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ON LINEAR NON-LOCAL THERMO-VISCOELASTIC
WAVES IN FLUIDS

JOE D. GODDARD

The following is an elaboration on the linear non-local model of viscoelastic
fluids proposed in a previous work (Int. J. Eng. Sci. 48 (2010), 1279–1288).
As a recapitulation of that work, the basic theory is presented in terms of the
temporal frequency and spatial wave number in the Laplace–Fourier domain.
Taylor-series expansions in these variables provides a weakly non-local theory
in spatio-temporal gradients that is more comprehensive than the “bi-velocity”
model of Brenner. The linearized Chapman–Enskog kinetic theory is shown to
provide a confirmation of the more general theory, from which one can recon-
struct a fully non-local integral model.

Following the work of Davis and Brenner (J. Acoust. Soc. Am. 132 (2012),
2963–2969), the general theory is employed to derive dispersion relations for
acoustic, thermal and shear-wave propagation in compressible viscoelastic fluids.
At Burnett order the Chapman–Enskog theory gives a cubic polynomial in wave
number squared which reduces in the dissipative quasi-static limit to a quadratic
like that given by the classical Navier–Stokes–Fourier model and the bi-velocity
modification of that model.

With minor modification, the present analysis applies to viscoelastic shear
and dilatational wave propagation in solids with higher-gradient and Cosserat
effects, where it may, for example, find application to the field of rotational
seismology.

1. Introduction

Following [Goddard 2010], hereinafter referred to as [G10], we consider a linear,
fully non-local model for the thermo-mechanics of fluids. As was the case with
[G10], the present paper is motivated in part by the ideas of the late H. Brenner, who
wrote extensively at the end of his career [2009; 2012] on the possible breakdown
of the classical Navier–Stokes–Fourier model of momentum and heat flux arising
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from strong inhomogenieties due to large temperature or density gradients. This
ostensibly motivates his revised constitutive theory, “bivelocity fluid mechanics”,
based on the notion that barycentric velocity, associated with material inertia and
kinetic energy, is not appropriate for the description of internal stress in a fluid or
solid. In its place, he proposes a “volume” or “work” velocity, together with var-
ious constitutive models for the “diffuse volume flux” representing the difference
between the two velocities. This stratagem serves inter alia to introduce higher
spatial gradients of temperature and velocity into the constitutive theory.

An alternative perspective is offered in [G10], where it is argued that the above
revision is necessitated by the breakdown of the thermo-mechanically simple mate-
rial of Coleman [1961; 1964] and that Brenner’s constitutive theory is a restricted
version of a more general non-local theory. Such a theory, anticipated in numer-
ous previous works (see [Eringen 2002] and references therein), was sketched out
in [G10], which leaves unanswered certain questions regarding the magnitude of
material-specific length and time scales involved in the breakdown of the classical
model and the inadequacy of the bi-velocity model as a strictly linear theory.

The purpose of the present work is to elucidate further the above questions, by
considering specific models that are fully non-local in both space and time, i.e.,
models which involve long-range interactions in space combined with long-range
history effects in time. In particular, we show that the linear model which emerges
at “Burnett order” in the classical Chapman–Enskog kinetic theory is a special case
of the general model. As appreciated by others [Müller and Ruggeri 1998], this
kinetic theory involves relaxation effects of the type described earlier by Maxwell’s
viscoelasticity [1867] and later by Cattaneo’s retarded thermal conductivity [1948].
As we shall also show, Brenner’s theory represents a restriction to the dissipative
response arising on time scales longer that the Maxwell–Cattaneo relaxation times.
Also, it is shown that a fully non-local model can be reconstructed from the lin-
earized Chapman–Enskog theory.

Acoustic wave propagation represents a plausible testing ground for non-local
thermo-mechanical effects, as already recognized in [Davis and Brenner 2012]; the
present paper provides an extension of that work. It also presents an extension of
[G10] that identifies the hyperstresses conjugate to higher velocity gradients. How-
ever, the applications to wave propagation are restricted to the linear momentum
balance, with no account taken of higher-order inertial terms. Finally, we establish
a connection to various non-local models of wave propagation in complex solids.

2. Fourier–Laplace representation: Recapitulation of previous work

Following the analysis of [G10], we recall that Fourier representations embody the
notion of wave-number dependent transport coefficients, capturing the dispersive



ON LINEAR NON-LOCAL THERMO-VISCOELASTIC WAVES IN FLUIDS 323

effects associated with higher gradients. When extended to the time domain by
means of the Laplace transform, one obtains a similar description of frequency
effects in materials with memory1. Hence, the transform

ψ̂(k, s)= ψ̂t(k, s)=
1
√

8π3

∫
R

∫
∞

0
e−ı k·x−st ′ψ(x, t − t ′) dV (x) dt ′ (1)

provides a localized description in Fourier space (k, s) of a spatio-temporally de-
localized field in physcial space, ψt(x′, t ′) = ψ(x′, t − t ′), x′ ∈ R, t ′ ≥ 0,
and vice versa. Accordingly, a causal, non-local and linear constitutive equation
between two sets of tensor fields

8(x, t)={ϕ(1), . . . ,ϕ(m)}(x, t) and 9(x, t)={ψ (1), . . . ,ψ (m)}(x, t−t ′), (2)

for t ′ ≥ 0, of the type pursued by Eringen [1992; 2002], can be represented by the
linear form:

8̂(k, s)= L̂(k, s)9̂(k, s) (3)

where L̂ represents a matrix of tensor moduli. This relation is tantamount to the
spectral theory of commutative linear operators with {ı k, s} → {∇, ∂t }, and the
time-honored Fourier–Laplace transforms provide a concrete algebraic representa-
tion.

