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HOMOGENIZATION OF NONLINEAR INEXTENSIBLE
PANTOGRAPHIC STRUCTURES BY 0-CONVERGENCE

JEAN-JACQUES ALIBERT AND ALESSANDRO DELLA CORTE

We prove the 0-convergence of a pantographic microstructured sheet with inexten-
sible fibers to a 2D generalized continuum model. Large deformations considered
as geometrical nonlinearities are taken into account, and the 0-convergence argu-
ment is developed in terms of convergence of measure functionals. We also prove
a relative compactness property for the sequence of discrete energy functionals.

1. Introduction

Pantographic structures can be basically described as microstructured artifacts in
which two families of parallel fibers are mechanically connected in such a way
that changing the angle between two fibers, belonging to the two different families,
costs deformation energy. Here is an image of a possible physical realization of a
pantographic structure:

Figure 1. A 3D-printed pantographic sheet made of polyamide
(courtesy of Professor Tomasz Lekszycki, Warsaw University of
Technology).
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The problem of the equilibrium of lattice structures has been studied for a long
time (see for instance [Rivlin 1964; Pipkin 1984; 1986; Steigmann and Pipkin
1991]), and pantographic structures in particular are currently of definite interest
both as a structural element, due to their interesting mechanical properties (see for
instance [dell’Isola et al. 2016b; Turco et al. 2016b; Battista et al. 2015; Barchiesi
et al. 2018b]), and as an experimental and theoretical model case for the onset
of behaviors that cannot be described by means of the theory of classical Cauchy
continua. In particular it has been shown that generalized continua, in which the
energy density depends explicitly on the second gradient of the placement function
(see [Mindlin 1964; 1965; Mindlin and Eshel 1968; Germain 1973] for historically
important references), are suitable for the description of the deformation of the
homogenized version of truss-like [Seppecher et al. 2011; Alibert and Della Corte
2015; Alibert et al. 2003; Turco et al. 2017a] and pantographic structures [Turco
et al. 2016a; Rahali et al. 2015].

Here we prove a rigorous homogenization result, namely that a discretized
model of pantographic structures (introduced in [dell’Isola et al. 2016a])0-converges
to a homogenized 2D continuum model described by an energy functional in which
second partial derivatives of the placement appear. The mathematical study of

Figure 2. A schematic representation of a pantographic structure
in an arbitrary deformed configuration. At every node x of the
square lattice there are rotational springs acting between adjacent
orthogonal segments (in this case the energy depends, using the
notation of Section 3, on the angle θn) and between adjacent paral-
lel segments (in this case the energy depends, using the notation of
Section 3, on the angle θn,k). The nodes are connected by means
of extensional springs that in the present paper are particularized
to be rigid bars.
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linear pantographic structures is already an active research field (see, e.g., [Boutin
et al. 2017; Eremeyev et al. 2018]). In the present paper, the main result will be
proven in the large-deformation regime, that is, taking into account geometrical
nonlinearities and in particular the actual curvature of the fibers and not only its
linearized form.

The microstructure considered herein consists of a square lattice, at each node of
which are positioned two types of rotational springs, one acting between adjacent
orthogonal segments and the other one acting between adjacent parallel segments
(a schematic representation of the structure, in an arbitrary deformed configuration,
is shown in Figure 2). In the general case, between the nodes are positioned exten-
sional springs allowing changes in the distances separating adjacent nodes. In the
present paper, however, we consider the inextensible case, i.e., we assume that the
nodes of the lattice are connected by rigid bars.

The 0-convergence argument is developed in terms of convergence of measure
functionals. This is, in our opinion, the most sensible approach, since in the real
object (at least in planar deformations) most of the deformation energy is actually
concentrated in the nodes, stored as torsional deformation energy of the cylindrical
pivots interconnecting the two layers of parallel fibers (see, e.g., [Giorgio 2016;
dell’Isola et al. 2015]). Therefore, it is quite natural to take this into account in
the mathematical modeling introducing a set of vector-valued measures concen-
trated in the nodes of the lattice. Then we circumscribe the admissible measures
by identifying them with functions belonging to suitable Sobolev spaces. This
approach allows us to avoid the use of (arbitrary, to some degree) interpolating
functions between the nodes. Along with the 0-convergence result, we prove a
relative compactness property, which ensures that controlling the total deformation
energy is enough to control the norm of the measure used for the description of the
current configuration of the discrete model.

The paper is organized as follows. In Section 2 the general concept of 0-
convergence of measure functionals is introduced; in Section 3 the admissible
measures are introduced and the energy of the discrete micromodel as well as
the boundary conditions are formally described; in Section 4 the same is done for
the continuous macromodel and the main result is stated; in Section 5 the main
result is proven, including the relative compactness property for the sequence of
discrete energy functionals; finally, in Section 6 some conclusions are stated and
some possible directions for future studies are indicated.

2. 0-convergence of measure functionals

We start by recalling the definition of 0-convergence for a sequence of measure
functionals.
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Let K := [0, 1]2 and (C(K ))2 be the space of vector-valued continuous functions
on K endowed with the uniform norm ‖ϕ‖∞ := sup{‖ϕ(x)‖ : x ∈ K } where ‖ · ‖
denotes the euclidean norm of R2. Let (M(K ))2 be the set of vector-valued bounded
measures on K endowed with the norm

‖µ‖M := sup{〈µ, ϕ〉 : ϕ ∈ (C(K ))2, ‖ϕ‖∞ = 1}

where 〈 · , · 〉 stands for the duality bracket between (M(K ))2 and (C(K )2). We
simply write µn ⇀µ to specify that the sequence (µn) of vector bounded measures
converges to µ with respect to the weak∗ topology, i.e., limn→∞〈µn, ϕ〉 = 〈µ, ϕ〉

for every ϕ ∈ (C(K ))2. Recall (see for instance [Evans and Gariepy 2015]) that, if
a sequence of vector-valued bounded measures (µn) satisfies

sup
n
‖µn‖M <+∞,

then there exists µ∈ (M(K ))2 and a subsequence (nk) such that µnk ⇀µ. Let (Fn)

be a sequence of functionals on (M(K ))2 with values in R∪{+∞}. We say that the
relative compactness property holds for the sequence (Fn) if for all sequences (µn)

in (M(K ))2

sup
n

Fn(µn) <+∞ =⇒ sup
n
‖µn‖M <+∞.

