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To assess the degree (i.e., isotropy, transverse isotropy, or orthotropy) and the
directions of anisotropy of a three-dimensional structure, information about its
mesostructure is necessary. Usually, a topological analysis of computed tomog-
raphy or microcomputed tomography images is performed and requires an inter-
pretation of the constitutive elements of the three-dimensional structure, which
may lead to a simplistic description of the geometry. In this paper we propose
an alternative technique based on a geometric tensor and we use it to analyze 38
representative elementary volumes extracted from 24 specimens of cortical bone
in a human femur whose geometries have been reconstructed via microcomputed
tomography images.

1. Introduction

Computed tomography (CT) and microcomputed tomography (µCT) are power-
ful imaging tools allowing the visualization of three-dimensional (3D) geometries
which can be used to simulate the global and personalized response of the me-
chanical structure [Rémond et al. 2016]. If such geometries are constituted of
heterogeneous materials like bone or composites [Placidi et al. 2017; Giorgio et al.
2017], one needs to describe their constitutive behavior as a function of the local
systems of anisotropy. Then, additional information is required at the scale of their
mesostructure to identify the anisotropic field.

Cortical bone is constituted of several elements oriented in space leading to a
very significant anisotropy at different levels, from the nanoscale (i.e., collagen
fibers) to the mesoscale (i.e., osteons) [Rho et al. 1998]. As a consequence, the
elastic behavior at the macroscale is highly anisotropic and more specifically or-
thotropic as has been quantified in [Rho 1996; Bernard et al. 2013].

The identification of the directions of orthotropy may be straightforward and
given by the direct observation of the Haversian canals. For instance, in [Heřt
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et al. 1994; Petrtýl et al. 1996], the canals are previously ink-soaked and then
developed by successive polishing. A similar technique has also been adopted by
Báča et al. [2007] to describe the directions of the canals on the bone surface.

Alternatively, a topological analysis of CT or µCT images can be employed to
identify the degree (i.e., isotropy, transverse isotropy, or orthotropy) and the main
directions of anisotropy after a 3D skeletonization as in [Pothuaud et al. 2000] or
a 3D finite element (FE) simulation as in [Nazemi et al. 2016], both applied on
trabecular bone. Nonetheless, such an approach requires a complex interpretation
of the constitutive elements of the 3D structure. Therefore, in this paper we propose
an alternative technique based on a geometric tensor and we use it to analyze a
series of representative elementary volumes (REVs) extracted from cortical bone
specimens and whose 3D geometries are obtained via µCT images. Assuming
an orthotropic elastic behavior for the cortical bone, the average directions of the
mesostructure are computed.

In the following sections we describe the experimental approach used to identify
the main directions of orthotropy of the cortical bone mesostructure. This includes
the specimen extraction (Section 2.1.1), the µCT imaging (Section 2.1.2), and
the computation of the geometrical tensor associated with the femur mesostruc-
ture (Section 2.1.3). In Section 3, we first show the consistency of the tech-
nique to identify the directions of orthotropy through simple geometric configu-
rations (Section 3.1) and second we apply our approach on the bone specimens
(Section 3.2). Finally, in Section 4, the results are discussed and some limitations
and perspectives of the work are considered.

2. Material and methods

2.1. Experimental analysis of the orthotropic field.

2.1.1. CT-scanning and specimen extraction. A left human male femur (91 years
old) was collected and frozen at −20 ◦C in a plastic bag. Once defrosted, the femur
was cleaned by a clinician to remove soft tissues around it and dried with ethanol.

A total of 24 specimens Si , with i from 1 to 24, were extracted at different
regions of the proximal side of the femur as follows (Figure 1):

• 3 along the upper anterior diaphysis (AD) (S1 to S3),
• 2 in the greater trochanter (GT) (S4 and S5),
• 4 around and on top of the lesser trochanter (LT) (S6 to S9),
• 3 along the femoral neck (N) (S10 to S12),
• 2 in the femoral head (H) (S13 and S14),
• 4 in the upper posterior diaphysis (PD) (S15 to S18), and
• 6 around the diaphysis (D) (S19 to S24).
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Figure 1. Extraction and position of the 24 specimens from the
human left femur.