With 8̂(x, t)= {σ̂ , q̂} representing stress σ̂ and heat flux q̂ in (2), one obtains
a linear non-local theory of thermo-viscoelasticity. We recall that Eringen [2002,
Section 7] proposes a simpler non-local theory for viscous incompressible fluids
with uncoupled heat flux, a theory that was overlooked in [G10].

If we adopt a scaling in which k and s are replaced by non-dimensional forms
λ0k and τ0s, with λ0 and τ0 denoting, respectively, appropriate material length
and time scales, then k = |k| and s represent, respectively, a Knudsen and a
Deborah number. Hence, one obtains a weakly non-local spatio-temporal models
from the Taylor-series expansion of L̂(k, s) about the spatially uniform steady state
k = 0, s = 0. The expansion in k is, to terms O(k2), tantamount to the Burnett
expansion of kinetic theory [Müller and Ruggeri 1998], whereas the expansion in
s represents the “retarded motions” of [Coleman and Noll 1961; Coleman 1964].
In particular, the simple fluid emerges at O(k) in k. Dissipative response, defining
the Navier–Stokes–Fourier regime, arises for s→ 0 at O(1) for q̂ and at O(s) for
σ̂ , provided we take v̂ to be O(s), i.e.,

v = ∂t u, with ∴ v̂ = s û, (4)

where u denotes material displacement from the positions at t = 0.

1Since our “Fourier–Laplace” transform involves what is essentially a Fourier transform on t =
[0,∞) with complex wave vector s, we could as well employ the terminology “Fourier transform”
and “Fourier space”.
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Following [G10]we consider a spatially nonlocal linear viscoelastic fluid in
which the stress σ relative to a spatially uniform equilibrium pressure p0 (replacing
the deviatoric stress τ of [G10], which deals with incompressible fluids) and the
heat flux q, are represented by σ̂ [= σ̂i j ] and q̂ [= q̂i ] as functions of velocity
v̂ [= v̂i ] and departure θ̂ = T̂ − T0/s from the uniform absolute temperature T0 of
the equilibrium base state. With Cartesian tensor components displayed for clarity,
these can be written as in [G10]:

q̂ [= q̂i ] = L̂(11)θ̂ + L̂(12)v̂
[def
= L̂(11)θ̂ + L̂(12)

i j v̂ j
]
,

σ̂ [σ̂i j ] = L̂(21)θ̂ + L̂(22)v̂
[def
= L̂(21)

i j θ̂ + L̂(22)
i jl v̂l

]
,

(5)

where the tensor coefficients L̂ depend on the complex frequency s and wave vec-
tor k. Here as in the following, we indicate components of tensors on a given
Cartesian system by means of square brackets [ ], and the Cartesian summation
convention is employed. We further employ colons to denote contraction of the
trailing components of a prefactor with all the components of the postfactor, with
the conventional dot for the scalar product of vectors.

For isotropic materials, the various tensors in (5) must be isotropic functions of
the wave vector and, for the case of symmetric stress assumed here, can be written
down explicitly as in [G10]:

L̂(11)
i = Âki ,

L̂(12)
i j = B̂δi j + Ĉki k j ,

L̂(21)
i j = D̂δi j + Êki k j ,

L̂(22)
i jl = F̂δi j kl + Ĝ(δilk j + δ jlki )+ Ĥki k j kl,

(6)

where the scalar coefficients Â, B̂, . . . , Ĥ are functions of s and k2, where k2
= ki ki

defines a generally complex quantity, since we shall admit complex wave vectors
k. Also, we have added carats to the coefficients defined in [G10], in order to
distinguish them from their physical-space images considered below.

In direct tensor notation, the preceding relations become

q̂ = Âkθ̂ + (B̂1+ Ĉ k⊗ k)v̂,

σ̂ = (D̂1+ Ê k⊗ k)θ̂ + F̂(k · v̂)1+ Ĝ(k⊗ v̂+ v̂⊗ k)+ Ĥ(k · v̂)k⊗ k.
(7)

Now, the requirement of real q and σ implies that the coefficient, say, K̂n of the
general term in (7):

K̂n(k, s)kn, where kn
= kn−1

⊗ k, n = 1, 2, . . . , k0
= 1, (8)
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must satisfy K̂ ∗n (k
2, s)= (−1)n K̂n(k∗2, s), where asterisks denote complex conju-

gates here and below. Hence, the coefficients of even (odd) order terms in k must
be essentially real (imaginary). (By essentially real we mean a function R→ R,
i.e., a function that is real-valued when its arguments are real, whereas essentially
imaginary is a function R→ ıR, i.e., ı times an essentially real function.)