We say that the sequence (Fn) 0- converges to F if the following two properties
are satisfied.

Lower-bound inequality. For all µ∈ (M(K ))2 and all sequences (µn) in (M(K ))2

µn ⇀µ =⇒ lim inf
n→∞

Fn(µn)≥ F(µ).

Upper-bound inequality. For each µ ∈ (M(K ))2, there exists a sequence (µn) in
(M(K ))2 such that

µn ⇀µ and lim sup
n→∞

Fn(µn)≤ F(µ).

For a general introduction to 0-convergence the reader is referred to [Braides
2002].

3. Micromodel for nonlinear pantographic lattices

3.1. Reference configuration and basic operators. Let δt be the Dirac measure
concentrated at the point t ∈ [0, 1]. We define four Radon measures on [0, 1] by
setting

νn :=
1
n

n∑
i=0

δi/n, ν+n :=
1
n

n−1∑
i=0

δi/n, ν−n :=
1
n

n∑
i=1

δi/n, ν2
n :=

1
n

n−1∑
i=1

δi/n.
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The reference configuration of the microsystem is described by the measure σn :=

νn ⊗ νn on K := [0, 1]× [0, 1]. The support of the measure σn is the finite set

Support(σn)=

{(
i
n
,

j
n

)
: 0≤ i, j ≤ n

}
.

Each point of the support of σn is called a node. Two nodes x and y are called
adjacent when ‖y− x‖ = 1/n and diagonally adjacent when ‖y− x‖ =

√
2/n. We

define six measures on K and six discrete partial derivative operators by setting

σ+n,1 := ν
+

n ⊗ νn, ∂+n,1u(x) := n
(

u
(

x + 1
n

e1

)
− u(x)

)
,

σ−n,1 := ν
−

n ⊗ νn, ∂−n,1u(x) := n
(

u(x)− u
(

x − 1
n

e1

))
,

σ 2
n,1 := ν

2
n ⊗ νn, ∂2

n,1u(x) := n(∂+n,1u(x)− ∂−n,1u(x)),

σ+n,2 := νn ⊗ ν
+

n , ∂+n,2u(x) := n
(

u
(

x + 1
n

e2

)
− u(x)

)
,

σ−n,2 := νn ⊗ ν
−

n , ∂−n,2u(x) := n
(

u(x)− u
(

x − 1
n

e2

))
,

σ 2
n,2 := νn ⊗ ν

2
n , ∂2

n,2u(x) := n(∂+n,2u(x)− ∂−n,2u(x))

with e1 := (1, 0) and e2 := (0, 1). Note that, if u : K → R2 is defined at every
point in the support of σn , then for k ∈ {1, 2} and s ∈ {+,−, 2} the function ∂s

n,ku :
K → R2 is defined at every point in the support of σ s

n,k . For a = (a1, a2) ∈ R2 and
b = (b1, b2) ∈ R2, we set

a ∧ b := a1b2− a2b1.

We define four measures on K and four discrete Jacobian determinant operators
by setting, for s, s ′ ∈ {+,−}

σ (s,s
′)

n := νs
n ⊗ ν

s′
n , J (s,s

′)
n (u)(x) := ∂s

n,1u(x)∧ ∂s′
n,2u(x).

Note that, if u : K → R2 is defined at every point in the support of σn , then the
function J (s,s

′)
n (u) : K → R is defined at every point in the support of σ (s,s

′)
n .

3.2. Current configuration and deformation energy of the n-micromodel. The
current configuration of the object is described by a vector-valued bounded measure
of the special set Mn defined below.

Definition (admissible measures of the n-micromodel). The set of admissible mea-
sures of the n-micromodel is denoted by Mn and consists of those vector bounded
measures µ ∈ (M(K ))2 of the form

µ(dx)= u(x)σn(dx)
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where the function u : K → R2 is defined at any point x in the support of σn and
such that ‖∂s

n,ku(x)‖ > 0 for every (k, s) ∈ {1, 2} × {+,−}. For any admissible
measure µ of the n-micromodel, the following notation is used:

ρs
n,k(µ)(x) := ‖∂

s
n,ku(x)‖ and vs

n,k(µ)(x) :=
∂s

n,ku(x)

‖∂s
n,ku(x)‖

. (1)

Let µ(dx)= u(x)σn(dx) ∈Mn . The function u is called the placement function.
The point u(x) is the current position of the node x . The above definition of admis-
sible measures imposes the natural requirement that two adjacent nodes should not
be mapped by the deformation on the same point (of course this does not exclude
the possibility that two generic nodes are mapped on the same point).

At each node x are placed extensional springs which connect x to the adjacent
nodes. The deformation energy associated with these extensional springs depends
on the distance between the current positions of adjacent nodes and is equal to zero
when the distance is equal to 1/n. So we introduce the following definition.

Definition (extensional deformation energy of the n-micromodel). The extensional
deformation energy E (ext)

n is defined on (M(K ))2 by setting E (ext)
n (µ) = +∞ if

µ /∈Mn and

E (ext)
n (µ) :=

2∑
k=1

∫
fk(ρ

+

n,k(µ)) dσ+n,k otherwise,

where the functions fk : (0,+∞)→[0,+∞] are assumed to be such that fk(1)= 0
and fk(ρ) > 0 if ρ 6= 1.

Remark 1. Our main result is obtained in the particular case when the springs
between the nodes are just rigid bars, i.e., when f1 and f2 are the indicator function
of the set {1}:

fk(ρ) :=

{
0 if ρ = 1,
+∞ otherwise.

(2)

At each node x are placed four rotational springs (to provide shear stiffness)
which connect a pair of segments ([x, x + (s/n)e1], [x, x + (s ′/n)e2]) with s, s ′ ∈
{+1,−1}. Its energy at the node x depends on the angle θ (s,s

′)
n (µ)(x) formed by

the vectors ∂s
n,1u(x) and ∂s′

n,2u(x). This energy is equal to zero if and only if the
angle is equal to π/2. We also assume that angles with finite energy must be in
the interval (0, π), so as to ensure that nodes diagonally adjacent are not mapped
by the deformation on the same point (again, this does not exclude the possibility
that two generic nodes are mapped on the same point). One has

sin(θ (s,s
′)

n (µ)(x))= vs
n,1(µ)(x)∧ v

s′
n,2(µ)(x).

