain

2α
(1− θ)2

≤
8
9(1− η‖J‖∞β).

For η small enough the matrix (P−1K + I ) can be inverted and we find the function
h(λ)= h such that H(λ, h(λ))= 0. For m3 such that

∫
\

3
m3
= s the conditioned

free energy

F3,hβ,γ,λ(m
3
|m3c

)= F3,hβ,γ,λ(m
3
|m3c

)+ h
N∑

i=1

|3i |si

≥ F3,hβ,γ,λ(φ
3,h
|m3c

)+ h
N∑

i=1

|3i |si

= F3,hβ,γ,λ(φ
3,h
|m3c

). �

We now prove the last part of the theorem. Let 3i = (kη + γ 1/2(1 + γ−ε),
(k+ 1)η− γ 1/2(1+ γ−ε)), and define

si=

∫

\

3i

φ
3,h
i (r) dr.

We observe that, for such a constant c>0,

|si − si |≤

(
|3i |

|3|
− 1

) ∫

\

3i

|φ
3,h
i (r)| dr +

|3 \3i |

|3|

∫

\

3\3i

|φ
3,h
i (r)| dr

≤cγ δ≤cη (4-6)

because of the choice of η. Fix r ′∈3i :

|si −φ
3,h
i (r ′)|≤C

∥∥∥∥ ∂∂r
φ
3,h
i

∥∥∥∥
∞

η,

where
∥∥∥ ∂
∂r
φ
3,h
i

∥∥∥
∞

=supr∈3i

∣∣∣ ∂
∂r
φ
3,h
i (r)

∣∣∣.
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It remains to prove that ‖ ∂
∂r φ

3,h
i ‖∞<∞. We shall use the recursive formula

∂

∂r
φ
3,h
i (r)

= pi

[
∂

∂r
J ∗ (φ3,hi +m3c

i )+ λ
∂

∂r
Jγ−1/2 ∗ (φ

3,h
i−1 +φ

3,h
i+1 +m3c

i−1+m3c

i+1)

]
. (4-7)

If we iterate (4-7) a times we obtain

∂

∂r
φ
3,h
i (r)=

∑
σ∈�i

a

pσ(0) · · · pσ(a)λa Jγ−1/2 ∗
(a−1)
· · · ∗

∂ J
∂r
∗ (φ

3,h
σ(a)+m3c

σ(a))

+

a−1∑
n=0

∑
σ∈�i

n

pσ(0) · · · pσ(n)λn+1 Jγ−1/2 ∗
(n)
· · · ∗

∂

∂r
φ
3,h
σ(n).

Observing that, at each iteration n, if n<γ−ε, then (Jγ−1/2 ∗
(n)
· · · ∗m3c

σ(n))(r)=0
by the choice of the set 3. Taking the norm,∥∥∥∥ ∂∂r

φ
3,h
i

∥∥∥∥
∞

≤η‖∇ J‖∞β
a∑

n=0

(2βλ)n + (2βλ)a‖∇ J‖∞2γ−1/2

where we took the derivative of Jγ−1/2 in the last term indexed by a. If a=dγ−εe,
then

lim
γ→0

(2βλ)a‖∇ J‖∞2γ−1/2
=0

and ∥∥∥∥ ∂∂r
φ
3,h
i

∥∥∥∥
∞

≤c′η‖∇ J‖∞β<∞,

for some constant c′>0. Equation (4-6) gives

|φ3i (r)− si |≤Cη for all r ∈3i ,

and the theorem is proved. �

5. The Lebowitz–Penrose limit

Proof of Theorem 2.3. The proof is divided into two parts: α< 1
2 and α> 1

2 . We will
use the results of the previous sections in both cases. While for α< 1

2 we can use
them straightforwardly in the Lebowitz–Penrose procedure, for α> 1

2 the technical
Theorem 4.1 is needed in order to control the fluctuations.

Case 1 (α∈ (0, 1
2)). Let m∈ L∞(T`,N ; [−1, 1]); we prove that

lim
γ→0

F (α)β,γ,λ(m)= Fβ,λ(m). (5-1)
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Proof. Given a mesoscopic state m we choose a function mα ∈M(α) that “recog-
nizes” m (see Definition 2.2):

lim
γ→0

F (α)β,γ,λ(m)= lim
γ→0
−

1
βγ−1 log Zβ,γ,λ({σ (α)=mα}).

We apply Proposition 3.1 and the change of coordinates mα(r, i) :=mα(γ
−1r, i).

We shall show that |Fβ,γ,λ(m(α))− Fβ,λ(m)|→0 as γ→0 where

Fβ,γ,λ(m)=−
1
2

N∑
i=1

∫ `

0
m(r, i)

(∫ `

0
J (r, r ′)m(r ′, i) dr ′

+ λ

∫ `

0
Jγ−1/2(r, r ′)(m(r ′, i − 1)+m(r ′, i + 1)) dr ′

)
dr

−
1
β

N∑
i=1

∫ `

0
I (m(r, i)) dr. (5-2)

By the Lebesgue differentiation theorem [Rudin 1987] we know that m(α) L1

−→m
(see (2-6)); thus, by the triangle inequality the limit can be divided into three parts.
The first term is∣∣∣∣∫ `

0

∫ `

0
Jγ−1/2(r, r ′)m(α)(r, i)m(α)(r ′, i − 1) dr dr ′−

∫ `

0
m(r, i)m(r, i − 1) dr

∣∣∣∣
≤

∣∣∣∣∫ `

0
m(α)(r, i)

[∫ `

0
Jγ−1/2(r, r ′)m(α)(r ′, i − 1) dr ′−m(r, i − 1)

]
dr
∣∣∣∣

+

∣∣∣∣∫ `

0
m(r, i − 1)[m(α)(r, i)−m(r, i)] dr

∣∣∣∣.
We observe that

Jγ−1/2 ∗m(r)=
∫ `

0
Jγ−1/2(r, r ′)m(r ′) dr ′

converges to the Dirac delta as γ→0; then by the dominated convergence theorem∣∣∣∣∫ `

0

∫ `

0
Jγ−1/2(r, r ′)m(α)(r, i)m(α)(r ′, i−1) dr dr ′−

∫ `

0
m(r, i)m(r, i−1) dr

∣∣∣∣→0.

The other two terms converge to 0 by the dominated convergence theorem. And
(5-1) is proved. �

Case 2 (α∈ (1
2 , 1)). By Proposition 3.3 and using the same notations introduced in

the case α∈ (0, 1
2), we have

lim
γ→0

F (α)β,γ,λ(m)= lim
γ→0

γ inf
mα′∈Amα

Fβ,γ,λ(mα′)= lim
γ→0

inf
mα′ ( · )=mα′ (γ

−1
· )

mα′∈Amα

Fβ,γ,λ(mα′).
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In order to pass the limit through the infimum, we need to prove a result of
0-convergence. Let us start defining a notion of convergence:

Definition 5.1 (?-convergence). Set η :=γ [γ−α]; then for all sequences {mγ } and
m in L∞(T`,N , [−1, 1]) we say that mγ

?
−→m if

lim
γ→0

N∑
i=1

d`/ηe∑
k=1

∣∣∣∣ ∫ \
D(α)

k,i

mγ (r ′, i) dr ′−
∫

\

D(α)
k,i

m(r, i) dr
∣∣∣∣=0 (5-3)

where D(α)
k,i ={(x, i)∈R×Z :kη≤ x≤ (k+ 1)η}.

We can write (5-3) as limγ d(mγ ,m)=0, since d is actually a distance.

Remark. Following the same notation of the case α < 1
2 , we observe that the

sequence {mα}γ
?
−→m as γ→0.

The following 0-convergence result will be proved in the next section.

Proposition 5.2. Let Fβ,γ,λ be as in (5-2) and Fβ,λ as in (2-10). Then

Fβ,λ=0 lim
γ→0

Fβ,γ,λ

according to the ?-convergence.

We move to the last part of proof of Theorem 2.3.
We start by proving the lower bound. For each δ>0 we can take γ small enough

such that there exists a function mα( · )=mα(γ
−1
· ) such that d(mα,m)<δ; then

inf
mα′ ( · )=mα′ (γ

−1
· )

mα′∈Amα

Fβ,γ,λ(mα′)≥ inf
m′∈L∞(T`,N ,[−1,+1])

d(m′,m)<δ

Fβ,γ,λ(m′).

Taking the infimum limit with respect to γ and the supremum with respect to δ,

lim inf
γ→0

F (α)β,γ,λ(m)≥sup
δ>0

lim inf
γ→0

inf
m′∈L∞(T`,N ,[−1,+1])

d(m′,m)<δ

Fβ,γ,λ(m′)

≥ Fβ,λ(m).

The last inequality follows by definition of the 0-limit3 and Proposition 5.2.
Now we consider the upper bound. Let m̃α′ be the closest element in Amα

to
mα, namely

|mα(r, i)− m̃α′(r, i)|≤
2

γ−α
′

for all (r, i)∈TL ,N . (5-4)

3See [Braides 2002].
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Such a magnetization exists by the definition of the sets M (α′) and M (α). We define
m̃α′(r, i)= m̃α′(γ

−1r, i), for all (r, i); then

lim sup
γ→0

F (α)β,γ,λ(m)= lim sup
γ→0

inf
mα′ ( · )=mα′ (γ

−1
· )

mα′∈Amα

Fβ,γ,λ(mα′)

≤ lim sup
γ→0

Fβ,γ,λ(m̃α′)

≤ Fβ,λ(m).

The last inequality follows from Proposition 5.2 and (5-4). �

6. 0-limit

In this section we shall prove the existence of the 0-limit of Fβ,γ,λ. Definition 5.1
of ?-convergence involves the average of m on sets of length γ [γ−α] = η. This
implies a constraint on the minimizer of the free energy functional, and at this
level we use the Theorem 4.1.

Proof of Proposition 5.2. We start with the lower bound: for all {mγ } such that
mγ

?
−→m,

lim inf
γ→0

Fβ,γ,λ(mγ )≥ Fβ,λ(m).

Fix η,3k as in Theorem 4.1; we set n= `/η and observe that T`,N =
⋃n

k=13k .
We define m3k

γ := mγ |3k , the restriction of mγ to the set 3k . Fix 31; then by
Theorem 4.1 there exists φ31

γ such that

Fβ,γ,λ(mγ )= F31
β,γ,λ(m

31
γ |m

3c
1

γ )+ F
3c

1
β,γ,λ(m

3c
1

γ )

≥ F31
β,γ,λ(φ

31
γ |m

3c
1

γ )+ F
3c

1
β,γ,λ(m

3c
1

γ )

= F31
β,γ,λ(m

1
γ )

where m1
γ =mγ I3c

1
+φ31

γ I31 and IA is the indicator function of the set A.
We iterate this procedure for each k, and we define m1,...,n

γ ; then

Fγ (mγ )≥ Fγ (m1,...,n
γ ).

Lemma 6.1. Let m1,...,n
γ be as above. We have

lim
γ→0

N∑
i=1

∫ `

0
|m1,...,n

γ (r, i)−m(r, i)| dr=0.
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Proof. For any i ∈{1, . . . , N } we split the integral following the partition given by
3k,i , and we consider

n∑
k=1

∫
3k,i

∣∣∣∣m1,...,n
γ (r, i)±

∫

\

3k,i

m1,...,n
γ (r ′, i) dr ′−m(r, i)

∣∣∣∣ dr.

Applying the triangle inequality, the fist term converges by definition of m1,...,n
γ

and the Lebesgue differentiation theorem. The second term can be estimated as

n∑
k=1

∫
3k,i

∣∣∣∣m1,...,n
γ (r, i)−

∫
\

3k,i

m1,...,n
γ (r ′, i) dr ′

∣∣∣∣ dr

≤

n∑
k=1

∫
3k,i

|m1,...,n
γ (r, i)− s| dr +

∫
Ek

∣∣∣∣m1,...,n
γ (r, i)−

∫

\

3k,i

m1,...,n
γ (r ′, i) dr ′

∣∣∣∣ dr

≤

n∑
k=1

|3k,i |ηc+ |Ek |c′

where

3k,i= (kη+ γ 1/2(1+ γ−ε), (k+ 1)η− γ 1/2(1+ γ−ε))

and Ek=3k,i \3k,i . To finish the proof we just observe that the size of Ek is of
the order of γ 1/2(1+ γ−ε). �

To prove the lower bound we separately consider the convergence of the three
terms of Fβ,γ,λ.

The first term is

N∑
i=1

1
2

∣∣∣∣∫ `

0

∫ `

0
J (r, r ′)(m1,...,n

γ (r, i)m1,...,n
γ (r ′, i)−m(r, i)m(r ′, i)) dr dr ′

∣∣∣∣.
Using the triangle inequality with m1,...,n

γ (r, i)m(r, i), the convergence follows from
Lemma 6.1.

The second term is

N∑
i=1

λ

2

∣∣∣∣∫ `

0

∫ `

0
m1,...,n
γ (r, i)Jγ−1/2(r, r ′)[m1,...,n

γ (r ′, i+1)+m1,...,n
γ (r ′, i−1)] dr dr ′

−

∫ `

0
m(r, i)[m(r, i + 1)+m(r, i − 1)] dr

∣∣∣∣.
We only discuss the term m( · , i)m( · , i + 1) because for the other term the proof
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is analogous. We sum and subtract for each i the term m1,...,n
γ (r, i + 1); then∣∣∣∣∫ `

0
m1,...,n
γ (r, i)

[∫ `

0
Jγ−1/2(r, r ′)m1,...,n

γ (r ′, i + 1) dr ′±m1,...,n
γ (r, i + 1)

]
dr

−

∫ `

0
m(r, i)m(r, i + 1) dr

∣∣∣∣.
We split the first integral in the sum of integrals

n∑
k=1

∫
3k,i
+
∫

Ek
where

3k,i= (kη+ 2γ 1/2(1+ γ−ε), (k+ 1)η− 2γ 1/2(1+ γ−ε))

and Ek=3k,i \3k,i . If r ∈3k,i , we have that
∫
3k,i

Jγ−1/2(r, r ′) dr ′=1; then

n∑
k=1

∣∣∣∣∫
3k,i

m1,...,n
γ (r, i)

∫
3k,i

Jγ−1/2(r, r ′)(m1,...,n
γ (r ′, i + 1)−m1,...,n

γ (r, i + 1)) dr ′ dr
∣∣∣∣

≤

n∑
k=1

∫
3k,i

∫
3k,i

Jγ−1/2(r, r ′)|m1,...,n
γ (r ′, i + 1)−m1,...,n

γ (r, i + 1)| dr ′ dr

≤

n∑
k=1

|3k,i |ηc

because m1,...,n
γ is almost constant in 3k,i . While integrating over Ek ,

n∑
k=1

∣∣∣∣∫
Ek

m1,...,n
γ (r, i)

∫
3k,i

Jγ−1/2(r, r ′)(m1,...,n
γ (r ′, i + 1)−m1,...,n

γ (r, i + 1)) dr ′ dr
∣∣∣∣

≤

n∑
k=1

∫
Ek

∫
E?k

Jγ−1/2(r, r ′)|m1,...,n
γ (r ′, i + 1)−m1,...,n

γ (r, i + 1)| dr ′ dr

≤c
n∑

k=1

|Ek ||E?k |γ
−1/2
‖J‖∞

with c>0 a constant. The size of |E?k | is of the same order as |Ek | + 2γ 1/2. In
the end the term

N∑
i=1

λ

2

∣∣∣∣∫ `

0
(m1,...,n

γ (r, i)m1,...,n
γ (r, i + 1)−m(r, i)m(r, i + 1)) dr

∣∣∣∣
can be estimated using Lemma 6.1. All the other terms that we did not consider
can be estimated in the same way.
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For the third term, we consider lim infγ Fβ,γ,λ(m1,...,n
γ ). Then

lim inf
γ→0

N∑
i=1

−
1
β

∫ `

0
I (m1,...,n

γ )(r, i) dr

= lim inf
γ→0

N∑
i=1

−
1
β

n∑
k=1

∫
3k,i

I (m1,...,n
γ (r, i)) dr

≥ lim inf
γ→0

N∑
i=1

−
1
β

n∑
k=1

|3k,i |I
( ∫

\

3k,i

m1,...,n
γ (r, i) dr

)

= lim inf
γ→0

N∑
i=1

−
1
β

∫ `

0
I
( ∫

\

3k(r),i

m1,...,n
γ (r ′, i) dr ′

)
dr

by Jensen’s inequality. We write the sum over k as an integral over r observing
that the function I is constant for all r in the set 3k,i . Moreover, there exists a
subsequence {m1,...,n

γ j
} that achieves the infimum limit:

lim inf
γ→0

N∑
i=1

−
1
β

∫ `

0
I
( ∫

\

3k(r),i

m1,...,n
γ (r ′, i) dr ′

)
dr

= lim
γ j→0

N∑
i=1

−
1
β

∫ `

0
I
( ∫

\

3k j (r),i

m1,...,n
γ j

(r ′, i) dr ′
)

dr.

Let m̃γ (r, i)=
∫

\

3k j (r),i
m1,...,n
γ j

(r ′, i) dr ′; then by Lemma 6.1 m̃γ
L1

−→ m and there
exists a subsubsequence, which we denote again {m1,...,n

γ j
}, that converges to m

almost everywhere. Then by the dominated convergence theorem

lim
γ→0
−

1
β

∫ `

0
I
( ∫

\

3k j (r),i

m1,...,n
γ j

(r ′, i) dr ′
)

dr=−
1
β

∫ `

0
I (m(r, i)) dr

and

lim inf
γ→0

Fβ,γ,λ(mγ )≥ lim inf
γ→0

Fβ,γ,λ(m1,...,n
γ )

= lim
γ j→0

Fβ,γ,λ(m1,...,n
γ j

)

= Fβ,λ(m).

Now we prove the upper bound. There exists a sequence {mγ } such that mγ
?
−→m

and

lim
γ→0

Fβ,γ,λ(mγ )= Fβ,λ(m).
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We take mγ =s=
∫

\

3k,i
m(r, i) dr on 3k,i⊂[0, `] for all k. Then from the dominated

convergence theorem

lim
γ→0
|Fβ,γ,λ(mγ )− Fβ,λ(m)|=0.

And Fβ,λ(m) is the 0-limit of Fβ,γ,λ(mγ ). �

Appendix A: Proofs of Proposition 3.1 and Theorem 2.4

Proof of Proposition 3.1. The proof follows the guidelines of Section 4.2.2 of
[Presutti 2009] taking care of the two different scales of interaction γ−1 and γ−1/2.

We define

Uγ,λ(m)= Fβ,γ,λ(m)+
N∑

i=1

1
β

∫ γ−1`

0
I (m(r, i)) dr

where Fβ,γ,λ is defined as in (2-17). We want to estimate |Hγ,λ(σ )−Uγ,λ(σ
(α))|,

and we start taking (x, i), (y, j)∈TL ,N and defining

Ĵγ ((x, i), (y, j))= Jγ (x, y)1i= j + Jγ 1/2(x, y)1i 6= j .

Recall that for each point (x, i) there is an integer k such that (x, i)∈C (α)
k,i . Let

Ĵ (α)γ ((x, i), (y, j))=
∫

C (α)
k,i ×C (α)

h, j

Ĵγ ((r, i), (r ′, j)) dr dr ′.