In line with the above remarks, and following [G10], we obtain from (6) a
weakly nonlocal theory in space by means of the wave-number expansions of
K̂ = Â, B̂, . . . , Ĥ of the form

K̂ = K̂0(s)+ K̂1(s)k2
+ K̂2(s)k4

+ · · · , (9)

where K̂m(s) are independent of k. As pointed out in [G10], Gallilean invariance
of heat flux requires that B̂0 = 0 which, by a general form of Onsager symmetry,
implies that D̂0=0. We shall show presently that the latter result arises from a
properly restricted form of that symmetry.

Note that the stress defined by (7)2 represents a non-local quantity whose expan-
sion in k defines a hierarchy of hyperstresses. In particularly, by an extension of
the dissipative forms discussed by [Goddard and Lee 2017] we have

σ̂ =
∑
m≥1

σ̂ (m):(−ı k)m−1, i.e., σ̂i j =
∑
m≥1

σ̂
(m)
i j, j1,..., jm−1

(−ı k)m−1
j1,..., jm−1

,

where σ̂ (1) is Cauchy stress and the σ̂ (m), m > 1, is the hyperstress conjugate to
(ı k)m v̂.

Now, if both B̂0 and D̂0 vanish, then (5) and (7) reduce to a standard form in
which {∇θ,Sym(∇v)} represent nine forces conjugate to nine fluxes {q, σ }. In
that case, the local dissipation rate is given by:

σ :∇v−
q
T0
· ∇θ ≥ 0, (10)

in the dissipative regime, where σ , q are strictly dissipative. Thus, by the Parseval–
Plancherel theorem, the global dissipation becomes2∫

R

(
σ :∇v−

q
T0
· ∇θ

)
dV (x)

=−ı
∫

R̂

(
σ̂ :k∗v̂∗− q̂ · k∗

θ̂∗

T0

)
dV̂ (k)

=−ı
∫

R̂

(
L̂(21)

i j k∗i v̂
∗

j
θ̂

T0
+ L̂(22)

i jl k∗i v̂
∗

j v̂l − L̂(11)
i k∗i

|θ̂ |2

T 2
0
− L̂(12)

i j k∗i v̂ j
θ̂∗

T0

)
dV̂ (k)

≥ 0, (11)

2after extension to complex k and correction of a typographical error of [G10]
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where R is the spatial region occupied by the fluid and R̂ is its Fourier image (i.e.,
the transform of its indicator function). Based on an unwarranted restriction to
real-valued transforms θ̂ , v̂, it is erroneously concluded in [G10] that the general
Onsager symmetry L(21)

i j = L(12)
i j eliminates dissipative coupling between tempera-

ture and velocity.
As a more restricted form of Onsager symmetry, note that (7) gives

p̂ = Î θ̂+ Ĵ k·v̂, where Î =−(D̂+ Êk2/3), Ĵ =−(F̂+2Ĝ/3+ Ĥk2/3),

k·q̂ = Âk2θ̂+(B̂+Ĉk2)k·v̂,
(12)

with J → J0 =−ıβ0 for k→ 0, where β0 denotes the standard bulk (or “volume”)
viscosity. Thus, in the dissipative regime, the quantities

θ∇ ·q/T0− p∇ ·v ≥ 0, or ı(θ̂∗k · q̂/T0− p̂∗k · v̂)≥ 0

represent the dissipation rate. The significance of the term involving pressure work
is obvious, while the other term is essentially the potential Carnot work dissipated
locally by irreversible heat flow, since θ/T0 =−(1− T/T0). Hence, the Onsager
symmetry of the linear relations (12) requires that

(B̂+ Ĉk2)/T0 =− Î = (D̂+ Êk2/3), and ∴ D̂0 = B̂0 = 0 (13)

in the dissipative regime, a necessary restriction on the more general form proposed
in [G10].

As they stand, the relations (7) represent linear non-local thermo-viscoelasticity,
with the x-t images of the coefficients K̂ = Â, B̂, Ĉ, ... providing the kernels of
integral operators acting on f= {θ, v}. According to (8) these assume the form

K̂n kn(·)f̂→ (−ı)n
∫
∞

t ′=0

∫
R′

Kn(x′, t ′)∇n(·)f(x− x′, t−t ′) dV (x′) dt ′, (14)

where (·) represents an optional dot product or contraction. Moreover, since the
coefficients K̂ are functions of k that depend only on k2, they admit simplified
inverse spatial transforms, as discussed in the Appendix. We now consider the
special cases of the general theory represented by the kinetic theory of gases and
by Brenner’s bivelocity model.

3. Linearized kinetic theory of gases

As a slight variant on the kinetic-theory results given by Chapman and Cowling
[1960, p. 410], Müller and Ruggeri [1998, p. 74] give the following implicit forms
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for heat flux and shear stress in a monatomic gas:

q=−τq
{
−

5
2 Rp∇θ+q̇+q·∇v−Rθ∇·σ− 7

5 q∇·v− 4
5 q·∇v+ 7

2 Rσ·∇θ+σ
ρ
·∇p

}
,

σ = τσ
{

p[∇v+ (∇v)T − 2
3∇ ·v1] − σ̇ − 2[σ∇v+ (σ∇v)T ]

+
2
5 [∇q+ (∇q)T − 2

3∇ ·q1] − σ∇ ·v
}
, (15)

where τσ and τq are the respective relaxation times for stress and heat flux, and R
is the species-specific gas constant in the ideal-gas law R = ρT/p. By means of
the the leading linear terms in (15), we identify the Newtonian shear viscosity and
the Fourier conductivity, respectively, as

µ= pτσ ,

κ = 5Rpτq/2= 5(τq/τσ )Rµ/2.
(16)

Taking τq = 3τσ/2 one recovers a standard approximation κ=̇5cVµ/2 for smooth
spherically-symmetric molecules [Chapman and Cowling 1960, p. 273] with spe-
cific heat cV = 3R/2.