So we introduce the following definition.
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Definition (first rotational deformation energy of the n-micromodel). The first ro-
tational deformation energy E (shear)

n is defined on (M(K ))2 by setting E (shear)
n (µ)=

+∞ if µ /∈Mn and

E (shear)
n (µ) :=

∑
s,s′∈{+,−}

∫
g(s,s

′)(vs
n,1(µ)∧ v

s′
n,2(µ)) dσ (s,s

′)
n otherwise,

where the four functions g(s,s
′)
: [−1, 1] → [0,+∞] are assumed to be such that

g(s,s
′)(1)= 0.

Remark 2. Our main result is obtained in the particular case when the four func-
tions g(s,s

′) are assumed to be lower semicontinuous, convex, and such that {g(s,s
′)<

+∞} is compact and g(s,s
′)(δ)=+∞ if δ ≤ 0.

The second type of rotational springs (providing bending rigidity along each
coordinate line) is those which connect a pair of segments ([x, x + (1/n)ek],

[x, x − (1/n)ek]) with k ∈ {1, 2}. Their energy at the node x depends on the
angle θn,k(µ)(x) formed by the vectors v+n,k(µ)(x) and v−n,k(µ)(x). This energy is
equal to zero if and only if the angle is equal to 0 and one has

1− cos(θn,k(µ)(x))= 1
2‖v
+

n,k(µ)(x)− v
−

n,k(µ)(x)‖
2
=

1
2n2 ‖∂

−

n,kv
+

n,k(µ)(x)‖
2.

So, we introduce the following definition.

Definition (second rotational deformation energy of the n-micromodel). Second
rotational deformation energy E (bend)

n is defined on (M(K ))2 by setting E (bend)
n (µ)=

+∞ if µ /∈Mn and

E (bend)
n (µ) :=

∑
k∈{1,2}

∫
κk

2
‖∂−n,kv

+

n,k(µ)‖
2 dσ 2

n,k otherwise.

Remark 3. Our main result is obtained in the case when the two real numbers κk

are assumed to be positive (which is quite natural since they represent material
coefficients accounting for the bending stiffness of the fibers).

Definition (Dirichlet boundary condition for the n-micromodel). Let ∂K denote
the boundary of K . Let 6 be a subset of ∂K and M6

n be the set of those measures
µ(dx)= u(x)σn(dx) ∈Mn such that u(x)= x for every x ∈6 ∩Support(σn). We
denote by E (6)n the indicator functional of the set M6

n , i.e.,

E (6)n (µ) :=

{
0 if µ ∈M6

n ,

+∞ otherwise.

Remark 4. Our main result is obtained in the particular case when6 := (a, b)×{0}
or 6 := {0}× (a, b) with 0≤ a < b ≤ 1.
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4. Macromodel and main result

4.1. Deformation energy of the macromodel. Let � := (0, 1)× (0, 1). For each
p ∈ [1,+∞] we denote by L p(�) the usual Lebesgue space. Distributional partial
derivative operators are denoted by ∂k . Distributional second partial derivative
operators are denoted by ∂k∂k′ . If k = k ′, we also write ∂2

k in place of ∂k∂k .

Definition (admissible measures of the macromodel). The set of admissible mea-
sures is denoted by M∞ and consists of those measures µ ∈ (M(K ))2 of the form

µ(dx)= u(x) dx

where the function u : � → R2 is such that u ∈ (L1(�))2, ∂ku ∈ (L1(�))2,
∂2

k u ∈ (L2(�))2, and ‖∂ku‖> 0 a.e. in � for every k ∈ {1, 2}. For any admissible
measure µ, the following notation will be used:

ρk(µ) := ‖∂ku‖ and vk(µ) :=
∂ku
‖∂ku‖

. (3)

Definition (extensional deformation energy of the macromodel). The extensional
deformation energy E (ext) is defined on (M(K ))2 by setting E (ext)(µ) = +∞ if
µ /∈M∞ and

E (ext)(µ) :=

2∑
k=1

∫
�

fk(ρk(µ)(x)) dx otherwise,

where fk was defined in Remark 1.

Definition (first rotational deformation energy of the macromodel). The first rota-
tional deformation energy E (shear) is defined on (M(K ))2 by setting E (shear)(µ)=

+∞ if µ /∈M∞ and

E (shear)(µ) :=

∫
�

g(v1(µ)(x)∧ v2(µ)(x)) dx otherwise,

where g := g(+,+)+ g(−,+)+ g(−,−)+ g(+,−), gs,s′ was defined in Remark 2, and
vk(µ)(x) was defined in (3).

Definition (second rotational deformation energy of the macromodel). The second
rotational deformation energy E (bend) is defined on (M(K ))2 by setting E (bend)(µ)=

+∞ if µ /∈M∞ and

E (bend)(µ) :=

2∑
k=1

∫
�

κk

2
‖∂kvk(µ)(x)‖2 dx otherwise.

If µ(dx)= u(x) dx is admissible for the macromodel, the placement function u
admits a trace on the boundary of � because u ∈ (L1(�))2 and ∂ku ∈ (L1(�))2 for
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k = 1, 2. The trace function associated with u will be also denoted by u and belongs
to the Lebesgue space of integrable functions with respect to the 1D Hausdorff
measure supported on ∂�= ∂K . This last measure will be denoted by H1

∂�.

Definition (Dirichlet boundary condition for the macromodel). Let 6 be a subset
of the boundary of � and M6

∞
be the set of those measures µ(dx)= u(x) dx ∈M∞

such that u(x)= x for H1
∂�-a.e. x ∈6. We denote by E (6) the indicator functional

of the set M6
∞

, i.e.,

E (6)(µ) :=
{

0 if µ ∈M6
∞
,

+∞ otherwise.

4.2. Main result. Our main result states that the total deformation energy of the
n-micromodel, namely

En := E (ext)
n + E (shear)

n + E (bend)
n + E (6)n ,

0-converges to the total deformation energy of the macromodel

E := E (ext)
+ E (shear)

+ E (bend)
+ E (6).

