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A POLYNOMIAL CHAOS EXPANDED
HYBRID FUZZY-STOCHASTIC MODEL

FOR TRANSVERSELY FIBER REINFORCED PLASTICS

EDUARD PENNER, ISMAIL CAYLAK, ALEX DRIDGER AND ROLF MAHNKEN

This work is focused on polymorphic uncertainties in the framework of consti-
tutive modeling for transversely isotropic materials. To this end, we propose a
hybrid fuzzy-stochastic model, where the stochastic part accounting for aleatory
uncertainties of material parameters is expanded with the multivariate polyno-
mial chaos expansion. In order to account for epistemic uncertainties, polyno-
mial chaos coefficients are treated as fuzzy variables. The underlying minimum
and maximum optimization problem for the fuzzy analysis is approximated by
α-level discretization, resulting in a separation of minimum and maximum prob-
lems. To become more universal, so-called quantities of interest are employed,
which allow a general formulation for the target problem. Numerical examples
with fuzzy, fuzzy-stochastic, and hybrid fuzzy-stochastic input demonstrate the
versatility of the proposed formulation.

1. Introduction

A fundamental data uncertainty of different types underlies most materials in en-
gineering science. Possible examples are variations in the manufacturing process,
where composites are typical materials, measurement errors, and missing or in-
complete information. In order to improve the credibility of mathematical models
in engineering science, uncertainties have to be taken into account, where two
categories are distinguished: aleatory and epistemic; see, e.g., [Sullivan 2015].

Aleatory uncertainties refer to variability as a consequence of, e.g., fluctuations
through time, variation across space, or manufacturing differences. This type of
uncertainty is irreducible and can be treated with a stochastic analysis. An aleatory
uncertain problem of a mechanical system can be modeled by stochastic partial
differential equations (SPDEs), where the system response may be described by a
distribution with statistical moments. The solution of these SPDEs can be obtained
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numerically using a stochastic simulation, where the Monte Carlo (MC) method
[Caflisch 1998; Hurtado and Barbat 1998] is widely used. Alternatively, spectral
stochastic surrogate models, e.g., polynomial chaos expansion (PCE), are used in
order to reduce the computational effort. Corresponding research areas are: linear
elasticity of solids and mechanics [Ghanem and Spanos 1991], plasticity of solids
and mechanics [Anders and Hori 1999; Rosić 2013], large deformations [Achar-
jee and Zabaras 2006; Acharjee 2006; Caylak et al. 2018], fluid flow [Le Maître
et al. 2001; 2002], flow-structure interactions [Xiu and Karniadakis 2002; Xiu et al.
2001], and linear convection problems [Jardak et al. 2002].

Contrary to aleatory uncertainties, epistemic uncertainties refer to subjectivity
as a consequence of, e.g., incomplete scientific understanding or lack of measure-
ments, which indicate a possible value range rather than a probability function. In
addition, epistemic uncertainties are reducible by empirical effort, e.g., investing
more in measurements. Methodologies for the modeling of epistemic uncertainties
are, e.g., interval analysis and, increasingly applied over the last years, fuzzy analy-
sis, which represents indistinct boundaries [Zadeh 1965]. In order to perform math-
ematical operations with fuzzy sets, the so-called α-level discretization method is
applied. Here, the fuzzy response at each selected α-level is obtained by solving
a minimum-maximum problem of a quantity of interest (QoI). In [Mahnken 2017]
QoIs are employed within a variational formulation for fuzzy analysis in continuum
mechanics.

A realistic modeling of uncertainties requires a combination of different uncer-
tainty types. Following [Graf et al. 2015], this is referred to as polymorphic uncer-
tainties. Corresponding models are: Dempster–Shafer evidence theory [Dempster
1967], coherent lower prevision theory [Walley 1991], possibility theory [Dubois
and Prade 2012], probability box (P-box) theory [Ferson et al. 2003], and fuzzy
probability theory [Gudder 1998; Beer 2009] or fuzzy-randomness [Möller and
Beer 2004]. Recently published works using fuzzy-randomness are in the field of
civil engineering [Reuter et al. 2012], fuzzy-random dynamical structural analysis
[Graf et al. 2015], failure probability evaluation [Jahani et al. 2014], and fuzzy-
stochastic partial differential equations [Motamed 2017].

Note that the QoI in the publications listed in the previous paragraph may be
a fuzzy-stochastic random variable. The numerical computation of the stochas-
tic part is realized by sampling methods which require a large number of sam-
ples. From the received samples, different statistical moments can be computed to
solve the minimum-maximum problem of the QoI at each α-level. Thus, at each
optimization step, statistical moments must be determined, which lead to high
computational costs. In order to reduce this effort, we introduce a novel hybrid
fuzzy-stochastic model based on the polynomial chaos expansion. In particular
the following aspects are investigated:



A POLYNOMIAL CHAOS EXPANDED HYBRID FUZZY-STOCHASTIC MODEL 101

• The stochastic part of the hybrid polymorphic model is expanded with the
PCE.

• For the fuzzy part of the hybrid polymorphic model, the polynomial chaos
(PC) coefficients are treated as fuzzy variables.

• At each optimization step, the statistical moment only depends on determin-
istic PC coefficients.

• Experimental investigation and uncertainty quantification of transversely fiber
reinforced plastics are carried out.

This paper is structured as follows. Section 2 provides the stochastic formulation
for the state and target problem and their discretizations with the PCE. In Section 3
the hybrid fuzzy-stochastic formulation and the computational scheme for the nu-
merical implementation with polymorphic uncertainties are proposed. Section 4
incorporates the experimental investigation and the parameter identification for
fiber reinforced plastics (FRP). Finally, in Section 5 the representative numerical
examples demonstrate the versatility of the proposed model considering different
types of uncertainties.

2. Stochastic analysis

2.1. Constitutive stochastic state problem. To set the stage for a hybrid fuzzy-
stochastic model accounting for polymorphic uncertainties, we introduce a design
vector

[s1, . . . , sns ]
T
= s ∈ S (1)

within a design space S ⊂ Rns of ns design variables. In general it may represent
several influences on a structure, such as material properties, loading parameters,
geometric properties, and boundary conditions. In this section, we assume the de-
sign space S ⊂Rns in (1) is a precise set or a fundamental set of ordered pairs. The
aleatory uncertainties are modeled by stochastic random variables. In this context
the probability space is denoted by (�,6,P), where � is the set of elementary
events, 6 is the σ -algebra, and P is the probability measure. Moreover, we let ω
be an element of �.

