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ANALYTICAL SOLUTIONS
FOR THE NATURAL FREQUENCIES OF RECTANGULAR

SYMMETRIC ANGLE-PLY LAMINATED PLATES

FLORENCE BROWNING AND HARM ASKES

Analytical solutions, based on the Ritz method, are derived for the lowest natural
frequency of rectangular symmetric angle-ply laminated plates. Since symmetric
angle-ply plates have nonzero cross-elasticity constants, the solutions are approx-
imate. The accuracy of these solutions is tested with a convergence study using
the Rayleigh quotient iteration method. With the solutions available in symbolic
form, parameter studies are presented that establish the effect of plate aspect
ratio and ply orientation angle for a number of stacking geometries. The results
are also verified through a comparison with numerical Ritz solutions, showing a
maximum error of 5% in our approximate solution.

1. Introduction

The focus of this paper is on the natural frequencies of rectangular anisotropic
plates. Such plates often consist of layers the principal directions of which are
aligned with the edges of the plates, but this restriction is not necessary — indeed,
here we will focus on alternative arrangements. The stacking geometry affects the
elastic properties of laminated plates, of which the lowest natural frequency is of
particular relevance for serviceability criteria [Gsell et al. 2007].

To make qualitative and quantitative predictions of the mechanical behaviour of
laminated plates, appropriate plate theory needs to be formulated. Starting from
Kirchhoff–Love or Reissner–Mindlin theory, the heterogeneous effects of multi-
ple layers of anisotropic material can be homogenised to arrive at an equivalent
anisotropic plate theory; see for instance [Yang et al. 1966; Whitney and Leissa
1969; Leissa and Whitney 1970; Whitney 1972; Pagano 1969; 1970; Kulkarni and
Pagano 1972]. These anisotropic plate models were discussed and compared to
other modelling strategies for plates (and shells) by Noor et al. [1996]. Further re-
finements have also been developed; see for instance the 1980s work [Reddy 1984;
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Murakami 1986; Ren 1986] and the comparative studies [Carrera 2000; Stürzen-
becher et al. 2010] of more recent years. The natural frequencies of laminated
plates have been studied by Ohta and Ikuno [2002], who restricted their study
to so-called cross-laminated plates (whereby the principal directions of each ply
are parallel to the plate edges), and by Chaudhuri [2002] and Huang et al. [2006],
who developed series-based analytical solutions that can be used for arbitrary layer
geometries.

An aspect that has received relatively little attention in the literature (but for
exceptions see [Hohe 2013]) is the effect of layer orientation on the natural fre-
quencies of laminated plates, and in that context this paper will focus on so-called
angle-ply plates, whereby every layer with a particular fibre orientation has a coun-
terpart layer with the opposite fibre orientation. First, the relevant equations will
be summarised briefly. The case of symmetric angle-ply plates is of interest, as
the coupling of normal stresses to shear strains and vice versa leads to additional
complexity that has, as far as the authors are aware, prohibited the establishment
of a closed-form exact solution to date. Additional assumptions are required to for-
mulate a simple approximate analytical solution; the validity of these assumptions
is checked in a convergence study carried out in symbolic form with the Rayleigh
quotient iteration method, which resulted in a novel set of Padé approximations.
The results are also compared to numerical solutions obtained with the Ritz method,
and a good agreement between the simple analytical solution and the two series so-
lutions was observed. The usefulness and novelty of these solutions relies on their
transparency — whilst the series-based solutions presented in [Chaudhuri 2002;
Huang et al. 2006] can be expanded to arbitrary accuracy, they comprise lengthy
expressions. For practical considerations and straightforward parameter studies a
simpler solution with an upper limit to the error is often preferred.

2. Anisotropic plate theory

The anisotropic plate theory used in this paper builds on the seminal works of
Whitney, Pagano, and their coworkers from the late 1960s and early 1970s. Mem-
brane action and distributed loads will be ignored. Rectangular plates of length A,
width B, and thickness H will be considered using the global Cartesian coordinate
system shown in Figure 1. We will also define the aspect ratio α as α = A/B.

For every individual ply, a local 1-2 coordinate system can be introduced whereby
the 1-axis is aligned with the fibres, rotated along an angle θ from the x-axis. The
stress-strain relation in local coordinates readsσ1

σ2

τ12

=
Q11 Q12 0

Q12 Q22 0
0 0 Q66

 ε1

ε2

γ12

 . (1)
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Figure 1. Global coordinate system and plate dimensions.