This result is obtained under the assumption that two adjacent nodes are connected
by an inextensible bar. This is taken into account by assuming that f1 and f2 are
the indicator function of the set {1}. Moreover, we need that the angles θ (s,s

′)
n (µ)

remain in the interval (0, π). Such an assumption is taken into account by assuming
that the four functions g(s,s

′) are greater than the indicator function of the set (0, 1].
Finally, we need that the part of the boundary on which the displacement is zero
is not too small. More precisely, we have:

Theorem. If we assume that

(H1) the two functions fk : (0,+∞)→ [0,+∞] are the indicator function of the
set {1},

(H2) the four functions g(s,s
′)
: [−1, 1] → [0,+∞] are lower semicontinuous, con-

vex, and such that {g(s,s
′) <+∞} is compact, g(s,s

′)(1)= 0, and g(s,s
′)(δ)=

+∞ if δ ≤ 0,

(H3) the two real numbers κk are positive, and

(H4) 6 := (a, b)×{0} or 6 := {0}× (a, b) with 0≤ a < b ≤ 1,

then the sequence (En) 0-converges to the functional E and the relative compact-
ness property holds.
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5. Proof of the main theorem

5.1. Consequences of the assumptions (H1) and (H2) on placement functions.
For the sake of simplicity, in Section 5 we will write ρ+n,k and v+n,k instead of ρ+n,k(µ)
and v+n,k(µ).

When property (H1) is assumed, the extensional deformation energy of the n-
micromodel is just the indicator functional of the set of those admissible measures
µ ∈ Mn such that ρs

n,k(µ)(x) = 1 for every node x ∈ Support(σ s
n,k) and every

(k, s) ∈ {1, 2}× {+,−}. Moreover, if (H2) is assumed, then measures with finite
deformation energy have a very special form.

Lemma 5. If (H1)–(H2) are assumed and E (ext)
n (µ)+ E (shear)

n (µ) <+∞, then the
placement function u associated with µ is such that

‖∂+n,ku(x)‖ = 1 for every node x ∈ Support(σ+n,k),

u(x)+ u(0)=
2∑

k=1

u((x · ek)ek) for every node x ∈ Support(σn).

Proof. Since E (ext)
n (µ) < +∞ and (H1) is assumed, the first claim of Lemma 5

is clear and for any node x ∈ Support(σ (+,+)n ) one has v+n,k(x) = ∂
+

n,ku(x). As a
consequence,

v+n,1

(
x + 1

n
e2

)
− v+n,1(x)= v

+

n,2

(
x + 1

n
e1

)
− v+n,2(x).

Let us denote byw(x) any member of the previous identity. Observing that ‖w(x)+
v+n,1(x)‖

2 and ‖w(x)+ v+n,2(x)‖
2 are equal to 1 and v−n,2(x + (1/n)e2) = v

+

n,2(x),
we obtain

w(x) · (v+n,2(x)− v
+

n,1(x))= 0,

‖w(x)‖2+w(x) · (v+n,1(x)+ v
+

n,2(x))= 0,

(w(x)+ v+n,1(x))∧ v
+

n,2(x)= v
+

n,1

(
x + 1

n
e2

)
∧ v−n,2

(
x + 1

n
e2

)
.

As E (shear)
n (µ)<+∞ and (H2) is assumed, v+n,1(x+(1/n)e2)∧v

−

n,2(x+(1/n)e2)>0
and v+n,1(x)∧ v

+

n,2(x) > 0. As a consequence (v+n,1(x)+ v
+

n,2(x), v
+

n,2(x)− v
+

n,1(x))
is an orthogonal basis of R2, and for some real number λ, one has

w(x)= λ(v+n,1(x)+ v
+

n,2(x)),

λ2
+ λ= 0,

(λ+ 1)v+n,1(x)∧ v
+

n,2(x)= (w(x)+ v
+

n,1(x))∧ v
+

n,2(x) > 0.

We obtain w(x) = 0. Consequently v+n,k(x) = v+n,k((x · ek)ek) for every x ∈
Support(σ+n,k) and ∂+n,1∂

+

n,2u(y) = 0 for every node y ∈ Support(σ (+,+)n ). The last
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identity is obtained by observing that for all x = (i/n, j/n) ∈ Support(σn)

u(x)+ u(0)−
2∑

k=1

u((x · ek)ek)=
1
n2

i−1∑
q=0

j−1∑
p=0

∂+n,1∂
+

n,2u
(

q
n
,

p
n

)
. �

5.2. Relative compactness property. The fact that the relative compactness prop-
erty holds for the sequence (En) is a direct consequence of the following result.

Lemma 6. If (H1) and (H4) are assumed, then the relative compactness property
holds for the sequence (E (ext)

n + E (6)n ).

Proof. Without loss of generality, we may assume that there exist two real numbers
a and b such that 0≤ a< b≤ 1 and {0}×(a, b)⊂6. For all n such that b−a> 1/n
we set

ϕn(t) :=
δt(a, b)
νn(a, b)

.

Let µ ∈ (M(K ))2 such that E (ext)
n (µ)+ E (6)n (µ) < +∞. Then the measure µ is

such that µ(dx)= u(x)σn(dx) with ‖∂s
n,ku(x)‖= 1 for every node x ∈ Support(σn)

and v(x) := u(x)− x = 0 for every node x ∈ {0}× (a, b). One has

‖µ‖M =

∫
‖u(x)‖σn(dx)≤

∫
‖x‖σn(dx)+

∫
‖v(x)‖σn(dx)

and
∫
ϕn(t)νn(dt)= 1; then for any node x = (x1, x2),

v(x)=
∫
(v(x1, x2)− v(x1, t))ϕn(t)νn(dt)+

∫
(v(x1, t)− v(0, t))ϕn(t)νn(dt),

which implies∫
‖v(x)‖σn(dx)≤ 2

∫
‖∂+n,2v‖ dσ+n,2+

4
νn(a, b)

∫
[0,1]×(a,b)

‖∂+n,1v‖ dσ+n,1

≤ 2
∫
‖∂+n,2u−e2‖ dσ+n,2+

4
νn(a, b)

∫
[0,1]×(a,b)

‖∂+n,1u−e1‖ dσ+n,1

≤ 8+2
∫
‖∂+n,2u‖ dσ+n,2+

4
νn(a, b)

∫
‖∂+n,1u‖ dσ+n,1

≤ 12+
8

νn(a, b)
.