Typically, constitutive modeling in mechanics is based on stress-strain relations.
To this end, we introduce a stress-strain space M ⊂ E 3

× E 3, where E 3 denotes
the Euclidean space. An uncertain functional for a strain tensor ε on the design
space S and on the probability space � may be interpreted as a random variable
ε( · , s) :�→M indexed by s ∈S on the design space S, where for any elementary
event ω yields a realization ε(ω, · ) : S→M; see, e.g., [Wang and Zhang 1992].
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Figure 1. Mapping from stochastic and design space to strain space.

In both interpretations, an uncertain functional is a measurable function

ε(ω, s) :=
{
�×S→M⊂ E 3

× E 3,

(ω, s) 7→ ε(ω, s).
(2)

The mapping ε( · , · ) from stochastic and design space to strain space is visualized
in Figure 1, where for simplicity time dependence, explicit probabilistic depen-
dence, and explicit design dependence are not considered in the illustration.

Based on the stochastic strain-driven mapping equation (2), a stochastic linear
elastic constitutive problem can be formulated as

1. (constitutive equation) σ = C(κ(ω, s)) : ε(κ(ω, s)) ∈M,

2. (stress constraint) σ = σ (ω, s) ∈Mσ ⊂M,

3. (strain constraint) ε = ε(ω, s) ∈Mε ⊂M,

(3)

where
κ(ω, s)= [κ1(ω, s), . . . , κi (ω, s), . . . , κnm (ω, s)]T (4)

is the material parameter vector of nm polymorphic uncertain material parameters.
In addition, in (3)1 the symmetric Cauchy stress tensor σ and the polymorphic un-
certain elasticity material tensor C(κ(ω, s)) are used. Stress and strain constraints
in (3)2 and (3)3 are formulated on the spaces Mσ and Mε, where Mσ ∪ Mε =M

and Mσ ∩ Mε = ∅ hold, and defined by prescribed stresses σ (ω, s) and strains
ε(ω, s), respectively. In the sequel, we assume that κ(ω, s) is the only uncertain
input variable that depends on the aleatory elementary event ω and on the design
variables s. We exploit a strain based method and formulate

the stochastic state problem:

for given s ∈ S and ω ∈� find ε(κ(ω, s)) such that

r(κ(ω, s)) := C(κ(ω, s)) : ε(κ(ω, s))︸ ︷︷ ︸
σ (ε(κ(ω,s)))

−σ = 0,
(5)

where r(κ(ω, s)) has the interpretation of a stochastic residual for a strain-driven
algorithm.
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2.2. Stochastic quantity of interest and target problem. In the subsequent expo-
sition we do not merely want to characterize the design properties of the random
strain tensor ε(κ(ω, s)) satisfying the stochastic state equation (5). Instead, we are
more interested in the stochastic design analysis of a physical event or a feature of
a structure that depends upon ε, where quantities of interest (QoIs) are character-
ized by functionals Q(ε(κ(ω, s))) of the solutions ε(κ(ω, s)) to (5). A possible
realization of the QoI is

Q(ε(κ(ω, s)))= σ (ε(κ(ω, s))) : σ (ε(κ(ω, s))). (6)

Note that the QoI may be a stochastic random variable Q(κ(ω, s)) that depends
on ω and s. Therefore, it is common to generate a relatively large number nMC of
samples Q j (s), j = 1, . . . , nMC, for Q(κ(ω, s)), as, e.g., in the Monte Carlo (MC)
simulation, based on its stochastic distribution described by a probability density
function and to evaluate a QoI based on the computed results of all samples Q j (s),
j = 1, . . . , nMC. From the received samples, different deterministic values can be
computed to evaluate a so-called surrogate QoI Qω. The upper index ω indicates
that Qω is a surrogate QoI with respect to a QoI Q. Possible realizations for the
surrogate QoI Qω of the state problem in (5) are:

• expectation value (or sample mean)

Qω
= E[Q(ε(κ(ω, s)))] ≈

1
nMC

nMC∑
j=1

Q j , (7)

• variance (or adjusted sample variance)

Qω
= var[Q(ε(κ(ω, s)))] ≈

1
nMC− 1

nMC∑
j=1

(Q j − E[Q])2, (8)

• square norm in L2(�,6,P) or second moment, also called stochastic norm
[Le Maître and Knio 2010]

Qω
= E[Q2(ε(κ(ω, s)))] ≈

1
nMC

nMC∑
j=1

Q2
j , (9)

• functional dependencies of stochastic and design variables

Qω
= Qω(κ(ω, s)), (10)

whereby surrogate QoIs (7)–(9) are based on sample empirical moments. The
adjusted sample variance in (8) refers to the fact that the sum of squared deviations
is divided by nMC− 1 rather than by nMC. With a specific choice of a surrogate
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QoI Qω, for example according to (7)–(10), we formulate

the stochastic target problem:

for given s ∈ S and ω ∈� find z := Qω(s, ε(κ(ω, s))).
(11)

Note that, due to the dependency ε(κ(ω, s)), solution of the target problem in (11)
involves solution of the state problem in (5).

2.3. Discretization by polynomial chaos expansion. As mentioned before in Sec-
tion 2.2, the MC simulation, based on a relatively large number of samples, could
be used for numerical evaluation of the QoI in (6). However, if only individual
empirical moments in (7)–(9) are sought, a discrete surrogate model, e.g., in terms
of the polynomial chaos expansion (PCE) [Ghanem and Spanos 1991; Caylak et al.
2018] can be used in order to reduce the numerical effort. This expansion involves
a basis of known random functions with deterministic PC coefficients. Therefore,
stochastic variables κ(ω, s) may be represented with the PCE

κ(ω, s)≈
n P∑
l=0

κ̂ l(s)9l(θ(ω))= κ̂0(s)+
n P∑
l=1

κ̂ l(s)9l(θ(ω)), (12)

where κ̂ l(s) are nm × 1 PC coefficient vectors, n P + 1 is the number of the ac-
companying PC terms, and 9l(θ(ω)) are PC basis functions described by mul-
tivariate single-index polynomials with uncorrelated standard distributed random
variables θ .