Diamond-tipped drills were used to machine specimens S1 to S18, which have
a cylindrical shape with diameter 6 mm and height equal to the thickness of the
cortical bone. Specimens S19 to S24 were manually cut and show a trapezoidal
shape. During the cutting, water was used in order to reduce both friction and
temperature rise. Before the extraction, an easily identifiable mark in the direction
S1 has been carved on the external surface of each specimen in order to orient
it with respect to the femur (Figures 1 and 2). The direction S1 is used to locate
each specimen in the femur when the 3D microstructure is reconstructed from µCT
images. Thus, it could be any direction. Here, for the sake of simplicity, we have

Figure 2. Position of a specimen with respect to the µCT system
of coordinates Rµ.
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Figure 3. (a) Main steps to acquire the directions of orthotropy of
the Haversian canals. (b) Angles defining the projection of RH on
the external surface of the specimen.

decided to let it coincide with the middle line of the femur in each region of interest
(Figure 1). Specimens were immersed in a solution of zinc iodide for 24 hours to
stain the Haversian canals inside the osteons.

2.1.2. µCT imaging. The specimens were placed on a shelf trying to align the
direction S1 with the vertical axis µ1 of the µCT scanner in the best possible way
(Figure 3b). They were scanned using a µCT scanner (Scanco Medical XtremeCT
with voxel size 7.4µm). It consisted of a microfocus X-ray source, a rotating
specimen holder, and a detector system, with a 2048× 2048 pixel CCDD camera.
The images were acquired using the following protocol: 90 kVp, 155µA, 0.5 mm
aluminum filter, and integration time 200 ms per slice.

After acquisition, a stack of about 800 cross-sectional images stored in DICOM
format was obtained and the 3D reconstruction was made using software from
FEI (Hillsboro, Oregon, USA). First, we built the 3D volume of the specimens in
order to compute the outward normal vector Sn to its external surface (Figure 3b).
Second, by defining a specific threshold and by extracting one or more represen-
tative elementary volumes (REVs) for each specimen, we were able to obtain the
3D network of the Haversian canals. It is worth noting that an REV includes a
sufficient number of osteons (i.e., at least 10, which corresponds to 3 to 4 osteons
per side) and does not present any porosity which could trigger artifacts. In both
cases (whole specimen and REV), the final 3D geometry was stored as an STL file
constituted of a large number of facets N f (150000< N f < 200000) providing a
uniform and smooth surface.

2.1.3. Identification of the main directions of the Haversian canals. In this section
we detail the successive steps used to acquire the main directions of orthotropy
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associated with the Haversian canals (Figure 3a). Each system of reference used
in this section is a direct orthonormal system of coordinates.

First, each specimen Si is defined by its proper system of reference RS =

{S1, S2, Sn}, where the subscript S stands for specimen, S1 and Sn were previously
defined (Section 2.1.1), and S2 is obtained via a vector product between S1 and
Sn (Figure 3b). In order to determine the position of the specimen with respect to
the µCT system of reference Rµ = {µ1,µ2,µ3} (the subscript µ stands for µCT),
three angles are measured between Rs and Rµ: φ, β, and δ (Appendix A1).

Second, once an REV is extracted from a specimen and using the geometrical
information included in the STL files previously obtained (Section 2.1.2), the sys-
tem of reference RH = {H1, H2, H3} (the subscript H stands for Haversian canals)
can be computed. To do so, rather than performing a topological analysis [Boyle
and Kim 2011] of the REV surface mesh which would require an approximation of
each Haversian canal by a regular geometry, we propose an approach which only
takes into account the external surface of each Haversian canal while maintaining
the precision, as demonstrated via simple illustrative examples in Section 3.1.