Since (νn(a, b)−1) and
(∫
‖x‖σn(dx)

)
are bounded sequences, the proof is com-

plete. �
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5.3. Lower-bound inequality. Throughout this subsection, (µn) is a sequence of
measures with bounded deformation energy, which implies µn(dx)= un(x)σn(dx)
is an admissible measure for the n-micromodel and

sup
n

En(µn) <+∞.

To gain some regularity properties for the placement functions, which will be ex-
ploited in the following, it is convenient to introduce a sequence µn(dx)= un(x) dx
of admissible measures for the macromodel which will be called the equivalent
sequence because of Lemma 9 below.

Lemma 7 (equivalent sequence). We define a sequence µn(dx) = un(x) dx in
(M(K ))2 by setting, for all t ∈ [0, 1] and all x ∈ K ,

wn,k(t): =
n−1∑
i=1

δt

(
i
n
−

1
2n
,

i
n
+

1
2n

)
∂−n,kv

+

n,k

(
i
n

ek

)
,

vn,k(t): = v+n,k(0)+
∫ t

0
wn,k(s) ds,

un(x): = un(0)+
2∑

k=1

∫ x ·ek

0
vn,k(t) dt.

We assume that (H1), (H2), and (H3) hold. Then un is C1(K ) regular with distri-
butional second partial derivatives in (L2(�))2. Moreover,

2∑
k=1

∫
�

κk

2
‖∂2

k un(x)‖2 dx = E (bend)
n (µn) and ∂1∂2un = 0 in �,

2∑
k=1

κk

2
‖∂kun(y)− ∂kun(x)‖2 ≤ ‖y− x‖E (bend)

n (µn) for every x, y ∈ K ,

∂kun

(
x +

1
2n

ek

)
= v+n,k(x) for every k ∈ {1, 2} and x ∈ Support(σ+n,k).

Proof. In the proof of Lemma 5 we proved that v+n,k(x)= v
+

n,k((x · ek)ek) for every
node x ∈ Support(σ+n,k). Then a direct computation gives us∫ 1

0
‖wn,k(t)‖2 dt =

n
n+ 1

∫
‖∂−n,kv

+

n,k‖
2 dσ 2

n,k .

As a consequence vn,k : [0, 1] → R2 is continuous on [0, 1] with distributional
derivative in (L2(0, 1))2, which implies that un : K → R2 is C1(K ) regular with
distributional second partial derivatives in (L2(�))2 and such that ∂1∂2un = 0 in �
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and ∫
�

‖∂2
k un(x)‖2 dx =

∫
�

‖wn,k(x · ek)‖
2 dx =

∫
‖∂−n,kv

+

n,k‖
2 dσ 2

n,k .

Let x, y ∈ K . One has

‖∂kun(y)−∂kun(x)‖2 = ‖vn,k(y ·ek)−vn,k(x ·ek)‖
2
=

∥∥∥∥∫ y·ek

x ·ek

wn,k(t) dt
∥∥∥∥2

≤ ‖y−x‖
∫ 1

0
‖wn,k(t)‖2 dt

≤ ‖y−x‖
∫
‖∂−n,kv

+

n,k‖
2 dσ 2

n .

Let x ∈ Support(σ+n,k). There exists i ∈ {0, . . . , n− 1} such that i/n = x · ek ; then

∂kun

(
x +

1
2n

ek

)
= vn,k

(
x · ek +

1
2n

)
= v+n,k(0)+

i∑
q=1

∫ q/n+1/2n

q/n−1/2n
∂−n,kv

+

n,k

(
q
n

ek

)
dt

= v+n,k(0)+
i∑

q=1

(
v+n,k

(
q
n

ek

)
− v+n,k

(
q − 1

n
ek

))
= v+n,k((x · ek)ek)= v

+

n,k(x). �

Lemma 8 (admissibility for the equivalent sequence). We assume that (H1), (H2),
and (H3) hold. Then µn is admissible for the macromodel. More precisely, for all
k ∈ {1, 2},

∂1un(x)∧ ∂2un(x) > 0 and 1≥ ‖∂kun(x)‖> 0

for every x ∈ K .

Proof. When x = (i/n, j/n)∈Support(σ (+,+)n ), using Lemma 5 and the fact that µn

is admissible for the micromodel (we recall that µn is a sequence of measures with
bounded energy), we obtain v+n,1((i/n)e1)∧ v

+

n,2(( j/n)e2)= v
+

n,1(x)∧ v
+

n,2(x) > 0.
As a consequence, for all q1, q2 ∈ {1, . . . , n− 1} and all θ1, θ2 ∈ [0, 1],(
(1−θ1)v

−

n,1

(
q1

n
e1

)
+θ1v

+

n,1

(
q1

n
e1

))
∧

(
(1−θ2)v

−

n,2

(
q2

n
e2

)
+θ2v

+

n,2

(
q2

n
e2

))
>0.

Let x ∈ K . When x ∈ [1/(2n), 1− 1/(2n)]2 one has

qk

n
−

1
2n
≤ x · ek ≤

qk

n
+

1
2n
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for some q1, q2 ∈ {1, . . . , n− 1}. A direct computation gives

∂kun(x)= (1−θk)v
−

n,k

(
qk

n
ek

)
+θkv

+

n,k

(
qk

n
ek

)
with θk := n

(
x ·ek−

(
qk

n
−

1
2n

))
.

Since θk ∈ [0, 1], we obtain ∂1un(x)∧ ∂2un(x) > 0 and 1 ≥ ‖∂kun(x)‖ > 0. The
proof is easily completed when x ∈ K \ [1/(2n), 1− 1/(2n)]2. �

Lemma 9 (asymptotic equivalence). Assume that (H1), (H2), and (H3) hold and
set

‖un − un‖L∞(σn) := sup{‖un(x)− un(x)‖ : x ∈ Support(σn)}.

Then
lim

n
‖un − un‖L∞(σn) = 0.

Moreover, if supn‖µn‖M <+∞, then

sup
n
‖un‖L∞(σn) <+∞ and µn −µn ⇀ 0

where (µn) is the equivalent sequence defined in Lemma 7.