In this paper Hermite polynomials with standard normal distributed random vari-
ables θ = [θ1, . . . , θnm ] are chosen. Table 1 provides a single-index representation
with a polynomial order p= 1 for nm = 5 stochastic parameters. For a more detailed
description, we refer to [Keese 2004]. The 0-th PC coefficient in (12) represents
the expectation value κ̂0(s)= E[(κ(ω, s))]. With (12) the i-th material parameter

order p l 9l

0 0 90 = 1

1 1 91 = θ1

2 92 = θ2

3 93 = θ3

4 94 = θ4

5 95 = θ5

Table 1. Single-index representation of the multivariate polynomi-
als for nm = 5 stochastic parameters and polynomial order p = 1,
which leads to n P = 5.
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can be expanded as

κi (ω, s)≈
n P∑
l=0

κ̂il(s)9l(θ(ω))=κ̂i0(s)+
n P∑
l=1

κ̂il(s)9l(θ(ω)), i=1, . . . , nm . (13)

Note that in the deterministic case of the i-th material parameter with n P = 0
and the independence on s, (13) renders κi = κ̂i0. Similarly, a nonstochastic i-th
material parameter with n P = 0 is given by κi (s)= κ̂i0(s).

Inserting (12) into the stochastic state problem of (5) and applying the Galerkin
projection [Ghanem and Spanos 1991] renders

the discrete stochastic state problem:

for given s ∈ S and ω ∈� find ε̂m(s, κ̂) such that

rk(κ(ω, s)) :=
n P∑
l=0

n P∑
m=0

cklm(ω)Ĉl(s, κ̂) : ε̂m(s, κ̂)− σ k

= 0 for all k ∈ {0, . . . , n P},

(14)

where
1. cklm(ω)= E[9k9l9m],

2. σ k = E[σ9k],

3. rk(κ(ω, s))= E[r(κ(ω, s))9k].

(15)

In (14) κ̂(s) describes the nm × (n P + 1) matrix of PC coefficients

κ̂(s)= [κ̂0(s), . . . , κ̂n P
(s)] =

 κ̂10(s) . . . κ̂1n P (s)
...

. . .
...

κ̂nm0(s) . . . κ̂nm(n P )(s)

 ∈ Rnm×(n P+1). (16)

With the above preliminaries at hand, the PCE based discrete surrogate QoI Qω

for an arbitrary QoI Q can be formulated using the PCE in (12). The PCE based
discrete QoI is

Q(κ(ω, s))=
n P∑

k=0

Q̂k(s, κ̂)9k(θ(ω)), (17)

where Q̂k(s, κ̂) are the corresponding PC coefficients. For a specific case, inserting
the QoI in (6) into the PC expanded QoI in (17) renders the PC coefficients as

Q̂k =
1
dk

n P∑
l=0

n P∑
m=0

cklm σ̂l σ̂m for all k ∈ {0, . . . , n P}, (18)
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where cklm is given in (15)1 and

dk = ckk0 = E[92
k ] for all k ∈ {0, . . . , n P}. (19)

With the PCE based discrete QoI in (17) the discrete surrogate QoIs of (7)–(9)
become

Qω
= E[Q(κ(ω, s))] = Q̂0(s, κ̂), (20)

Qω
= var[Q(κ(ω, s))] =

n P∑
k=1

dk Q̂2
k(s, κ̂), (21)

Qω
= E[Q2(κ(ω, s))] =

n P∑
k=0

dk Q̂2
k(s, κ̂); (22)

see, e.g., [Le Maître and Knio 2010]. In (20)–(22) it can be seen that the surro-
gate QoIs of random variables depend only on the design variables s in (1), the
deterministic PC coefficients κ̂(s) in (16), and the expectation values in (19).

With a specific choice of a discrete surrogate QoI Qω, for example according to
(20)–(22), we formulate

the discrete stochastic target problem:

for given s ∈ S and ω ∈� find z := Qω(s, ε̂(s, κ̂), d),
(23)

where ε̂(s, κ̂)= [ε̂0(s, κ̂), . . . , ε̂n P (s, κ̂)]
T and d = [d0, . . . , dn P ]

T . Note that, due
to the dependency ε̂(s, κ̂), solution of the discrete target problem in (23) involves
solution of the discrete state problem in (14).

2.4. Example. In order to demonstrate the concept of a surrogate QoI in linear
isotropic elasticity we consider a uniaxial strain-driven loading case with ε = 0.1.
Furthermore, a PC expanded Young’s modulus E(ω) is assumed as a normal dis-
tributed random variable according to (13) with nm = 1 and n P = 1:

E(ω)= Ê0+ Ê1θ(ω)= 80 GPa+ 5 GPa θ(ω). (24)

In Figure 2, left, the distribution of the random variable in (24) is illustrated as a
solid line, where in addition the histogram represents Young’s modulus E(ω) using
nMC = 108 Monte Carlo samples. From the solution of the discrete stochastic state
problem in (14), we obtain the stress random variable σ(ω) as

σ(ω)= σ̂0+ σ̂1θ(ω)= Ê0ε+ Ê1εθ(ω)= 8 GPa+ 0.5 GPa θ(ω). (25)

The stress PC coefficients in (25) are used to calculate the QoI PC coefficients with
n P = 1 according to (18), where cklm and dk in (15)1 and (19), respectively, for
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Figure 2. PCE and MC distribution of Young’s modulus E(ω)
(left) and QoI Q(ω) (right) of (24) and (27), respectively.

k l m cklm dk

0 0 1

0 0 1 0 1
1 0 0
1 1 1

0 0 0

1 0 1 1 1
1 0 1
1 1 0

Table 2. Values of cklm and dk for a stochastic dimension nm = 1
and polynomial order p = 1, which leads to k, l,m = 0, . . . , 1.

k, l,m = 0, 1 are known by [Ghanem and Spanos 1991] according to Table 2. With
the resulting PC coefficients

Q̂0 = σ̂
2
0 + σ̂

2
1 = 64.25 GPa2, Q̂1 = 2σ̂0σ̂1 = 8 GPa2 (26)

the PCE based QoI Q(ω) in (17) becomes

Q(ω)= Q̂0+ Q̂1θ(ω)= 64.25 GPa2
+ 8 GPa2 θ(ω). (27)

In Figure 2, right, the distribution of the random variable in (27) is illustrated as a
solid line, where in addition the histogram represents the QoI Q(ω) obtained from
nMC = 108 Monte Carlo samples.