We want to give a bound of | Ĵγ ((x, i), (y, j))− Ĵ (α)γ ((x, i), (y, j))|. We consider
only the worst case, namely the vertical interaction, i 6= j . In this case

|Jγ 1/2(x, y)− Ĵ (α)γ ((x, i), (y, j))|≤
∫

\

C (α)
k,i ×C (α)

h, j

|Jγ 1/2(x, y)− Jγ 1/2(r, r ′)| dr dr ′

≤cγ 1−α1|x−y|≤2γ−1/2 .

Let C and C ′ be two elements in the partition C(α), and consider two points
(r, i)∈C and (r ′, i ′)∈C ′. As in the previous estimate, we consider the worst case.
If i 6= j , by the estimate above∣∣∣∣ ∑
(x,i)∈C

∑
(y, j)∈C ′

1|(x,i)6=(y, j)| Ĵγ ((x, i), (y, j))σ (x, i)σ (y, j)

−

∑
(x,i)∈C

∑
(y, j)∈C ′

1|(x,i) 6=(y, j)| Ĵ (α)γ ((x, i), (y, j))σ (x, i)σ (y, j)
∣∣∣∣

≤c′|C |2γ 1−α1|r−r ′|≤3γ−1/2 . (A-1)
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Then
|Hγ,λ(σ )−Uγ,λ(σ

(α))|≤c′|TL ,N |λγ
1/2−α. (A-2)

We prove (3-1) writing the definition of the partition function

log(Zβ,γ,λ({σ (α)=m}))≤βλγ 1/2−α
|TL ,N |c−βUγ,λ(m)+ log(card{σ (α)=m}).

We can observe that

log(card{σ (α)=m})

= log
(∏

Ci,k

card
{
σ ∈{−1, 1}Ck,i :

∑
(x,i)∈Ck,i

σ(x, i)=m(r, i)γ−α for all (r, i)
})

= log
(∏

Ck,i

e|Ck,i |ICk,i (m(r,i))
)

and4

|ICk,i (m(r, i))− I (m(r, i))|≤cγ α log γ−α. (A-3)

At the end collecting the previous inequalities we have

log(Zβ,γ,λ({σ (α)=m}))≤−βFβ,γ,λ(m)+βc|TL ,N |(λγ
1/2−α

+ γ α log(γ−α)).

The inequality (3-2) is proved in a similar way, so the proposition is proved. �

Proof of Theorem 2.4. We start by introducing the following proposition.

Proposition A.1 (Lebowitz–Penrose limit). Let Zβ,γ,λ := Zβ,γ,λ(M(α′)) with α′ ∈
(0, 1

2); then

lim
γ→0

1
β|TL ,N |

log Zβ,γ,λ= pβ,λ

where pβ,λ=supm∈[−1,+1]{−φβ,λ(m)} and

φβ,λ(m)=−
1+ 2λ

2
m2
−

1
β

I (m). (A-4)

Proof. For the proof see Theorem 4.2.1.1 in [Presutti 2009]. �

We consider

γ logµβ,γ,λ[σ ≈α m]=γ log
( Z (α)β,γ,λ(m)∑

m′∈M(α) Z (α)β,γ,λ(m′)

)
=γ log(Z (α)β,γ,λ(m))− γ log

( ∑
m′∈M(α)

Z (α)β,γ,λ(m
′)

)
.

4The definition of ICk,i and the inequality (A-3) can be found in Appendix A of [Presutti 2009]
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By Theorem 2.3 for α∈ (0, 1)

lim
γ→0

γ log(Z (α)β,γ,λ(m))=−Fβ,λ(m).

If α< 1
2 by Propositions 3.1 and A.1, we have that

lim
γ→0
−
γ

β
log Zβ,γ,λ= inf

m′∈M(α)
Fβ,λ(m′).

For α> 1
2 , instead,

−γ log
∑

m′∈M(α)

Z (α)β,γ,λ(m
′)=−γ log

∑
m′∈M(α)

∑
σ :σ≈αm′

e−βHγ,λ(σ )

=−γ log
∑

m′∈M(α)

∑
mα′∈Am′α

∑
σ :σ≈α

′mα′

e−βHγ,λ(σ )

=−γ log(Zβ,γ,λ)

observing that

inf
m′

Fβ,λ(m′)= sup
h∈[−1,+1]

{−φβ,λ(h)} · `N= pβ,λ`N .

Then

lim
γ→0

γ logµβ,λ,γ [σ ≈(α)m]=−(Fβ,λ(m)− inf
m′

Fβ,λ(m′)). �

Appendix B: A counterexample

In this appendix we shall show that Theorem 2.3 cannot be extended to the case
βλ>1; indeed for the mesoscopic state m≡0

lim inf
γ→ 0

F (α)β,γ,λ(0)< Fβ,λ(0).

If α > 1
2 we can take a sequence mα where mα is equal, in the first half of

each interval D(α)
r , to mβλ and in the second half to −mβλ; we obtain m(α)

α ≡ 0.
Recalling Definition 5.1, we have that mα

?
−→m≡0. By the definition of F (α)β,γ,λ and

Proposition 3.2,

F (α)β,γ,λ(0)≤
1
γ−1 Fβ,γ,λ(mα)+ ε(γ, λ).
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Now we observe that

Fβ,γ,λ(mα)=
1
4

N∑
i=1

∫ γ−1`

0

∫ γ−1`

0
Jγ (r, r ′)[mα(r, i)−mα(r ′, i)]2 dr ′ dr

+
λ

4

N∑
i=1

∫ γ−1`

0

∫ γ−1`

0
Jγ 1/2(r, r ′)

(
[mα(r, i)−mα(r ′, i − 1)]2

+ [mα(r, i)−mα(r ′, i + 1)]2
)

dr ′ dr +
N∑

i=1

∫ γ−1`

0
φβ,λ(mα(r, i)) dr

where φβ,λ as in (A-4). Since mα is the same on each line, we have

Fβ,γ,λ(mα)=
N
4

∫ γ−1`

0

∫ r+γ−1

r−γ−1
Jγ (r, r ′)[mα(r, 1)−mα(r ′, 1)]2 dr ′ dr

+
λN
2

∫ γ−1`

0

∫ r+γ−1/2

r−γ−1/2
Jγ 1/2(r, r ′)[mα(r, 1)−mα(r ′, 1)]2 dr ′ dr

+ N
∫ γ−1`

0
φβ,λ(mα(r, 1)) dr.

By the symmetry of J and the definition of mα we have

1
γ−1 Fβ,γ,λ(mα)≤

N
2
`m2

βλ+ N8λγ α−1/2m2
βλ− N`

1+ 2λ
2

m2
βλ−

N`
β

I (mβλ).

Then

lim inf
γ→0

1
γ−1 Fβ,γ,λ(0)≤N`

(
−λm2

βλ−
I (mβλ)

β

)
<−N`

I (0)
β
= Fβ,λ(0).
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OPTIMAL ORTHOTROPY AND DENSITY DISTRIBUTION
OF TWO-DIMENSIONAL STRUCTURES

NARINDRA RANAIVOMIARANA, FRANÇOIS-XAVIER IRISARRI,
DIMITRI BETTEBGHOR AND BORIS DESMORAT

This paper describes an optimization methodology giving simultaneously the
optimal spatial material distribution and the optimal material orthotropy distribu-
tion in a two-dimensional space. The spatial material distribution is parametrized
by a density variable that defines the presence or absence of material. A general
orthotropic material is parametrized by the polar invariants of the elasticity ten-
sor. The criterion is the compliance that measures the global structural stiffness.
The numerical procedure iterates successively between local minimizations and
finite element calculations. Thanks to the polar method, the local minimizations
are solved explicitly providing analytical solutions. An optimization of a beam
shows the effectiveness of the method in finding concurrently the optimal shape
and the optimal material.

1. Introduction

Reducing cost and weight of structures is a permanent challenge for the aeronautics
industry. In this scope, topology optimization is used for the mass minimization
problem [Allaire and Delgado 2016]. It gives an ideal repartition of material con-
sidering, for instance, global stiffness or eigenfrequency of a structure under loads
and boundary conditions. The optimal shape or layout of the structure is then
obtained. Topology optimization is widely used for isotropic materials [Bendsøe
and Sigmund 2003; Sigmund and Maute 2013] such as metallic ones for example,
but it does not optimize the material behavior, e.g., the anisotropy. The mass of the
structure can also be reduced by optimizing the material that composes it. Com-
posite structure optimization [Ghiasi et al. 2009; 2010; Sørensen and Lund 2013;
Peeters et al. 2015] is used to design the material at each point of the structure. For
instance, the optimal layup of laminates is sought by changing the orientations of
plies, the thickness, or the stacking sequence with heuristic [Irisarri et al. 2009] or
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MSC2010: 74P10.
Keywords: topology optimization, SIMP, polar method, distributed orthotropy, material design.
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gradient-based methods [Sørensen and Lund 2013]. The composite optimization is
generally done with a predefined shape of structure. Thus, topology optimization
gives an optimal distribution of material [Rojas-Labanda and Stolpe 2015] without
considering its optimal anisotropy and composite structure optimization [Ghiasi
et al. 2009; 2010; Sørensen and Lund 2013; Peeters et al. 2015] gives an optimal
anisotropy of the material without considering the optimal shape of the structure.
Nonetheless, the shape and the material of the structure are closely related. To
obtain an ideal structure, it is necessary to optimize the structure by considering
the optimal spatial material distribution and the optimal material anisotropy distri-
bution at the same time.

Rion and Bruyneel [2007] treat topology optimization of orthotropic material
by considering fiber orientations in the optimization. The determination of the
boundaries of the structure combined with that of optimal fiber path is treated in
[Peeters et al. 2015], where the stiffness is parametrized by lamination parameters.
Allaire and Delgado [2016] optimize laminated composite plates where the shape
of each layer is determined concurrently with the stacking sequence. In this paper,
we present an optimization methodology giving simultaneously the optimal shape
and the optimal orthotropy distribution of the structure. The optimization is made
on a general homogenized orthotropic material.

Parametrization of the shape and the anisotropy is necessary. First we choose
the density method to parametrize the shape of the structure. The density variable
determines at each point of the structure whether there is material or a void. The
anisotropy of the material is characterized by its elasticity tensor. As we work on a
general orthotropic material, we consider the homogenized elasticity tensor defined
in a thermodynamically admissible domain. The elasticity tensor can be described
by nine Cartesian coefficients. Since the material orthotropy varies through the
structure, one should define a general frame to express the elasticity tensor. How-
ever, the use of Cartesian representation is cumbersome when changing frame. The
polar method, introduced by Verchery [1982], uses invariants by change of frame
to describe the elasticity tensor. Thanks to its simplicity, change of frame is done
by changing angles. We choose the polar invariants of the elasticity tensor as a
design variable.

The criterion in structural optimization may be for instance eigenfrequency,
buckling, or compliance. In this work, the stiffness of the structure which is
measured by the external work (compliance) is maximized. The optimization
problem, which is based on variational methods similar to those that are used in
continuum mechanics [Boutin et al. 2017; Andreaus et al. 2016], is equivalent to
minimizing the compliance. Convex approximation methods such as MMA and
GCMMA ((globally convergent) method of moving asymptotes) [Svanberg 1987;
Zillober 1993] and descent algorithm methods such as SQP (sequential quadratic
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programming) [Arora and Belegundu 1984; Schittkowski 1985] and IPOPT (inte-
rior point optimizer) [Wächter and Biegler 2006] need the evaluation of the objec-
tive function as well as its gradient. The optimality criteria method computes the
optimal values of design variables by expressing optimality conditions. Therefore,
the optimality criteria method is less expensive than the methods above in term
of numerical cost. This is the reason why a method similar to optimality criteria
is used in this work. The algorithm used to solve the numerical problem is the
alternate directions algorithm [Allaire and Kohn 1993]. One iterates between local
minimizations with respect to the design variables and global minimizations corre-
sponding to finite element calculations. Numerical results show the effectiveness
of the method.

2. Problem formulation:
simultaneous optimization of the material density and anisotropy

Parametrization of the distributed material density and anisotropy. The shape of
the structure is parametrized by a density field variable ρ(x). This density variable
defines at each point x of the structure whether there is a material (ρ(x) = 1)
or a void (ρ(x) = 0). Here ρ(x) takes any value in [ρmin, 1] while, in order
to avoid singularity of the elasticity tensors, the lowest admissible value ρmin is
generally set to 10−3. Allowing ρ(x) to be valued in the interval [ρmin, 1] involves
intermediate densities appearing in the optimum topologies. These intermediate
densities involve gray areas that are difficult to interpret because they correspond
to a mixture of void and material. To suppress gray areas, the density ρ(x) is
forced to tend to either ρmin or 1. The so-called SIMP method (solid isotropic
material with penalization) [Bendsøe 1989] is used. This method uses an exponent
p ≥ 2 in order to interpolate the density ρ(x). Optimized stiffness tensor C(x)
and compliance tensor S(x) are expressed as functions of the considered material
stiffness tensor C0(x) and compliance tensor S0(x):

C(x)= ρ(x)pC0 ⇐⇒ S(x)=
1

ρ(x)p S0. (2-1)

The elasticity tensor defines the stiffness properties of the anisotropic material.
In the present work, spatial variations of the material anisotropy are allowed. A
parametrization that allows one to express the elasticity tensor in a general frame
in a simple way is necessary. Change of frame is cumbersome using the Cartesian
representation. The polar method permits one to write the elasticity tensor with its
intrinsic properties using tensor invariants. By doing so, changing frame becomes
simple as one needs only to rotate an angle with respect to the frame. Thus, we
choose to express the stiffness tensor with its polar invariants for an orthotropic
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material under assumption of plane stress. As the out-of-plane terms of the stress
tensor vanish, the relation between the stress tensor and the strain tensor in the
considered plane can be expressed only with the in-plane terms by introducing
the reduced stiffness tensor Q. Equations 2-2 show the relation between the polar
components (T0, T1, R0, R1, 80, and 81) and the Cartesian ones of the reduced
stiffness tensor Q [Julien 2010; Vincenti and Desmorat 2011]:

Q1111 = T0+ 2T1+ R0 cos 480+ 4R1 cos 281,

Q1122 =−T0+ 2T1− R0 cos 480,

Q1112 = R0 sin 480 + 2R1 sin 281,

Q2222 = T0+ 2T1+ R0 cos 480− 4R1 cos 281,

Q2212 = − R0 sin 480 + 2R1 sin 281,

Q1212 = T0 − R0 cos80.

(2-2)

Each Cartesian component of the reduced stiffness tensor is expressed with isotropic
terms T0, T1 that do not depend on the orientation of the material and anisotropic
terms R0e4i80, R1e2i81 that depend on the orientations 80,81 of the material. The
change of frame is done by changing these angles. The polar invariants are the
moduli T0, T1, R0, R1 and the angle 80−81. The isotropic parts do not influence
the anisotropy of the material; thus, T0, T1 are supposed to remain constant (in
composite laminated plates made of identical unidirectional layers (with the same
material and same thickness in each layer), the homogenized isotropic part T0, T1

of the laminate is equal to the isotropic part T EL
0 , T EL

1 of the elementary layer
[Jibawy et al. 2011]). The material optimization is performed with respect to the
anisotropic parts R0, R1,81.

Figure 1 shows the decomposition of the reduced stress tensor’s first Cartesian
component Q1111 for a composite made of long and straight carbon fibers in an
epoxy matrix (EL = 112 GPa, ET = 8.2 GPa, GLT = 4.5 GPa, and νLT = 0.3 GPa).
The stiffness is expressed as the sum of terms that do not depend on the material ori-
entation, T0 and T1, and terms that depend on the material orientation, R0 and R1.
The R0 and R1 terms can take negative values (dashed lines) due to the cosine func-
tion (see (2-2)) and are π

4 - and π
2 -periodic, respectively. The material orientation

is equal to 0◦. The apparent stiffness Q1111 is maximized at 0◦ as the R0 and R1

terms are both positive in this direction. It is minimized at 45◦ because the R0 and
R1 are respectively negative and null. When R1 vanishes, there are only π

4 -periodic
terms: the material is square symmetric.

Optimization constraint: maximum volume and thermodynamical admissibility
of the material. The optimization constraints are written in terms of the total vol-
ume amount of the structure and of the anisotropic part of the polar invariants by
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Figure 1. Left: representation of the first Cartesian component
Q1111 of the reduced stress tensor Q, in any orientation. Right: its
decomposition into a sum of polar invariant terms T0, T1, R0, R1.

expressing their bounds. During the optimization, a target volume V0 is defined
for the structure. The volume V is equal to the material density ρ(x) integrated
in the domain �. At each step of the optimization, the volume must satisfy the
optimization constraint

V =
∫
�

ρ(x) dx = V0. (2-3)

The material to be designed is imposed to be orthotropic. For an orthotropic mate-
rial,

80−81 = K
5

4
with K = 0, 1. (2-4)

The orthotropic material used in this paper is taken to be as general as possible:
the optimized orthotropic material is thermodynamically admissible, which means
that the stiffness tensor is positive definite. The analytical bounds of the polar
invariants are [Vannucci 2005]

T0 > 0,
T1 > 0,
T0 > R0,

T0T1 > R2
1,

T1(T 2
0 − R2

0) > 2R2
1(T0− R0 cos 4(80−81)).

(2-5)

Double minimization of the complementary energy. In topology optimization, cri-
teria such as buckling, frequency, or compliance may be considered; see for in-
stance [Deaton and Grandhi 2014]. In this paper, we aim at maximizing the global
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structural stiffness measured by the compliance which is the external work. The
criterion is written as

Criterion=
∫
�

f · u dV +
∫
01

F · u d S. (2-6)

The domain � is split into two boundaries: 00 where a zero displacement is im-
posed and 01 where a surface load F is applied. Then f is the volume load
and u the displacement vector. The more the structure is rigid, the lower is the
external work. Thus, maximizing the global structural stiffness means minimizing
the compliance. Moreover, the compliance is equal to double the complementary
energy. The optimization is made with respect to the density and the anisotropic
part of the stiffness tensor polar invariants:

min
{ρ,R0,R1,81}

∫
�

f · u dV +
∫
01

F · u d S = min
{ρ,R0,R1,81}

∫
�

σ : C−1
: σ dV . (2-7)

The complementary energy theorem claims that the complementary energy can
be written as the minimization of a positive quantity with respect to the statically
admissible (SA) stress field τ :∫

�

σ : C−1
: σ dV =min

τ SA

∫
�

τ : C−1
: τ dV . (2-8)

The stress field τ satisfies the elasticity problem (P), with assumption of small
strains and small displacements:

div τ + f = 0 in �,
τ · n= F on 01,

τ = C : ε(u) in �,
u = 0 on 00,

(P)

where ε(u)= 1
2(∇u+∇uT ) is the strain tensor. By replacing the expression of the

complementary energy in (2-7), the optimization problem is written as a double
minimization with respect to the design variables {ρ, R0, R1,81} and to the stress
field τ . The density variable is subject to a maximal volume constraint, and the
polar invariants of the stiffness tensor are constrained by thermodynamic bounds:

min
{ρ,R0,R1,81}

min
τ SA

∫
�

τ : C−1
: τdV (2-9)

with 

∫
�
ρ(x) dx = V0,

T0 > R0,

T0T1 > R2
1,

T1(T 2
0 − R2

0) > 2R2
1(T0− R0 cos 4(80−81)),

80−81 = K (5/4), K = 0, 1.

