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ON THE BLOCKING LIMIT OF STEADY-STATE FLOW
OF HERSCHEL–BULKLEY FLUID

FARID MESSELMI

This paper is devoted to the study of the blocking limit of Herschel–Bulkley fluid
in the case of steady-state flow. To this aim, we consider a mathematical model
which describes the steady-state flow of a Herschel–Bulkley fluid in a bounded
domain. We give the mathematical formulation of the blockage phenomenon,
and we establish the existence of the blocking limit. We also focus on behaviour
of the flow with respect to the blocking limit.

1. Introduction

The rigid viscoplastic and incompressible fluid of Herschel and Bulkley has been
investigated by mathematicians, physicists, and engineers as intensively as the
Navier–Stokes equations though this model adequately describes a large class of
flows. It has been used to model the flow of metals, plastic solids, and a variety
of polymers. Physical experiments and numerical studies of the flow of Herschel–
Bulkley fluids prove that when the yield stress increases, the rigid zones become
larger and may completely block the flow. This property is called the blocking
phenomenon. Due to existence of the yield limit, the model can capture phe-
nomena connected with the development of discontinuous stresses. The literature
concerning this topic is extensive; see, e.g., [Málek 2008; Málek et al. 2006; 2005;
Messelmi 2017; Messelmi and Merouani 2013; 2010; Messelmi et al. 2010].

Our paper deals with the steady-state flow of Herschel and Bulkley. The main
objective is the study of the behaviour of the flow. We provide a generalisation of a
result obtained by Hild et al. [2002] for Bingham fluid to the steady-state flow of the
Herschel–Bulkley model, ensuring the existence of the blocking limit. Moreover,
we establish a result concerning the behaviour of the flow when the yield limit is
near a minimal blocking limit.

The paper is organised as follows. In Section 2 we present the mechanical
problem of the steady-state flow of Herschel–Bulkley fluid in a bounded domain
� ⊂ Rn . We introduce some notation and preliminaries. In addition, we derive

Communicated by Carlo Marchioro.
MSC2010: 35J85, 76A05, 76E30.
Keywords: blocking limit, Herschel–Bulkley fluid, variational inequality.

63

http://msp.org/memocs
http://dx.doi.org/10.2140/memocs.2019.7-1
http://dx.doi.org/10.2140/memocs.2019.7.63
http://memocs.univaq.it/


64 FARID MESSELMI

the variational formulation of the problem. In Section 3, we show the mathemat-
ical formulation of the blockage phenomenon and we prove the existence of the
blocking limit. Section 4 is devoted to the study of the behaviour of the flow with
respect to the blocking limit.

2. Problem statement

We consider a mathematical problem modelling the steady-state flow of the rigid
viscoplastic and incompressible Herschel–Bulkley fluid in a bounded domain �⊂
Rn (n = 2, 3), with the boundary 0 of class C1. The fluid is acted upon by given
volume forces of density f . On 0 we suppose that the velocity is equal to zero.

We denote by Sn the space of symmetric tensors on Rn . We define the inner
product and the Euclidean norm on Rn and Sn , respectively, by

u · v = uivi for all u, v ∈ Rn, σ · τ = σi jτi j for all σ , τ ∈ Sn,

|u| = (u · u)1/2 for all u ∈ Rn, |σ | = (σ · σ )1/2 for all σ ∈ Sn.

Here and below, the indices i and j run from 1 to n and the summation con-
vention over repeated indices is used. We denote by σ D the deviator of σ = (σi j )

given by
σ D
= (σ D

i j ), σ D
i j = σi j −

σkk

n
δi j ,

where δ = (δi j ) denotes the identity tensor.
Let 1< p ≤ 2. We consider the rate-of-deformation operator defined for every

u ∈W 1,p(�)n by

D(u)= (Di j (u)), Di j (u)= 1
2(ui, j + u j,i ).

The steady-state flow of Herschel–Bulkley fluid can be described by the follow-
ing mechanical problem.

Problem P1. Find the velocity field u = (ui ) : �→ Rn and the stress field σ =
(σi j ) :�→ Sn such that

u · ∇u= div σ + f in �. (2-1)

σ D
=µ|D(u)|p−2 D(u)+g(D(u)/|D(u)|) if |D(u)| 6= 0,

|σ D
| ≤ g if |D(u)| = 0

}
in �, (2-2)

div u= 0 in �, (2-3)

u= 0 on 0. (2-4)

Here div σ = (σi j, j ) and div u= ui,i . The flow is given by (2-1) where the density
is assumed equal to one. Equation (2-2) represents the constitutive law of Herschel–
Bulkley fluid where µ> 0 and g≥ 0 represent the consistency and yield limit of the
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fluid, respectively, and 1< p ≤ 2 is the power law index. Equation (2-3) represents
the incompressibility condition. Equation (2-4) gives the adherence condition on
the boundary 0.