Finally, results for surrogate QoIs using the PCE in (20)–(22) with n P = 1 and
MC in (7)–(9) with nMC = 104 and nMC = 108 are summarized in Table 3. In
addition to the quantitative values of three surrogate QoIs E[Q], var[Q], and E[Q2

],
the corresponding computational times tC are presented. It can be seen that the PCE
based results are in good agreement with MC based results and show convergence
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MC (nMC = 104) MC (nMC = 108) PCE (n p = 1)
Qω Qω tC/ms Qω tC/ms Qω tC/ms

E[Q]/GPa2 64.3062 0.375 64.2494 126.1 64.25 13.8
var[Q]/GPa4 64.3729 0.841 64.1268 226.3 64 23.6
E[Q2
]/GPa4 4199.6 0.542 4192.1 218.1 4192.7 21.8

Table 3. Surrogate QoIs and computational times tC for MC with
nMC = 104, MC with nMC = 108, and PCE with n P = 1.

after nMC = 108 realizations. The increase to nMC = 109, which is not shown here,
results in a similar behavior.

3. Hybrid fuzzy-stochastic analysis

3.1. Fuzzy set and fuzzy number. So far, the design space S ⊂ Rns in (1) has
been assumed to be a precise set or a fundamental set of ordered pairs. However,
in the case of a lack of knowledge also known as epistemic uncertainty, this is not
realistic. Therefore, in the sequel, modeling of epistemic uncertainty is accounted
for by the fuzzy analysis. To this end, the precise set S in (1) is replaced by a
nonprecise set, or fuzzy set [Möller and Beer 2004], respectively, of ordered pairs

1. Ŝ=
{
(s, µS(s))

∣∣ s ∈ Rns , µS(s)= min
i=1,...ns

{µSi (si )}
}
,

2. Ŝi = {(si , µSi (si )) | si ∈ R, µSi (si ) ∈ [0, 1]},

3. µSi : R→ [0, 1], si 7→ µSi (si ).

(28)

According to (28)1 Ŝ comprises all combinations of the design variables s1, . . . , sns

of the fuzzy sets Ŝi in (28)2. The corresponding function µSi (si ) in (28)3 describes
the degree of membership of si ∈ Si ⊂ R and therefore is called the membership
function. In this work only normalized membership functions with the property
supsi∈Si

[µSi (si )] = 1 are considered. A triangular fuzzy number [Möller and Beer
2004]

Ŝi = 〈sL
i , s M

i , s R
i 〉, where sL

i < s M
i < s R

i , (29)

is a special case of a fuzzy set and is illustrated in Figure 3, left. The stochastic
QoI Q(κ(ω, s)) in (6) becomes a function of the fuzzy design variables s and can
be treated as a hybrid fuzzy-stochastic function. In order to determine Q(κ(ω, s)),
we introduce a novel hybrid fuzzy-stochastic model based on the polynomial chaos
expansion. In this way, the fuzzy-random material parameter vector κ(ω, s) in (4)
propagates the fuzzy-random output variable Q(κ(ω, s)) in (6) or the fuzzy output
variable Qω(κ(ω, s)) in (7)–(10).



A POLYNOMIAL CHAOS EXPANDED HYBRID FUZZY-STOCHASTIC MODEL 109

sLi sLi,αk
sMi sRi,αk

sRi

αk

1

sIi,αk

si

µ
s
i
(s

i
)

QωLQωLαk QωRαk QR

αk

1

QωIαk

min
s∈Sαk

Qω max
s∈Sαk

Qω

Qω

µ
Q
ω
(Q

ω
)

Figure 3. Schematic graph of fuzzy analysis with α-level opti-
mization from (left) design variable (triangular) to (right) QoI.

With S in (1) replaced by Ŝ in (28) the hybrid fuzzy-stochastic representation
(4) for the input quantity κ(ω, s) of the state and target problem in (5) and (11)
accounts for the most general case in which every single component κi (ω, s) can
be subjected to polymorphic uncertainty. Depending on the given uncertainty type
of κ(ω, s) in (4), the following five scenarios of uncertainty analysis (of PCE based
hybrid fuzzy-stochastic analysis) can be distinguished:

• deterministic analysis

κ = κ̂ = κ̂0, n P = 0, ns = 0, (30)

where each material parameter κi = κ̂i = κ̂i0, i = 1, . . . , nm , is deterministic,

• stochastic analysis

κ = κ(ω), κi = κi (ω), n P > 0, ns = 0, and deterministic κ̂, (31)

where at least one material parameter is a random variable,

• fuzzy analysis

κ = κ(s), κi = κi (s), n P = 0, ns > 0, (32)

where at least one material parameter is a fuzzy variable,

• fuzzy-stochastic analysis

κ = κ(ω, s), κi = κi (ω), κ j = κ j (s), n P > 0, ns > 0, (33)

where at least one material parameter is a random variable and one parameter
is a fuzzy variable,

• hybrid fuzzy-stochastic analysis

κ = κ(ω, s), κi = κi (ω, s), n P > 0, ns > 0, (34)

where at least one material parameter is a (polymorphic uncertain) fuzzy-
random variable.
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We recall that in (30)–(34) ns is the number of design variables of s in (1), nm

is the number of material parameters of κ(ω, s) in (4), and n P is the number of PC
truncations in (12).