(C)
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3. Complementary energy minimization
using the alternate direction algorithm

Local minimizations of the complementary energy. Since the design variables
{ρ, R0, R1,81} are subject only to algebraic constraints, the minimization with
respect to them can be put inside the integral:

min
τ SA

∫
�

min
{ρ,R0,R1,81}

τ : C−1
: τ dV with (C). (3-1)

The minimization of the complementary energy with respect to the design variables
is solved locally in each point of the domain, for a fixed stress state. Since the
density variable ρ(x) and the anisotropy variables {R0, R1,81} are independent,
the minimization is split into two steps. First the complementary energy is min-
imized with respect to the anisotropy variables, taking into account the algebraic
constraints related to thermodynamic bounds. Second, the minimization with re-
spect to the density variable is performed.

The complementary energy can be written as a simple function of the polar
invariants of the stiffness tensor and the stress tensor. Calculating its derivative
is then straightforward. Hence, the minimization of the complementary energy
with respect to the anisotropy variables is done analytically. The optimal values
of {R0, R1,81} depending on the stress field are given in [Julien 2010] and are
shown in Table 1, introducing the ratio R/|T | where R and T are the spherical and
deviatoric parts of the stress tensor, respectively. The optimal orthotropic material
orientation is in the same direction as the principal direction of the stress tensor
with maximal absolute value. The optimal values of polar invariants R0 and R1

depend on the ratio R/|T |.
The volume constraint is taken into account in the minimization step with respect

to the density variable ρ(x) through the introduction of a Lagrangian multiplier k:

min
ρ

1
ρ(x)p τ : C

−1(Ropt
0 , Ropt

1 ,8
opt
1 ) : τ + kρ(x). (3-2)

X = R/|T | 0
√

T0/(2T1)
√

T0/T1 +∞

8
opt
1 Dir{max(|σI|, |σII|)}

Ropt
0 0≤ Ropt

0 < T0 2T1 X2
− T0 < Ropt

0 < T0 T−0

Ropt
1 T1 X T−0 /X

Table 1. Optimal values [Julien 2010, Table 3.8] of the polar in-
variants {R0, R1,81} depending on the stress field, in the case
80−81 = K π

4 = 0 (K = 0).
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The minimum of the local energy is attained by setting to zero the variation of (3-2)
with respect to the density field, which yields

ρ(x)=
( pτ : C−1(Ropt

0 , Ropt
1 ,8

opt
1 ) : τ

k

)1/(p+1)

. (3-3)

The value of k is calculated so that the volume constraint is satisfied.

Optimization algorithm. The double minimization is solved with a fixed point
method by considering the optimality conditions. At each iteration of the optimiza-
tion, the minimization with respect to the design variables {ρ, R0, R1,81} is first
performed; then the minimization with respect to the stress field τ is operated. The
minimization with respect to the stress field τ corresponds to a finite element anal-
ysis thanks to the complementary energy theorem. The minimizations are treated
alternatively and separately. This method is an extension of the alternate direction
algorithm introduced in [Allaire and Kohn 1993]. Thanks to the polar method, the
local complementary energy is written with simple expressions. Hence, the local
minimizations are solved analytically.

The advantage of the alternate direction algorithm is its simplicity and low nu-
merical cost as the method iterates between local minimizations solved analytically
and finite element calculations of stresses. The work in [Desmorat 2013] shows
also the convergence of the algorithm for a compliance minimization problem. The
cost of the algorithm is directly related to the finite element calculation cost. Finally,
the algorithm can take into account a large number of variables.

4. Numerical results

Numerical results are presented in this section to prove the efficiency of the method.
The optimization is made for a two-dimensional orthotropic linear elastic material.
A support beam from a civil aircraft produced by Messerschmidt-Bölkow-Blohm,
called the MBB beam, is optimized here. The beam carries the floor in the fuselage
of an Airbus airliner. Maximizing its rigidity has become a classical problem in
topology optimization (see [Zhou and Rozvany 1991] for example). The design
domain is a rectangle clamped with respect to the x-axis at the left side and with
respect to the y-axis at the bottom of the right side (orange-colored dot in Figure 2).
A load is applied on the top of the left side. The domain size is 40 mm× 20 mm
discretized with a rectangular 80× 40 mesh. The volume constraint is fixed at 50%
of the total volume. The initial density is set to 1 in every element of the mesh. The
initial material is an isotropic material where the values of T0 and T1 correspond
to the isotropic part of a monolayered composite made of long and straight carbon
fibers in an epoxy matrix: T0 = 26.88 GPa and T1 = 24.74 GPa.



ORTHOTROPY AND DENSITY DISTRIBUTION OF TWO-DIMENSIONAL STRUCTURES 301

0 10 20 30 40

x [mm]

-5

0

5

10

15

20

25

y
 [

m
m

]

|F|=1N

u
x
=

0

u
y
=0

Figure 2. Boundary conditions for the MBB beam problem.
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Figure 3. Compliance and volume with respect to optimization iterations.

Convergence. The compliance and the volume are displayed as functions of the
iterations in Figure 3. The strategy of penalizing the density is made in three steps
during which the exponent p in ρ(x)p is increased gradually. First, the convex
problem corresponding to p = 1 is treated. The convexity of the problem when
taking p = 1 is proved theoretically in [Allaire et al. 1997]. This means that the
solution at the end of the iterations where p = 1 is a global minimum, making
the solution independent of the initialization. Second, starting from this global
minimum point, the solution is forced to be a 0/1 layout by increasing p to 3.
Finally, p is taken to be equal to 5 to suppress definitely intermediate density.

Except for the first iteration, the volume does not change through the iterations
as it is constrained here to be equal to 50% of the total feasible volume. The
compliance decreases at each of three steps (p= 1, p= 3, and p= 5). At each step,
convergence is reached when the variation of compliance between two consecutive
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Figure 4. Optimal topology of the MBB beam with 50% volume amount.
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Figure 5. Optimal distribution of orthotropy direction.

iterations is less than 0.1% and the variation of the local densities is less than 0.01%.
The compliance increases when the value of p is increased because the structure
becomes suddenly less stiff when the interpolation of intermediate density values
is changed. We can observe that, at the end of the optimization, the compliance
has converged.

Optimal distribution of density. Figure 4 shows the optimal shape of the structure
where black represents the presence of material and white its absence. The material
is pictured when the density value is above 0.9. To avoid numerical problems such
as checkerboard, a filter is used: the density of an element depends on the density
of its neighbors so that there is no sharp discontinuity of the density in the structure.
The neighbor elements that influence the considered element are defined by a radius
filter. The filtering method used in this work is similar to the method of filtering
sensitivities [Bendsøe and Sigmund 2003]. A structured mesh is used in this work.
The filter radius permits us to suppress the checkerboard problem. For a given
value of the radius, it has been observed numerically that the mesh dependency
of the optimal topology seems to vanish when the element size is small enough
compared to the filter radius. However, the optimal shape depends on values of the
radius filter, which can be interpreted as a minimal bar width.
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Optimal distribution of orthotropy. In the optimal shape, the orthotropy is dis-
tributed: the material orthotropy changes continuously inside the structure. The
optimal orthotropy direction 8opt

1 is presented in Figure 5. It is aligned with
the stress principal direction. The direction changes continuously throughout the
structure as the stress field is continuous, except on the areas that are solicited in
shearing, where a bar intersect another one. In these areas, the optimized material
is square symmetric (i.e., R1 = 0). The apparent stiffness, having the same value
in 81 modulo π/4, is continuous in space in the optimal design. We illustrate
the distribution of the moduli R0 and R1 in Figure 6. The R0 values are set to be
quasiconstant whereas the R1 values vary from 0 to 25 GPa. We can see that in the
areas where R1 are minimum, the shearing is maximum. The optimal materials
in these areas where R1 = 0 are square symmetric materials, stiffened in two
orthogonal directions. When R1 is maximum, the optimal material is stiffened
in one direction because it is solicited mostly in traction or compression.

5. Conclusion

The proposed methodology presented in this paper concurrently gives the spatial
material distribution and the material anisotropy distribution by minimizing the
compliance. The optimization strategy is based on an optimality criteria method
in which one iterates successively and separately between local minimizations and
finite element calculations. In order to avoid mesh size dependency, it could be of
interest to develop such an optimization procedure with the use of some general-
ized continuum theories. Parametrizing the shape of the structure with a density
variable and the anisotropy of the material with polar invariants allows for solving
the local minimizations analytically. Thus, the computational cost of the algorithm
corresponds to the finite element calculations. The method is straightforward to
implement and gives coherent results from a mechanical viewpoint. Indeed, the
optimal material where the structure is loaded in shear is square symmetric, because
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it has to be stiffened in two orthogonal directions. Areas loaded in traction or com-
pression have an optimal material stiffened in one direction only. The presented
optimization methodology is very promising when considering real composite ma-
terial distribution, as the only change to be performed will be on the admissible set
of polar parameters that should take into account the feasibility of the considered
composite material.
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A MULTIPHYSICS STIMULUS FOR CONTINUUM MECHANICS
BONE REMODELING

DANIEL GEORGE, RACHELE ALLENA AND YVES RÉMOND

Bone remodelling is a complex phenomenon during which old and damage bone
is removed and replaced with new one to ensure the physiological functions of
the skeletal system. It involves many biological, mechanical, chemical processes
at different scales. The objective of the present work is to predict the kinetics
of bone density evolution by taking into account both the mechanical and the
biological frameworks. In order to do so, we propose a new computational model
in which the global stimulus triggering bone remodelling is the result of the
contribution of a mechanical (i.e. external loads and consequent strain energy), a
cellular (i.e. osteoblasts and osteoclasts activities) and a molecular (i.e. oxygen
and glucose supply) stimulus. The evolution of the bone density depends on
the overall behaviour of the global stimulus. More specifically, when the global
stimulus is positive, bone synthesis occurs, whereas when the global stimulus
is negative, resorption takes place. Although the theoretical model has been
applied on a very simple two-dimensional geometry, the final results provide new
insights on the influence of each stimulus on the bone remodelling process. In
particular, we confirm that mechanics plays a critical role and affects the kinetics
of bone reconstruction, but it highly depends on the biological events and the
distribution of bone density.

1. Introduction

Bone is a continually renewed material [Frost 1987]. Trying to model its evolution
has been going on for a long time since the early works of Wolff [Cowin 1986].
Every year, 5% of trabecular bone and 20% of cortical bone is renewed under
applied external mechanical loads and the prediction of bone remodeling, or bone
density evolution, using numerical models requires the use of appropriate theories
accounting for the specific mechanophysiological phenomena occurring within the
bone microstructure. Many studies have followed since; see for example [Beaupré
et al. 1990; Turner 1998; Pivonka et al. 2008; Pivonka and Komarova 2010]. Re-
cently, a number of models have tried to combine multiphysics and multiscales
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theoretical numerical studies [Lekszycki 2002; Madeo et al. 2011; 2012; Lekszycki
and dell’Isola 2012; Andreaus et al. 2014b; Giorgio et al. 2016; 2017; Scala et al.
2016; George et al. 2017b] to represent bone density evolution. Still, many diffi-
culties remain in the precise understanding of the mechanotransduction processes
[Lemaire et al. 2011; Sansalone et al. 2015] driving this evolution, without even
accounting that in most cases, bone reconstruction also depends on initial healing
stages of vascular growth together with nutrient supply [Bednarczyk and Lekszycki
2016; Lu and Lekszycki 2016].

Bone remodeling, being the result of numerous mechanobiological mechanisms,
is often presented through a so-called mechanobiological stimulus, based on strain
energy density, describing a variation from a state of equilibrium [Lekszycki 2002;
Lekszycki and dell’Isola 2012; Scala et al. 2016]. However, for good prediction of
bone remodeling, it is necessary, not only to account for the mechanical aspects,
but also to account for other external sources such as biological, electrical, neuro-
logical,. . . involved in the process, that can be triggered by genetic or epigenetic
factors, and allowing to simultaneously control their impact on the overall response
of the system as well as their interactions. For these signals, the development of
a thermodynamically consistent model [Martin et al. 2017] is required together
with adequate homogenization procedures [Rémond et al. 2016]. The biology also
needs to be adequately quantified (for example, the kinetics of bone resorption be-
ing 4 times more important than the kinetics of bone reconstruction; see [Burr and
Allen 2013, pp. 85–86]) through specific multiscale theoretical models [Lemaire
et al. 2006; 2010; 2015].

For example, in orthodontic bone remodeling, the applied mechanical forces on
the teeth (ranging from 0.5 N to 2.5 N [Wagner et al. 2017]) lead to the alteration
of the cell differentiation and activation due to oxygen percentage variation by
the periodontal ligament being partially deformed. Hence, the variations in vascu-
larization blood flow in the periodontal ligament and thus in the supply chain of
nutrients and oxygen could be used to predict cell recruitment, proliferation and
migration leading to the bone remodelling process.

In this work, a continuous theoretical numerical model is presented and used
to predict bone kinetics reconstruction as a function of coupled mechanical and
biological sources, of the corresponding constitutive laws, of their mutual inter-
actions as well as of the kinetics of each process. The external sources used
here to calculate the mechanobiological stimulus are: (i) the mechanical energy
accounting for the mechanical loads sustained by the bone cells and triggering
bone density evolution, (ii) the concentration of nutriments (oxygen and glucose)
expressed as a function of the developed hydrostatic pressure, and (iii) the cells
activity triggered by specific levels of oxygen and glucose concentration due to the
applied mechanical load. The cells recruiting and migration is described via two
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diffusion equations [Allena and Maini 2014; Schmitt et al. 2015; Frame et al. 2017]
and the bone density variation in time is calculated by the rates of bone synthesis
and resorption respectively, depending on the positiveness of the defined coupled
mechanobiological stimulus [George et al. 2017a].

2. Model development

2.1. Theory. Without specific external loading conditions, the bone is in a state of
mechanobiological equilibrium (under gravity) in the so-called “lazy zone” where
little remodeling occurs. When external mechanical load is applied, the system is
perturbed and goes out of the “lazy zone”. The modified load conditions are at
the origin of the creation of a coupled mechanobiological signal that will activate
bone remodelling. We define this signal [George et al. 2017a] by introducing a
Lagrangian configuration BL ⊂ R3 [Madeo et al. 2011; 2012; Scala et al. 2016],
and a suitably regular kinematical field χ(X, t) that associates to any material point
X ∈ BL its current position x at time t . The image of the function χ gives at any
time t , the current shape of the body also called Eulerian configuration. We also
introduce the displacement u(X, t) = χ(X, t)− X , the transformation gradient
F =∇χ(X, t), and the Green–Lagrange deformation tensor E = (FT

· F− I )/2.
In the present work, only the linearized part ε of E is considered.

Then the global stimulus variation 1S is expressed on the Lagrangian configu-
ration BL in the form

1S(X, t)=
n∏

i=1

αi Si (X, t), (1)

where t is the time, n is the total number of external sources Si (i.e. mechanical,
biological (cellular, nutrients, . . . ), electrical, . . . ) involved in the process and αi

are their weighting coefficients, triggered by genetic or epigenetic factors, allowing
to simultaneously control their impact on the overall response of the system as well
as their interactions.

In this work, we consider the following external sources: Smech, which includes
the applied mechanical load through the mechanical energy developed within the
system to trigger the biological actions; Smol, which coincides with glucose and
oxygen supply necessary for cell survival and work contribution; Scell, which cor-
responds to the osteoblasts and osteoclasts recruiting and migration.

(i) The mechanical stimulus Smech is expressed through the “standard” definition
of the mechanical strain energy and accounts for the applied forces and loads sus-
tained by bone cells. It is defined with
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αmech Smech(X, t)

= αmech

∫
�

U (X0, t) d(X0, t) exp(−Dmech‖χ(X)−χ(X0)‖) d X0, (2)

with � the domain of interest, αmech a weighting coefficient, Dmech the inverse of
a characteristic distance accounting for the independent effect of the source, U the
strain energy density dependent on the Green–Lagrange deformation tensor ε, and
d being a function of the bone mass density expressed as d(X0, t)= η(ρb)/ρb,max

with η ∈ [0, 1], where ρb is the bone density and ρb,max its maximum allowed value,
being the density of compact bone (corresponding to minimum porosity).

(ii) The molecular stimulus Smol is defined with

αmol Smol(X, t)

= αmol

∫
�

(αO2
cO2
+αCHO cCHO) exp(−Dmol‖χ(X)−χ(X0)‖) d X0, (3)

with Dmol the inverse of a characteristic distance, αO2
and αCHO the weighting

coefficients for cO2
and cCHO, the concentrations of oxygen and glucose, satisfying

two partial differential equations (PDEs) as a function of the hydrostatic pressure
as follows:

DO2

∂cO2

∂t
= 0, (4)

and

DCHO
∂cCHO

∂t
= 0, (5)

where
DO2
= DCHO = Tr(ε)+φ(εI θI ⊗ θI + εII θII ⊗ θII ), (6)

with Tr the trace of a tensor, φ a scalar, εI and εII and θI and θII the principal
strains and directions and ⊗ the tensor product. In (4) and (5), it is assumed that
no external sources are present, only diffusion of the concentration through the
geometry is present via a heterogeneous initial distribution.

(iii) The cellular stimulus Scell defined by the osteoblasts and osteoclasts activity
and triggered by specific levels of oxygen and glucose concentration together with
the intensity of the mechanical force applied is given by

αcellScell(X, t)

= αcell

∫
�

(αob cob−αoc coc) exp(−Dcell‖χ(X)−χ(X0)‖) d X0, (7)

where Dcell is the inverse of a characteristic distance, αob and αoc are the weighting
coefficients for the concentrations cob and coc of the osteoblasts and osteoclasts
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respectively evolving with respect to time via two diffusion-reaction equations
[Allena and Maini 2014; Schmitt et al. 2015] as

∂cob

∂t
= (1− ρb)(div Dob∇cob+βoc Tr(ε)coc), (8)

∂coc

∂t
= (1− ρb)[div Doc∇coc+ (koc−βoc Tr(ε))coc], (9)

where div and ∇ are the divergence and gradient operators, the diffusion tensors
Dob and Doc are defined as in (6), kob and koc are the osteoblasts and osteoclasts
proliferation rates, respectively with kob equal to βoc, the osteoclasts differentiation
rate. In (8) and (9), as osteoblast proliferation showed to be dependent on the
applied mechanical strain [Ignatius et al. 2005; Ehrlich and Lanyon 2002], we
assume on a first approximation that it is directly dependent on the volume variation
the structure through the trace of epsilon. Complementarily, as the resorption of
osteoclasts immediately triggers the proliferation of osteoblasts, a similar kinetic
was defined for osteoclasts.

For the above PDEs (equations (4), (5), (8), (9)), a zero flux boundary condition
is applied on the external free surfaces as it is supposed that there is no exchange
with the outer system.