Existence of weak solutions for this problem was proved in 1969 for p ≥
3n/(n+ 2), for which the energy equality holds and higher differentiability tech-
niques can be applied, in 1997 for p ≥ 2n/(n+1), and recently for p> 2n/(n+2)
using the Lipschitz truncation method. Moreover, in 2010 some existence results
regarding the thermal flow were established for the case p ≥ 3n/(n+ 2) [Frehse
et al. 2003; Lions 1969; Málek 2008; Málek et al. 2006; Messelmi et al. 2010]. Up
to now, there are only a few results concerning the regularity of weak solutions,
especially in three-dimensional domains. Further, the asymptotic behaviour of the
unsteady flow was the subject of [Messelmi 2017].

Remark. (1) The Bingham fluid represents a particular case of Herschel–Bulkley
fluid corresponding to p = 2.

(2) In the constitutive law of Herschel–Bulkley fluid (2-2), the viscosity and hy-
drostatic pressure are given, respectively, by

η = µ|D(u)|p−2, π =−
1
n
σkk . (2-5)

Let us introduce the function spaces

Wp,div = {v ∈W 1,p
0 (�)n : div(v)= 0 in �}, (2-6)

LD(�)= {v ∈ L1(�)n : D(v) ∈ L1(�)n×n
}, (2-7)

VD(�)= {v ∈ LD(�) : v = 0 on 0}, (2-8)

W = {v ∈ VD(�) : div v = 0 in �}. (2-9)

Wp,div is a Banach space equipped with the norm

‖v‖Wp,div = ‖v‖W 1,p(�)n . (2-10)

Moreover, Korn’s inequality holds in the space Wp,div [Messelmi et al. 2010],
which means that there exists a positive constant C0 depending only on � and 0
such that

C0‖D(v)‖L p(�)n×n ≥ ‖v‖Wp,div for all v ∈Wp,div. (2-11)

The space LD(�) was introduced by Temam [1985]. It is a Banach space
equipped with the norm

‖v‖LD(�) = ‖v‖L1(�)n +‖D(v)‖L1(�)n×n , (2-12)

which is not reflexive, and W 1,1(�)n ⊂ LD(�). Since Korn’s inequality does not
hold on LD(�) (see the remarks in [Temam 1985]), the space W 1,1(�)n is a proper
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subspace of LD(�). VD(�) is a closed subspace of LD(�). W is also a Banach
space equipped with the norm given by (2-12). Furthermore, Korn’s inequality
holds in W [Temam 1985], and thus, there exists a positive constant CW depending
only on � and 0 such that

CW‖D(v)‖L1(�)n×n ≥ ‖v‖LD(�) for all v ∈W . (2-13)

Denoting by p′ the conjugate of p, we introduce the convective operator

B :Wp,div×Wp,div×Wp,div→ R, B(u, v,w)=
∫
�

u · ∇v ·w dx . (2-14)

We begin by recalling the following lemma [Messelmi et al. 2010], which gives
some properties of the convective operator B.

Lemma. Suppose that
3n

n+ 2
≤ p ≤ 2. (2-15)

Then B is trilinear and continuous on Wp,div×Wp,div×Wp,div. Moreover, for all
(u, v,w) ∈Wp,div×Wp,div×Wp,div we have B(u, v,w)=−B(u,w, v).

For the rest of this paper, we choose 3n/(n+2)≤ p ≤ 2. The use of Green’s for-
mula permits us to derive the following variational formulation of the mechanical
problem P1 [Messelmi et al. 2010].