The constitutive coefficients Qi j are written in terms of elastic constants as

Q11 =
E1

1− ν12ν21
, (2a)

Q12 =
ν12 E2

1− ν12ν21
=

ν21 E1

1− ν12ν21
, (2b)

Q22 =
E2

1− ν12ν21
, (2c)

Q66 = G12, (2d)

where E1 and E2 are the Young’s moduli parallel and perpendicular to the fibre
direction, G12 is the shear modulus, and ν12 and ν21 are the Poisson’s ratios asso-
ciated with a stretch in the 1-direction and 2-direction, respectively.

The local stress-strain relations are translated to the global coordinate system,
leading to σxx

σyy

τxy

=
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

εxx

εyy

γxy

 , (3)

where

Q11 = Q11 cos4 θ + (2Q12+ 4Q66) cos2 θ sin2 θ + Q22 sin4 θ, (4a)

Q22 = Q11 sin4 θ + (2Q12+ 4Q66) cos2 θ sin2 θ + Q22 cos4 θ, (4b)

Q12 = (Q11+ Q22− 2Q12− 4Q66) cos2 θ sin2 θ + Q12, (4c)

Q66 = (Q11+ Q22− 2Q12− 4Q66) cos2 θ sin2 θ + Q66, (4d)

Q16 = (Q11−Q12−2Q66) cos3 θ sin θ+(Q12−Q22+2Q66) cos θ sin3 θ, (4e)

Q26 = (Q11− Q12− 2Q66) cos θ sin3 θ + (Q12− Q22+ 2Q66) cos3 θ sin θ. (4f)

Note that the above transformation is expressed in terms of the engineering shear
strain, not the tensorial shear strain, meaning that additional factors 2 and 1

2 have
been used compared to the usual transformation rules of second-order tensors.

The constitutive coefficients (4) are assumed to be piecewise constant for each
ply. The heterogeneous response in the z-direction is homogenised by integrating
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the stresses over the thickness of the plate, leading to the equation of transverse
motion

D11
∂4w

∂x4 + (2D12+ 4D66)
∂4w

∂x2∂y2 + D22
∂4w

∂y4

+ 4D16
∂4w

∂x3∂y
+ 4D26

∂4w

∂x∂y3 + ρH
∂2w

∂t2 = 0, (5)

where w is the transverse displacement, ρ is the mass density, and H is the total
thickness of the plate. Furthermore, the various plate bending coefficients Di j are
defined by

Di j =

∫ H/2

−H/2
Qi j z2 dz. (6)

In case D16 6= 0 and D26 6= 0, an additional level of anisotropy is obtained in going
from (1) to (3). These two coefficients are called the “cross-elasticity bending
stiffness terms” [Whitney 1972]. In (5) this manifests itself in odd-order derivatives
in terms of x and y, which has some implications for subsequent derivations, as
will be explained below.

The boundary conditions for simply supported rectangular plates read

w = 0, My =−D11
∂2w

∂x2 − 2D16
∂2w

∂x∂y
− D12

∂2w

∂y2 = 0 at x = 0, A, (7a)

w = 0, Mx =−D12
∂2w

∂x2 − 2D26
∂2w

∂x∂y
− D22

∂2w

∂y2 = 0 at y = 0, B, (7b)

where Mx and My are the distributed moments (per unit of length) about the x-axis
and y-axis, respectively.

3. Plate bending coefficients of symmetric angle-ply plates

In so-called angle-ply plates, each layer with orientation angle θ has a counterpart
layer with orientation angle −θ . Typical stacking sequences are symmetric or
antisymmetric around the midplane z = 0. We will assume symmetric angle-ply
plates with multiples of four layers in total, the same thickness for each layer, and
alternating orientations of +θ and −θ for consecutive layers in each of the top half
and bottom half of the plate. The standard plate bending coefficients can then be
written as

D11 =
H 3

12
(Q11 cos4 θ + (2Q12+ 4Q66) cos2 θ sin2 θ + Q22 sin4 θ), (8a)

D22 =
H 3

12
(Q11 sin4 θ + (2Q12+ 4Q66) cos2 θ sin2 θ + Q22 cos4 θ), (8b)
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D12 =
H 3

12
((Q11+ Q22− 2Q12− 4Q66) cos2 θ sin2 θ + Q12), (8c)

D66 =
H 3

12
((Q11+ Q22− 2Q12− 4Q66) cos2 θ sin2 θ + Q66) (8d)

irrespective of the actual number of layers, while the cross-elasticity plate bending
coefficients read

D16 =
H 3 sin 2θ
8·nlayer

((Q11−2Q12+Q22−4Q66) cos2 θ−Q22+Q12+2Q66), (8e)

D26 =−
H 3 sin 2θ
8·nlayer

((Q11−2Q12+Q22−4Q66) cos2 θ−Q11+Q12+2Q66) (8f)

where nlayer is the total number of layers. It can be seen that the cross-elasticity
coefficients vanish when the fibre orientations coincide with the Cartesian axes.
Furthermore, the magnitude of the cross-elasticity coefficients reduces with an in-
creased number of layers. Thus, the maximum effect of cross-elasticity is obtained
for four layers, which will be assumed in the remainder of the paper.