The variation of bone density ρb is described by a first order ordinary differential
equation with respect to time given by

∂ρb

∂t
=Ab(ρb)[sb(1S+)+ rb(1S−)], (10)

where rb and sb are the rates for bone resorption and synthesis respectively, depend-
ing on the positive (1S+) and the negative (1S−) value of the global stimulus 1S.
Ab is a function of the bone porosity controlling the intensity of the bone remod-
eling process that needs to be defined experimentally.

Here, we consider the bone as an isotropic linear elastic material whose Young
modulus Eb is given by Eb = Eb0ρ

3
b [Currey 1988; Rho et al. 1995] where Eb0 is

the initial Young modulus of the bone. The global static equilibrium of the system
is expressed with the usual equation div σ+ fν = 0, with σ and fν the Cauchy stress
and the body forces, respectively. Finally, most of the model parameters defined
in the current framework should be experimentally quantified. Some theoretical
works have been carried out [Placidi et al. 2015; Misra and Poorsolhjouy 2015]
trying to identify these parameters, but appropriately designed experiments should
be developed in order to provide confident numerical predictions.

The proposed theoretical model was implemented using the Multiphysics Finite
Element (FE) code COMSOL Multiphysics® to predict bone kinetics reconstruc-
tion when applied to different mechanobiological stimuli.
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Figure 1. Definition of the model geometry, boundary conditions
and associated FE mesh.

2.2. Application. Following [Andreaus et al. 2014b; Giorgio et al. 2016], where
the bone reconstruction kinetics was studied on a simple two-dimensional (2D)
geometry, to compare the obtained results and assess the coupling between the
defined variables of the model, the analytical framework described in Section 2.1
is applied similarly on a 2D cantilever beam. The beam of length L and height h is
submitted to a tension F at the right side and clamped on the left side (see Figure 1).

As for the initial conditions of the problem, the left half side of the beam is
filled with dense bone (ρb= 0.6), whereas the right half side of the beam, where the
external load F is applied, is constituted by light bone (ρb = 0.1) and is assumed to
represent a bone substitute or graft. Thus, when mechanical load is applied, migra-
tion of cells and nutriments occurs from left to right with bone density increasing
in both regions. The input data of the model are listed in Table 1.

These parameters were defined without a priori knowledge of the biological
quantifications of the in vivo conditions and could therefore require to be tuned for
a better approximation of real life conditions. Also, the global stimulus 1S was
artificially amplified by a multiplication factor to reduce the computation time and
accelerate the bone density kinetics evolution (which is of the order of 3 months
for real bone) while ensuring consistent results.

3. Results and discussion

The concentrations evolutions for osteoclasts, osteoblasts, oxygen and glucose are
presented in Figure 2. From the start of the analysis, the concentrations evolve
with non-linear distributions and show a clear diffusion from the left to the right
of the beam leading to an increase of them on the right side of the beam.

The oxygen and glucose concentration are diffusing quicker than osteoblasts
and osteoclasts as their final distribution through the length of the beam is constant
at the end of the analysis (cO2

= 0.1 at cCHO = 0.05), which is not the case for
osteoblasts (0.08 < cob < 0.1). The osteoclasts completely disappear over time
since they differentiate into osteoblasts (initial concentration of 0.05 versus final
concentration of 6× 10−7).

The calculated individual and global stimuli, together with bone density evolu-
tion over time are presented in Figure 3.
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Symbol Description Value

L Total length of the beam 50 mm
h Width of the beam 2 mm
Eb0 Initial Young modulus of the bone 20 GPa
vb Poisson ratio of the bone 0.3
Dmech Characteristic distance for the mechanical stimulus 3 mm
Dmol Characteristic distance for the molecular stimulus 3 mm
Dcell Characteristic distance for the cellular stimulus 3 mm
αmech Weighting coefficient for the mechanical stimulus 1
αO2

Weighting coefficient for the oxygen molecular stimulus 5
αCHO Weighting coefficient for the glucose molecular stimulus 5
αob Weighting coefficient for the osteoblast cellular stimulus 5
αoc Weighting coefficient for the osteoclast cellular stimulus 5
φ Diffusion tensor scalar 10
kocl Osteoclasts proliferation rate 3
βob Osteoclasts differentiation rate 15
sb Bone synthesis rate 1
rb Bone resorption rate 4
cob Initial concentration of osteoblasts on the left of the beam 10% vol
coc Initial concentration of osteoclasts on the left of the beam 5% vol
cO2

Initial concentration of oxygen on the left of the beam 20% vol
cCHO Initial concentration of glucose on the left of the beam 10% vol

Table 1. Main parameters of the model.

The mechanical stimulus shows a peak of about 2.8 · 10−3 J/m3 at the beginning
of the analysis which increases up to 5.7 · 10−3 J/m3, propagates towards the right
end side due to the external load imposed as the bone reconstruction occurs, and
finally decreases to about 5.7 · 10−5 J/m3 at the end of the analysis as the bone
density reaches its maximum value through the whole beam. Such distribution
and kinetics are directly dependent on the kinetics of bone remodelling as the bone
density increases on the right side of the beam from left to right following this peak
where the maximum of the strain energy density is located. In parallel, the cellular
stimulus displays a parabolic profile over the left-hand side of the beam, where
cells are initially located, with a maximal value of 2.8 ·10−6 at the beginning of the
analysis since a higher bone density is defined on this domain, while it is equal to 0
on the right side as no cells are present. During the analysis, cells migrate from left
to right with a decrease of osteoclasts concentration and an increase of osteoblasts
one. Cell stimulus increases on the left side up to a value of 6.96 · 10−6, decreases
again at the end of the analysis on the left at 4.5 · 10−3, and increases continuously
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Figure 2. Evolution of the osteoclasts, osteoblasts, oxygen and
glucose concentration over time.

on the right up to 3.5 · 10−3 with a non-linear distribution. Correspondingly, the
molecular stimulus follows a similar trend as the cellular one but with different
kinetics. The initial maximal value is 5.6 · 10−6, and it decreases over time on the
left side down to 3.14 · 10−6. Identically, it becomes more uniform over the whole
beam at the end of analysis, with minimal values at the two extremities (1 · 10−6).

For the total stimulus, being the result of the multiplication effects of each stim-
ulus, we still observe the peak value of the mechanical stimulus as it is much larger
than the biological ones. However, it is also non-zero everywhere else due to the
molecular and cellular contributions. The maximal mechanical stimulus seems



A MULTIPHYSICS STIMULUS FOR BONE REMODELING 315

Figure 3. Time evolution of each stimulus (mechanical, cellular
and molecular), the total stimulus and the bone density.

to be the main driving factor on the effect of the kinetics reconstruction on the
right side of the beam. As the initial bone densities are set to 0.6 on the left side
and 0.1 on the right side, at the beginning of the analysis we observe a bone density
evolution on both sides being triggered by the biological contribution mainly on the
left side (due to weak mechanical stimulus, but higher bone density and biological
stimulus), and by the mechanical stimulus mainly on the right side (due to its high
value and weak bone density with no biology contribution). Once bone density
has reached a certain level (mostly reconstructed bone everywhere corresponding
to an approximate value of 0.7), the influence of the mechanical stimulus decreases
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since the structure undergoes a smaller strain and therefore a smaller mechanical
energy is developed. Then, the biological effects become thereafter much more
important and play a key role in the evolution of bone density. This impact seems
to occur over longer periods of time (relative to the mechanical time kinetics) and is
clearly visible on the global stimulus at the end of the analysis and on the two bone
density distributions during the analysis. The mechanical stimulus moves from the
mid-length to the right hand side of the beam without inhibiting the increase of the
bone density on the left side where it tends towards zero. Also, the bone density is
recovered on the left side due to the biological impact of the stimulus and continues
to increase to reach an almost maximum density even after the mechanical effect
has dropped at the end of the analysis. The above proposed model being continuous,
it is assumed that cell distribution is also continuously distributed through the entire
geometry, even with heterogeneous distribution. Accounting for the spatial range
of cell influence requires integrating the microstructure distribution [Andreaus et al.
2014a]. This contribution needs to be integrated in future works. Finally, although
the mechanical stimulus seems to play a critical role in the bone reconstruction
kinetics, it also shows to be highly dependent on the biological contributions and
certainly coupled with the bone density impact. In fact, high bone density leads
to small strains and therefore to small mechanical stimulus for a given applied
mechanical load. This has a direct impact on the cellular response within the struc-
ture as higher density (lower porosity) leads to lower cell density (and distribution)
and lower density (higher porosity) leads to higher cell density (and distribution)
with trabecular bone structure. These effects should also be integrated since the
trabecular bone kinetics requires a more specifically adapted thermodynamically
consistent model as described for example in [Ganghoffer 2012; 2016; Goda et al.
2016; Louna et al. 2017], and be homogenized in order to obtain a better macro-
scopic prediction. Nonetheless, the above presented mechanobiological couplings
would also need to be integrated within these local frameworks in order to identify
precisely the influence of the biology in the bone reconstruction kinetics.

4. Conclusion

In the present paper, a new coupled multiphysics model is proposed to compute
the mechanobiological stimulus for continuum mechanics bone reconstruction, by
taking into account specific mechanical (i.e. external loads) and biological (i.e.
cellular migration and differentiation and nutriments supply) phenomena. The final
results highlight the respective contributions of each process on the kinetics of
bone density evolution. Each effect shows to have an important impact although
the model parameters still require adequate quantification for better representation
of specific medical applications.
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ON LINEAR NON-LOCAL THERMO-VISCOELASTIC
WAVES IN FLUIDS

JOE D. GODDARD

The following is an elaboration on the linear non-local model of viscoelastic
fluids proposed in a previous work (Int. J. Eng. Sci. 48 (2010), 1279–1288).
As a recapitulation of that work, the basic theory is presented in terms of the
temporal frequency and spatial wave number in the Laplace–Fourier domain.
Taylor-series expansions in these variables provides a weakly non-local theory
in spatio-temporal gradients that is more comprehensive than the “bi-velocity”
model of Brenner. The linearized Chapman–Enskog kinetic theory is shown to
provide a confirmation of the more general theory, from which one can recon-
struct a fully non-local integral model.

Following the work of Davis and Brenner (J. Acoust. Soc. Am. 132 (2012),
2963–2969), the general theory is employed to derive dispersion relations for
acoustic, thermal and shear-wave propagation in compressible viscoelastic fluids.
At Burnett order the Chapman–Enskog theory gives a cubic polynomial in wave
number squared which reduces in the dissipative quasi-static limit to a quadratic
like that given by the classical Navier–Stokes–Fourier model and the bi-velocity
modification of that model.

With minor modification, the present analysis applies to viscoelastic shear
and dilatational wave propagation in solids with higher-gradient and Cosserat
effects, where it may, for example, find application to the field of rotational
seismology.

1. Introduction

Following [Goddard 2010], hereinafter referred to as [G10], we consider a linear,
fully non-local model for the thermo-mechanics of fluids. As was the case with
[G10], the present paper is motivated in part by the ideas of the late H. Brenner, who
wrote extensively at the end of his career [2009; 2012] on the possible breakdown
of the classical Navier–Stokes–Fourier model of momentum and heat flux arising
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from strong inhomogenieties due to large temperature or density gradients. This
ostensibly motivates his revised constitutive theory, “bivelocity fluid mechanics”,
based on the notion that barycentric velocity, associated with material inertia and
kinetic energy, is not appropriate for the description of internal stress in a fluid or
solid. In its place, he proposes a “volume” or “work” velocity, together with var-
ious constitutive models for the “diffuse volume flux” representing the difference
between the two velocities. This stratagem serves inter alia to introduce higher
spatial gradients of temperature and velocity into the constitutive theory.

An alternative perspective is offered in [G10], where it is argued that the above
revision is necessitated by the breakdown of the thermo-mechanically simple mate-
rial of Coleman [1961; 1964] and that Brenner’s constitutive theory is a restricted
version of a more general non-local theory. Such a theory, anticipated in numer-
ous previous works (see [Eringen 2002] and references therein), was sketched out
in [G10], which leaves unanswered certain questions regarding the magnitude of
material-specific length and time scales involved in the breakdown of the classical
model and the inadequacy of the bi-velocity model as a strictly linear theory.

The purpose of the present work is to elucidate further the above questions, by
considering specific models that are fully non-local in both space and time, i.e.,
models which involve long-range interactions in space combined with long-range
history effects in time. In particular, we show that the linear model which emerges
at “Burnett order” in the classical Chapman–Enskog kinetic theory is a special case
of the general model. As appreciated by others [Müller and Ruggeri 1998], this
kinetic theory involves relaxation effects of the type described earlier by Maxwell’s
viscoelasticity [1867] and later by Cattaneo’s retarded thermal conductivity [1948].
As we shall also show, Brenner’s theory represents a restriction to the dissipative
response arising on time scales longer that the Maxwell–Cattaneo relaxation times.
Also, it is shown that a fully non-local model can be reconstructed from the lin-
earized Chapman–Enskog theory.

Acoustic wave propagation represents a plausible testing ground for non-local
thermo-mechanical effects, as already recognized in [Davis and Brenner 2012]; the
present paper provides an extension of that work. It also presents an extension of
[G10] that identifies the hyperstresses conjugate to higher velocity gradients. How-
ever, the applications to wave propagation are restricted to the linear momentum
balance, with no account taken of higher-order inertial terms. Finally, we establish
a connection to various non-local models of wave propagation in complex solids.

2. Fourier–Laplace representation: Recapitulation of previous work

Following the analysis of [G10], we recall that Fourier representations embody the
notion of wave-number dependent transport coefficients, capturing the dispersive
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effects associated with higher gradients. When extended to the time domain by
means of the Laplace transform, one obtains a similar description of frequency
effects in materials with memory1. Hence, the transform

ψ̂(k, s)= ψ̂t(k, s)=
1
√

8π3

∫
R

∫
∞

0
e−ı k·x−st ′ψ(x, t − t ′) dV (x) dt ′ (1)

provides a localized description in Fourier space (k, s) of a spatio-temporally de-
localized field in physcial space, ψt(x′, t ′) = ψ(x′, t − t ′), x′ ∈ R, t ′ ≥ 0,
and vice versa. Accordingly, a causal, non-local and linear constitutive equation
between two sets of tensor fields

8(x, t)={ϕ(1), . . . ,ϕ(m)}(x, t) and 9(x, t)={ψ (1), . . . ,ψ (m)}(x, t−t ′), (2)

for t ′ ≥ 0, of the type pursued by Eringen [1992; 2002], can be represented by the
linear form:

8̂(k, s)= L̂(k, s)9̂(k, s) (3)

where L̂ represents a matrix of tensor moduli. This relation is tantamount to the
spectral theory of commutative linear operators with {ı k, s} → {∇, ∂t }, and the
time-honored Fourier–Laplace transforms provide a concrete algebraic representa-
tion.

With 8̂(x, t)= {σ̂ , q̂} representing stress σ̂ and heat flux q̂ in (2), one obtains
a linear non-local theory of thermo-viscoelasticity. We recall that Eringen [2002,
Section 7] proposes a simpler non-local theory for viscous incompressible fluids
with uncoupled heat flux, a theory that was overlooked in [G10].

If we adopt a scaling in which k and s are replaced by non-dimensional forms
λ0k and τ0s, with λ0 and τ0 denoting, respectively, appropriate material length
and time scales, then k = |k| and s represent, respectively, a Knudsen and a
Deborah number. Hence, one obtains a weakly non-local spatio-temporal models
from the Taylor-series expansion of L̂(k, s) about the spatially uniform steady state
k = 0, s = 0. The expansion in k is, to terms O(k2), tantamount to the Burnett
expansion of kinetic theory [Müller and Ruggeri 1998], whereas the expansion in
s represents the “retarded motions” of [Coleman and Noll 1961; Coleman 1964].
In particular, the simple fluid emerges at O(k) in k. Dissipative response, defining
the Navier–Stokes–Fourier regime, arises for s→ 0 at O(1) for q̂ and at O(s) for
σ̂ , provided we take v̂ to be O(s), i.e.,

v = ∂t u, with ∴ v̂ = s û, (4)

where u denotes material displacement from the positions at t = 0.

1Since our “Fourier–Laplace” transform involves what is essentially a Fourier transform on t =
[0,∞) with complex wave vector s, we could as well employ the terminology “Fourier transform”
and “Fourier space”.
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Following [G10]we consider a spatially nonlocal linear viscoelastic fluid in
which the stress σ relative to a spatially uniform equilibrium pressure p0 (replacing
the deviatoric stress τ of [G10], which deals with incompressible fluids) and the
heat flux q, are represented by σ̂ [= σ̂i j ] and q̂ [= q̂i ] as functions of velocity
v̂ [= v̂i ] and departure θ̂ = T̂ − T0/s from the uniform absolute temperature T0 of
the equilibrium base state. With Cartesian tensor components displayed for clarity,
these can be written as in [G10]:

q̂ [= q̂i ] = L̂(11)θ̂ + L̂(12)v̂
[def
= L̂(11)θ̂ + L̂(12)

i j v̂ j
]
,

σ̂ [σ̂i j ] = L̂(21)θ̂ + L̂(22)v̂
[def
= L̂(21)

i j θ̂ + L̂(22)
i jl v̂l

]
,

(5)

where the tensor coefficients L̂ depend on the complex frequency s and wave vec-
tor k. Here as in the following, we indicate components of tensors on a given
Cartesian system by means of square brackets [ ], and the Cartesian summation
convention is employed. We further employ colons to denote contraction of the
trailing components of a prefactor with all the components of the postfactor, with
the conventional dot for the scalar product of vectors.

For isotropic materials, the various tensors in (5) must be isotropic functions of
the wave vector and, for the case of symmetric stress assumed here, can be written
down explicitly as in [G10]:

L̂(11)
i = Âki ,

L̂(12)
i j = B̂δi j + Ĉki k j ,

L̂(21)
i j = D̂δi j + Êki k j ,

L̂(22)
i jl = F̂δi j kl + Ĝ(δilk j + δ jlki )+ Ĥki k j kl,

(6)

where the scalar coefficients Â, B̂, . . . , Ĥ are functions of s and k2, where k2
= ki ki

defines a generally complex quantity, since we shall admit complex wave vectors
k. Also, we have added carats to the coefficients defined in [G10], in order to
distinguish them from their physical-space images considered below.

In direct tensor notation, the preceding relations become

q̂ = Âkθ̂ + (B̂1+ Ĉ k⊗ k)v̂,

σ̂ = (D̂1+ Ê k⊗ k)θ̂ + F̂(k · v̂)1+ Ĝ(k⊗ v̂+ v̂⊗ k)+ Ĥ(k · v̂)k⊗ k.
(7)

Now, the requirement of real q and σ implies that the coefficient, say, K̂n of the
general term in (7):

K̂n(k, s)kn, where kn
= kn−1

⊗ k, n = 1, 2, . . . , k0
= 1, (8)
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must satisfy K̂ ∗n (k
2, s)= (−1)n K̂n(k∗2, s), where asterisks denote complex conju-

gates here and below. Hence, the coefficients of even (odd) order terms in k must
be essentially real (imaginary). (By essentially real we mean a function R→ R,
i.e., a function that is real-valued when its arguments are real, whereas essentially
imaginary is a function R→ ıR, i.e., ı times an essentially real function.)