It is a straighhtforward matter to linearize the equations (15) about a uniform
state of density ρ0, temperature T0 and pressure p0 = peq(ρ0, T0), since terms
involving products of quantities that vanish in the uniform state do not contribute
to the linearized equations. The function peq introduced here represents the equi-
librium equation of state, which is of course given by the above ideal-gas law for
dilute gases, but we allow here a more general equation of state.

Letting

µ= ρ0ν =
µ0

(1+ τσ0s)
, τ =

4τσ0

5(1+ τσ0s)
,

κ = ρ0cp0α =
κ0

(1+ τq0s)
, f0 =

2T0

5p0
,

(17)

one finds that the linearized equations take on this compact form in Fourier space:

σ̂ = 2µε̂+ ıτ [(k⊗ q̂+ q̂⊗ k)/2− (q̂ · k)1/3]

and q̂ =−ıκkθ̂ + ıκ f0k · σ̂ ,

where ε̂ = ı[(k⊗ v̂+ v̂⊗ k)/2− (k · v̂)1/3].

(18)

After a bit of algebra, one can solve equations (18) for q̂, σ̂ in terms of θ̂ , v̂, to
give

q̂ =−κ{ı kθ̂ f1+µ f0 f2[k2v̂+ f1k⊗ k · v̂/2]},
σ̂=2ıµ f2[(k⊗ v̂+ v̂⊗ k)/2−(k·v̂)1/3]+κτ f1(k⊗ k−k21/3)[θ̂− ıµ f0 f2(k·v̂)/3],

where f1 = [1+ 2(λk)2/3]−1, f2 = [1+ (λk)2/2]−1, λ=
√
κτ f0. (19)
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The terms in θ̂ appearing in the expression for σ̂ represent a non-local form of
Maxwell’s celebrated thermal stress [Maxwell 1879, Eqs. (53)–(54)] in a rarefied
gas. According to Maxwell’s kinetic theory, a good estimate of the magnitude of
this stress relative to the Newtonian viscous stress is ν0|∇

2θ |/T0
√

tr(ε2), where
ν0 = µ0/ρ0 is the kinematic viscosity and

√
tr(ε2) the effective shear rate. Hence,

according to the kinetic theory, the thermal stress will generally to be important
only in the slow shearing of a rarified gas, as pointed out by Maxwell and noted in
[G10].

Comparing with the general forms (7), one finds that the coefficients Â, B̂, . . . , Ĥ
are given by

Â =−ıκ f1, B̂ =−κµk2 f0 f2, Ĉ =−κµ f0 f1 f2/3,

Ê = κτ f1, Ĝ = ıµ f2, Ĥ =−ıκτµ f0 f1 f2/3,
(20)

and it is easy to obtain expansions in k2 of the type (9).
According to the kinetic theory of dilute monatomic gases, the irreversible con-

tribution to pressure vanishes [Chapman and Cowling 1960; Müller and Ruggeri
1998], implying that the coefficients Î , K̂ in (12) are zero and hence that

D̂ =−Êk2/3 and F̂ =−2Ĝ/3− Ĥk2/3, (21)

determining the remaining coefficients D̂, F̂ . However, one should not expect
these relations to hold for more general fluids, such as liquids and polyatomic
gases, whose bulk viscosity β0 = ı Ĵ0 =−ı(F̂0+ 2/3Ĝ0) is generally non-zero.

The terms in (17) of the form (1+ τ s) represent exponential relaxation in the
time domain. As such, they describe Maxwell’s viscoelasticity and Cataneo’s heat
conduction, which admit both mechanical shear waves and heat waves, reflecting
a breakdown of purely diffusive, dissipative response on time scales τ . We recall
that Ignaczak and Ostoja-Starzewski [2009] give a comprehensive treatment of the
local theory of finite thermoelastic wave speeds, represented by terms O(k) in (19).
By contrast, and as anticipated above, we expect dissipative response to arise in
the small Deborah number limit De = τ0s� 1.

It is shown in the Appendix that one can analytically determine the inverse trans-
forms of the coefficients in (20) by means of the formula (42), thereby providing
the kernels in the integral operator (14). This provides a fully non-local model
which should be much superior to weakly non-local models involving a sequence
of higher spatial gradients, since integral operators, in contrast to differential op-
erators, are generally bounded. This is especially significant in the neighborhood
of singularities, as illustrated by the well-known work of Eringen [2002, Section
6.14] on crack-tip stresses in linear elasticity.
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4. Bivelocity model

Here, we analyze here a recent version of Brenner’s bi-velocity model [2009], in
order to compare it with the linear theory proposed above. Given that Brenner’s
modeling rests heavily on appeals to linear irreversible thermodynamics (“LIT”),
it is appropriate to employ a fully linearized version of the type employed in the
present paper and, also, to restrict the analysis to dissipative response.