4. Symmetric square angle-ply plate — a convergence study

In the presence of cross-elasticity, i.e., D16 6= 0 and D26 6= 0, it has been mentioned
that an exact solution is not available [Jones 1999, p. 318]. Analytical solutions
have been developed in [Chaudhuri 2002] and [Huang et al. 2006], but they are
expressed in an extended series format, and a symbolic representation does not
seem to be sufficiently transparent to be practicable. Instead, we have opted to
use the Ritz method in symbolic form to generate an approximate solution to the
cross-elasticity case.

The general solution for the Ritz method in the case of simply supported plates
reads

w(x, y, t)= sin(ωt)
M∑

m=1

N∑
n=1

Cm,n sin mπx
A

sin nπy
B
. (9)

Adopting a square geometry, i.e., A = B, and using the same number of terms in
both the x and y direction, i.e., M = N , the exact solutions of the Ritz problem for
the lowest two values of M and N are denoted by ω2

(M,N ) and read

ω2
(1,1) =

π4 H 2 Qaa

12ρB4 , (10a)

ω2
(2,2) =

π4 H 2 Qaa

12ρB4 ·

(
17
2
−

15
2

√
1+

1024
81

Q2
bb

Q2
aa

)
(10b)
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where

Qaa = Q11+ 2Q12+ Q22+ 4Q66+ (Q11− 2Q12+ Q22− 4Q66) sin2 2θ, (11a)

Qbb = (Q11− Q22)
sin 2θ
π2 (11b)

have been defined for a more compact notation.
For larger values of M and N , the size of the stiffness matrix becomes prohibitive

to finding an exact solution in transparent symbolic form; thus, we have made two
further approximations. Firstly, we have discarded any terms whereby m 6= n —
this can be justified by inspecting the eigenvector associated with (10b). Secondly,
we have applied two iterations of the Rayleigh quotient iteration method to arrive
at a relatively simple closed-form approximation of the lowest natural frequency.

(1) With trial eigenvector v1 = [1, 0, 0, . . .]T we have computed the Rayleigh
quotient RQ according to

RQ=
vT Kv
vT Mv

(12)

where K and M are the stiffness matrix and mass matrix, respectively. Not
surprisingly, the value of the Rayleigh quotient in this first iteration equals the
expression for ω2 given in (10a).

(2) These values for v and RQ are used to compute an update on v according to

v2 = [K −RQ ·M]−1v1 (13)

after which this new estimate of the eigenvector is used to recompute the
Rayleigh quotient, and the resulting value of RQ is taken as an approximation
for ω2. Carrying out further iterations in symbolic form is possible in principle,
but leads to expressions that are too unwieldy to be of practical use.

The above procedure has been executed for M = N = 2 up to M = N = 5,
which gives the results in Table 1 on the next page. The first of these expres-
sions, (15a), has been included to provide a comparison with the Ritz solution
of (10b); the former is also a [1, 1]-Padé approximation of the latter, following
√

1+ x ≈ (4+ 3x)/(4+ x).
To estimate the differences between the various solutions, it is first established

that the ratio Qbb/Qaa adopts its maximum value for θ = 1
4π ; in particular

Qbb

Qaa
=

1
2π2 ·

E1− E2

E1+ E2
at θ = 1

4π, (14)

which in turn adopts its maximum value for vanishing E2. With the estimate
Qbb/Qaa < 1/2π2, the relative difference between (15a) and (10b) is less than
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ω2
(2,2) ≈

π4 H 2 Qaa

12ρB4 ·
81− 3584 Q2

bb /Q2
aa

81+ 256 Q2
bb /Q2

aa
, (15a)

ω2
(3,3) ≈

π4 H 2 Qaa

12ρB4 ·
1− 128 Q2

bb /Q2
aa + 3787 Q4

bb /Q4
aa

1− 81 Q2
bb /Q2

aa + 1793 Q4
bb /Q4

aa
, (15b)