Each facet of the REV surface mesh is identified by its proper outward normal
vector n j . Since for each REV the mesh facets have mostly the same area and
their total number N f is high, no weighting has been applied. The product n j nT

j
enables one to obtain a tensorial form of n j , which includes more information than
the vector itself (i.e., eigenvalues and eigenvectors). Then, by summing all these
tensors, the global tensor G can be computed as

G =
N f∑
j=1

n j nT
j . (1)

To quantify the morphology and the geometrical effects, we use the normalized
eigenvalues 0 ≤ λk ≤ 3, with k ∈ [1, 2, 3], of G, which are obtained from the
eigenvalues λ10 ≤ λ20 ≤ λ30 as

λk =
3λk0

λ10+ λ20+ λ30
. (2)

For each normalized eigenvalue λk , the associated eigenvector Hk can be calcu-
lated.

Finally, the projection of RH on the external surface of the specimen is computed
to obtain the system of reference RP = {P1, P2, P3}, where the subscript P stands
for projection (Appendix A2). The vectors P1, P2, and P3 are the projections of
H1, H2, and H3, respectively (Figure 3b). Then, the position of RH for each REV
with respect to RS can be found through three angles: ψ , γ , and θ (Figures 3b and
4). The vector P1 will be directly compared to the corresponding numerical vector,
which is obtained as described in the following sections.
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Figure 4. Angles defining the projection of RH on the external
surface of the specimen (W2 is an intermediate unit vector).

3. Results

3.1. Validation of the technique to identify the directions of orthotropy. To vali-
date and illustrate our approach presented in Section 2.1.3, five simple examples,
whose average direction V is known, are proposed as shown in Figure 5.

It has to be noticed that the cutting sections of the tubes are not proper surfaces
of the tubes themselves but rather fictive ones obtained through the REV extraction.
Therefore, for configurations (a) to (d), the upper and lower cutting planes are not
taken into account. However, for the sake of practicality, for configuration (e) the
extremities are included in the analysis.

For each configuration, the tubes are characterized by their direction Vt0 (t being
the number of the tube in the specific configuration and going from 1 to Nt , the
total number of tubes), which is defined in a spherical system of coordinates as
Vt0 = {cosαt cos γt , cosαt sin γt , sinαt }.

The average direction V of a configuration is then defined as

V =
∑Nt

l=1 Vt0∥∥∑Nt
l=1 Vt0

∥∥ (3)

Figure 5. Simple examples to illustrate our approach to compute
the geometric tensor G. (a) Single tube with circular section.
(b) Single tube with elliptical section. (c) Two crossed tubes.
(d) Five noncrossed and randomly oriented tubes with circular
section. (e) Three orthogonally crossed tubes.
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(a) (b) (c) (d) (e)

50◦/20◦

60◦/90◦ 55◦/25◦ 0◦/0◦

αt /γt 60◦/30◦ 60◦/30◦ 60◦/−90◦ 60◦/30◦ 0◦/90◦

65◦/35◦ 90◦/0◦

70◦/40◦

0.433 0.433 0 0.437
V 0.250 0.250 0 0.237

0.866 0.866 1 0.868

λ1 0.010 0.000 0.320 0.03 0.998
λ2 1.480 0.990 0.930 1.420 1.001
λ3 1.510 2.010 1.750 1.540 1.001

0.432 0.433 −0.001 0.408 0.577
H1 0.251 0.250 0.001 0.240 0.577

0.866 0.866 1.000 0.881 0.577

0.517 −0.501 −0.013 0.598 −0.305
H2 0.718 0.865 0.999 0.659 −0.503

−0.466 0.001 −0.001 −0.456 0.808

Anisotropy mode TI O O TI I

Table 1. Overall results for each configuration (a) to (e) (TI =
transverse isotropy, O = orthotropy, and I = isotropy).