Since Brenner employs somewhat special variables and notation, we have in-
cluded Table 1 below to clarify the relation of his variables to those employed in
the present work.

We adopt that form of Brenner’s model which he deems appropriate to creeping
(inertialess) flow4, as represented by Eqs. (2.7), (2.12) and (2.13) of [Brenner 2009].
In the present notation, these become

q =−κ0∇θ+ L12∇ peq − peq jw=̇−κ0∇θ+ L12[(∂θ p)0∇θ+ (∂ρ p)0∇ρ]− p0 jw
jw =−L21T−1

∇θ + L22∇ peq=̇− L21T−1
0 ∇θ + L22[(∂θ p)0∇θ + (∂ρ p)0∇ρ]

σ = 2µ0∇vw = 2µ0[∇v+∇ jw], p =−β0∇ ·vw =−β0∇ ·(v+ jw), (22)

where overbars represent symmetric deviators and =̇ denotes the approximation
arising from linearization about the uniform base state employed elsewhere in the
present article. In Brenner’s model, the coefficients L i j are assumed to describe a
dissipative linear system, with corresponding Onsager symmetry L21 = L12.

4Otherwise, his constitutive equations appear to contain inertial terms that are hard to reconcile
with the principle of material frame indifference.

Quantity [Brenner 2009] Present

absolute temperature T T0+θ

barycentric velocity vm v

“work”3 or “volume” velocity vw vw
diffuse “volume” flux jw = vw−vm jw = vw−v
pressure tensor P peq1−σ
pressure p = tr(P)/3 p = peq−tr(σ )/3
“thermodynamic” pressure p peq

shear stress T τ = σ+ p I
heat flux ju q
“entropic” heat flux q = ju+ p jw q+ peq jw
thermal conductivity for q k κ0

shear and bulk viscosity η, ζ µ0, β0

Table 1. Variables and notation.
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To compare with the present constitutive theory, it suffices to eliminate jw from
(22), and it is algebraically expedient to express these relations as Fourier–Laplace
transforms. Account taken of the linearized mass balance (cf. Eqs. (27) below),
one thereby obtains relations of the form (7) and (12), with

Â = ı {[L12− p0L22](∂θ p)0− κ0+ L12 p0/T0} , B̂ = 0,

Ĉ = [L12− p0L22]ρ0(∂ρ p)0/s, Ê =−2µ0[L22(∂θ p)0− L12/T0],

Ĝ = ıµ0, Ĥ = 2ıµ0ρ0(∂ρ p)0L22/s,

Î = β0[L22(∂θ p)0− L12/T0]k2
=−(D̂+ Êk2/3),

Ĵ =−ıβ0[1+ ρ0(∂ρ p)0L22k2/s] = −(F̂ + 2Ĝ/3+ Ĥk2/3),

(23)

from which it follows that

β0 = 2µ0/3, D̂ = 0. F̂ = 0 (24)

Note that [Brenner 2009] takes

L12 = T0α0β0, where α0 = κ0/ρ0cp0, β0 =−(∂θρ)p0/ρ0 = (∂θ p)0/ρ0(∂ρ p)0,

involving the thermal diffusivity α0 and isobaric coefficient of thermal expansion
β0. With certain reservations, he then takes L22= α0β0/(∂θ p)0, which would imply
that L22(∂θ p)0− L12/T0 and, hence, Î and Ê vanish in (23). Thus, the Maxwell
thermal stress represented by the term Ê in (7) also vanishes.

Brenner does not invoke the restrictions on the coefficients of viscosity µ0, β0

that are required for consistency with the general model proposed in this work.

5. Application to linear thermo-acoustic waves

For the uniform fluid at rest, we adopt mechanical and caloric equations of state
connecting equilibrium pressure and specific internal energy to temperature and
density:

p = peq(θ, ρ) and ε = εeq(θ, ρ), (25)
with

∂θεeq = cv, ∂ρεeq =
1
ρ2

[
p− θ(∂θ peq)

]
, (26)

where cv denotes the isochoric specific heat.
The present treatment of temperature and density as independent variables is

inspired by the modern literature on continuum thermodynamics, where various
intensive variables are given as derivatives of Helmholtz free energy. It seems to
us more natural than the formulation based on pressure and entropy adopted in
standard treatises on acoustics [Pierce 1981] but in any case can be easily con-
verted to the latter. Accordingly, we shall refer to the “entropy mode” identified



ON LINEAR NON-LOCAL THERMO-VISCOELASTIC WAVES IN FLUIDS 331

by [Pierce 1981, p. 523], and subsequently by [Davis and Brenner 2012], as the
“thermal mode”, noting that the modal amplitudes are simply related by a constant
of proportionality [Pierce 1981, Eq. (10-3.16)] according to the linear theory which
follows.