Proof. Step 1. Let x = (i1/n, i2/n) ∈ Support(σn). Using Lemmas 5 and 7 we
obtain

‖un(x)− un(x)‖ ≤
2∑

k=1

∥∥∥∥un((x · ek)ek)− un(0)−
∫ x ·ek

0
∂kun(tek) dt

∥∥∥∥
=

2∑
k=1

∥∥∥∥un

(
ik

n
ek

)
− un(0)−

∫ ik/n

0
∂kun(tek) dt

∥∥∥∥
≤

2∑
k=1

ik−1∑
q=0

∫ q/n+1/n

q/n

∥∥∥∥∂+n,kun

(
q
n

ek

)
− ∂kun(tek)

∥∥∥∥ dt

=

2∑
k=1

ik−1∑
q=0

∫ q/n+1/n

q/n

∥∥∥∥∂kun

((
q
n
+

1
2n

)
ek

)
− ∂kun(tek)

∥∥∥∥ dt

≤

2∑
k=1

ik−1∑
q=0

∫ q/n+1/n

q/n

∣∣∣∣(q
n
+

1
2n

)
+t
∣∣∣∣1/2(∫ ‖∂−n,kv+n,k‖2 dσ 2

n,k

)1/2

dt

≤

√
1

2n

2∑
k=1

(∫
‖∂−n,kv

+

n,k‖
2 dσ 2

n,k

)1/2

;

then the first claim of Lemma 9 holds because the sequence (E (bend)
n (µn)) is bounded

and (H3) is assumed.
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Step 2. Let x be any node of Support(σn). Using Lemma 5 we obtain

‖un(x)‖ ≤
1

σn(K )

∫
‖un(y)‖σn(dy)+

1
σn(K )

∫
‖un(x)− un(y)‖σn(dy)

≤ ‖µn‖M+
2

σn(K )

∫
‖x − y‖σn(dy)

≤ ‖µn‖M+ 2
√

2.

It is assumed that the sequence (‖µn‖M) is bounded; then the second claim of
Lemma 9 holds.

Step 3. Let us set �x := {y ∈ K :maxk |(y− x) · ek |< 1/(2n)}, and let |�x | be the
area of �x . Observe that for any node x ∈ Support(σn)

|�x | =


1/(n2) if x is an interior point of K ,
1/(4n2) if x is an extreme point of K ,
1/(2n2) otherwise.

Let ϕ ∈ C(K )2 be a test function. Since ϕ · un is continuous on K one has

|�x |ϕ(yx) · un(yx)=

∫
�x

ϕ(y) · un(y) dy

for some yx ∈�x . As a consequence 〈un − un, ϕ〉 = An + Bn +Cn + Dn with

An =
∑

x∈Support(σn)

|�x |ϕ(yx) · (un(yx)− un(x)),

Bn =
∑

x∈Support(σn)

|�x |ϕ(yx) · (un(x)− un(x)),

Cn =
∑

x∈Support(σn)

|�x |(ϕ(yx)−ϕ(x)) · un(x),

Dn =
∑

x∈Support(σn)

(
|�x | −

1
n2

)
ϕ(x) · un(x).

By Lemma 8, the sequence (un) is uniformly equicontinuous on K ; therefore,
limn An = 0. By Lemma 9, limn‖un − un‖L∞(σn) = 0; thus, limn Bn = 0. The
test function ϕ is uniformly continuous on K , and it is assumed that the sequence(∫
‖un‖ dσn

)
is bounded; thus, limn Cn = 0. Observe that

|Dn| ≤
2n+ 1

n2 ‖ϕ‖L∞(σn)‖un‖L∞(σn);

then by Lemma 9, limn Dn = 0. �
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Lemma 10 (convergence of the equivalent sequence). We assume that (H1), (H2),
and (H3) hold and µn ⇀ µ. Then the limit measure µ is of the form µ(dx) =
u(x) dx where u is C1(K ) regular with distributional second partial derivatives
in (L2(�))2 and ∂1∂2u = 0 in �. Moreover, for all k ∈ {1, 2}

un→ u with respect to the uniform norm on K ,

∂kun→ ∂ku with respect to the uniform norm on K ,

∂2
k un ⇀∂2

k u with respect to the weak topology of (L2(�))2.

Proof. Since µn ⇀µ, the Banach–Steinhaus theorem implies supn‖µn‖M <+∞.
Using Lemma 9, we obtain

un(x)dx ⇀µ(dx).

Lemmas 7 and 8 imply that (un) and (∂kun) are uniformly equicontinuous on K .
By the Ascoli theorem, un → u and ∂kun → ∂ku with respect to the uniform
norm on K for some u ∈ (C1(K ))2. As a consequence ∂2

k un ⇀ ∂2
k u in the sense

of distributions on �. Since by Lemma 7 the sequence (∂2
k un) is bounded with

respect to the (L2(�))2 norm, the above convergence holds with respect to the
weak topology of (L2(�))2. �

Lemma 11 (lower-bound inequalities). We assume that (H1), (H2), (H3), and (H4)

hold and µn ⇀µ. Then the measure µ(dx)= u(x) dx is such that

E (ext)(µ)= 0,

E (shear)(µ)≤ lim inf
n

E (shear)
n (µn),

E (bend)(µ)≤ lim inf
n

E (bend)
n (µn).

If moreover supn E (6)n (µn) <+∞, then E (6)(µ)= 0.

Proof. Let (µn) be the equivalent sequence associated with (µn).

Step 1. Lemma 7 implies that ‖∂kun(x + (1/(2n))ek)‖ = 1 for every node x ∈
Support(σ+n,k), and Lemma 10 asserts that ∂kun→ ∂ku with respect to the uniform
norm on K . Hence, ‖∂ku(x)‖ = 1 for every x ∈ K , which implies E (ext)(µ) = 0.
As a consequence µ is admissible for the macromodel and

E (shear)(µ)=

∫
�

g(∂1u(x)∧∂2u(x)) dx, E (bend)(µ)=

2∑
k=1

∫
�

κk

2
‖∂2

k u(x)‖2 dx .

Step 2. Since the four functions g(s,s
′)
: [−1, 1] → [0,+∞] are lower semicontin-

uous, there exist four sequences of nonnegative functions (g(s,s
′)

p ) in C[0, 1] such
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that
g(s,s

′)
p+1 ≥ gp and sup

p
g(s,s

′)
p = g(s,s

′).