In line with the above remarks, and following [G10], we obtain from (6) a
weakly nonlocal theory in space by means of the wave-number expansions of
K̂ = Â, B̂, . . . , Ĥ of the form

K̂ = K̂0(s)+ K̂1(s)k2
+ K̂2(s)k4

+ · · · , (9)

where K̂m(s) are independent of k. As pointed out in [G10], Gallilean invariance
of heat flux requires that B̂0 = 0 which, by a general form of Onsager symmetry,
implies that D̂0=0. We shall show presently that the latter result arises from a
properly restricted form of that symmetry.

Note that the stress defined by (7)2 represents a non-local quantity whose expan-
sion in k defines a hierarchy of hyperstresses. In particularly, by an extension of
the dissipative forms discussed by [Goddard and Lee 2017] we have

σ̂ =
∑
m≥1

σ̂ (m):(−ı k)m−1, i.e., σ̂i j =
∑
m≥1

σ̂
(m)
i j, j1,..., jm−1

(−ı k)m−1
j1,..., jm−1

,

where σ̂ (1) is Cauchy stress and the σ̂ (m), m > 1, is the hyperstress conjugate to
(ı k)m v̂.

Now, if both B̂0 and D̂0 vanish, then (5) and (7) reduce to a standard form in
which {∇θ,Sym(∇v)} represent nine forces conjugate to nine fluxes {q, σ }. In
that case, the local dissipation rate is given by:

σ :∇v−
q
T0
· ∇θ ≥ 0, (10)

in the dissipative regime, where σ , q are strictly dissipative. Thus, by the Parseval–
Plancherel theorem, the global dissipation becomes2∫

R

(
σ :∇v−

q
T0
· ∇θ

)
dV (x)

=−ı
∫

R̂

(
σ̂ :k∗v̂∗− q̂ · k∗

θ̂∗

T0

)
dV̂ (k)

=−ı
∫

R̂

(
L̂(21)

i j k∗i v̂
∗

j
θ̂

T0
+ L̂(22)

i jl k∗i v̂
∗

j v̂l − L̂(11)
i k∗i

|θ̂ |2

T 2
0
− L̂(12)

i j k∗i v̂ j
θ̂∗

T0

)
dV̂ (k)

≥ 0, (11)

2after extension to complex k and correction of a typographical error of [G10]
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where R is the spatial region occupied by the fluid and R̂ is its Fourier image (i.e.,
the transform of its indicator function). Based on an unwarranted restriction to
real-valued transforms θ̂ , v̂, it is erroneously concluded in [G10] that the general
Onsager symmetry L(21)

i j = L(12)
i j eliminates dissipative coupling between tempera-

ture and velocity.
As a more restricted form of Onsager symmetry, note that (7) gives

p̂ = Î θ̂+ Ĵ k·v̂, where Î =−(D̂+ Êk2/3), Ĵ =−(F̂+2Ĝ/3+ Ĥk2/3),

k·q̂ = Âk2θ̂+(B̂+Ĉk2)k·v̂,
(12)

with J → J0 =−ıβ0 for k→ 0, where β0 denotes the standard bulk (or “volume”)
viscosity. Thus, in the dissipative regime, the quantities

θ∇ ·q/T0− p∇ ·v ≥ 0, or ı(θ̂∗k · q̂/T0− p̂∗k · v̂)≥ 0

represent the dissipation rate. The significance of the term involving pressure work
is obvious, while the other term is essentially the potential Carnot work dissipated
locally by irreversible heat flow, since θ/T0 =−(1− T/T0). Hence, the Onsager
symmetry of the linear relations (12) requires that

(B̂+ Ĉk2)/T0 =− Î = (D̂+ Êk2/3), and ∴ D̂0 = B̂0 = 0 (13)

in the dissipative regime, a necessary restriction on the more general form proposed
in [G10].

As they stand, the relations (7) represent linear non-local thermo-viscoelasticity,
with the x-t images of the coefficients K̂ = Â, B̂, Ĉ, ... providing the kernels of
integral operators acting on f= {θ, v}. According to (8) these assume the form

K̂n kn(·)f̂→ (−ı)n
∫
∞

t ′=0

∫
R′

Kn(x′, t ′)∇n(·)f(x− x′, t−t ′) dV (x′) dt ′, (14)

where (·) represents an optional dot product or contraction. Moreover, since the
coefficients K̂ are functions of k that depend only on k2, they admit simplified
inverse spatial transforms, as discussed in the Appendix. We now consider the
special cases of the general theory represented by the kinetic theory of gases and
by Brenner’s bivelocity model.

3. Linearized kinetic theory of gases

As a slight variant on the kinetic-theory results given by Chapman and Cowling
[1960, p. 410], Müller and Ruggeri [1998, p. 74] give the following implicit forms
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for heat flux and shear stress in a monatomic gas:

q=−τq
{
−

5
2 Rp∇θ+q̇+q·∇v−Rθ∇·σ−7

5 q∇·v−4
5 q·∇v+7

2 Rσ·∇θ+σ
ρ
·∇p

}
,

σ = τσ
{

p[∇v+ (∇v)T − 2
3∇ ·v1] − σ̇ − 2[σ∇v+ (σ∇v)T ]

+
2
5 [∇q+ (∇q)T − 2

3∇ ·q1] − σ∇ ·v
}
, (15)

where τσ and τq are the respective relaxation times for stress and heat flux, and R
is the species-specific gas constant in the ideal-gas law R = ρT/p. By means of
the the leading linear terms in (15), we identify the Newtonian shear viscosity and
the Fourier conductivity, respectively, as

µ= pτσ ,

κ = 5Rpτq/2= 5(τq/τσ )Rµ/2.
(16)

Taking τq = 3τσ/2 one recovers a standard approximation κ=̇5cVµ/2 for smooth
spherically-symmetric molecules [Chapman and Cowling 1960, p. 273] with spe-
cific heat cV = 3R/2.

It is a straighhtforward matter to linearize the equations (15) about a uniform
state of density ρ0, temperature T0 and pressure p0 = peq(ρ0, T0), since terms
involving products of quantities that vanish in the uniform state do not contribute
to the linearized equations. The function peq introduced here represents the equi-
librium equation of state, which is of course given by the above ideal-gas law for
dilute gases, but we allow here a more general equation of state.

Letting

µ= ρ0ν =
µ0

(1+ τσ0s)
, τ =

4τσ0

5(1+ τσ0s)
,

κ = ρ0cp0α =
κ0

(1+ τq0s)
, f0 =

2T0

5p0
,

(17)

one finds that the linearized equations take on this compact form in Fourier space:

σ̂ = 2µε̂+ ıτ [(k⊗ q̂+ q̂⊗ k)/2− (q̂ · k)1/3]

and q̂ =−ıκkθ̂ + ıκ f0k · σ̂ ,

where ε̂ = ı[(k⊗ v̂+ v̂⊗ k)/2− (k · v̂)1/3].

(18)

After a bit of algebra, one can solve equations (18) for q̂, σ̂ in terms of θ̂ , v̂, to
give

q̂ =−κ{ı kθ̂ f1+µ f0 f2[k2v̂+ f1k⊗ k · v̂/2]},
σ̂=2ıµ f2[(k⊗ v̂+ v̂⊗ k)/2−(k·v̂)1/3]+κτ f1(k⊗ k−k21/3)[θ̂− ıµ f0 f2(k·v̂)/3],

where f1 = [1+ 2(λk)2/3]−1, f2 = [1+ (λk)2/2]−1, λ=
√
κτ f0. (19)
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The terms in θ̂ appearing in the expression for σ̂ represent a non-local form of
Maxwell’s celebrated thermal stress [Maxwell 1879, Eqs. (53)–(54)] in a rarefied
gas. According to Maxwell’s kinetic theory, a good estimate of the magnitude of
this stress relative to the Newtonian viscous stress is ν0|∇

2θ |/T0
√

tr(ε2), where
ν0 = µ0/ρ0 is the kinematic viscosity and

√
tr(ε2) the effective shear rate. Hence,

according to the kinetic theory, the thermal stress will generally to be important
only in the slow shearing of a rarified gas, as pointed out by Maxwell and noted in
[G10].

Comparing with the general forms (7), one finds that the coefficients Â, B̂, . . . , Ĥ
are given by

Â =−ıκ f1, B̂ =−κµk2 f0 f2, Ĉ =−κµ f0 f1 f2/3,

Ê = κτ f1, Ĝ = ıµ f2, Ĥ =−ıκτµ f0 f1 f2/3,
(20)

and it is easy to obtain expansions in k2 of the type (9).
According to the kinetic theory of dilute monatomic gases, the irreversible con-

tribution to pressure vanishes [Chapman and Cowling 1960; Müller and Ruggeri
1998], implying that the coefficients Î , K̂ in (12) are zero and hence that

D̂ =−Êk2/3 and F̂ =−2Ĝ/3− Ĥk2/3, (21)

determining the remaining coefficients D̂, F̂ . However, one should not expect
these relations to hold for more general fluids, such as liquids and polyatomic
gases, whose bulk viscosity β0 = ı Ĵ0 =−ı(F̂0+ 2/3Ĝ0) is generally non-zero.

The terms in (17) of the form (1+ τ s) represent exponential relaxation in the
time domain. As such, they describe Maxwell’s viscoelasticity and Cataneo’s heat
conduction, which admit both mechanical shear waves and heat waves, reflecting
a breakdown of purely diffusive, dissipative response on time scales τ . We recall
that Ignaczak and Ostoja-Starzewski [2009] give a comprehensive treatment of the
local theory of finite thermoelastic wave speeds, represented by terms O(k) in (19).
By contrast, and as anticipated above, we expect dissipative response to arise in
the small Deborah number limit De = τ0s� 1.

It is shown in the Appendix that one can analytically determine the inverse trans-
forms of the coefficients in (20) by means of the formula (42), thereby providing
the kernels in the integral operator (14). This provides a fully non-local model
which should be much superior to weakly non-local models involving a sequence
of higher spatial gradients, since integral operators, in contrast to differential op-
erators, are generally bounded. This is especially significant in the neighborhood
of singularities, as illustrated by the well-known work of Eringen [2002, Section
6.14] on crack-tip stresses in linear elasticity.
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4. Bivelocity model

Here, we analyze here a recent version of Brenner’s bi-velocity model [2009], in
order to compare it with the linear theory proposed above. Given that Brenner’s
modeling rests heavily on appeals to linear irreversible thermodynamics (“LIT”),
it is appropriate to employ a fully linearized version of the type employed in the
present paper and, also, to restrict the analysis to dissipative response.

Since Brenner employs somewhat special variables and notation, we have in-
cluded Table 1 below to clarify the relation of his variables to those employed in
the present work.

We adopt that form of Brenner’s model which he deems appropriate to creeping
(inertialess) flow4, as represented by Eqs. (2.7), (2.12) and (2.13) of [Brenner 2009].
In the present notation, these become

q =−κ0∇θ+ L12∇ peq − peq jw=̇−κ0∇θ+ L12[(∂θ p)0∇θ+ (∂ρ p)0∇ρ]− p0 jw
jw =−L21T−1

∇θ + L22∇ peq=̇− L21T−1
0 ∇θ + L22[(∂θ p)0∇θ + (∂ρ p)0∇ρ]

σ = 2µ0∇vw = 2µ0[∇v+∇ jw], p =−β0∇ ·vw =−β0∇ ·(v+ jw), (22)

where overbars represent symmetric deviators and =̇ denotes the approximation
arising from linearization about the uniform base state employed elsewhere in the
present article. In Brenner’s model, the coefficients L i j are assumed to describe a
dissipative linear system, with corresponding Onsager symmetry L21 = L12.

4Otherwise, his constitutive equations appear to contain inertial terms that are hard to reconcile
with the principle of material frame indifference.

Quantity [Brenner 2009] Present

absolute temperature T T0+θ

barycentric velocity vm v

“work”3 or “volume” velocity vw vw
diffuse “volume” flux jw = vw−vm jw = vw−v
pressure tensor P peq1−σ
pressure p = tr(P)/3 p = peq−tr(σ )/3
“thermodynamic” pressure p peq

shear stress T τ = σ+ p I
heat flux ju q
“entropic” heat flux q = ju+ p jw q+ peq jw
thermal conductivity for q k κ0

shear and bulk viscosity η, ζ µ0, β0

Table 1. Variables and notation.
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To compare with the present constitutive theory, it suffices to eliminate jw from
(22), and it is algebraically expedient to express these relations as Fourier–Laplace
transforms. Account taken of the linearized mass balance (cf. Eqs. (27) below),
one thereby obtains relations of the form (7) and (12), with

Â = ı {[L12− p0L22](∂θ p)0− κ0+ L12 p0/T0} , B̂ = 0,

Ĉ = [L12− p0L22]ρ0(∂ρ p)0/s, Ê =−2µ0[L22(∂θ p)0− L12/T0],

Ĝ = ıµ0, Ĥ = 2ıµ0ρ0(∂ρ p)0L22/s,

Î = β0[L22(∂θ p)0− L12/T0]k2
=−(D̂+ Êk2/3),

Ĵ =−ıβ0[1+ ρ0(∂ρ p)0L22k2/s] = −(F̂ + 2Ĝ/3+ Ĥk2/3),

(23)

from which it follows that

β0 = 2µ0/3, D̂ = 0. F̂ = 0 (24)

Note that [Brenner 2009] takes

L12 = T0α0β0, where α0 = κ0/ρ0cp0, β0 =−(∂θρ)p0/ρ0 = (∂θ p)0/ρ0(∂ρ p)0,

involving the thermal diffusivity α0 and isobaric coefficient of thermal expansion
β0. With certain reservations, he then takes L22= α0β0/(∂θ p)0, which would imply
that L22(∂θ p)0− L12/T0 and, hence, Î and Ê vanish in (23). Thus, the Maxwell
thermal stress represented by the term Ê in (7) also vanishes.

Brenner does not invoke the restrictions on the coefficients of viscosity µ0, β0

that are required for consistency with the general model proposed in this work.

5. Application to linear thermo-acoustic waves

For the uniform fluid at rest, we adopt mechanical and caloric equations of state
connecting equilibrium pressure and specific internal energy to temperature and
density:

p = peq(θ, ρ) and ε = εeq(θ, ρ), (25)
with

∂θεeq = cv, ∂ρεeq =
1
ρ2

[
p− θ(∂θ peq)

]
, (26)

where cv denotes the isochoric specific heat.
The present treatment of temperature and density as independent variables is

inspired by the modern literature on continuum thermodynamics, where various
intensive variables are given as derivatives of Helmholtz free energy. It seems to
us more natural than the formulation based on pressure and entropy adopted in
standard treatises on acoustics [Pierce 1981] but in any case can be easily con-
verted to the latter. Accordingly, we shall refer to the “entropy mode” identified
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by [Pierce 1981, p. 523], and subsequently by [Davis and Brenner 2012], as the
“thermal mode”, noting that the modal amplitudes are simply related by a constant
of proportionality [Pierce 1981, Eq. (10-3.16)] according to the linear theory which
follows.

Thus, with subscripts 0, 1 referring, respectively to a uniform equilibrium state
and a small perturbation on that state, such that ζ = ζ0+ ζ1, for any variable ζ , the
linearized balances of momentum, mass, and energy reduce in the absence of body
forces or radiant energy transfer to:

ρ0∂tv1 =−(∂θ p)0∇θ1− (∂ρ p)0∇ρ1+∇ ·σ1,

where (∂z p)0 = ∂z peq
∣∣
T0,ρ0

, z = θ, ρ, ∂tρ1 =−ρ0∇ ·v1,

and ρ0cv0∂tθ1 =∇ ·q1− T0(∂θ p)0∇ ·v1. (27)

This stated, we shall now drop the subscript 1 on perturbations, as done implic-
itly in the preceding discussion, where (7) provides constitutive equations for the
perturbed heat flux and stress q and σ in terms of θ and ρ.

Other than an assumption of a dissipative regime for small s, we shall not con-
sider in detail the restrictions on the constitutive model arising from the entropy
balance (the Clausius–Duhem inequality) and the related “extended thermodynam-
ics” [Müller and Ruggeri 1998]. However, we note that if heat flux is neglected
from (27) the last two members of (27) yield the condition of constant equilibrium
entropy ηeq:

ρ0∂tηeq = ρ0cv0∂tθ/T0− (∂θ p)0∂tρ/ρ0 = 0, (28)

whereas the actual entropy η may generally increase owing to thermo-mechanical
dissipation.

Modulo inhomogeneous terms arising from initial values of θ, ρ, v, the Fourier–
Laplace transforms of (27) reduce to the linear homogeneous form:

ρ0sv̂+ ı(∂θ p)0θ̂k+
ρ0

s
(∂ρ p)0kk · v̂− ı σ̂ k = 0,

ρ0cv0θ̂ + ı k · q̂+ ıT0(∂θ p)0k · v̂ = 0.
(29)

Substitution of (7) into (29) yields a set of four linear equations in θ̂ , v̂. However,
these can be reduced to a set of two linear equations in θ̂ ,∇ ·v by employing the
“divergence” form obtained by taking the dot product of k with the first member
of (29). The determinantal equation results then in the dispersion relation for the
resultant compressive modes:

[D̂+ Êk2
− (∂θ p)0] [B̂+ Ĉk2

+ T0(∂θ p)0]k2

− [ρ0cv0s+ ı Âk2
] [ρ0s−{2ı Ĝ+ ı F̂ − ρ0(∂ρ p)0/s}k2

− ı Ĥk4
] = 0. (30)
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In the application of this relation to the time-periodic waves with temporal fre-
quency ω it is understood that s =−iω here and below.

In addition to the modes described by (30) there exists a decoupled “vorticity” or
shearing mode involving the vorticity w =∇ × v [Davis and Brenner 2012; Pierce
1990]. By means of the Fourier representation ŵ = ı k× v̂ and the cross product
of k with the first member of (29), one obtains

[ρ0s− ı Ĝ(k2, s)k2
]ŵ = 0, (31)

which has an immediate interpretation in terms of the inverse G(x, t) of the trans-
form Ĝ. As indicated by the analysis in the Appendix, (31) describes shear waves
on time scales τσ0. By contrast, in the dissipative regime that emerges on longer
time scales one obtains strongly damped diffusive modes [Davis and Brenner 2012;
Pierce 1990].

In sum, given the Fourier–Laplace inverses A(x, t), B(x, t), . . . , H(x, t), the
relations (30)-(31) provide a fully non-local model of linear signal propagation,
including long-range memory effects in time. Clearly, a more restricted form is
required for most practical applications. Thus, the retention of terms up to O(k2)

in (7) reduces the (30) to

[D̂0+ (D̂1+ Ê0)k2
− (∂θ p)0] [(B̂1+ Ĉ0)k2

+ T0(∂θ p)0]k2

− [ρ0cv0s+ ı Â0k2
] [ρ0s−{2ı Ĝ0+ ı F̂0− ρ0(∂ρ p)0/s}k2

] = 0, (32)

which involves the five distinct coefficients Â0, B̂1+Ĉ0, D̂0, D̂1+Ê0 and F̂0+2Ĝ0,
with dependence on s representing relaxation effects in the time domain.