Thus, with subscripts 0, 1 referring, respectively to a uniform equilibrium state
and a small perturbation on that state, such that ζ = ζ0+ ζ1, for any variable ζ , the
linearized balances of momentum, mass, and energy reduce in the absence of body
forces or radiant energy transfer to:

ρ0∂tv1 =−(∂θ p)0∇θ1− (∂ρ p)0∇ρ1+∇ ·σ1,

where (∂z p)0 = ∂z peq
∣∣
T0,ρ0

, z = θ, ρ, ∂tρ1 =−ρ0∇ ·v1,

and ρ0cv0∂tθ1 =∇ ·q1− T0(∂θ p)0∇ ·v1. (27)

This stated, we shall now drop the subscript 1 on perturbations, as done implic-
itly in the preceding discussion, where (7) provides constitutive equations for the
perturbed heat flux and stress q and σ in terms of θ and ρ.

Other than an assumption of a dissipative regime for small s, we shall not con-
sider in detail the restrictions on the constitutive model arising from the entropy
balance (the Clausius–Duhem inequality) and the related “extended thermodynam-
ics” [Müller and Ruggeri 1998]. However, we note that if heat flux is neglected
from (27) the last two members of (27) yield the condition of constant equilibrium
entropy ηeq:

ρ0∂tηeq = ρ0cv0∂tθ/T0− (∂θ p)0∂tρ/ρ0 = 0, (28)

whereas the actual entropy η may generally increase owing to thermo-mechanical
dissipation.

Modulo inhomogeneous terms arising from initial values of θ, ρ, v, the Fourier–
Laplace transforms of (27) reduce to the linear homogeneous form:

ρ0sv̂+ ı(∂θ p)0θ̂k+
ρ0

s
(∂ρ p)0kk · v̂− ı σ̂ k = 0,

ρ0cv0θ̂ + ı k · q̂+ ıT0(∂θ p)0k · v̂ = 0.
(29)

Substitution of (7) into (29) yields a set of four linear equations in θ̂ , v̂. However,
these can be reduced to a set of two linear equations in θ̂ ,∇ ·v by employing the
“divergence” form obtained by taking the dot product of k with the first member
of (29). The determinantal equation results then in the dispersion relation for the
resultant compressive modes:

[D̂+ Êk2
− (∂θ p)0] [B̂+ Ĉk2

+ T0(∂θ p)0]k2

− [ρ0cv0s+ ı Âk2
] [ρ0s−{2ı Ĝ+ ı F̂ − ρ0(∂ρ p)0/s}k2

− ı Ĥk4
] = 0. (30)
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In the application of this relation to the time-periodic waves with temporal fre-
quency ω it is understood that s =−iω here and below.

In addition to the modes described by (30) there exists a decoupled “vorticity” or
shearing mode involving the vorticity w =∇ × v [Davis and Brenner 2012; Pierce
1990]. By means of the Fourier representation ŵ = ı k× v̂ and the cross product
of k with the first member of (29), one obtains

[ρ0s− ı Ĝ(k2, s)k2
]ŵ = 0, (31)

which has an immediate interpretation in terms of the inverse G(x, t) of the trans-
form Ĝ. As indicated by the analysis in the Appendix, (31) describes shear waves
on time scales τσ0. By contrast, in the dissipative regime that emerges on longer
time scales one obtains strongly damped diffusive modes [Davis and Brenner 2012;
Pierce 1990].

In sum, given the Fourier–Laplace inverses A(x, t), B(x, t), . . . , H(x, t), the
relations (30)-(31) provide a fully non-local model of linear signal propagation,
including long-range memory effects in time. Clearly, a more restricted form is
required for most practical applications. Thus, the retention of terms up to O(k2)

in (7) reduces the (30) to

[D̂0+ (D̂1+ Ê0)k2
− (∂θ p)0] [(B̂1+ Ĉ0)k2

+ T0(∂θ p)0]k2

− [ρ0cv0s+ ı Â0k2
] [ρ0s−{2ı Ĝ0+ ı F̂0− ρ0(∂ρ p)0/s}k2

] = 0, (32)

which involves the five distinct coefficients Â0, B̂1+Ĉ0, D̂0, D̂1+Ê0 and F̂0+2Ĝ0,
with dependence on s representing relaxation effects in the time domain.

By a slight extension of the kinetic theory of Section 3, four of the coefficients
appearing in (32) and the coefficient appearing in the limiting form of (31),

[ρ0s− ı Ĝ0(s)k2
]ŵ = 0, (33)

are given respectively by

ı Â0 =
κ0

1+τq0s
, B̂1+ Ĉ0 =−

4κ0µ0 f0

3(1+τσ0s)(1+τq0s)
,

D̂1+ Ê0 =
8κ0τσ0

5(1+τq0s)
, ı F̂0+ 2Ĝ0 =

β0+ 4µ0/3
(1+τσ0s)

, Ĝ0 =
ıµ0

1+τσ0s
.

(34)

Note that the form of Ĝ0 and (33) imply elastic shear waves in at high frequen-
cies s→∞, thereby eliminating infinite propagation speeds associated with the
dissipative limit s→ 0 [Davis and Brenner 2012].
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Following [Brenner 2009] and [Davis and Brenner 2012], we have included a
bulk viscosity coefficient β0, but which now involves elastic relaxation5. The coeffi-
cient β0 vanishes according to the monatomic kinetic theory, as does the remaining
unspecified coefficient D̂0(s). Otherwise, we note from (7) that D̂0(s) involves a
non-equilibrium response of pressure to temperature variation. We further note that
a similar relaxation effect in the temperature-energy response would be obtained
upon replacing the specific heat cv0 by an s-dependent term ĉv0(s), analogous to
the formalism proposed in [Goddard 1992].