with ‖ · ‖ the Euclidean norm of a vector. The results associated with each con-
figuration are reported in Table 1. The direction V can be alternatively computed
using the approach presented in Section 2.1.3. In fact, the first eigenvector H1

of the geometrical tensor G corresponds to V . It is interesting to notice that an
eigenvector Hk (k going from 1 to 3) is correctly computed only if the associated
eigenvalue λk is notably different from the other two. Thus, the direction V is
properly estimated by the proposed approach for cases (a) to (d). However, for
case (e), the eigenvalues λk of G being identical and close to 1, the overall geometry
is isotropic and the eigenvectors do not provide any further information. Similarly,
the eigenvector H2 is indicative only if the eigenvalues λ2 and λ3 are different.
This is not the case for configurations (a) and (d) where there is not a preferential
transversal direction (i.e., transverse isotropy). Finally, for cases (b) and (c), the
eigenvector H2 clearly shows the geometrical orthotropy.

The consistency of our technique has then been shown, and we can now apply
it to the cortical bone.
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Figure 6. 3D reconstruction of the Haversian canals network for
the REVs extracted from specimens S1, S2, S4, S5, S8, S10, and S11

(yellow circles). For the other specimens (pink or gray circles),
the reconstruction was not possible due to the very thin cortical
thickness or some technical issues.

3.2. Measurement of the directions of orthotropy. For each of the 24 specimens
the 3D geometry was reconstructed and its position with respect to the µCT system
of coordinates Rµ was identified. In order to obtain the main direction H1 of the
Haversian canals, at least one REV for each specimen was extracted where only
Haversian canals (i.e., no large porosities) could be observed. Nevertheless, for
some specimens (i.e., S6, S7, S9, S13, and S14) only a few Haversian canals (i.e.,
fewer than five) could be segmented due to the very thin thickness of the cortical
domain. Then, the orthotropic system of coordinates RH could not be computed,
but we rather estimated the eigenvectors Hk of the geometric tensor G associated
with the spongy trabeculae. Additionally, specimens S3, S6, and S12 could not be
retrieved due to some technical issues. In Figure 6, the REVs for specimens S1,
S2, S4, S5, S8, S10, and S11 are presented. In summary, we distinguish between the
specimens with a cortical thickness hC greater (19, named cortical specimens) and
less (5, named trabecular specimens) than 0.5 mm. In the following sections, for
each specimen we identify the eigenvalues (λ1, λ2, λ3) of the geometric tensor G,
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Si REV region s.t. λ1 λ2 λ3
θ ψ γ hc a.m.◦
±1 ◦

±1 ◦
±1 mm± 0.4

S1 S1,1 AD C 0.39 0.93 1.67 −20.1 11.2 −3.8 O
S2 S2,1 AD C 0.46 1.12 1.42 −9.9 2.0 −35.5 4.1 O/TI
S3 S3,1 AD C LD
S4 S4,1 GT C 0.42 1.06 1.52 31.3 1.1 0.9 0.8 O
S5 S5,1 GT C 0.38 0.76 1.86 20.5 3.0 10.4 0.8 O
S6 S6,1 LT T 0.5 NVM
S7 S7,1 LT T 0.43 0.72 1.80 33.0 2.9 5.7 0.4 O
S8 S8,1 LT C 0.35 1.01 1.64 87.5 0.2 −3.5 2.5 O
S9 S9,1 LT T 0.62 0.99 1.39 70.8 9.8 83.9 0.5 O
S10 S10,1 N C 0.37 0.74 1.90 20.5 7.3 3.9 0.7 O
S11 S11,1 N C 0.37 1.14 1.48 −2.3 5.2 −0.2 O
S12 S12,1 N C LD
S13 S13,1 H T 0.43 1.04 1.53 −96.1 80.5 −69.1 O
S14 S14,1 H T 0.43 1.08 1.49 −89.2 79.7 −60.9 0.5 O
S15 S15,1 PD C 0.76 1.11 1.14 −7.5 7.9 −53.2 5.3 TI
S16 S16,1 PD C 0.63 1.10 1.28 −4.2 6.2 87.4 5.7 O/TI
S17 S17,1 PD C 0.58 1.11 1.31 10.6 4.4 −89.1 6.1 O/TI
S18 S18,1 PD C 0.39 1.20 1.40 9.6 1.7 −28.3 6.0 O/TI