3.2. α-level discretization and optimization. To avoid significant numerical effort
the determination of a fuzzy output can be approximated by the so-called α-level
discretization, which represents fuzzy sets numerically by α-cuts as

Si,αk = {si |µSi,αk (si )≥ αk, si ∈Si } = [sL
i,αk
, s R

i,αk
] := s I

i,αk
, i = 1, . . . , ns . (35)

The α-cuts are characterized by lower and upper bounds sL
i,αk

and s R
i,αk

and there-
fore define crisp intervals. Figure 3, left, illustrates the crisp interval s I

i,αk
and the

membership function µSi (si ) discretized by nα α-levels. In this context, 0≤ αk ≤ 1
denotes the membership level; see, e.g., [Möller and Beer 2004]. All fuzzy design
variables si are discretized using the same α-level structure, i.e., the number and
the increments of α-levels, to form the associated crisp sets. Therefore, intervals
in (35) lead to an ns-dimensional constrained design space

Sαk = [S1,αk × · · ·×Si,αk × · · ·×Sns ,αk ] ⊂ S⊂ Rns . (36)

The determination of the minimum and maximum values of the surrogate QoI
in (11) or (23), respectively, at each α-level requires the solutions of

two hybrid fuzzy-stochastic α-level optimization problems:

1. find QωL
αk
= min

s∈Sαk

Qω(s, ε(κ(ω, s)))≈ min
s∈Sαk

Qω(s, ε̂(s, κ̂), d),

2. find QωL
αk
= max

s∈Sαk

Qω(s, ε(κ(ω, s)))≈ max
s∈Sαk

Qω(s, ε̂(s, κ̂), d).

(37)

As visualized in Figure 3, right, the two extrema QωL
αk

and QωR
αk

render two points
of the membership function µQ(Q) for the membership level αk . The interval
QωI
αk
=[QωL

αk
, QωR

αk
] is fully described by the lower and upper bounds QωL

αk
and QωR

αk
.

As no requirements are formulated for the continuous mapping model, both opti-
mization problems in (37) involve only simple constraints. Problems of this kind
are discussed in detail in [Bertsekas 1982].

3.3. Numerical implementation. In principle, fuzzy and stochastic dominated ap-
proaches with polymorphic uncertainties are conceivable [Reuter et al. 2012] for
numerical determination of the target (11) or (23). The two approaches are illus-
trated in Figure 4, top and bottom. The difference between both approaches is the
sequences of the evaluations of uncertainties.

For the fuzzy dominated approach, the stochastic analysis is performed inside
the fuzzy analysis, which leads to α-level optimization loops (sequence: fuzzy
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fuzzy analysis
of membership function
for surrogate QoI
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optimization of Qω

sLi sLi,αk
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sRi

αk

1
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si

µ
s
i
(s

i
)

QωLQωLαk QωRαk QR

αk

1

QωIαk

min
s∈Sαk

Qω max
s∈Sαk

Qω

Qω

µ
Q
ω
(Q

ω
)

stochastic analysis
of random (surrogate) QoI
MC: j = 1, . . . , nMC samples

κj(s) of κ(ω, s)
PCE: k = 0, . . . , nP pc coefficients

κ̂k(s) of κ(ω, s)

deterministic analysis
of deterministic QoI
(samples or PC coefficients)

Qj(κj(s)),

Q̂k(κ̂k(s))

Q(κ(ω, s)),
Qω(κ(ω, s))

µ(Qω(κ(ω, s)))

stochastic analysis
of (surrogate) membership functions
for QoI
MC: j = 1, . . . , nMC samples

κj(sj) of κ(ω, s)

fuzzy analysis
of membership fuction
for deterministic QoI (samples)

deterministic analysis
of deterministic QoI
(samples)

µj(Qj(κj(sj)))

Qj(κj(sj))

µ(Q(κ(ω, s)), ω),
µω(Q(κ(ω, s)))

Figure 4. Computational scheme for the determination of QoIs
with polymorphic uncertain parameters: (top) fuzzy dominated
approach and (bottom) stochastic dominated approach.

analysis) (see (37)) with fuzzy-random variables κ(ω, s). Within each iteration of
the optimization loop a certain number nMC of samples κ j (s) (e.g., MC method) or
PC coefficients κ̂k(s) (PCE method) are generated (sequence: stochastic analysis).
Then, samples Q j (s) or PC coefficients Q̂k(s) for a QoI Q(κ(ω, s)), e.g., (6), are
calculated (sequence: deterministic analysis). After that, surrogate QoIs in (7)–
(10) or the discrete PCE based surrogate QoIs in (20)–(22) (sequence: stochastic
analysis) are determined and used for the α-level optimization (sequence: fuzzy
analysis). Note, with a specific choice of a surrogate QoI, the α-level optimization
problems at each α-level will be solved only once using the fuzzy dominated ap-
proach. The required design variables s for the solution of the membership function
for (surrogate) QoIs will be used for further calculation of, e.g., stresses or strains.

In contrast, the stochastic dominated approach, where the fuzzy analysis is per-
formed inside the stochastic analysis, leads to a certain number nMC (sequence:
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stochastic analysis) of optimization loops (sequence: fuzzy analysis) with deter-
ministic samples, e.g., κ j of κ(ω) (sequence: deterministic analysis). The required
design variables s j for the solution of the membership function for each QoI sample
µ j (Q j (κ j , s j )) may be used for further calculation of interested quantity samples,
e.g., samples of stresses or strains. After the fuzzy deterministic analysis, the outer
stochastic analysis leads to stochastic distributions of membership functions µ or
to surrogate membership functions µω, respectively.

In this paper, the hybrid fuzzy-stochastic analysis is performed by the PCE based
surrogate model, which directly provides the calculation of the surrogate QoIs in
(20)–(22) and the required design variables. Therefore, and due to the small number
of optimizations loops, only one fuzzy optimization of the chosen surrogate QoI,
fuzzy dominated approach is preferred. In contrast, in the stochastic dominated
approach, the fuzzy optimization must be performed for all samples nMC. The MC
simulation, in the fuzzy dominated and also in the stochastic dominated approaches,
is also performed for each example to verify the accuracy of the results, as well as
the computational time.

4. Experimental investigation of fiber reinforced plastics

In order to describe unidirectional fiber reinforced plastics (FRP), a transversely
isotropic elasticity model is used, where the plane normal to the fiber direction can
be considered as an isotropic plane. In Figure 5, the fibers are aligned with the
1-axis, which is normal to the 2-3-plane of isotropy.