In the dissipative model obtained by neglecting terms τ s and taking D̂0 = 0 (by
the Onsager symmetry discussed above), the dispersion relation (34) reduces to a
cubic in both s and k2, whereas the model considered by [Davis and Brenner 2012]
is cubic in s but quadratic in k2.

For the classical Navier–Stokes–Fourier model we have

Â = Â0 =−ıκ0, B̂ = Ĉ = D̂ = Ĥ = 0,

Ĝ = Ĝ0 = ıµ0, F̂0+ 2Ĝ0 =−ı(β0+ 4µ0/3),
(35)

and the dispersion relation (32) reduces to

[s+α0γ k2
] [s2
−(β0+4µ0/3)sk2/ρ0+(∂ρ p)0k2

]−(γ−1)k2s=0, where

α0=κ0/ρ0cp0 and γ = cp0/cv0= c2
S/c

2
T =1+T0(∂θ p)20/ρ

2
0cv0(∂ρ p)0, (36)

with cS and cT denoting, respectively, the isentropic and isothermal speeds of
sound, whose ratio is given by the specific heat ratio γ . It is easy to show that
(36) is identical with the form given in [Davis and Brenner 2012, Eq. (11)] if
(β0+ 4µ0/3)/ρ0 is replaced by the equivalent quantity (2ν0+ λ0) in their analysis
and −ρ2

0(∂ρ p)0 is identified as the isothermal compressibility.
The more general versions (32) and (34) can be written in the non-dimensional

form as

(ak̃2
+ b)(ck̃2

+ d)k̃2s̃− (s̃+ ek̃2)(s̃2
+ f k̃2s̃+ gk̃2)= 0,

where k̃2
= τσ0ν0k2, s̃ = τσ0s,

with a = 8γα/5ν0, b =−(∂θ p)0/ρ0cv0,

c =−8ανρ0cp0T0/15ν2
0 p0, d = T0(∂θ p)0τσ0/µ0, e = γα/ν0,

f =−(β + 4µ/3)/µ0, g = (∂ρ p)0τσ0/ν0 = c2
T τσ0/ν0.

(37)

Note that k̃2 involves a squared length λ̃2
0= τσ0ν0, which is related by a factor |c| to

that introduced in the Appendix. Note also that for dilute gases all the coefficients
a, b, . . . , g are of order unity, so that the polynomial in the first equation of (37)

5The quantity (β0+4/3µ0)/ρ0 is equal to the quantity λ+2ν in equations (14) and (23) of [Davis
and Brenner 2012], who employ the unconventional designation of ρ0λ in their equation (2) as bulk
viscosity.
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is “well-tempered”, that is has derivatives that are all of comparable magnitude for
arguments near unity.

Casting (37) in the standard form of a cubic equation in z = k̃2:

Az3
+Bz2

+Cz+D= 0, with

A = acs̃, B= (ad+bc−e f )s̃−eg, C= (bd−g)s̃− (e+ f )s̃2, D=−s̃3,

(38)

the three roots are given by the well-known formula

zk =−
B

3A

[
1+ 2(1− 3AC/B2)1/2 cos

2kπ +φ
3

]
for k = 0, 1, 2,

with φ = cos−1 ζ, where ζ =
1− 9AC/2B2

+ 27A2D/2B3

(1− 3AC/B2)−3/2 . (39)

The quantities involved in (39) are generally complex, and we can express the
complex circular function appearing there in terms of elementary functions as

cos
2kπ +φ

3
=

1
2

(
e(2kπ+φ)ı/3

+ e−(2kπ+φ)ı/3)
=

1
2

(
e2kπ ı/3[ζ + ı

√
1− ζ 2

]1/3
+e−2kπ ı/3[ζ − ı

√
1− ζ 2

]1/3)
, k = 0, 1, 2, (40)

or, by means of yet other well-known formulae [Abramowitz and Stegun 1965,
equations 15.1.3-19] in terms of hypergeometric functions F = 2 F1 as

cos
2kπ +φ

3
=−

1
2

[
cos φ

3
∓
√

3 sin φ
3

]
, for k = 1, 2, where

cos φ
3
= F

(
−

1
6 ,

1
6 ;

1
2 ; 1− ζ

2) , sin φ
3
=

1
3

√
1− ζ 2 F

( 1
3 ,

2
3 ;

3
2 ; 1− ζ

2) , (41)

with appropriate branch cuts for
√

1− ζ 2 and with ζ = cosφ given by the last
equation of (39).

Comparison to the bi-velocity model. We recall that the classical dispersion rela-
tion as well as the modification proposed by [Davis and Brenner 2012] involve a
quadratic equation for z in lieu of (38). It is clear that such a quadratic arises from
(38) for |s̃| � 1, which is characteristic of the dissipative regime represented by
the previous studies. Indeed, by neglecting terms O(s̃3), one obtains a quadratic
similar to that given by equation (23) of [Davis and Brenner 2012], with generally
different coefficients. This gives a dispersion relation that is quadratic in both k2

and s representing a PDE that is quadratic in ∇2 and ∂t , for which [Davis and
Brenner 2012] offer some special solutions that suggest experiments to arrive at
the correct coefficients in the dispersion relations.
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Extension to solids and Cosserat media

With minor modifications the preceding analysis applies to graded (also known as
“higher-gradient”) isotropic linear thermo-viscoelastic solids. For this purpose, it
suffices to allow for static stress by taking account of (4) and including terms that
behave like s−1 for s→ 0 in the coefficients D̂, . . . , Ĥ in (7)2. It can be noted that
the coefficient D̂ serves to describe both static and dynamic thermoelasticity and,
as with the fluids considered above, the static contribution can be included in an
equation of state for equilibrium pressure peq(θ, ρ).