Problem Pg. For prescribed data f ∈W ′p,div, find u ∈Wp,div satisfying the varia-
tional inequality

B(u, u, v− u)+µ
∫
�

|D(u)|p−2 D(u) · D(v− u) dx

+g
∫
�

|D(v)| dx−g
∫
�

|D(u)| dx ≥
∫
�

f ·(v−u) dx for all v ∈Wp,div. (2-16)

By taking v = 0 and v = 2u in (2-16), respectively,

µ

∫
�

|D(u)|p dx + g
∫
�

|D(u)| dx =
∫
�

f · u dx . (2-17)

This implies using again (2-16)

B(u, u, v)+µ
∫
�

|D(u)|p−2 D(u) · D(v) dx + g
∫
�

|D(v)| dx

≥

∫
�

f · v dx for all v ∈Wp,div. (2-18)

Consequently, the steady-state flow of Herschel–Bulkley fluid can be also described
by the system (2-17)–(2-18).
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3. Blockage property

This section is dedicated to the study of the blockage property of Herschel–Bulkley
fluid. To do this, let us recall the following standard definition [Hild et al. 2002].

Definition. We will say that the fluid is blocked in the domain � if u= 0 a.e. in �
is a solution to the variational problem Pg.

We prove the following proposition, which gives the variational interpretation
of the blockage property.

Proposition. The fluid is blocked in the domain � if and only if

g
∫
�

|D(v)| dx ≥
∫
�

f · v dx for all v ∈Wp,div. (3-1)

Proof. The first implication is an immediate consequence of the definition of block-
age property. For the second one, we proceed as follows. Suppose that (3-1) holds.
In particular, we have

g
∫
�

|D(u)| dx ≥
∫
�

f · u dx . (3-2)

Subtracting the inequalities (2-17) and (3-1), we find

µ

∫
�

|D(u)|p dx ≤ B(u, u, v)+µ
∫
�

|D(u)|p−2 D(u) · D(v) dx

+ g
∫
�

|D(v)| dx −
∫
�

f · v dx for all v ∈Wp,div. (3-3)

Thus, the result can be obtained by setting v = 0 as a test function in (3-3) and
using Korn’s inequality. �

Hence, the mathematical study of the blockage property consists of finding the
relationship between the yield limit g and the density of volume forces f such that
the inequality (3-1) holds.

We say that g is a blocking limit if the inequality (3-1) is satisfied.
We suppose from now on that

f ∈ L∞(�)n. (3-4)

The statement below ensures the existence of a blocking phase for large-enough
yield limit.

Proposition. If (3-4) holds, then

g∗ = sup
v∈Wp,div−{0}

∫
�

f · v dx∫
�
|D(v)| dx

<+∞. (3-5)

In addition, if g ≥ g∗, then the blocking occurs; it means that (3-1) holds.
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Proof. Let us define the form l ∈W ′p,div by

〈l, v〉W ′p,div×Wp,div =

∫
�

f · v dx for all v ∈Wp,div. (3-6)

The fact that f ∈ L∞(�)n implies that l ∈W ′. Then, there exists C1 > 0 such that

|〈l, v〉W ′p,div×Wp,div | ≤ C1‖v‖LD(�) for all v ∈ LD(�). (3-7)

This yields, thanks to the Korn inequality (2-13)

|〈l, v〉W ′p,div×Wp,div | ≤ C1CW‖D(v)‖L1(�)n×n for all v ∈ LD(�). (3-8)

Consequently, via (3-7) and (3-8) we obtain g∗ ≤ C1CW .
Now, if g ≥ g∗, then (3-5) gives

g
∫
�

|D(v)| dx ≥ g∗
∫
�

|D(v)| dx ≥
∫
�

f · v dx for all v ∈Wp,div−{0},

which completes the proof, by observing that if v = 0, the inequality above also
remains satisfied. �

Here g∗ is said to be the minimal blocking limit.
Let g be a blocking limit. We denote by C the set

C =
{
v ∈Wp,div

∣∣∣∣ g
∫
�

|D(v)| dx =
∫
�

f · v dx
}
. (3-9)

It is straightforward to verify that the set C is a convex cone in Wp,div.

4. Behaviour of the flow

Let us introduce for ε > 0 the perturbed yield limit

gε = (1− ε p−1)g, (4-1)

and denote by uε the solution of the corresponding problem, i.e.,

B(uε, uε, v−uε)+µ
∫
�

|D(uε)|p−2 D(uε)·D(v−uε) dx+gε

∫
�

|D(v)| dx

− gε

∫
�

|D(uε)| dx ≥
∫
�

f · (v− uε) dx for all v ∈Wp,div. (4-2)
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The above inequality can be written in equivalent form

µ

∫
�

|D(uε)|p dx + gε

∫
�

|D(uε)| dx =
∫
�

f · uε dx, (4-3)

B(uε, uε, v)+µ
∫
�

|D(uε)|p−2 D(uε) · D(v) dx + gε

∫
�

|D(v)| dx

≥

∫
�

f · v dx for all v ∈Wp,div. (4-4)

Setting now

wε =
uε
ε

for all ε > 0, (4-5)

in the following we establish a convergence result for (wε)ε>0 when ε tends to 0.