By a slight extension of the kinetic theory of Section 3, four of the coefficients
appearing in (32) and the coefficient appearing in the limiting form of (31),

[ρ0s− ı Ĝ0(s)k2
]ŵ = 0, (33)

are given respectively by

ı Â0 =
κ0

1+τq0s
, B̂1+ Ĉ0 =−

4κ0µ0 f0

3(1+τσ0s)(1+τq0s)
,

D̂1+ Ê0 =
8κ0τσ0

5(1+τq0s)
, ı F̂0+ 2Ĝ0 =

β0+ 4µ0/3
(1+τσ0s)

, Ĝ0 =
ıµ0

1+τσ0s
.

(34)

Note that the form of Ĝ0 and (33) imply elastic shear waves in at high frequen-
cies s→∞, thereby eliminating infinite propagation speeds associated with the
dissipative limit s→ 0 [Davis and Brenner 2012].



ON LINEAR NON-LOCAL THERMO-VISCOELASTIC WAVES IN FLUIDS 333

Following [Brenner 2009] and [Davis and Brenner 2012], we have included a
bulk viscosity coefficient β0, but which now involves elastic relaxation5. The coeffi-
cient β0 vanishes according to the monatomic kinetic theory, as does the remaining
unspecified coefficient D̂0(s). Otherwise, we note from (7) that D̂0(s) involves a
non-equilibrium response of pressure to temperature variation. We further note that
a similar relaxation effect in the temperature-energy response would be obtained
upon replacing the specific heat cv0 by an s-dependent term ĉv0(s), analogous to
the formalism proposed in [Goddard 1992].

In the dissipative model obtained by neglecting terms τ s and taking D̂0 = 0 (by
the Onsager symmetry discussed above), the dispersion relation (34) reduces to a
cubic in both s and k2, whereas the model considered by [Davis and Brenner 2012]
is cubic in s but quadratic in k2.

For the classical Navier–Stokes–Fourier model we have

Â = Â0 =−ıκ0, B̂ = Ĉ = D̂ = Ĥ = 0,

Ĝ = Ĝ0 = ıµ0, F̂0+ 2Ĝ0 =−ı(β0+ 4µ0/3),
(35)

and the dispersion relation (32) reduces to

[s+α0γ k2
] [s2
−(β0+4µ0/3)sk2/ρ0+(∂ρ p)0k2

]−(γ−1)k2s=0, where

α0=κ0/ρ0cp0 and γ = cp0/cv0= c2
S/c

2
T =1+T0(∂θ p)20/ρ

2
0cv0(∂ρ p)0, (36)

with cS and cT denoting, respectively, the isentropic and isothermal speeds of
sound, whose ratio is given by the specific heat ratio γ . It is easy to show that
(36) is identical with the form given in [Davis and Brenner 2012, Eq. (11)] if
(β0+ 4µ0/3)/ρ0 is replaced by the equivalent quantity (2ν0+ λ0) in their analysis
and −ρ2

0(∂ρ p)0 is identified as the isothermal compressibility.
The more general versions (32) and (34) can be written in the non-dimensional

form as

(ak̃2
+ b)(ck̃2

+ d)k̃2s̃− (s̃+ ek̃2)(s̃2
+ f k̃2s̃+ gk̃2)= 0,

where k̃2
= τσ0ν0k2, s̃ = τσ0s,

with a = 8γα/5ν0, b =−(∂θ p)0/ρ0cv0,

c =−8ανρ0cp0T0/15ν2
0 p0, d = T0(∂θ p)0τσ0/µ0, e = γα/ν0,

f =−(β + 4µ/3)/µ0, g = (∂ρ p)0τσ0/ν0 = c2
T τσ0/ν0.

(37)

Note that k̃2 involves a squared length λ̃2
0= τσ0ν0, which is related by a factor |c| to

that introduced in the Appendix. Note also that for dilute gases all the coefficients
a, b, . . . , g are of order unity, so that the polynomial in the first equation of (37)

5The quantity (β0+4/3µ0)/ρ0 is equal to the quantity λ+2ν in equations (14) and (23) of [Davis
and Brenner 2012], who employ the unconventional designation of ρ0λ in their equation (2) as bulk
viscosity.
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is “well-tempered”, that is has derivatives that are all of comparable magnitude for
arguments near unity.

Casting (37) in the standard form of a cubic equation in z = k̃2:

Az3
+Bz2

+Cz+D= 0, with

A = acs̃, B= (ad+bc−e f )s̃−eg, C= (bd−g)s̃− (e+ f )s̃2, D=−s̃3,

(38)

the three roots are given by the well-known formula

zk =−
B

3A

[
1+ 2(1− 3AC/B2)1/2 cos

2kπ +φ
3

]
for k = 0, 1, 2,

with φ = cos−1 ζ, where ζ =
1− 9AC/2B2

+ 27A2D/2B3

(1− 3AC/B2)−3/2 . (39)

The quantities involved in (39) are generally complex, and we can express the
complex circular function appearing there in terms of elementary functions as

cos
2kπ +φ

3
=

1
2

(
e(2kπ+φ)ı/3

+ e−(2kπ+φ)ı/3)
=

1
2

(
e2kπ ı/3[ζ + ı

√
1− ζ 2

]1/3
+e−2kπ ı/3[ζ − ı

√
1− ζ 2

]1/3)
, k = 0, 1, 2, (40)

or, by means of yet other well-known formulae [Abramowitz and Stegun 1965,
equations 15.1.3-19] in terms of hypergeometric functions F = 2 F1 as

cos
2kπ +φ

3
=−

1
2

[
cos φ

3
∓
√

3 sin φ
3

]
, for k = 1, 2, where

cos φ
3
= F

(
−

1
6 ,

1
6 ;

1
2 ; 1− ζ

2) , sin φ
3
=

1
3

√
1− ζ 2 F

( 1
3 ,

2
3 ;

3
2 ; 1− ζ

2) , (41)

with appropriate branch cuts for
√

1− ζ 2 and with ζ = cosφ given by the last
equation of (39).

Comparison to the bi-velocity model. We recall that the classical dispersion rela-
tion as well as the modification proposed by [Davis and Brenner 2012] involve a
quadratic equation for z in lieu of (38). It is clear that such a quadratic arises from
(38) for |s̃| � 1, which is characteristic of the dissipative regime represented by
the previous studies. Indeed, by neglecting terms O(s̃3), one obtains a quadratic
similar to that given by equation (23) of [Davis and Brenner 2012], with generally
different coefficients. This gives a dispersion relation that is quadratic in both k2

and s representing a PDE that is quadratic in ∇2 and ∂t , for which [Davis and
Brenner 2012] offer some special solutions that suggest experiments to arrive at
the correct coefficients in the dispersion relations.
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Extension to solids and Cosserat media

With minor modifications the preceding analysis applies to graded (also known as
“higher-gradient”) isotropic linear thermo-viscoelastic solids. For this purpose, it
suffices to allow for static stress by taking account of (4) and including terms that
behave like s−1 for s→ 0 in the coefficients D̂, . . . , Ĥ in (7)2. It can be noted that
the coefficient D̂ serves to describe both static and dynamic thermoelasticity and,
as with the fluids considered above, the static contribution can be included in an
equation of state for equilibrium pressure peq(θ, ρ).

Without pursuing the algebraic details, we note that the strain-gradient theory of
[Mindlin 1964], anticipated by the seminal works of Piola [dell’Isola et al. 2015],
yields dispersion relations for both dilatational and shear waves that are quadratics
in k2 [Mindlin 1964, (9.34)] with a much simpler form than (32) and (37).

As an extension of [Mindlin 1964], one may treat a more general Cosserat
thermo-viscoelasticity by addition to the list of variables in (2) and (5) the Cosserat
rotation vector ϑ = [ϑi ] and the moment stress σ (2) = [σ (2)i j ], conjugate to ∇ϑ ,
and by replacing the stress σ by a non-symmetric tensor with antisymmetric part
defining a vector conjugate to ϑ . Under the rubric of micropolar elasticity, [Eringen
1984] has already given a comprehensive analysis for the isothermal case that leads
to a cubic in k2 as dispersion relation, and [Abreu et al. 2017] provide a similar
analysis with a view to the emerging field of rotational seismology.

Finally, we note that the present type of analysis can be extended to anisotropic
media like those considered by [Suiker et al. 2001] by appropriate symmetry restric-
tions and modification of the relations (6). One possibility is to employ the joint
isotropic invariants of the wave vector k and a set of structure tensors to capture
the anisotropy [Cowin 1985; Man and Goddard 2016].

Conclusions

The abstract provides a generally adequate summary of the present work. It is
worth emphasizing that the Burnett-order linearized Chapman–Enskog kinetic the-
ory is subsumed by the general wave-number expansions proposed in the present
work, which gives more general thermo-viscous response than that of Brenner’s
bi-velocity model, while also allowing for themo-viscoelastic behavior.

As matter for future work, it would be interesting to consider the utility of non-
local models in resolving certain fluid-mechanical singularities, such as three-phase
contact lines, which bear a certain resemblance to the linear-elastic singularities
around crack tips addressed by the non-local elasticity of [Eringen 2002].
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Appendix: Inverse transforms

We recall that the inverse Fourier transform of a function f̂ (k), with k2
= ki ki , is

a function of r = |x| given by the radial form [Gradshteyn and Ryzhik 2000]

f (x)=
1
√

8π3

∫
eı k·x f̂ (k) sin ϑ̂k2 dk dϑ̂ dϕ̂

=−
1
√

2π

∫
∞

k=0

∫ π

0
eıkr cos ϑ̂ f̂ (k) sin ϑ̂ dϑ̂k2 dk

=

√
2
π

∫
∞

0
sinc(kr) f̂ (k)k2 dk, where sinc(z)= z−1 sin z. (42)

One can use (42) to derive the inverse transforms K (t, x) = A(t, x), B(t, x), . . .
of the coefficients (8), noting that the functions f1, f2 in (19) can be written for
i = 1, 2 as

fi = (1+ λ2
i k2)−1, where λ2

i = biλ
2
0(1+ τ1s)−1(1+ τ2s)−1,

λ2
0 = 4κ0τ1 f0/5, b1 = 1/2, b2 = 2/3, τ1 = τσ0, τ2 = τq0,

(43)

Now, the coefficients in (8) can all be expressed as affine forms in f1, f2, since

k2 f = k2(1+λ2k2)−1
= (1− f )/λ2, and f1 f2=

b1

b1− b2
f1+

b2

b2− b1
f2 (44)

First, note that substitution of f̂ = (1+ λ2k2)−1 into (42) gives

f (x)=
√

2
πr2

∫
∞

0

k
1+ λ2k2 sin kr dk =

√
π

2λ4r2 exp
(
−

r
λ

)
.

Second, note that

exp
(
−

r
λ

)
= exp

(
−γ

√
s ′2− a2

)
,

where s ′ = s+
τ1+ τ2

2τ1τ2
, a =

τ2− τ1

2τ1τ2
, γ =

(τ1τ2

b

)1/2
r.

However, the inverse Laplace transform [Abramowitz and Stegun 1965]

g(t)= L−1{exp
(
−γ

√
s2− a2

)}
= δ(t − γ )+

aγ√
t2− γ 2

I1
(
a
√

t2
− γ 2)u(t − γ ),

where I1(z) is the Bessel function of the second kind, u(t) the Heaviside function
and δ(t)= u′(t) the Dirac delta, gives

h(t)= L−1{exp
(
−γ

√
s2− a2

)}
= exp

(
−
τ1+τ2
2τ1τ2

t
)

g(t).
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Thus, the coefficients in (20) are seen to involve various powers of 1+τ1s and
1+τ2s multiplying the above transforms, so that the inverse Laplace transform of
the resulting products can in principle be obtained by convolution.
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HETEROGENEOUS DIRECTIONS OF ORTHOTROPY
IN THREE-DIMENSIONAL STRUCTURES:
FINITE ELEMENT DESCRIPTION BASED

ON DIFFUSION EQUATIONS

RACHELE ALLENA AND CHRISTOPHE CLUZEL

Heterogeneous materials such as bone or woven composites show mesostruc-
tures whose constitutive elements are all oriented locally in the same direction
and channel the stress flow throughout the mechanical structure. The interfaces
between such constitutive elements and the matrix are regions of potential degra-
dations. Then, when building a numerical model, one has to take into account
the local systems of orthotropic coordinates in order to properly describe the
damage behavior of such materials. This can be a difficult task if the orthotropic
directions constantly change across the complex three-dimensional geometry as
is the case for bone structures or woven composites. In the present paper, we
propose a finite element technique to estimate the continuum field of orthotropic
directions based on the main hypothesis that they are mainly triggered by the
external surface of the structure itself and the boundary conditions. We employ
two diffusion equations, with specific boundary conditions, to build the radial
and the initial longitudinal unit vectors. Then, to ensure the orthonormality of
the basis, we compute the longitudinal, the circumferential, and the radial vectors
via a series of vector products. To validate the numerical results, a comparison
with the average directions of the experimentally observed Haversian canals is
used. Our method is applied here to a human femur.

1. Introduction

In order to simulate the mechanical behavior of heterogeneous structures such as
bone or composites, computed tomography (CT) or µCT images allow one to build
their three-dimensional (3D) real and complex geometries [Rémond et al. 2016]
and the associated finite element (FE) meshes. Nonetheless, there exist only a few
numerical tools able to describe a continuum field of anisotropic directions varying
throughout the 3D structure.
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Here, we propose an approach which enables one to estimate via an FE technique
the directions of orthotropy (i.e., longitudinal, circumferential, and radial) in 3D
structures, which may be compared to beams, assuming that the orthotropy of
their mesostructure is mainly triggered by their external surface and the boundary
conditions. Such a method is based on [Allena and Aubry 2011], in which a system
of Laplacian equations is employed to define the orientation of the cylindrical coor-
dinates across 3D thin membranes. To support the numerical results, a comparison
with µCT obtained with data is performed. In [Cluzel and Allena 2015], we applied
our method only to a femoral diaphysis, while here the whole 3D cortical domain
of a human femur is considered. Additionally, we validate our numerical approach
by comparing it to the experimental data previously obtained in [Cluzel and Allena
2018].

1.1. Cortical bone anisotropy. Cortical bone shows a very significant anisotropy
at different scales [Rho et al. 1998], and as described in [Rho 1996; Bernard et al.
2013], at the macroscale the elastic behavior is orthotropic. Additionally, micro-
cracks seem to be involved at each length scale as a function of the loading (i.e.,
tension, compression, or torsion) and to trigger the damage mechanics of bone,
although they are described in a local system of coordinates linked to the main
directions of the mesostructure [Vashishth 2007].

In [Herman et al. 2010], two types of mechanical degradation of the cortical bone
are described: one is linked to linear microcracks, which are 10 to 100µm long,
and the other is a set of diffused microcracks, which are 1 to 2µm long. In [Seref-
Ferlengez et al. 2015] these two networks are still observed, but the authors suggest
that only the linear microcracks influence the evolution of the elastic behavior of
the cortical bone and may be involved in the remodeling process.

At this level, the osteons play an important role and more particularly the cement
line appears to be a weak interface likely to stop or divert the microcracks [O’Brien
et al. 2007]. From a quantitative point of view, Wasserman et al. [2008] showed
that microcracks are almost parallel to the osteons and this is independent from
the age of the specimen. Given such a scenario, to describe the degradation or the
failure behavior of the cortical bone, one may employ anisotropic criteria which are
associated to specific mechanisms. For instance, in [Doblaré et al. 2004; Cowin
and He 2005] anisotropic and macroscopic criteria are presented, some of them
based on approaches that have been previously developed for composites [Tsai
and Wu 1971]. Similarly, the fracture toughness is anisotropic and linked to the
osteons’ direction [Ural and Vashishth 2007].

Although it has been shown that to precisely describe the global response of
a bone structure to different loadings it is necessary to take into account the or-
thotropic behavior of the cortical bone, many authors still use an isotropic elastic
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model or adopt isotropic failure criteria such as von Mises. In [Bessho et al. 2009;
Duchemin et al. 2008], the objective is to localize the fractures and to do so the
constitutive behavior of the bone is described as isotropic and heterogeneous. Báča
et al. [2008] showed that an isotropic, elastic, and heterogeneous model allows
proper quantification of the global displacements of a femur. Nevertheless, for
an accurate description of the stress in the case of nonphysiological loads (i.e.,
prosthesis) or in order to obtain a better understanding of the damage mechanisms,
the anisotropy of the bone must be taken into account.

From a numerical point of view, the employment of an orthotropic model re-
mains rather difficult since two main challenges arise: the higher number of ma-
terial parameters to be introduced and the description of the field of orthotropic
coordinates throughout 3D complex geometries. Nonetheless, a few attempts can
be found in the literature.

In [Peng et al. 2006], for both spongy and cortical bone, a transversely isotropic
model is employed and the local systems of coordinates are described with respect
to the superior-inferior axis of the structure without taking into account the poten-
tial variations in the neck or in the head. In [Taylor et al. 2002] or [Ün and Çalık
2016], the femoral diaphysis is described as an orthotropic material in a cylindrical
coordinate system. Additionally, Ün and Çalık [2016] employ a discrete descrip-
tion of the orthotropic field via a finite number of subvolumes in the diaphysis. In
[Báča et al. 2008], the macroscopic bone mesh is manually decomposed into small
domains in order to take into account the anisotropy directions detected in vitro.
Hambli et al. [2012] proposed an orthotropic damage model to describe the me-
chanical behavior of the proximal spongy domain of the femur in two dimensions.
The orthotropic directions are associated to the principal stress directions obtained
through a previous simulation involving a compression load on the top of the femur.
A further approach can be found in [Doblaré and García 2001; Gómez-Benito
et al. 2005] where the orientation of the orthotropic coordinates is continuously
updated thanks to a remodeling model [García et al. 2001]. The simulation runs
until the orthotropy directions coincide with the principal stress directions for a
typical physiological load. Finally, in [Spingarn et al. 2017], anisotropy is also
considered via a remodeling model, but at the mesoscale and in trabecular bone.

As mentioned earlier, in this paper we propose an FE method to approximate
the orthotropic field of 3D structures such as the human femur. In the following
sections we describe the numerical approach used to build the field of orthotropic
directions. In Section 2.1, the segmentation technique adopted to obtain the femur
3D geometry (Section 2.1.1) as well as the diffusion equations employed to deter-
mine directions of orthotropy numerically (Section 2.1.2) are detailed. The main
results are presented and compared to the experimental data obtained in [Cluzel and
Allena 2018] in Section 3. In Section 4, we discuss our numerical outcomes with
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Figure 1. Sagittal sections of the femur showing the gray level (a)
and the concentrations of u3 (b) and u10 (d), and boundary con-
ditions for the diffusion problem providing the unit longitudinal
vector ∇u10 (c).

respect to previous works in the literature and some limitations and perspectives
of the work are also considered.

2. Material and methods

2.1. FE approximation of the orthotropic field.

2.1.1. 3D personalized geometry of the femur. A left human male femur (91 years
old) was collected and frozen at −20◦ in a plastic bag. Once defrosted, the femur
was cleaned by a clinician to remove soft tissues around it and dried with ethanol.
Then, it was CT-scanned with a calibration phantom by a GE LightSpeed Pro 16
at pixel spacing of 0.875 mm and slice thickness of 1.25 mm. CT scans provided
the normalized gray level (GL) values varying between 0 and 1.