ω2
(4,4) ≈

π4 H 2 Qaa

12ρB4 ·
1− 205 Q2

bb /Q2
aa + 11457 Q4

bb /Q4
aa − 103802 Q6

bb /Q6
aa

1− 157 Q2
bb /Q2

aa + 6251 Q4
bb /Q4

aa + 3625 Q6
bb /Q6

aa
, (15c)

ω2
(5,5) ≈

π4 H 2 Qaa

12ρB4 · (15d)

1−281 Q2
bb /Q2

aa+24601 Q4
bb /Q4

aa−681845 Q6
bb /Q6

aa+5045965 Q8
bb /Q8

aa

1−233 Q2
bb /Q2

aa+15876 Q4
bb /Q4

aa−266394 Q6
bb /Q6

aa+1438407 Q8
bb /Q8

aa
.

Table 1. Approximate natural frequencies for the Ritz problem in
the cross-elasticity case: symmetric square, modes with M = N
ranging from 2 through 5.

10−5, which indicates that the Rayleigh quotient iteration method provides an ex-
cellent approximation of the Ritz solution. Comparing (15b), (15c), and (15d) to
(10b) leads to maximum relative errors of 1.5%, 2.4%, and 2.7%, respectively.

These results are obviously encouraging, but they must be interpreted with some
caution. Whilst it is well-known that the Rayleigh quotient iteration method con-
verges very rapidly (also confirmed by the comparison above for M = N = 2),
it must be kept in mind that these results are obtained using two iterations only.
Furthermore, the Ritz method itself is known to converge much slower than other
methods such as direct Fourier series [Whitney 1972], although convergence is
better for plates that are simply supported on all sides. Applying the Rayleigh
quotient iteration method in symbolic form could be used to increase the accuracy
of the analytical solution, but instead of seeking a solution in series format we
will next use the Ritz method with M = N = 2 below to extend the analysis to
rectangular plates.

5. Rectangular angle-ply plates

Using (9) with M = N = 2 leads to a stiffness matrix K and mass matrix M as

K =


K11 0 0 K14

0 K22 K23 0
0 K23 K33 0

K14 0 0 K44

 and M =
ρH B2α

4
I (16)

where I is the identity matrix. Noting that K44 = 16K11, the lowest natural
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E1 [GPa] E2 [GPa] ν12 ν21 G12 [GPa] ρ [kg/m3]

GFR composite 46.2 16.6 0.26 0.093 6.9 2027
spruce 11.0 0.37 0.44 0.015 0.69 500

Table 2. Material properties for a glass-fibre reinforced composite
and spruce.

frequency is found from

ω =

√
34K11− 2

√

225K 2
11+ 4K 2

14
ρH B2α

(17)

where the relevant stiffness matrix components are given in terms of the plate
bending coefficients as

K11 =
π4

4B2α3 (D11+ (2D12+ 4D66)α
2
+ D22α

4), (18a)

K14 =−
160π2

9B2α2 (D16+ D26α
2). (18b)

For quantitative comparisons, we will use the two sets of material parameters listed
in Table 2, associated respectively with a glass-fibre reinforced (GFR) composite
[Fällström et al. 1996] and spruce [Stürzenbecher et al. 2010].

The natural frequencies according to (17) have been plotted in Figure 2 for a
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Figure 2. Normalised natural frequency ω (top) and relative error
of the analytical solution (bottom) against plate aspect ratio α and
fibre orientation angle θ . Left: GFR composite; right: spruce.
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range of plate aspect ratios and fibre orientation angles, and for the two sets of mate-
rial parameters given in Table 2 — note that the fibre orientation angle is plotted in
degrees, not radians. The approximate solutions of (17) have also been compared
to solutions obtained numerically with the Ritz method using M = N = 50.

The natural frequencies for the two sets of material data are qualitatively very
similar. The maximum frequency is found for θ = 1

4π in case of aspect ratios
close to unity, and for θ = 1

2π in case of larger aspect ratios. The dependence
on the aspect ratio is strongest for θ = 0, i.e., when the fibres are spanning the
larger dimension — particularly for spruce, which has a larger E1/E2 ratio. The
quantitative differences between the GFR composite and spruce are due to the
much stronger degree of anisotropy encountered in spruce. This also impacts the
accuracy of the approximate solution given in (17). The relative error of the an-
alytical solution with respect to the benchmark numerical solution is seen to be
less than 1% for the GFR composite, but more than five times as high for spruce.
Nevertheless, a 5% error only occurs for aspect ratio α = 1 and fibre orientations
θ = 1

4π (which is also the geometry for which maximum errors were studied in
Section 4), whereas other combinations of α and θ lead to (much) lower errors.
This level of accuracy is deemed to be proportionate and acceptable, given the
simplicity and transparency of (17) and (18).