Theorem. Suppose that g is a blocking limit. Then (wε)ε>0 convergences strongly,
when ε tends to 0 in Wp,div, to the solution w of the variational inequality

w∈C :µ
∫
�

|D(w)|p−2 D(w)·D(v−w) dx≥
∫
�

f ·(v−w) dx for all v ∈ C . (4-6)

Proof. The system becomes, taking into account (4-5),

µε p−1
∫
�

|D(wε)|p dx + (1− ε p−1)g
∫
�

|D(wε)| dx =
∫
�

f ·wε dx, (4-7)

ε2 B(wε,wε, v)+µε p−1
∫
�

|D(wε)|p−2 D(wε) · D(v) dx

+ (1− ε p−1)g
∫
�

|D(v)| dx ≥
∫
�

f · v dx for all v ∈Wp,div. (4-8)

Equation (4-7) gives

µε p−1
∫
�

|D(wε)|p dx + (1− ε p−1)

(
g
∫
�

|D(wε)| dx −
∫
�

f ·wε dx
)

= ε p−1g
∫
�

|D(wε)| dx . (4-9)

Suppose that g is a blocking limit; then (4-9) gives

µ

∫
�

|D(wε)|p dx ≤ g
∫
�

|D(wε)| dx . (4-10)

We deduce making use of Korn’s inequality and some algebraic manipulations that

‖wε‖Wp,div ≤ c. (4-11)

Hence, we can extract a subsequence still denoted by (wε)ε>0 such that

wε→ w in Wp,div weakly. (4-12)
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The Rellich–Kondrachov compactness theorem allows us to get after a new ex-
traction

wε→ w in L p(�)n strongly and a.e. in �. (4-13)

Therefore, (4-9) gives again

(1− ε p−1)g
∫
�

|D(wε)| dx ≤
∫
�

f ·wε dx,

thereby allowing us to find

g lim inf
∫
�

|D(wε)| dx ≤ lim
∫
�

f ·wε dx . (4-14)

This yields

g
∫
�

|D(w)| dx ≤
∫
�

f ·w dx . (4-15)

Consequently, since g is a blocking limit,

g
∫
�

|D(w)| dx =
∫
�

f ·w dx . (4-16)

Taking w as test function in inequality (4-8), it implies that

ε2 B(wε,wε,w)+µε p−1
∫
�

|D(wε)|p−2 D(wε) · D(w) dx

+ (1− ε p−1)g
∫
�

|D(w)| dx ≥
∫
�

f ·w dx .

This gives, making use of (4-16),

ε3−p B(wε,wε,w)+µ
∫
�

|D(wε)|p−2 D(wε) ·D(w) dx ≥ g
∫
�

|D(w)| dx . (4-17)

Moreover, the lemma on page 66 permits us to obtain the estimate

|B(wε,wε,w)| ≤ ‖wε‖2Wp,div
‖w‖Wp,div . (4-18)

On the other hand, it is well known that the nonlinear term µ
∫
�
|D(wε)|p−2 D(wε) ·

D(w) dx converges to µ
∫
�
|D(w)|p dx [Lions 1969]. Consequently, by passing

to the limit, one can find, keeping in mind (4-18),

µ

∫
�

|D(w)|p dx ≥ g
∫
�

|D(w)| dx . (4-19)

We get thanks to (4-10)

lim infµ
∫
�

|D(wε)|p dx ≤ g lim inf
∫
�

|D(wε)| dx .
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So, using (4-14) we can infer that

lim infµ
∫
�

|D(wε)|p dx ≤ lim
∫
�

f ·wε dx,

which implies that

µ

∫
�

|D(w)|p dx ≤
∫
�

f ·w dx . (4-20)

Putting together (4-16), (4-19), and (4-20) we obtain

µ

∫
�

|D(w)|p dx = g
∫
�

|D(w)| dx =
∫
�

f ·w dx, (4-21)

which implies in particular that w ∈ C . Furthermore, by (4-8) we get

ε3−p B(wε,wε, v)+µ
∫
�

|D(wε)|p−2 D(wε) · D(v) dx

+
1

ε p−1

(
g
∫
�

|D(v)| dx −
∫
�

f · v dx
)
≥ g

∫
�

|D(v)| dx for all v ∈Wp,div.