Without pursuing the algebraic details, we note that the strain-gradient theory of
[Mindlin 1964], anticipated by the seminal works of Piola [dell’Isola et al. 2015],
yields dispersion relations for both dilatational and shear waves that are quadratics
in k2 [Mindlin 1964, (9.34)] with a much simpler form than (32) and (37).

As an extension of [Mindlin 1964], one may treat a more general Cosserat
thermo-viscoelasticity by addition to the list of variables in (2) and (5) the Cosserat
rotation vector ϑ = [ϑi ] and the moment stress σ (2) = [σ (2)i j ], conjugate to ∇ϑ ,
and by replacing the stress σ by a non-symmetric tensor with antisymmetric part
defining a vector conjugate to ϑ . Under the rubric of micropolar elasticity, [Eringen
1984] has already given a comprehensive analysis for the isothermal case that leads
to a cubic in k2 as dispersion relation, and [Abreu et al. 2017] provide a similar
analysis with a view to the emerging field of rotational seismology.

Finally, we note that the present type of analysis can be extended to anisotropic
media like those considered by [Suiker et al. 2001] by appropriate symmetry restric-
tions and modification of the relations (6). One possibility is to employ the joint
isotropic invariants of the wave vector k and a set of structure tensors to capture
the anisotropy [Cowin 1985; Man and Goddard 2016].

Conclusions

The abstract provides a generally adequate summary of the present work. It is
worth emphasizing that the Burnett-order linearized Chapman–Enskog kinetic the-
ory is subsumed by the general wave-number expansions proposed in the present
work, which gives more general thermo-viscous response than that of Brenner’s
bi-velocity model, while also allowing for themo-viscoelastic behavior.

As matter for future work, it would be interesting to consider the utility of non-
local models in resolving certain fluid-mechanical singularities, such as three-phase
contact lines, which bear a certain resemblance to the linear-elastic singularities
around crack tips addressed by the non-local elasticity of [Eringen 2002].
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Appendix: Inverse transforms

We recall that the inverse Fourier transform of a function f̂ (k), with k2
= ki ki , is

a function of r = |x| given by the radial form [Gradshteyn and Ryzhik 2000]

f (x)=
1
√

8π3

∫
eı k·x f̂ (k) sin ϑ̂k2 dk dϑ̂ dϕ̂

=−
1
√

2π

∫
∞

k=0

∫ π

0
eıkr cos ϑ̂ f̂ (k) sin ϑ̂ dϑ̂k2 dk

=

√
2
π

∫
∞

0
sinc(kr) f̂ (k)k2 dk, where sinc(z)= z−1 sin z. (42)

One can use (42) to derive the inverse transforms K (t, x) = A(t, x), B(t, x), . . .
of the coefficients (8), noting that the functions f1, f2 in (19) can be written for
i = 1, 2 as

fi = (1+ λ2
i k2)−1, where λ2

i = biλ
2
0(1+ τ1s)−1(1+ τ2s)−1,

λ2
0 = 4κ0τ1 f0/5, b1 = 1/2, b2 = 2/3, τ1 = τσ0, τ2 = τq0,

(43)

Now, the coefficients in (8) can all be expressed as affine forms in f1, f2, since

k2 f = k2(1+λ2k2)−1
= (1− f )/λ2, and f1 f2=

b1

b1− b2
f1+

b2

b2− b1
f2 (44)

First, note that substitution of f̂ = (1+ λ2k2)−1 into (42) gives

f (x)=
√

2
πr2

∫
∞

0

k
1+ λ2k2 sin kr dk =

√
π

2λ4r2 exp
(
−

r
λ

)
.

Second, note that

exp
(
−

r
λ

)
= exp

(
−γ

√
s ′2− a2

)
,

where s ′ = s+
τ1+ τ2

2τ1τ2
, a =

τ2− τ1

2τ1τ2
, γ =

(τ1τ2

b

)1/2
r.

However, the inverse Laplace transform [Abramowitz and Stegun 1965]

g(t)= L−1{exp
(
−γ

√
s2− a2

)}
= δ(t − γ )+

aγ√
t2− γ 2

I1
(
a
√

t2
− γ 2)u(t − γ ),

where I1(z) is the Bessel function of the second kind, u(t) the Heaviside function
and δ(t)= u′(t) the Dirac delta, gives

h(t)= L−1{exp
(
−γ

√
s2− a2

)}
= exp

(
−
τ1+τ2
2τ1τ2

t
)

g(t).
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Thus, the coefficients in (20) are seen to involve various powers of 1+τ1s and
1+τ2s multiplying the above transforms, so that the inverse Laplace transform of
the resulting products can in principle be obtained by convolution.
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