In Voigt notation, the constitutive equation (3)1 for transversely isotropic elas-
ticity reads

1. σ = Cε, where

2. σ = [σ11, σ22, σ33, σ12, σ13, σ23]
T , ε = [ε11, ε22, ε33, γ12, γ13, γ23]

T ,

3. C =



C11 2ν(λ+G⊥) 2ν(λ+G⊥) 0 0 0
λ+ 2G⊥ λ 0 0 0

λ+ 2G⊥ 0 0 0
G‖ 0 0

sym G‖ 0
G⊥


,

4. C11 =
E‖2(E⊥− 4G⊥)

4E⊥G⊥ν2+ E‖E⊥− 4E‖G⊥
,

5. λ=−
2G⊥(2E⊥G⊥ν2

+ E‖E⊥− 2E‖G⊥)
4E⊥G⊥ν2+ E‖E⊥− 4E‖G⊥

.

(38)
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Figure 5. A transversely isotropic volume element, where fibers
are aligned with the 1-axis.

In addition to the Voigt notation in (38)2 of the stress tensor σ , the Mandel notation

σM = [σ11, σ22, σ33,
√

2σ12,
√

2σ13,
√

2σ23]
T (39)

is introduced, whereby (6) reads

Q(ε(κ(ω, s)))= σ T
M(ε(κ(ω, s)))σM(ε(κ(ω, s))). (40)

In (38) ν is the dimensionless Poisson ratio and E‖, E⊥ and G‖,G⊥ are Young’s
moduli and shear moduli in fiber and transverse direction, respectively. According
to (4), the nm = 5 required transversely isotropic material parameters are summa-
rized in the material parameter vector

κ = [κ1, κ2, κ3, κ4, κ5]
T
= [E‖, E⊥,G‖,G⊥, ν]T . (41)

The determination of the shear modulus G⊥ in the isotropic plane requires a shear
test apparatus, which currently is not available. Instead only tensile tests can be
performed, which are used to determine the material parameters in (41), except G⊥,
experimentally.

To this end, three plates made of unidirectional FRP with different fiber orien-
tations (0◦, 45◦, 90◦) were produced. From each plate 30 tensile specimens were
cut out. The geometry of the tensile specimen is depicted in Figure 6b. The width
b0 and the thickness t0 of the specimens differ from 0◦ orientation to 45◦ and 90◦

orientation, where the dimensions for the different fiber orientations are summa-
rized in Table 4. Furthermore, Figure 6c–e shows schematically the different fiber
orientations of the specimens. These are clamped into a tensile testing machine
with hydraulic clamping jaws as illustrated in the experimental setup in Figure 6a.
The FRP is subjected to an off-axis uniaxial stress loading, in which the fibers are
oriented in the 1-direction, and rotated around the 3-direction by an angle ϕ. With
respect to the testing machine a machine-fixed coordinate system (x, y) in Figure 6
is defined. The experiments, which are displacement controlled according to DIN
EN ISO 527-5, are loaded in the longitudinal direction x at an angle ϕ with respect
to the fiber direction. In particular, ϕ = 0◦ and ϕ = 90◦ correspond to longitudinal
and transverse uniaxial stress loading, respectively. A load cell supplies forces F



114 EDUARD PENNER, ISMAIL CAYLAK, ALEX DRIDGER AND ROLF MAHNKEN

(a) (b) (c) (d) (e)

x

y

1
'

Figure 6. Experimental investigation: (a) experimental setup,
(b) geometry of specimens, and schematic specimens for fiber ori-
entation (c) 0◦, (d) 90◦, and (e) 45◦. Machine-fixed coordinate
system (x, y) and fibers aligned to 1-axis.

[mm] 0◦ 45◦/90◦

length l0 150 150
clamping length h 50 50
width b0 15 25
thickness t0 1 2

Table 4. Measures of specimens depending on fiber orientations.

at different observation states, whereby corresponding stresses in longitudinal di-
rection σ x = F/A0 are determined using the cross-sectional area A0 = b0t0; see
Table 4. By applying a video extensometer, the strains in longitudinal and trans-
verse directions εx and εy are measured.

Fiber orientation ϕ = 0◦. In order to determine the Young’s modulus E‖ in fiber
direction as well as the Poisson’s ratio ν, tensile tests are applied for samples
illustrated in Figure 6c. DIN EN ISO 527-1 provides further information regarding
the test procedure and the data evaluation. The resulting curves for stress σ11 = σ x

versus strain ε11= εx for 30 experiments are shown in Figure 7, left, where the slope
of each curve describes the corresponding Young’s modulus E‖ =1σ11/1ε11 in
fiber direction. Furthermore, in Figure 7, right, experimental longitudinal strain ε11

versus transversal strain |ε22| = |εy| curves are illustrated, where the slope of
each regression line for each curve renders the corresponding Poisson’s ratio ν =
−1ε22/1ε11. The frequency distributions of E‖ and ν are illustrated in Figure 8,
left and right.
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Figure 7. Experimental results for fiber orientation 0◦: (left) lon-
gitudinal stress σ11 versus longitudinal strain ε11 curves and (right)
longitudinal strain ε11 versus transversal absolute strain |ε22|

curves.
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Figure 8. Frequency distributions of identified parameters for
fiber orientation 0◦: (left) Young’s modulus in fiber direction E‖
and (right) Poisson’s ratio ν.

Fiber orientation ϕ = 90◦. To determine the Young’s modulus E⊥ transverse to the
fiber direction, tensile tests are applied for samples illustrated in Figure 6d. DIN
EN ISO 527-1 provides further information regarding the test procedure and the
data evaluation. Results for 30 experimental stress σ22 = σ x versus strain ε22 = εx

curves are illustrated in Figure 9, left, where the slope of each curve renders the
corresponding Young’s modulus E⊥ = 1σ22/1ε22. The frequency distribution
of E⊥ is illustrated in Figure 9, right.