Using Lemmas 7 and 10 again, the fact that σ (s,s
′)

n (dx) ⇀ dx , and the monotone
convergence theorem, we obtain

lim inf
n

E (shear)
n (µn) := lim inf

n

∑
s,s′

∫
g(s,s

′)(v+n,1(x)∧ v
+

n,2(x))σ
(s,s′)
n (dx)

≥

∑
s,s′

lim inf
n

∫
g(s,s

′)

(
∂1un

(
x +

s
2n

e1

)
∧ ∂2un

(
x +

s ′

2n
e2

))
σ (s,s

′)
n (dx)

≥ sup
p

∑
s,s′

lim inf
n

∫
g(s,s

′)
p

(
∂1un

(
x +

1
2n

e1

)
∧ ∂2un

(
x +

1
2n

e2

))
σ (s,s

′)
n (dx)

≥ sup
p

∑
s,s′

∫
�

g(s,s
′)

p (∂1u(x)∧ ∂2u(x)) dx

≥

∫
�

g(∂1u(x)∧ ∂2u(x)) dx = E (shear)(µ).

Step 3. Using Lemmas 7 and 10 and remembering that the (L2(�))2 norm is weak
lower semicontinuous we obtain

lim inf
n

E (bend)
n (µn)= lim inf

n

2∑
k=1

∫
�

κk

2
‖∂2

k un(x)‖2 dx ≥ E (bend)(µ).

Step 4. The condition supn E (6)n (µn) < +∞ says that un(x) = x for every x ∈
6 ∩Support(σn). Using Lemma 9 (i.e., limn‖un − un‖L∞(σn) = 0) we obtain

lim sup
n
{‖un(x)− x‖ : x ∈6 ∩Support(σn)} = 0.

Using Lemma 10 we obtain

lim sup
n
{‖u(x)− x‖ : x ∈6 ∩Support(σn)} = 0.

Since 6 = O ∩ ∂� where O is an open subset of R2 we deduce that u(x)= x at
any point of 6. Hence, E (6)(µ)= 0. �

5.4. Upper-bound inequality. We recall that the upper-bound inequality for the
sequence (En) means that for each µ ∈ (M(K ))2, there exists a sequence (µn)

in (M(K ))2 such that

µn ⇀µ and lim sup
n→∞

En(µn)≤ E(µ).

This is easily obtained by means of Lemma 13 below.
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Lemma 12. We assume that (H1), (H2), and (H3) hold and µ(dx)= u(x) dx is an
admissible measure for the macromodel such that E(µ) < +∞. Then the place-
ment function u is C1(K ) regular with distributional second partial derivatives
in (L2(�))2 and for all x ∈ K and all k ∈ {1, 2},

‖∂ku(x)‖ = 1 and u(x)+ u(0)=
2∑

k=1

u((x · ek)ek).

As a consequence

E (ext)(µ)= 0,

E (shear)(µ)=

∫
�

g(∂1u(x)∧ ∂2u(x)) dx,

E (bend)(µ)=

∫
�

2∑
k=1

κk

2
‖∂2

k u(x)‖2 dx .

Proof. Step 1 (H 2(�) regularity). Let H−1(�) denote the dual space of the usual
Sobolev space H 1

0 (�). Since E (ext)(µ) < +∞ and (H1) is assumed, one has
‖∂ku‖ = ρk(µ)= 1 a.e. in � and ∂k∂ku = ∂kvk(µ) ∈ (L2(�))2 for every k ∈ {1, 2}.
As a consequence

∂1∂2u ∈ (H−1(�))2,

∂1(∂1∂2u)= ∂2(∂
2
1 u)= ∂2(∂1v1(µ)) ∈ (H−1(�))2,

∂2(∂1∂2u)= ∂1(∂
2
2 u)= ∂1(∂2v2(µ)) ∈ (H−1(�))2.

A well known result by Necas [Carroll et al. 1966] asserts that, if a distribution
and its first distributional derivatives are H−1(�) regular and if � is bounded
with Lipschitz boundary, then the distribution is L2(�) regular. Hence, ∂1∂2u ∈
(L2(�))2.

Step 2 (∂1∂2u = 0 a.e. in �). Thanks to Step 1 one has

2(∂1∂2u) · (∂1u+ ∂2u)= ∂2‖∂1u‖2+ ∂1‖∂2u‖2 = ∂2ρ1(µ)
2
+ ∂1ρ2(µ)

2
= 0,

2(∂1∂2u) · (∂2u− ∂1u)= ∂1‖∂2u‖2− ∂2‖∂1u‖2 = ∂1ρ2(µ)
2
− ∂2ρ1(µ)

2
= 0.

Since E (shear)(µ) < +∞ and (H3) is assumed, one has ∂1u ∧ ∂2u > 0 a.e. in �,
which implies that (∂1u+∂2u, ∂2u−∂1u) is a direct orthogonal basis of R2 a.e. in�;
therefore, ∂1∂2u = 0 a.e. in �.

Step 3 (C1(K ) regularity). Let k ∈ {1, 2}. By Step 1, Step 2, and the usual Sobolev
embedding theorem one has

∂ku(x)= vk(x · ek) for a.e. x ∈�
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for some vk ∈ (C[0, 1])2 with distributional derivative in (L2(0, 1))2. As a conse-
quence u ∈ (C1(K ))2 and the proof is easily completed. �

Lemma 13 (approximating sequence). We assume that (H1), (H2), (H3), and (H4)

hold and µ(dx)= u(x) dx is an admissible measure for the macromodel such that
E(µ) <+∞. Then there exists a sequence µn(dx)= un(x)σn(dx) such that

E (6)n (µn)= E (σ )(µ)= 0 for every integer n,

E (ext)
n (µn)= E (ext)(µ)= 0 for every integer n,

µn ⇀µ,

lim
n

E (shear)
n (µn)= E (shear)(µ),

E (bend)
n (µn)≤ E (bend)(µ) for every integer n.

Proof. Step 1 (construction of the sequence (µn)). It is assumed that n is large
enough so that at least two nodes are contained in 6 := (a, b)×{0}. As a conse-
quence of Lemma 12, one has ∂1u(te1)= e1 for every t ∈ [a, b]. It is then possible
to define νn-a.e. two functions un,k : [0, 1] → R2 by setting

un,1

(
i
n

)
=

i
n

e1 if a <
i
n
< b,

n
(

un,1

(
i+1

n

)
−un,1

(
i
n

))
= ∂1u

((
i
n
+

1
2n

)
e1

)
for every i ∈ {0, . . . , n−1},

and

un,2(0)= un,1(0)

n
(

un,2

(
j+1

n

)
−un,2

(
j
n

))
= ∂2u

((
j
n
+

1
2n

)
e2

)
for every j ∈ {0, . . . , n−1}.