6. Conclusions

Simple and transparent expressions for the lowest natural frequency have been
derived for rectangular anisotropic plates. Since the plate behaviour includes a
coupling between normal stresses and shear strains (and vice versa), a phenomenon
known as “cross-elasticity”, the solutions are approximate. A rudimentary conver-
gence study in symbolic form based on the Rayleigh quotient iteration method has
confirmed that a relatively low order of the Ritz method can be used for cases that
are simply supported on all sides. This has been employed for more general plate
configurations with cross-elasticity; because the solutions are obtained in symbolic
form, parameter studies are straightforward. The accuracy of the method has been
further confirmed by comparison with numerically obtained Ritz solutions.

Due to the chosen approach of seeking closed-form solutions, certain simplifi-
cations and assumptions had to be made. Thus, we have studied only one set of
boundary conditions, namely simply supported on all sides, we have ignored mem-
brane action, and cross-sectional warping has not been included. These effects, and
others, can be studied using a numerical solution approach in combination with a
more sophisticated plate theory, whereby the analytical solutions provided in this
paper may serve as reference solutions.



60 FLORENCE BROWNING AND HARM ASKES

Acknowledgements

We are indebted to Doctor Karin de Borst (Shell, The Netherlands) and Profes-
sor Ilanko (University of Waikato, New Zealand) for kindly providing insightful
comments on an earlier draft.

References

[Carrera 2000] E. Carrera, “An assessment of mixed and classical theories on global and local re-
sponse of multilayered orthotropic plates”, Compos. Struct. 50:2 (2000), 183–198.

[Chaudhuri 2002] R. A. Chaudhuri, “On the roles of complementary and admissible boundary con-
straints in Fourier solutions to the boundary value problems of completely coupled r th order PDEs”,
J. Sound Vib. 251:2 (2002), 261–313.

[Fällström et al. 1996] K.-E. Fällström, K. Olofsson, H. O. Saldner, and S. Schedin, “Dynamic
material parameters in an anisotropic plate estimated by phase-stepped holographic interferometry”,
Opt. Laser. Eng. 24:5–6 (1996), 429–454.

[Gsell et al. 2007] D. Gsell, G. Feltrin, S. Schubert, R. Steiger, and M. Motavalli, “Cross-laminated
timber plates: evaluation and verification of homogenized elastic properties”, J. Struct. Eng. 133:1
(2007), 132–138.

[Hohe 2013] J. Hohe, “Effect of core and face sheet anisotropy on the natural frequencies of sand-
wich shells with composite faces”, Int. J. Compos. Mater. 3:6B (2013), 40–52.

[Huang et al. 2006] Y. Huang, Y. J. Lei, and H. J. Shen, “Free vibration of anisotropic rectangular
plates by general analytical method”, Appl. Math. Mech. 27:4 (2006), 461–467.

[Jones 1999] R. M. Jones, Mechanics of composite materials, 2nd ed., Taylor & Francis, New York,
1999.

[Kulkarni and Pagano 1972] S. V. Kulkarni and N. J. Pagano, “Dynamic characteristics of composite
laminates”, J. Sound. Vib. 23:1 (1972), 127–143.

[Leissa and Whitney 1970] A. W. Leissa and J. M. Whitney, “Analysis of a simply supported lami-
nated anisotropic rectangular plate”, AIAA J. 8:1 (1970), 28–33.

[Murakami 1986] H. Murakami, “Laminated composite plate theory with improved in-plane re-
sponses”, J. Appl. Mech. 53:3 (1986), 661–666.

[Noor et al. 1996] A. K. Noor, W. S. Burton, and C. W. Bert, “Computational models for sandwich
panels and shells”, Appl. Mech. Rev. 49:3 (1996), 155–199.

[Ohta and Ikuno 2002] Y. Ohta and T. Ikuno, “The study of analytical models for vibration of cross-
ply laminated thick plates”, JSME Int. J. C 45:1 (2002), 107–112.

[Pagano 1969] N. J. Pagano, “Exact solutions for composite laminates in cylindrical bending”, J.
Compos. Mater. 3:3 (1969), 398–411.