The femur has been semiautomatically segmented in Avizo to find its external
surface and to mesh the 3D volume in COMSOL Multiphysics (Figure 1(a)). Ad-
ditionally, by defining a specific threshold on the GL, here fixed at 0.7, it has
been possible to write two characteristic functions (hcort and hspong) to distinguish
between the cortical (�cort) and the spongy (�spong) 3D FE domains:

hcort =

{
1 if GL≥ 0.7,
0 otherwise,

(1)

hspong =

{
1 if GL< 0.7,
0 otherwise.

(2)
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Some artifacts induced by the presence of remaining soft tissues or due to un-
expected porosities may be found on the external femoral surface. Nevertheless,
in order to ensure a minimal amount of cortical bone, the GL values have been
automatically set to 1 across a thickness of 0.5 mm from the external surface of the
femur to the inner volume.

2.1.2. Numerical technique to determine the main orthotropy directions. In this
section, the technique used to determine the numerical system of orthotropic co-
ordinates RFE = {i1, i2, i3} is detailed. We adopt and adapt a method previously
proposed in [Allena and Aubry 2011]. Such an approach was first used to param-
etrize very thin 3D objects, such as the cortical bone. Two diffusion equations
are employed, and the orientations of the concentration gradients provide the or-
thotropic directions.

Based on the assumption that the osteons are mainly parallel to the external
surface of the 3D structure, the first diffusion equation defines the evolution of the
concentration u3 and allows defining the vector ∇u3 across the thickness of the
cortical domain �cort:{

c div(∇u3)=−κhspong,

u3 = 1 on ∂�ext,
(3)

where div is the divergence and ∇ is the gradient, c = 1012, and the source term
−κhspong, where κ = 106, enables the introduction of a flow from the exterior to
the interior of the femur. The concentration of u3 across the femur is illustrated in
Figure 1(b). The isosurfaces u3 = const do not cross the outer boundary due to the
maximum principle [Courant 1962], and they are parallel surfaces.

Thus, an approximate normalized vector i3 can be computed as

i3 '
∇u3

‖∇u3‖
(4)

with ‖ · ‖ the Euclidean norm of a vector. Assuming that in a 3D structure such
as the femur there exists a strong relationship between the external loads and the
directions of the osteons in the cortical bone [Wolff 1892], the second diffusion
equation describes the evolution of the concentration u10 and allows the description
of the initial longitudinal direction ∇u10:

div[(ahcort+ b)∇u10] = 0,

u10 =−2 on ∂�C,

u10 = 2.7 on ∂�H,

u10 = 0 on ∂�LT,

u10 = 1.8 on ∂�GT,
∂u10
∂n = 0 everywhere else,

(5)
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Figure 2. Numerical unit vectors i1 (left), i2 (center), and i3

(right). Anterior view of the femur (top), and posterior view of
the upper femur (bottom).

where a and b are two constants that weight the influence of the spongy and the
cortical bone. For our problem, a � b (i.e., a = 1015 and b = 1011) to trigger a
very high diffusion across the cortical domain �cort and a very low diffusion in the
spongy domain �spong. The surfaces ∂�C, ∂�H, ∂�LT, and ∂�GT are represented
in Figure 1(c), with C indicating the condyles, and allow one to mimic the muscular
anchoring surfaces at the extremities of the femur as has been done in [Huiskes
et al. 1987; Doblaré and García 2001; Hambli et al. 2012]. A more accurate de-
scription of the directions of orthotropy, which are related to the distribution of
the physiological stresses throughout the femur [Petrtýl et al. 1996], would require
additional anchoring regions along the diaphysis [Duda et al. 1998]. It also has
to be said that the values of the boundary conditions in (5) are not representative
of the average physiological loads, but they have rather been optimized to best
fit the µCT observations. The concentration of u10 across the femur is shown in
Figure 1(d).
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Si region hc (mm) error anisotropy mode

S1 anterior diaphysis 19.3◦ orthotropy
S2 anterior diaphysis ≈ 4.1 11.5◦ orthotropy / transverse isotropy
S4 great trochanter ≈ 0.8 26.5◦ orthotropy
S5 great trochanter ≈ 0.8 21.1◦ orthotropy
S8 less trochanter ≈ 2.5 62.8◦ orthotropy
S10 neck ≈ 0.7 19.7◦ orthotropy
S11 neck 12.8◦ orthotropy
S15 posterior diaphysis ≈ 5.3 6.6◦ transverse isotropy
S16 posterior diaphysis ≈ 5.7 3.7◦ orthotropy / transverse isotropy
S17 posterior diaphysis ≈ 6.1 10.2◦ orthotropy / transverse isotropy
S18 posterior diaphysis ≈ 6.0 9◦ orthotropy / transverse isotropy

Table 1. Estimated error for the available cortical specimens (hc

is the cortical thickness). All specimens are cortical.

In the same spirit as for i3, we can compute the normalized longitudinal vector

i10 '
∇u10

‖∇u10‖
. (6)

By a simple cross product, we are able to obtain the circumferential vector

i2 =
i3 ∧ i10

‖i3 ∧ i10‖
. (7)

We now have three vectors: the longitudinal (i10), the circumferential (i2), and
the radial (i3). Nevertheless, to ensure the orthogonality of the basis, we need to
recompute the longitudinal vector i10 to obtain

i1 =
i2 ∧ i3

‖i2 ∧ i3‖
. (8)

The diffusion equations are integrated over the 3D personalized geometry of the
femur through a FE discretization.

3. Results

3.1. FE computation of the directions of orthotropy. The main objective of the
FE model is to provide a good approximation of the field of orthotropic coordinates
across the femur via the set of diffusion equations presented in Section 2.1.2. In
Figure 2, we show the global trend of the three unit vectors i1 (longitudinal), i2

(circumferential), and i3 (radial).
In order to validate the numerical approach, a more precise comparison between

the numerical and the experimental orthotropic directions is necessary. In [Cluzel
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Figure 3. Comparison between the numerical longitudinal vector
i1 (red arrows) and the measured vector P1 (green arrows) for
specimens S1, S2, S4, S5, S10, and S11 on the anterior region of the
femur and of S15 to S18 on the posterior region.

and Allena 2018] we have identified the projection P1 on the femur surface of the
main direction of orthotropy. Then we have estimated the error between P1 and
the numerical longitudinal vector i1 (Table 1).

For the comparison, we only consider the available cortical specimens from
[Cluzel and Allena 2018, Table 1]: S1, S2, S4, S5, S8, S10, S11, S15, S16, S17,
and S18. In Figure 3, we show in red the vector i1 and in green the vector P1,
except for S8, which is on the other side of the femur.

Overall, the error goes from a minimal value of about 3.7◦ for S16 in the posterior
diaphysis to a maximal value of about 62.8◦ for S8 in the less trochanter where a
high gradient of the i1 is observed. However, in the anterior and posterior diaphysis,
in the greater trochanter, and in the neck the error varies between 3.7◦ and 26.5◦.

4. Discussion

For an orthotropic material such as bone or a woven composite, the degradation
mechanisms are oriented along the principal directions of the mesostructure. There-
fore, in order to be able to correctly describe the mechanical as well as the damage
behavior of such materials, the associated models need to be built with respect
to the local systems of orthotropic coordinates. Nonetheless, if the orthotropic
directions constantly change across the 3D geometry, their description becomes
even more difficult. Then, being able to obtain an approximation of the orthotropic
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system of coordinates may constitute a numerical challenge, but it allows the simu-
lation of the mechanical response of those structures for which the orthotropy plays
a critical role.

In this article, we have proposed an FE technique based on the assumption that,
for many heterogeneous structures, the main directions of the orthotropic behavior
are determined by the external surface that shapes the geometry, except near the
loading regions. This aspect can be easily observed in the case of a woven com-
posite material where each wire is made of a large number of continuous fibers.
However, it becomes more complex for biological materials (i.e., cortical and
spongy bone), especially when the boundary conditions are applied over a large
region of the structure [Duda et al. 1998].

Here we have employed our method to describe the field of orthotropic directions
in a left human femur. The 3D geometry is obtained through a stack of CT images.
Once the outer surface of the femur is accurately defined, the radial vector i3

across the thickness of the structure is computed using an appropriate diffusion
equation. To obtain the longitudinal vector i10, a second diffusion equation is
used which must take into account specific boundary conditions. As in [Huiskes
et al. 1987; Doblaré and García 2001; Hambli et al. 2012] and for the sake of
simplicity, such boundary conditions coincide with the main muscular anchoring
regions (i.e., the head, the condyles, and the greater and the lesser trochanter).
A sensibility study has been performed in order to confirm that the variation in
intensity of the boundary conditions does not affect the final results. In fact, by
increasing or decreasing by ±0.1 the values of u10 in (5), successively, we found
a variation of about 0.01◦ in the main direction of orthotropy i1, which can be
neglected. Such an approach provides a description of the orthonormal systems
of orthotropic coordinates across the cortical bone. Nevertheless, in those regions
where the thickness of the cortical bone is very thin (i.e., hc < 0.5 mm) or where
the boundary conditions are applied, if i3 is properly determined, the longitudinal
(i1) and the circumferential (i2) directions have no particular physical meaning.

In the literature, most of the numerical models describe cortical bone as an
isotropic material due to several technical issues that one may encounter. A few
orthotropic models have been proposed which include an orthotropic macroscale
description of the bone behavior [Martínez-Reina et al. 2014; Taylor et al. 2002;
Doblaré and García 2001; Gómez-Benito et al. 2005; Peng et al. 2006; Báča et al.
2008; Hambli et al. 2012; Ün and Çalık 2016]. Our approach allows a global and
continuous representation of the orthotropic directions throughout the femur to be
obtained while taking into account the local variations in specific regions of interest
such as the neck and the lesser and greater trochanter.

In order to ensure the quality of the description of the orthotropic directions,
some authors have measured in vitro the orthotropic field which has been manually
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implemented in the numerical models over about 20 regions in [Báča et al. 2007]
and by cubes 2 mm in length in [Wirtz et al. 2003], for instance. In our approach, we
rather estimate a posteriori the error between the numerical longitudinal vector i1

and the direction P1 identified via the µCT images [Cluzel and Allena 2018].
To conclude, the FE technique that we propose is globally consistent with the ex-

perimental data and allows one to obtain a proper approximation of the orthotropic
field of coordinates. As in [Doblaré and García 2001], here we have assumed that
the orthotropy directions are determined by both the applied boundary conditions
and the external geometry of the femur. Additionally, only the boundary conditions
at the extremities of the structure (i.e., the head, the greater and lesser trochanter,
and the condyles) have been considered at this stage. Nonetheless, further muscular
anchoring surfaces should be taken into account in the thicker diaphysis region
[Duda et al. 1998], which may lead to slight rotations of the osteons with respect
to the longitudinal axis, as observed in [Petrtýl et al. 1996; Báča et al. 2007]. To
detect such variations, we are currently acquiring additional measurements along
the diaphysis in order to obtain a more complete map of the osteons’ orientation.
Then we will build corrective functions to adjust both the numerical axial (i1) and
circumferential (i2) unit vectors in the diaphysis via a rotation around i3. We envis-
age undertaking a series of simulations for different types of loading on the femur
to quantify the precision needed for positioning the coordinates systems. We expect
to find some differences in the failure mechanisms of the orthotropic damage model
rather than on the global displacements. Taking into account the exact anisotropic
directions of the cortical bone microstructure will allow one to rigorously describe
the damage model. This constitutes a fundamental element to describe the overall
remodeling process, including the evolution in time of the anisotropic directions
[Placidi et al. 2004], and more specifically the interplay between the biological and
the mechanical processes involved [Frame et al. 2017; Schmitt et al. 2016].
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To assess the degree (i.e., isotropy, transverse isotropy, or orthotropy) and the
directions of anisotropy of a three-dimensional structure, information about its
mesostructure is necessary. Usually, a topological analysis of computed tomog-
raphy or microcomputed tomography images is performed and requires an inter-
pretation of the constitutive elements of the three-dimensional structure, which
may lead to a simplistic description of the geometry. In this paper we propose
an alternative technique based on a geometric tensor and we use it to analyze 38
representative elementary volumes extracted from 24 specimens of cortical bone
in a human femur whose geometries have been reconstructed via microcomputed
tomography images.

1. Introduction

Computed tomography (CT) and microcomputed tomography (µCT) are power-
ful imaging tools allowing the visualization of three-dimensional (3D) geometries
which can be used to simulate the global and personalized response of the me-
chanical structure [Rémond et al. 2016]. If such geometries are constituted of
heterogeneous materials like bone or composites [Placidi et al. 2017; Giorgio et al.
2017], one needs to describe their constitutive behavior as a function of the local
systems of anisotropy. Then, additional information is required at the scale of their
mesostructure to identify the anisotropic field.

Cortical bone is constituted of several elements oriented in space leading to a
very significant anisotropy at different levels, from the nanoscale (i.e., collagen
fibers) to the mesoscale (i.e., osteons) [Rho et al. 1998]. As a consequence, the
elastic behavior at the macroscale is highly anisotropic and more specifically or-
thotropic as has been quantified in [Rho 1996; Bernard et al. 2013].

The identification of the directions of orthotropy may be straightforward and
given by the direct observation of the Haversian canals. For instance, in [Heřt

Communicated by Francesco dell’Isola.
Keywords: orthotropic materials, cortical bone, µCT images, geometric tensor.
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et al. 1994; Petrtýl et al. 1996], the canals are previously ink-soaked and then
developed by successive polishing. A similar technique has also been adopted by
Báča et al. [2007] to describe the directions of the canals on the bone surface.

Alternatively, a topological analysis of CT or µCT images can be employed to
identify the degree (i.e., isotropy, transverse isotropy, or orthotropy) and the main
directions of anisotropy after a 3D skeletonization as in [Pothuaud et al. 2000] or
a 3D finite element (FE) simulation as in [Nazemi et al. 2016], both applied on
trabecular bone. Nonetheless, such an approach requires a complex interpretation
of the constitutive elements of the 3D structure. Therefore, in this paper we propose
an alternative technique based on a geometric tensor and we use it to analyze a
series of representative elementary volumes (REVs) extracted from cortical bone
specimens and whose 3D geometries are obtained via µCT images. Assuming
an orthotropic elastic behavior for the cortical bone, the average directions of the
mesostructure are computed.

In the following sections we describe the experimental approach used to identify
the main directions of orthotropy of the cortical bone mesostructure. This includes
the specimen extraction (Section 2.1.1), the µCT imaging (Section 2.1.2), and
the computation of the geometrical tensor associated with the femur mesostruc-
ture (Section 2.1.3). In Section 3, we first show the consistency of the tech-
nique to identify the directions of orthotropy through simple geometric configu-
rations (Section 3.1) and second we apply our approach on the bone specimens
(Section 3.2). Finally, in Section 4, the results are discussed and some limitations
and perspectives of the work are considered.

2. Material and methods

2.1. Experimental analysis of the orthotropic field.

2.1.1. CT-scanning and specimen extraction. A left human male femur (91 years
old) was collected and frozen at −20 ◦C in a plastic bag. Once defrosted, the femur
was cleaned by a clinician to remove soft tissues around it and dried with ethanol.

A total of 24 specimens Si , with i from 1 to 24, were extracted at different
regions of the proximal side of the femur as follows (Figure 1):

• 3 along the upper anterior diaphysis (AD) (S1 to S3),
• 2 in the greater trochanter (GT) (S4 and S5),
• 4 around and on top of the lesser trochanter (LT) (S6 to S9),
• 3 along the femoral neck (N) (S10 to S12),
• 2 in the femoral head (H) (S13 and S14),
• 4 in the upper posterior diaphysis (PD) (S15 to S18), and
• 6 around the diaphysis (D) (S19 to S24).
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Figure 1. Extraction and position of the 24 specimens from the
human left femur.

Diamond-tipped drills were used to machine specimens S1 to S18, which have
a cylindrical shape with diameter 6 mm and height equal to the thickness of the
cortical bone. Specimens S19 to S24 were manually cut and show a trapezoidal
shape. During the cutting, water was used in order to reduce both friction and
temperature rise. Before the extraction, an easily identifiable mark in the direction
S1 has been carved on the external surface of each specimen in order to orient
it with respect to the femur (Figures 1 and 2). The direction S1 is used to locate
each specimen in the femur when the 3D microstructure is reconstructed from µCT
images. Thus, it could be any direction. Here, for the sake of simplicity, we have

Figure 2. Position of a specimen with respect to the µCT system
of coordinates Rµ.
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Figure 3. (a) Main steps to acquire the directions of orthotropy of
the Haversian canals. (b) Angles defining the projection of RH on
the external surface of the specimen.

decided to let it coincide with the middle line of the femur in each region of interest
(Figure 1). Specimens were immersed in a solution of zinc iodide for 24 hours to
stain the Haversian canals inside the osteons.

2.1.2. µCT imaging. The specimens were placed on a shelf trying to align the
direction S1 with the vertical axis µ1 of the µCT scanner in the best possible way
(Figure 3b). They were scanned using a µCT scanner (Scanco Medical XtremeCT
with voxel size 7.4µm). It consisted of a microfocus X-ray source, a rotating
specimen holder, and a detector system, with a 2048× 2048 pixel CCDD camera.
The images were acquired using the following protocol: 90 kVp, 155µA, 0.5 mm
aluminum filter, and integration time 200 ms per slice.

After acquisition, a stack of about 800 cross-sectional images stored in DICOM
format was obtained and the 3D reconstruction was made using software from
FEI (Hillsboro, Oregon, USA). First, we built the 3D volume of the specimens in
order to compute the outward normal vector Sn to its external surface (Figure 3b).
Second, by defining a specific threshold and by extracting one or more represen-
tative elementary volumes (REVs) for each specimen, we were able to obtain the
3D network of the Haversian canals. It is worth noting that an REV includes a
sufficient number of osteons (i.e., at least 10, which corresponds to 3 to 4 osteons
per side) and does not present any porosity which could trigger artifacts. In both
cases (whole specimen and REV), the final 3D geometry was stored as an STL file
constituted of a large number of facets N f (150000< N f < 200000) providing a
uniform and smooth surface.

2.1.3. Identification of the main directions of the Haversian canals. In this section
we detail the successive steps used to acquire the main directions of orthotropy
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associated with the Haversian canals (Figure 3a). Each system of reference used
in this section is a direct orthonormal system of coordinates.

First, each specimen Si is defined by its proper system of reference RS =

{S1, S2, Sn}, where the subscript S stands for specimen, S1 and Sn were previously
defined (Section 2.1.1), and S2 is obtained via a vector product between S1 and
Sn (Figure 3b). In order to determine the position of the specimen with respect to
the µCT system of reference Rµ = {µ1,µ2,µ3} (the subscript µ stands for µCT),
three angles are measured between Rs and Rµ: φ, β, and δ (Appendix A1).