Table 2. Overall results for specimens S1 to S18. Under s.t. (specimen
type): C = cortical, T = trabecular . Under a.m. (anisotropy mode):
TI = transverse isotropy, O = orthotropy, I = isotropy, LD = lost data,
NVM = no visible mark.

the angles θ , ψ , and γ , and the cortical thickness hC . In Tables 2 and 3 all the
results are reported. For the angles, the uncertainty of 1◦ is due to the manual
measurement. For the cortical thickness, an uncertainty of 0.4 mm corresponds to
the largest transition region between the cortical and the spongy bone.

3.2.1. Cortical specimens. Although in reality there is no sharp transition between
isotropy (I), transverse isotropy (TI), and orthotropy (O), here, in order to classify
the degree of anisotropy for each specimen Si , we have defined the intervals

• for I |λi − λ j | ≤ 0.05,

• between I and TI 0.05< |λi − λ j |< 0.37,

• for TI with respect to H1 |λ2− λ1| ≥ 0.37 and |λ3− λ2| ≤ 0.05,

• between TI and O |λ2− λ1| ≥ 0.37 and 0.05< |λ3− λ2|< 0.37, and

• for O |λi − λ j | ≥ 0.37,

where i, j ∈ {1, 2, 3} and i 6= j .
Overall, for each cortical specimen, λ1 is much smaller than λ2 and, more specif-

ically, we found that specimens S2, S15, S16, S17, and S18 show a transverse isotropy.
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Si REV
χ

region s.t. λ1 λ2 λ3
θ ψ γ

a.m.◦
±1 ◦

±1 ◦
±1 ◦

±1

S19,1 −11.3 D C 0.62 1.06 1.30 8.4 1.8 −2.5 O/TI
S19 S19,2 −4.6 D C 0.76 1.04 1.20 2.1 −2.1 −16.3 TI/I

S19,3 5.4 D C 0.68 0.97 1.35 3.6 1.6 −4.7 O

S20,1 33.4 D C 0.64 1.03 1.33 16.3 7.3 12.0 O
S20 S20,2 42.4 D C 0.68 1.03 1.29 19.4 4.4 −7.5 O/TI

S20,3 51.8 D C 0.59 1.10 1.31 16.8 1.8 −26.3 O/TI

S21,1 70.0 D C 0.62 1.08 1.30 11.7 −0.6 −36.1 O/TI
S21 S21,2 80.3 D C 0.63 1.10 1.27 10.2 −1.6 −34.2 O/TI

S21,3 87.7 D C 0.53 1.21 1.26 8.6 −1.9 −71.3 TI

S22,1 100.9 D C 0.62 1.05 1.33 9.3 0.6 −26.1 O/TI
S22,2 118.2 D C 0.61 1.13 1.26 9.5 −0.4 −5.6 O/TI

S22 S22,3 122.3 D C 0.51 1.05 1.44 9.2 1.1 −18.9 O
S22,4 126.9 D C 0.68 1.05 1.27 18.0 −1.1 −17.9 O/TI
S22,5 130.0 D C 0.74 1.05 1.21 16.6 −1.1 −5.1 TI/I

S23,1 147.2 D C 0.65 1.07 1.28 4.7 −0.7 −13.1 O/TI
S23 S23,2 160.2 D C 0.68 0.99 1.32 1.3 0.6 −4.8 O/TI

S23,3 171.1 D C 0.71 1.01 1.28 −7.9 2.7 −7.9 O/TI

S24,1 181.0 D C 0.79 1.09 1.12 −23.1 −1.7 −17.2 TI
S24 S24,2 187.1 D C 0.67 0.99 1.34 −35.9 −5.7 −1.4 O

S24,3 197.6 D C 0.68 1.06 1.26 −28.6 −16.1 −22.9 O/TI

Table 3. Overall results for specimens S19 to S24. Under s.t. (specimen
type): C = cortical. Under a.m. (anisotropy mode): TI = transverse
isotropy, O = orthotropy, I = isotropy.