[Pagano 1970] N. J. Pagano, “Exact solutions for rectangular bidirectional composites and sandwich
plates”, J. Compos. Mater. 4:1 (1970), 20–34.

[Reddy 1984] J. N. Reddy, “A simple higher-order theory for laminated composite plates”, J. Appl.
Mech. 51:4 (1984), 745–752.

[Ren 1986] J. G. Ren, “A new theory of laminated plate”, Compos. Sci. Tech. 26:3 (1986), 225–239.

[Stürzenbecher et al. 2010] R. Stürzenbecher, K. Hofstetter, and J. Eberhardsteiner, “Structural de-
sign of Cross Laminated Timber (CLT) by advanced plate theories”, Compos. Sci. Tech. 70:9 (2010),
1368–1379.

http://dx.doi.org/10.1016/S0263-8223(00)00099-4
http://dx.doi.org/10.1016/S0263-8223(00)00099-4
http://dx.doi.org/10.1006/jsvi.2001.3913
http://dx.doi.org/10.1006/jsvi.2001.3913
http://dx.doi.org/10.1016/0143-8166(95)00100-X
http://dx.doi.org/10.1016/0143-8166(95)00100-X
http://dx.doi.org/10.1061/(ASCE)0733-9445(2007)133:1(132)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2007)133:1(132)
http://dx.doi.org/10.5923/s.cmaterials.201310.05
http://dx.doi.org/10.5923/s.cmaterials.201310.05
http://dx.doi.org/10.1007/s10483-006-0405-y
http://dx.doi.org/10.1007/s10483-006-0405-y
http://dx.doi.org/10.1016/0022-460X(72)90793-6
http://dx.doi.org/10.1016/0022-460X(72)90793-6
http://dx.doi.org/10.2514/3.5601
http://dx.doi.org/10.2514/3.5601
http://dx.doi.org/10.1115/1.3171828
http://dx.doi.org/10.1115/1.3171828
http://dx.doi.org/10.1115/1.3101923
http://dx.doi.org/10.1115/1.3101923
http://dx.doi.org/10.1299/jsmec.45.107
http://dx.doi.org/10.1299/jsmec.45.107
http://dx.doi.org/10.1177/002199836900300304
http://dx.doi.org/10.1177/002199837000400102
http://dx.doi.org/10.1177/002199837000400102
http://dx.doi.org/10.1115/1.3167719
http://dx.doi.org/10.1016/0266-3538(86)90087-4
http://dx.doi.org/10.1016/j.compscitech.2010.04.016
http://dx.doi.org/10.1016/j.compscitech.2010.04.016


NATURAL FREQUENCIES OF ANGLE-PLY PLATES 61

[Whitney 1972] J. M. Whitney, “On the analysis of anisotropic rectangular plates”, technical report
AD-776 017, Air Force Materials Laboratory, 1972, Available at http://www.dtic.mil/dtic/tr/fulltext/
u2/776017.pdf.

[Whitney and Leissa 1969] J. M. Whitney and A. W. Leissa, “Analysis of heterogeneous anisotropic
plates”, J. Appl. Mech. 36:2 (1969), 261–266.

[Yang et al. 1966] P. C. Yang, C. H. Norris, and Y. Stavsky, “Elastic wave propagation in heteroge-
neous plates”, Int. J. Solid. Struct. 2:4 (1966), 665–684.

Received 17 Jul 2018. Revised 29 Aug 2018. Accepted 24 Oct 2018.

FLORENCE BROWNING: florence.browning22@gmail.com
Interrobang Architecture and Engineering, Webb Yates Engineers Ltd, London, United Kingdom

HARM ASKES: h.askes@sheffield.ac.uk
Department of Civil and Structural Engineering, University of Sheffield, Sheffield, United Kingdom

MM ∩
msp

http://www.dtic.mil/dtic/tr/fulltext/u2/776017.pdf
http://dx.doi.org/10.1115/1.3564618
http://dx.doi.org/10.1115/1.3564618
http://dx.doi.org/10.1016/0020-7683(66)90045-X
http://dx.doi.org/10.1016/0020-7683(66)90045-X
mailto:florence.browning22@gmail.com
mailto:h.askes@sheffield.ac.uk
http://www.univaq.it
http://memocs.univaq.it/
http://msp.org

	1. Introduction
	2. Anisotropic plate theory
	3. Plate bending coefficients of symmetric angle-ply plates
	4. Symmetric square angle-ply plate —a convergence study 
	5. Rectangular angle-ply plates
	6. Conclusions
	Acknowledgements
	References