Fiber orientation ϕ = 45◦. In order to determine the shear modulus G‖ in fiber
direction, tensile tests according to DIN EN ISO 527-5 are applied for samples il-
lustrated in Figure 6e. Results for 30 experimental maximal shear stress σ12= σ x/2
versus shear strain γ12 ≈ εx − εy , according to DIN EN ISO 14129, are illustrated
in Figure 10, left, where the slope of each regression line for each curve renders
the corresponding shear modulus G‖ = 1σ12/1γ12. The frequency distribution
of jG‖ is illustrated in Figure 10, right.
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Figure 9. Experimental results and identification for fiber orien-
tation 90◦: (left) curves for stress σ22 transversal to fiber versus
strain ε22 transversal to fiber and (right) frequency distribution of
Young’s modulus in transverse direction E⊥.
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Figure 10. Experimental results and identification for fiber orien-
tation 45◦: (left) maximal shear stress σ12 versus maximal shear
strain γ12 curves and (right) frequency distribution of shear mod-
ulus in fiber direction G‖.

5. Representative numerical examples

For the following strain controlled examples, fuzzy analysis, fuzzy-stochastic anal-
ysis, and hybrid fuzzy-stochastic analysis, the strain vector is given as

ε= [ε11, ε22, ε33, γ12, γ13, γ23]
T
= [0.05, 0.02, 0.03, 0.005, 0.004, 0.002]T . (42)

As mentioned in Section 4, we are currently not able to determine the shear modu-
lus in the isotropic plane. Therefore, G⊥ = 3.9286 GPa is taken from the literature
according to [Soden et al. 1998] and is regarded as deterministic.

5.1. Fuzzy analysis. In the first representative example, all material parameters
except G⊥ in (41) are assumed as purely epistemic uncertain. Since G⊥ is deter-
ministic it can be considered as a degenerated fuzzy variable in Figure 11e. The
(fuzzy) input according to (32) includes no (stochastic) random variables and is
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Figure 11. Fuzzy analysis: input membership functions for mate-
rial design variables (a) E‖, (b) E⊥, (c) G‖, (d) ν, and (e) G⊥.

defined as

κ(s)= [E‖(s), E⊥(s),G‖(s),G⊥, ν(s)]T = [s1, s2, s3,G⊥, s4]
T , (43)

such that the vector in (1) of ns = 4 design variables for nm = 5 material parameters
is given by

s = [s1, s2, s3, s4]
T
= [E‖, E⊥,G‖, ν]T . (44)

In the special case of fuzzy analysis according to (32), the matrix of PC coefficients
in (16) reduces with n P = 0 to a vector corresponding to the material parameter
vector in (43)

κ̂(s)= κ̂0(s)= κ(s). (45)

As discussed in [Möller and Beer 2004] several possible membership functions
can be laid over the frequency distributions. This may depend, e.g., on the avail-
able data. Since there are no experimental results available for validation in the
current work, we decided to use simple triangular shape functions by normalizing
the memberships. Based on the identified parameters represented as frequency
distributions in Figures 8; 9, right; and 10, right; membership functions µ(s) are
generated for the input quantities E‖, E⊥,G‖, and ν according to Figure 11a–d.
To this end, the empirical mean E[s∗i ] of the identified parameter samples s∗i are
chosen as mean values s M

i to obtain triangular fuzzy numbers according to (29) as

Ŝi = 〈sL
i , s M

i , s R
i 〉 = 〈E[s

∗

i ] − f ∗i , E[s∗i ], E[s∗i ] + f ∗i 〉, (46)



118 EDUARD PENNER, ISMAIL CAYLAK, ALEX DRIDGER AND ROLF MAHNKEN

where f ∗i =max{E[s∗i ]−min s∗i ,max s∗i −E[s∗i ]}, that is, for each material parameter
a maximum deviation of f ∗i for the epistemic uncertainty is assumed. Thus, the
triangular fuzzy numbers

1. Ŝ1 = 〈128.1, 149.15, 170.2〉GPa, f ∗1 = 21.05 GPa,

2. Ŝ2 = 〈2.2, 7.3, 12.4〉GPa, f ∗2 = 5.1 GPa,

3. Ŝ3 = 〈3.9, 4.52, 5.14〉GPa, f ∗3 = 0.62 GPa,

4. Ŝ4 = 〈0.215, 0.319, 0.423〉, f ∗4 = 0.104

(47)

are chosen for the four design variables in (44). The α-discretization is performed
with nα = 11 cuts. These discrete input parameters define the stresses in (38) and
the QoI in (40). Note that the QoI Q(s) in (40) in the purely (epistemic) fuzzy
analysis is independent on ω such that no surrogate QoIs are needed. The mini-
mization and maximization problems in (37)1 and (37)2 are solved for Q(s) in (40)
at each α-level using a standard optimization tool for constrained functions. In this
work the function fmincon with the sequential quadratic programming [Nocedal
and Wright 1999] algorithm of the Matlab Optimization Toolbox is applied.

In Figure 12, the resulting output membership function of the optimization prob-
lems in (37) for the QoI Q(s) presented in (40) is illustrated. The marks − and |
show that from each pair of interval bounds of the design variables sL

i,αk
and s R

i,αk

at each α-level αk , k = 1, . . . , 11, in Figure 11a,d, the interval bounds of the QoIs
QωL
αk

and QωR
αk

are obtained. Therefore, calculating the stresses σ(ω, s) in (38), the
left and right interval bounds sL

i,αk
and s R

i,αk
at each α-level αk , k = 1, . . . , 11, can

be used.
The uncertain stress coefficients σi j of the stress vector σ in (38) are illustrated

in Figure 13. Due to Hooke’s law described in (38) the normal stress coefficients
σi i (s) are effected by the design variables s = [E‖, E⊥,G‖, ν]T and the fixed ma-
terial parameter G⊥. Remarkably, the membership functions for the normal stress
coefficients σi i (s) in Figure 13a–c become nonlinear. This is due to the nonlinear
mathematical operations of fuzzy variables for the calculation of C11 and λ in (38).

40 60 80 100
0

0.5

1

Q/GPa2

µ
(Q

)

Figure 12. Fuzzy analysis: output membership function for quan-
tity of interest Q(ε(s)) in (40).
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Figure 13. Fuzzy analysis: output membership functions for
stresses (a) σ11, (b) σ22, (c) σ33, (d) σ12, (e) σ13, and (f) σ23.