Second, once an REV is extracted from a specimen and using the geometrical
information included in the STL files previously obtained (Section 2.1.2), the sys-
tem of reference RH = {H1, H2, H3} (the subscript H stands for Haversian canals)
can be computed. To do so, rather than performing a topological analysis [Boyle
and Kim 2011] of the REV surface mesh which would require an approximation of
each Haversian canal by a regular geometry, we propose an approach which only
takes into account the external surface of each Haversian canal while maintaining
the precision, as demonstrated via simple illustrative examples in Section 3.1.

Each facet of the REV surface mesh is identified by its proper outward normal
vector n j . Since for each REV the mesh facets have mostly the same area and
their total number N f is high, no weighting has been applied. The product n j nT

j
enables one to obtain a tensorial form of n j , which includes more information than
the vector itself (i.e., eigenvalues and eigenvectors). Then, by summing all these
tensors, the global tensor G can be computed as

G =
N f∑
j=1

n j nT
j . (1)

To quantify the morphology and the geometrical effects, we use the normalized
eigenvalues 0 ≤ λk ≤ 3, with k ∈ [1, 2, 3], of G, which are obtained from the
eigenvalues λ10 ≤ λ20 ≤ λ30 as

λk =
3λk0

λ10+ λ20+ λ30
. (2)

For each normalized eigenvalue λk , the associated eigenvector Hk can be calcu-
lated.

Finally, the projection of RH on the external surface of the specimen is computed
to obtain the system of reference RP = {P1, P2, P3}, where the subscript P stands
for projection (Appendix A2). The vectors P1, P2, and P3 are the projections of
H1, H2, and H3, respectively (Figure 3b). Then, the position of RH for each REV
with respect to RS can be found through three angles: ψ , γ , and θ (Figures 3b and
4). The vector P1 will be directly compared to the corresponding numerical vector,
which is obtained as described in the following sections.
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Figure 4. Angles defining the projection of RH on the external
surface of the specimen (W2 is an intermediate unit vector).

3. Results

3.1. Validation of the technique to identify the directions of orthotropy. To vali-
date and illustrate our approach presented in Section 2.1.3, five simple examples,
whose average direction V is known, are proposed as shown in Figure 5.

It has to be noticed that the cutting sections of the tubes are not proper surfaces
of the tubes themselves but rather fictive ones obtained through the REV extraction.
Therefore, for configurations (a) to (d), the upper and lower cutting planes are not
taken into account. However, for the sake of practicality, for configuration (e) the
extremities are included in the analysis.

For each configuration, the tubes are characterized by their direction Vt0 (t being
the number of the tube in the specific configuration and going from 1 to Nt , the
total number of tubes), which is defined in a spherical system of coordinates as
Vt0 = {cosαt cos γt , cosαt sin γt , sinαt }.

The average direction V of a configuration is then defined as

V =
∑Nt

l=1 Vt0∥∥∑Nt
l=1 Vt0

∥∥ (3)

Figure 5. Simple examples to illustrate our approach to compute
the geometric tensor G. (a) Single tube with circular section.
(b) Single tube with elliptical section. (c) Two crossed tubes.
(d) Five noncrossed and randomly oriented tubes with circular
section. (e) Three orthogonally crossed tubes.
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(a) (b) (c) (d) (e)

50◦/20◦

60◦/90◦ 55◦/25◦ 0◦/0◦

αt /γt 60◦/30◦ 60◦/30◦ 60◦/−90◦ 60◦/30◦ 0◦/90◦

65◦/35◦ 90◦/0◦

70◦/40◦

0.433 0.433 0 0.437
V 0.250 0.250 0 0.237

0.866 0.866 1 0.868

λ1 0.010 0.000 0.320 0.03 0.998
λ2 1.480 0.990 0.930 1.420 1.001
λ3 1.510 2.010 1.750 1.540 1.001

0.432 0.433 −0.001 0.408 0.577
H1 0.251 0.250 0.001 0.240 0.577

0.866 0.866 1.000 0.881 0.577

0.517 −0.501 −0.013 0.598 −0.305
H2 0.718 0.865 0.999 0.659 −0.503

−0.466 0.001 −0.001 −0.456 0.808

Anisotropy mode TI O O TI I

Table 1. Overall results for each configuration (a) to (e) (TI =
transverse isotropy, O = orthotropy, and I = isotropy).

with ‖ · ‖ the Euclidean norm of a vector. The results associated with each con-
figuration are reported in Table 1. The direction V can be alternatively computed
using the approach presented in Section 2.1.3. In fact, the first eigenvector H1

of the geometrical tensor G corresponds to V . It is interesting to notice that an
eigenvector Hk (k going from 1 to 3) is correctly computed only if the associated
eigenvalue λk is notably different from the other two. Thus, the direction V is
properly estimated by the proposed approach for cases (a) to (d). However, for
case (e), the eigenvalues λk of G being identical and close to 1, the overall geometry
is isotropic and the eigenvectors do not provide any further information. Similarly,
the eigenvector H2 is indicative only if the eigenvalues λ2 and λ3 are different.
This is not the case for configurations (a) and (d) where there is not a preferential
transversal direction (i.e., transverse isotropy). Finally, for cases (b) and (c), the
eigenvector H2 clearly shows the geometrical orthotropy.

The consistency of our technique has then been shown, and we can now apply
it to the cortical bone.
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Figure 6. 3D reconstruction of the Haversian canals network for
the REVs extracted from specimens S1, S2, S4, S5, S8, S10, and S11

(yellow circles). For the other specimens (pink or gray circles),
the reconstruction was not possible due to the very thin cortical
thickness or some technical issues.

3.2. Measurement of the directions of orthotropy. For each of the 24 specimens
the 3D geometry was reconstructed and its position with respect to the µCT system
of coordinates Rµ was identified. In order to obtain the main direction H1 of the
Haversian canals, at least one REV for each specimen was extracted where only
Haversian canals (i.e., no large porosities) could be observed. Nevertheless, for
some specimens (i.e., S6, S7, S9, S13, and S14) only a few Haversian canals (i.e.,
fewer than five) could be segmented due to the very thin thickness of the cortical
domain. Then, the orthotropic system of coordinates RH could not be computed,
but we rather estimated the eigenvectors Hk of the geometric tensor G associated
with the spongy trabeculae. Additionally, specimens S3, S6, and S12 could not be
retrieved due to some technical issues. In Figure 6, the REVs for specimens S1,
S2, S4, S5, S8, S10, and S11 are presented. In summary, we distinguish between the
specimens with a cortical thickness hC greater (19, named cortical specimens) and
less (5, named trabecular specimens) than 0.5 mm. In the following sections, for
each specimen we identify the eigenvalues (λ1, λ2, λ3) of the geometric tensor G,
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Si REV region s.t. λ1 λ2 λ3
θ ψ γ hc a.m.◦
±1 ◦

±1 ◦
±1 mm± 0.4

S1 S1,1 AD C 0.39 0.93 1.67 −20.1 11.2 −3.8 O
S2 S2,1 AD C 0.46 1.12 1.42 −9.9 2.0 −35.5 4.1 O/TI
S3 S3,1 AD C LD
S4 S4,1 GT C 0.42 1.06 1.52 31.3 1.1 0.9 0.8 O
S5 S5,1 GT C 0.38 0.76 1.86 20.5 3.0 10.4 0.8 O
S6 S6,1 LT T 0.5 NVM
S7 S7,1 LT T 0.43 0.72 1.80 33.0 2.9 5.7 0.4 O
S8 S8,1 LT C 0.35 1.01 1.64 87.5 0.2 −3.5 2.5 O
S9 S9,1 LT T 0.62 0.99 1.39 70.8 9.8 83.9 0.5 O
S10 S10,1 N C 0.37 0.74 1.90 20.5 7.3 3.9 0.7 O
S11 S11,1 N C 0.37 1.14 1.48 −2.3 5.2 −0.2 O
S12 S12,1 N C LD
S13 S13,1 H T 0.43 1.04 1.53 −96.1 80.5 −69.1 O
S14 S14,1 H T 0.43 1.08 1.49 −89.2 79.7 −60.9 0.5 O
S15 S15,1 PD C 0.76 1.11 1.14 −7.5 7.9 −53.2 5.3 TI
S16 S16,1 PD C 0.63 1.10 1.28 −4.2 6.2 87.4 5.7 O/TI
S17 S17,1 PD C 0.58 1.11 1.31 10.6 4.4 −89.1 6.1 O/TI
S18 S18,1 PD C 0.39 1.20 1.40 9.6 1.7 −28.3 6.0 O/TI

Table 2. Overall results for specimens S1 to S18. Under s.t. (specimen
type): C = cortical, T = trabecular . Under a.m. (anisotropy mode):
TI = transverse isotropy, O = orthotropy, I = isotropy, LD = lost data,
NVM = no visible mark.

the angles θ , ψ , and γ , and the cortical thickness hC . In Tables 2 and 3 all the
results are reported. For the angles, the uncertainty of 1◦ is due to the manual
measurement. For the cortical thickness, an uncertainty of 0.4 mm corresponds to
the largest transition region between the cortical and the spongy bone.

3.2.1. Cortical specimens. Although in reality there is no sharp transition between
isotropy (I), transverse isotropy (TI), and orthotropy (O), here, in order to classify
the degree of anisotropy for each specimen Si , we have defined the intervals

• for I |λi − λ j | ≤ 0.05,

• between I and TI 0.05< |λi − λ j |< 0.37,

• for TI with respect to H1 |λ2− λ1| ≥ 0.37 and |λ3− λ2| ≤ 0.05,

• between TI and O |λ2− λ1| ≥ 0.37 and 0.05< |λ3− λ2|< 0.37, and

• for O |λi − λ j | ≥ 0.37,

where i, j ∈ {1, 2, 3} and i 6= j .
Overall, for each cortical specimen, λ1 is much smaller than λ2 and, more specif-

ically, we found that specimens S2, S15, S16, S17, and S18 show a transverse isotropy.
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Si REV
χ

region s.t. λ1 λ2 λ3
θ ψ γ

a.m.◦
±1 ◦

±1 ◦
±1 ◦

±1

S19,1 −11.3 D C 0.62 1.06 1.30 8.4 1.8 −2.5 O/TI
S19 S19,2 −4.6 D C 0.76 1.04 1.20 2.1 −2.1 −16.3 TI/I

S19,3 5.4 D C 0.68 0.97 1.35 3.6 1.6 −4.7 O

S20,1 33.4 D C 0.64 1.03 1.33 16.3 7.3 12.0 O
S20 S20,2 42.4 D C 0.68 1.03 1.29 19.4 4.4 −7.5 O/TI

S20,3 51.8 D C 0.59 1.10 1.31 16.8 1.8 −26.3 O/TI

S21,1 70.0 D C 0.62 1.08 1.30 11.7 −0.6 −36.1 O/TI
S21 S21,2 80.3 D C 0.63 1.10 1.27 10.2 −1.6 −34.2 O/TI

S21,3 87.7 D C 0.53 1.21 1.26 8.6 −1.9 −71.3 TI

S22,1 100.9 D C 0.62 1.05 1.33 9.3 0.6 −26.1 O/TI
S22,2 118.2 D C 0.61 1.13 1.26 9.5 −0.4 −5.6 O/TI

S22 S22,3 122.3 D C 0.51 1.05 1.44 9.2 1.1 −18.9 O
S22,4 126.9 D C 0.68 1.05 1.27 18.0 −1.1 −17.9 O/TI
S22,5 130.0 D C 0.74 1.05 1.21 16.6 −1.1 −5.1 TI/I

S23,1 147.2 D C 0.65 1.07 1.28 4.7 −0.7 −13.1 O/TI
S23 S23,2 160.2 D C 0.68 0.99 1.32 1.3 0.6 −4.8 O/TI

S23,3 171.1 D C 0.71 1.01 1.28 −7.9 2.7 −7.9 O/TI

S24,1 181.0 D C 0.79 1.09 1.12 −23.1 −1.7 −17.2 TI
S24 S24,2 187.1 D C 0.67 0.99 1.34 −35.9 −5.7 −1.4 O

S24,3 197.6 D C 0.68 1.06 1.26 −28.6 −16.1 −22.9 O/TI

Table 3. Overall results for specimens S19 to S24. Under s.t. (specimen
type): C = cortical. Under a.m. (anisotropy mode): TI = transverse
isotropy, O = orthotropy, I = isotropy.

Then, in these cases, the angle γ , which generally provides the circumferential
direction, is not relevant since λ2 ≈ λ3. The remaining cortical specimens (i.e.,
S1, S4, S5, S8, S10, and S11) are orthotropic. Around the diaphysis (i.e., from
S19 to S24), some REVs clearly show an orthotropic behavior, whereas others are
between orthotropy and transverse isotropy (Table 3).

It is interesting to focus on the specimens in the AD (S1 and S2), in the PD (from
S15 to S18), and around the diaphysis (from S19 to S24) for which hc > 0.5 and the
Haversian canals are uniformly oriented. We found that the angle θ between the
drawn mark S1 on each specimen and P1, the projection of the principal direction
of the Haversian canals H1 on the external surface of the femur, varies between
−35.86◦ for S24,2 and 19.44◦ for S20,2.

We analyzed the evolution of θ along the radial direction (Figure 7). To do so,
we split the reconstructed S1 specimen into seven successive slices with a spacing
of 0.5 mm (Figure 7) and we found θ equal to (a) −43◦, (b) −22◦, (c) −15◦, (d)
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Image λ1 λ2 λ3 θ (◦)

Figure 7a 0.39 0.55 1.09 −42.7
Figure 7b 0.44 0.99 1.56 −21.9
Figure 7c 0.40 0.98 1.61 −15.0
Figure 7d 0.37 1.15 1.48 −16.1
Figure 7e 0.39 1.22 1.39 −16.6
Figure 7f 0.44 1.15 1.40 −17.6
Figure 7g 0.44 1.18 1.38 −14.9

Table 4. Results for the extracted slices from specimen S1.

−16◦, (e) −17◦, (f) −18◦, and (g) −15◦. If we consider that in the outermost slices
(parts (a) and (b) of Figure 7) the presence of the external surface distorts the final
outcome, one may conclude that θ does not change significantly when going from
the outer to the inner cortical domain. The computed angles are reported in Table 4.

Figure 7. Successive slices from the exterior (a) to the interior (g)
of an REV of specimen S1.

Figure 8. Specimens S19 to S24 with the relative circumferential
position χ and some of the extracted REVs.
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Figure 9. (a) Evolution of θ , ψ , and γ with respect to the circum-
ferential position χ of the REVs in specimens S19 to S24. (b) Ori-
entation of ψ close to the external surface of the femur.

For specimens S19 to S24, twenty REVs were extracted, whose position around
the diaphysis circumference is defined by the angle χ , varying between −11.3◦

and 197.6◦ (Figure 8 and Table 3). In Figure 9a, the evolutions of the angles θ (red
line), ψ (brown line), and γ (blue line) around the upper diaphysis (i.e., from the
anterior to the posterior region passing by the lateral region) are shown. We can
notice that θ and γ vary as functions of the circumferential coordinate χ , whereas
ψ does not change significantly.

Finally, we investigated the variation of ψ , the angle between P1 and H1, across
the cortical thickness along the radial direction for the specimen S1. We found that,
closer to the outer surface, the Haversian canals are nearly parallel to the surface
(Figure 9b).

3.2.2. Trabecular specimens. As mentioned earlier, for some specimens (S6, S7,
S9, S13, and S14) the cortical thickness is very thin. Thus, it is difficult to extract
an REV with isolated Haversian canals and identify the average direction H1.

Although in the present work we focus on the orthotropy of the cortical bone,
it is interesting to quantify the geometric tensor G and the associated variables for
such specimens (Table 2). To do so, the parameters used for the reconstruction of
the 3D geometries from the µCT images have been adapted in order to detect the
trabeculae and larger REVs have been extracted.

Some remarks can be drawn. For specimens S13 and S14 extracted in the head,
the angle ψ is equal to 80.5◦ and 79.7◦, respectively. This means that the spongy
trabeculae are mainly oriented perpendicular to the outer surface of the femur. On
the contrary, for specimens S7 and S9 extracted in the neck, ψ is found equal to
2.9◦ and 9.8◦, respectively, which implies that the trabeculae are almost parallel to
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the external femoral surface (Table 2). Such outcomes are in agreement with the
literature and more specifically with the works of Jacobs et al. [1995] and Tsubota
et al. [2009].

4. Discussion

Our approach is based on experimental data and more specifically on µCT images
of the Haversian network, which provide the same trends found in [Petrtýl et al.
1996; Wirtz et al. 2003; Báča et al. 2007]. We have defined a geometric tensor G,
via the outward normal vectors to the facets of an REV, and we have computed its
eigenvalues and eigenvectors to estimate the degree and the directions of orthotropy,
respectively.

Despite the interesting results, such a technique shows few main drawbacks.
First, the position of each specimen with respect to the µCT system of coordinates
Rµ needs to be carefully retrieved in order to obtain consistent results. Second, it is
a discrete approach since the measurements are obtained via a series of specimens
in specific regions of the 3D structure. In order to circumvent this issue, we propose
in a further work a numerical technique based on diffusion equations and on the
experimental data obtained in this paper. This approach will allow us to get a
continuum description of the field of orthotropic directions in a 3D structure such
a femur.

Appendix

A1. Position of RS with respect to Rµ. As explained in Section 2.1.3, it is nec-
essary to determine the position of a specimen Si with respect to the µCT. Each
specimen is identified by the mark S1 and the outward normal vector Sn , which
constitute with S2 the system of coordinates RS = {S1, S2, Sn}. During the image
acquisition, the position of a specimen with respect to the µCT system of coordi-
nates Rµ = {µ1,µ2,µ3} is defined by three angles (Figure 2):
• φ, the angle between µ2 and V2,

• β, the angle between V2 and Sn , and

• δ, the angle between W1 and S1,

where Rv = {V1, V2, V3} is an intermediate system of reference obtained by pro-
jecting the specimen on the plane (µ2,µ3). Then, V1 = µ1, V2 is the normalized
projection of Sn on the plane (µ2,µ3), and V3 is the cross product between V1

and V2. Finally, the vector W1 is the normalized projection of V1 on the specimen
external surface.

A2. Projection of RH on the external surface of a specimen. As described in
Section 2.1.3, it is necessary to identify the position of the Haversian canals with
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respect to the specimen. When an REV is extracted from a specimen, the system of
orthotropic coordinates RH = {H1, H2, H3} of the Haversian canals can be deter-
mined. The projection of RH on the external surface of the specimen is computed
and the system of reference RP is obtained. Then, three angles define the position
of RH with respect to RS (Figure 4):

• θ , the angle between P1 and S1, expressed as

θ =− arcsin(PT
1 S2), (4)

• ψ , the angle between H1 and P1, which reads

ψ =− arcsin(ST
n H1), (5)

and

• γ , the angle between H2 and P2, defined as

γ =− arcsin(PT
2 H3), (6)

where (cT d) indicates the dot product, the superscript T the transpose of a vector,
and

P2 =
H1 ∧ Sn

‖H1 ∧ Sn‖
, (7)

P1 =
Sn ∧ P2

‖Sn ∧ P2‖
(8)

with (c∧ d) the vector product. It is worth noting that in (4), (5), and (6), rather
than simply computing the arc cosine between the two involved vectors, the arc
sine is used in order to detect the sign of the angle of interest.
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