We finally define µn(dx) := un(x)σn(dx) by setting

un(x) := −un,1(0)+
2∑

k=1

un,k(x · ek)

for every x in the support of σn . It follows from the definition of µn that un(x)= x
for every node x ∈6, and then E (6)n (µn)= 0. We have also

∂+n,kun(x)= n(un,k

(
x · ek +

1
n

)
− un,k(x · ek))= ∂ku

(
x +

1
2n

ek

)
.

Using Lemma 12, we obtain ‖∂+n,kun(x)‖= 1 for every node x in the support of σ+n,k ;
then E (ext)

n (µn)= 0.
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Step 2 (weak convergence of the sequence (µn)). Let us denote

εn,k :=
1
n

n−1∑
q=0

∥∥∥∥∂ku
((

q
n
+

1
2n

)
e1

)
− n

∫ (q+1)/n

q/n
∂ku(te1) dt

∥∥∥∥.
By Lemma 12, the placement function u is C1(K ) regular and then the sequences
(εn,k) converge to 0 as n tends to∞. Since un,1(x · e1)− u(x)= 0 for some node
x ∈6 and un,1(0)= un,2(0), one has∥∥∥∥un,1

(
i
n

)
− u

(
i
n

e1

)∥∥∥∥≤ εn,1 for every i ∈ {0, . . . , n− 1},∥∥∥∥un,2

(
j
n

)
− u

(
j
n

e2

)∥∥∥∥≤ εn,1+ εn,2 for every j ∈ {0, . . . , n− 1}.

Let ϕ be a test function in C(K ). Using Lemma 12 and the definition of un , a
direct computation gives us

〈µn −µ, ϕ〉 =

(∫
ϕ(x)σn(dx)

)
(u(0)− un,1(0))

+

2∑
k=1

∫
ϕ(x)(un,k(x · ek)− u((x · ek)ek))σn(dx)

+

(∫
�

ϕ(x) dx −
∫
ϕ(x)σn(dx)

)
u(0)

+

2∑
k=1

(∫
ϕ(x)u((x · ek)ek)σn(dx)−

∫
�

ϕ(x)u((x · ek)ek) dx
)
;

then

|〈µn−µ, ϕ〉|≤

∣∣∣∣∫ ϕ(x)σn(dx)
∣∣∣∣(3εn,1+εn,2)+

∣∣∣∣∫
�

ϕ(x) dx−
∫
ϕ(x)σn(dx)

∣∣∣∣‖u(0)‖
+

2∑
k=1

∥∥∥∥∫ ϕ(x)u((x · ek)ek)σn(dx)−
∫
�

ϕ(x)u((x · ek)ek) dx
∥∥∥∥.

Since the measure σn weakly converges to the Lebesgue measure on K and the
function x→ ϕ(x)u((x · ek)ek) is continuous on K , we obtain

lim
n
|〈µn −µ, ϕ〉| = 0.

Step 3 (convergence of the sequence E (shear)
n (µn)). Let x be a node in the support

of σ s,s′
n . Using the definition of un we obtain

∂s
n,1un(x)∧ ∂s′

n,2un(x)= ∂1u
(

x +
s

2n
e1

)
∧ ∂2u

(
x +

s ′

2n
e2

)
.
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By Lemma 12, the function u is C1(K ) regular. Assumption (H2) and the fact that
E(µ) < +∞ imply that u(x) ∈ {g(s,s

′) < +∞} for every x ∈ K and the function
g(s,s

′) restricted to the closed set {g(s,s
′) <+∞} is continuous. As a consequence,

the function
x→ g(s,s

′)(∂1u(x)∧ ∂2u(x))

is uniformly continuous on K , which implies that

lim
n

∫
g(s,s

′)(∂s
n,1un(x)∧ ∂s′

n,2un(x))σ (s,s
′)

n (dx)=
∫
�

g(s,s
′)(∂1u(x)∧ ∂2u(x)) dx

so that limn E (shear)
n (µn)= E (shear)(µ).

Step 4 (upper-bound inequality of the sequence E (bend)
n (µn)). Let x be a node in

the support of σ 2
n,k . Using Lemma 12 and the definition of un we obtain

∂2
n,kun(x)= n

(
∂ku

((
x · ek +

1
2n

)
ek

)
− ∂ku

((
x · ek −

1
2n

)
ek

))
;

then Jensen inequality gives us

‖∂2
n,kun(x)‖2 ≤ n

∫ x ·ek+1/(2n)

x ·ek−1/(2n)
‖∂2

k u(tek)‖
2 dt.

Integrating with respect to the measure σ 2
n,k we obtain∫

‖∂2
n,kun(x)‖2σ 2

n,k(dx)≤
n− 1

n

∫
�

‖∂2
k u(x)‖2 dx,

and therefore, E (bend)
n (µn)≤ E (bend)(µ). �

6. Conclusions

In the present paper we proved the 0-convergence of a discrete lattice of rigid bars
and rotational springs to a 2D generalized continuum model, along with a relative
compactness property for the sequence of discrete energy functionals. The result
is proven taking into account geometrical nonlinearities.

The main result can be generalized in various ways, the most important of which
is probably the extension of the 0-convergence argument to less restrictive hypothe-
ses on the function fk , in particular allowing extensional deformation, i.e., changes
in the distances of adjacent nodes. The assumptions on the functions g(s,s

′) can also
be relaxed in future investigations.

Of course, future mathematical studies have to take into account also the nov-
elties of mechanical nature coming from experimental and numerical results. For
instance, worth mentioning are the recent results on the peculiar 3D (out-of-the-
plane) behavior of pantographic structures (see, e.g., [Steigmann and dell’Isola
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2015; Misra et al. 2018; Giorgio et al. 2017; Barchiesi et al. 2018a]) and the investi-
gation of generalized pantographic sheets with nonstraight or nonorthogonal fibers
[Turco et al. 2017b; Giorgio et al. 2016]. These findings will probably require
the development of new techniques in order to obtain rigorous homogenization
results. Finally, the possibility of oscillations at the lattice level would require
more complex homogenization formulas where the extensional, bending, and shear
deformation energies may not be uncoupled anymore.
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