Then, in these cases, the angle γ , which generally provides the circumferential
direction, is not relevant since λ2 ≈ λ3. The remaining cortical specimens (i.e.,
S1, S4, S5, S8, S10, and S11) are orthotropic. Around the diaphysis (i.e., from
S19 to S24), some REVs clearly show an orthotropic behavior, whereas others are
between orthotropy and transverse isotropy (Table 3).

It is interesting to focus on the specimens in the AD (S1 and S2), in the PD (from
S15 to S18), and around the diaphysis (from S19 to S24) for which hc > 0.5 and the
Haversian canals are uniformly oriented. We found that the angle θ between the
drawn mark S1 on each specimen and P1, the projection of the principal direction
of the Haversian canals H1 on the external surface of the femur, varies between
−35.86◦ for S24,2 and 19.44◦ for S20,2.

We analyzed the evolution of θ along the radial direction (Figure 7). To do so,
we split the reconstructed S1 specimen into seven successive slices with a spacing
of 0.5 mm (Figure 7) and we found θ equal to (a) −43◦, (b) −22◦, (c) −15◦, (d)
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Image λ1 λ2 λ3 θ (◦)

Figure 7a 0.39 0.55 1.09 −42.7
Figure 7b 0.44 0.99 1.56 −21.9
Figure 7c 0.40 0.98 1.61 −15.0
Figure 7d 0.37 1.15 1.48 −16.1
Figure 7e 0.39 1.22 1.39 −16.6
Figure 7f 0.44 1.15 1.40 −17.6
Figure 7g 0.44 1.18 1.38 −14.9

Table 4. Results for the extracted slices from specimen S1.

−16◦, (e) −17◦, (f) −18◦, and (g) −15◦. If we consider that in the outermost slices
(parts (a) and (b) of Figure 7) the presence of the external surface distorts the final
outcome, one may conclude that θ does not change significantly when going from
the outer to the inner cortical domain. The computed angles are reported in Table 4.

Figure 7. Successive slices from the exterior (a) to the interior (g)
of an REV of specimen S1.

Figure 8. Specimens S19 to S24 with the relative circumferential
position χ and some of the extracted REVs.
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Figure 9. (a) Evolution of θ , ψ , and γ with respect to the circum-
ferential position χ of the REVs in specimens S19 to S24. (b) Ori-
entation of ψ close to the external surface of the femur.

For specimens S19 to S24, twenty REVs were extracted, whose position around
the diaphysis circumference is defined by the angle χ , varying between −11.3◦

and 197.6◦ (Figure 8 and Table 3). In Figure 9a, the evolutions of the angles θ (red
line), ψ (brown line), and γ (blue line) around the upper diaphysis (i.e., from the
anterior to the posterior region passing by the lateral region) are shown. We can
notice that θ and γ vary as functions of the circumferential coordinate χ , whereas
ψ does not change significantly.

Finally, we investigated the variation of ψ , the angle between P1 and H1, across
the cortical thickness along the radial direction for the specimen S1. We found that,
closer to the outer surface, the Haversian canals are nearly parallel to the surface
(Figure 9b).

3.2.2. Trabecular specimens. As mentioned earlier, for some specimens (S6, S7,
S9, S13, and S14) the cortical thickness is very thin. Thus, it is difficult to extract
an REV with isolated Haversian canals and identify the average direction H1.