By choosing v ∈ C in the above inequality, the passage to the limit leads to

µ

∫
�

|D(w)|p−2 D(w) · D(v) dx ≥ g
∫
�

|D(v)| dx for all v ∈ C .

This yields

µ

∫
�

|D(w)|p−2 D(w) · D(v) dx ≥
∫
�

f · v dx for all v ∈ C . (4-22)

Combining (4-21) and (4-22) yields the inequality (4-6).
Our objective now is to prove the strong convergence. With this aim, we proceed

as follows. The use of (4-7) and (4-8) permits us to affirm that for every v ∈Wp,div

ε2 B(wε,wε, v)+µε p−1
∫
�

|D(wε)|p−2 D(wε) · D(v−wε) dx

≥

∫
�

f · (v−wε) dx − (1− ε p−1)g
(∫

�

|D(v)| dx −
∫
�

|D(wε)| dx
)

It follows, by setting v = w, that

−ε2 B(wε,wε,w)+µε p−1
∫
�

|D(wε)|p−2 D(wε) · D(wε −w) dx

≤

∫
�

f · (wε −w) dx + (1− ε p−1)g
∫
�

(|D(w)| − |D(wε)|) dx . (4-23)

Further, since g is the blocking limit and w ∈Wp,div, one can verify that

g
∫
�

(|D(w)| − |D(wε)|) dx ≤
∫
�

f · (w−wε) dx .
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Consequently, inequality (4-23) becomes

µ

∫
�

|D(wε)|p−2 D(wε) ·D(wε−w) dx ≤
∫
�

f ·(wε−w) dx+ε3−p B(wε,wε,w).

(4-24)
This becomes

µ

∫
�

(|D(wε)|p−2 D(wε)− |D(w)|p−2 D(w)) · D(wε −w) dx

≤

∫
�

f · (wε −w) dx −µ
∫
�

|D(w)|p−2 D(w)D(wε −w) dx

+ cε3−p
‖wε‖

2
Wp,div
‖w‖Wp,div . (4-25)

Let us observe now that for every x, y ∈ Rn ,

(|x |p−2x − |y|p−2 y) · (x − y)≥ c
|x − y|2

(|x | + |y|)2−p , 1< p ≤ 2.

So applying the above inequality, (4-25) can be rewritten as

µ

∫
�

|D(wε −w)|2

(|D(wε)| + |D(w)|)2−p dx ≤ c
∣∣∣∣∫
�

f · (wε −w) dx
∣∣∣∣

+ cε3−p
‖wε‖

2
Wp,div
‖w‖Wp,div + cµ

∣∣∣∣∫
�

|D(w)|p−2 D(w)D(wε −w) dx
∣∣∣∣,

which gives, exploiting Korn’s and Hölder’s inequalities,

‖wε −w‖
p
Wp
≤ c

(∫
�

(|D(wm)| + |D(w)|)p dx
)(2−p)/2(∣∣∣∣∫

�

f · (wε −w) dx
∣∣∣∣

+ ε3−p
‖wε‖

2
Wp,div
‖w‖Wp,div +µ

∫
�

|D(w)|p−2 D(w)D(wε −w) dx
)p/2

.

Passing to the limit, we conclude, using (4-12) and taking into account the fact
that |D(w)|p−2 D(w) is bounded in L p′(�)n , that

wε→ w in Wp,div strongly,

which permits us to complete the proof. �

Corollary. Denoting by w0 the unique solution of the variational equation given by

µ

∫
�

|D(w0)|
p−2 D(w0) · D(v) dx =

∫
�

f · v dx for all v ∈Wp,div, (4-26)

then the following estimates hold:

‖D(w)‖L p(�)n×n ≤ ‖D(w0)‖L p(�)n×n ,

∫
�

f ·w dx ≤
∫
�

f ·w0 dx . (4-27)
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Proof. We can infer by setting w as a test function in (4-26) that

µ

∫
�

|D(w0)|
p−2 D(w0) · D(w) dx =

∫
�

f ·w dx .

This yields, using Hölder’s inequality

µ‖D(w0)‖
p−1
L p(�)n×n‖D(w)‖L p(�)n×n ≥

∫
�

f ·w dx = µ‖D(w)‖p
L p(�)n×n ,

which allows us to get the first estimate. The second estimate becomes an imme-
diate consequence of the first one. �
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