Although in the present work we focus on the orthotropy of the cortical bone,
it is interesting to quantify the geometric tensor G and the associated variables for
such specimens (Table 2). To do so, the parameters used for the reconstruction of
the 3D geometries from the µCT images have been adapted in order to detect the
trabeculae and larger REVs have been extracted.

Some remarks can be drawn. For specimens S13 and S14 extracted in the head,
the angle ψ is equal to 80.5◦ and 79.7◦, respectively. This means that the spongy
trabeculae are mainly oriented perpendicular to the outer surface of the femur. On
the contrary, for specimens S7 and S9 extracted in the neck, ψ is found equal to
2.9◦ and 9.8◦, respectively, which implies that the trabeculae are almost parallel to
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the external femoral surface (Table 2). Such outcomes are in agreement with the
literature and more specifically with the works of Jacobs et al. [1995] and Tsubota
et al. [2009].

4. Discussion

Our approach is based on experimental data and more specifically on µCT images
of the Haversian network, which provide the same trends found in [Petrtýl et al.
1996; Wirtz et al. 2003; Báča et al. 2007]. We have defined a geometric tensor G,
via the outward normal vectors to the facets of an REV, and we have computed its
eigenvalues and eigenvectors to estimate the degree and the directions of orthotropy,
respectively.

Despite the interesting results, such a technique shows few main drawbacks.
First, the position of each specimen with respect to the µCT system of coordinates
Rµ needs to be carefully retrieved in order to obtain consistent results. Second, it is
a discrete approach since the measurements are obtained via a series of specimens
in specific regions of the 3D structure. In order to circumvent this issue, we propose
in a further work a numerical technique based on diffusion equations and on the
experimental data obtained in this paper. This approach will allow us to get a
continuum description of the field of orthotropic directions in a 3D structure such
a femur.

Appendix

A1. Position of RS with respect to Rµ. As explained in Section 2.1.3, it is nec-
essary to determine the position of a specimen Si with respect to the µCT. Each
specimen is identified by the mark S1 and the outward normal vector Sn , which
constitute with S2 the system of coordinates RS = {S1, S2, Sn}. During the image
acquisition, the position of a specimen with respect to the µCT system of coordi-
nates Rµ = {µ1,µ2,µ3} is defined by three angles (Figure 2):
• φ, the angle between µ2 and V2,

• β, the angle between V2 and Sn , and

• δ, the angle between W1 and S1,

where Rv = {V1, V2, V3} is an intermediate system of reference obtained by pro-
jecting the specimen on the plane (µ2,µ3). Then, V1 = µ1, V2 is the normalized
projection of Sn on the plane (µ2,µ3), and V3 is the cross product between V1

and V2. Finally, the vector W1 is the normalized projection of V1 on the specimen
external surface.

A2. Projection of RH on the external surface of a specimen. As described in
Section 2.1.3, it is necessary to identify the position of the Haversian canals with
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respect to the specimen. When an REV is extracted from a specimen, the system of
orthotropic coordinates RH = {H1, H2, H3} of the Haversian canals can be deter-
mined. The projection of RH on the external surface of the specimen is computed
and the system of reference RP is obtained. Then, three angles define the position
of RH with respect to RS (Figure 4):

• θ , the angle between P1 and S1, expressed as

θ =− arcsin(PT
1 S2), (4)

• ψ , the angle between H1 and P1, which reads

ψ =− arcsin(ST
n H1), (5)

and

• γ , the angle between H2 and P2, defined as

γ =− arcsin(PT
2 H3), (6)

where (cT d) indicates the dot product, the superscript T the transpose of a vector,
and

P2 =
H1 ∧ Sn

‖H1 ∧ Sn‖
, (7)

P1 =
Sn ∧ P2

‖Sn ∧ P2‖
(8)

with (c∧ d) the vector product. It is worth noting that in (4), (5), and (6), rather
than simply computing the arc cosine between the two involved vectors, the arc
sine is used in order to detect the sign of the angle of interest.
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