The stress components σ12(s) and σ13(s) are only effected by the design variables
G‖(s). Therefore, the membership functions µ(σ12) and µ(σ13) in Figure 13d–e
have the same triangular shape as the membership function µ(G‖) of the design
variable G‖ in Figure 11c. The shear stress σ23 depends on the deterministic pa-
rameter G⊥. Therefore, The membership function µ(σ23) in Figure 13f becomes
deterministic and is represented by a straight vertical line.

5.2. Fuzzy-stochastic analysis. From an industrial point of view, the mechanical
properties in the fiber direction are of great interest. Therefore, in practice more ex-
perimental investigations are carried out in the fiber direction than in the transverse
direction. Consequently, in the second representative example, two material param-
eters E‖(ω) and ν(ω) of the input vector in (41) are assumed as purely aleatoric,
whereas E⊥(s), G‖(s), and G⊥ = 3.9286 GPa remain epistemic and deterministic
as in Section 5.1. For a fuzzy-stochastic analysis the input material parameter
vector (41) according to (33) is defined as

κ(ω, s)= [E‖(ω), E⊥(s),G‖(s),G⊥, ν(ω)]T , (48)

such that the design variable vector (1) of material parameters is given by

s = [s1, s2]
T
= [E⊥,G‖]T . (49)

The stochastic parameters E‖(ω) and ν(ω) are assumed to be normally distributed
random variables, which requires a truncation of n P = 2 in (12). The membership
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Figure 14. Fuzzy-stochastic analysis: input density functions for
the aleatory material parameters (a) PDF for E‖, (b) PDF for ν,
(c) CDF for E‖, and (d) CDF for ν.

functions µ(s) for the material parameters E⊥ and G‖ remain unchanged accord-
ing to Figure 11a,d and used as input quantities for the fuzzy analysis. Based
on the frequency distributions in Figure 8 normally distributed density functions
are generated from the expectation values E[E‖(ω)], E[ν(ω)] and standard devia-
tions std[E‖(ω)], std[ν(ω)] for material parameters E‖(ω), ν(ω), which are used
as input quantities for the stochastic sequence in the fuzzy-stochastic analysis. In
Figure 14 the corresponding probability density functions (PDFs) and cumulative
density functions (CDFs) are given. According to (13), the PCEs for the normally
distributed random variables E‖(ω) and ν(ω) for n P = 2 are

E‖(ω)= Ê‖0+ Ê‖1θ1(ω)+ Ê‖2θ2(ω),

ν(ω)= ν̂0 + ν̂1θ1(ω) + ν̂2θ2(ω).
(50)

We assume, further, that E‖(ω) and ν(ω) are independent random variables such
that (50) renders

E‖(ω)= Ê‖0+ Ê‖1θ1(ω),

ν(ω)= ν̂0 + ν̂2θ2(ω),
(51)

with PC coefficients

Ê‖0 = E[E‖] = 153.145, Ê‖1 = std[E‖] = 9.214,

ν̂0 = E[ν] = 0.306, ν̂2 = std[ν] = 0.0528.
(52)

Consequently, the corresponding input matrix in (16) of material parameter PC
coefficients becomes

κ̂(s)=


Ê‖0 Ê‖1 0

E⊥(s) 0 0
G‖(s) 0 0
G⊥ 0 0
ν̂0 0 ν̂2

=


153.145 9.214 0
s1 0 0
s2 0 0

3.9286 0 0
0.306 0 0.0528

 . (53)
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Figure 15. Fuzzy-stochastic analysis: membership function for
surrogate QoIs in (20)–(22) according to QoI in (40), (left) Qω

=

E[Q], (center) Qω
= var[Q], and (right) Qω

= E[Q2
].

As mentioned in Section 3.3, both analyses, the fuzzy and the stochastic ones, are
combined with the fuzzy dominated or stochastic dominated approach as illustrated
in the computational scheme in Figure 4. Here, the focus is on the PCE based fuzzy
dominated approach, in which the PC coefficients in (53), although only the 0-th,
are represented as fuzzy design variables. Since the QoI in (40) will be a fuzzy-
random variable, it is necessary to choose a surrogate QoI to perform the outer
fuzzy optimization introduced in Figure 4, left (sequence: fuzzy analysis).

In Figure 15, the resulting output membership functions of the optimization
problems in (37) for three possible realizations of surrogate QoIs presented in
(20)–(22) are illustrated. The marks − and | show that from each pair of interval
bounds of the design variables sL

i,αk
and s R

i,αk
at each α-level αk , k = 1, . . . , 11, in

Figure 11b–c, the interval bounds of the surrogate QoIs QωL
αk

and QωR
αk

are obtained.
Therefore, for postprocessing, e.g., calculating the stresses σ(ω, s) in (38), the left
and right interval bounds sL

i,αk
and s R

i,αk
at each α-level αk , k = 1, . . . , 11, can be

used.
In the fuzzy dominated approach as presented in Figure 4, left, for verification,

the MC method with nMC = 104 Monte Carlo samples renders similar values.
Results for surrogate QoIs using the PCE in (20)–(22) with n P = 2 and MC in
(7)–(9) with nMC = 103 and nMC = 104 are summarized in Table 5. In addition to
the quantitative values of the three surrogate QoIs E[Q], var[Q], and E[Q2

], the
computational times tC are presented. It can be seen that in the MC solution, even
with a small number of samples, the computational effort is considerably greater
than with the PCE solution, although the deviations are not negligible.

Due to the Hooke’s law (38) the stress components σ12(s) and σ13(s) are only
effected by the design variables G‖(s), where σ23 depends on the deterministic
parameter G⊥. Consequently, σ12, σ13, and σ23 remain unchanged compared to
the results in Figure 13d–f of the fuzzy analysis in Section 5.1. However, by
(38) the normal stresses σi i (ω, s), i = 1, 2, 3, are effected by design variables
E⊥(s),G‖(s) and stochastic variables E‖(ω), ν(ω). Therefore, σi i (ω, s) become
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MC (nMC = 103) MC (nMC = 104) PCE (n p = 2)
Qω αk QωL

αk
QωR
αk

tC/s QωL
αk

QωR
αk

tC/s QωL
αk

QωR
αk

tC/s

1 62.10 62.10 61.31 61.31 61.98 61.98
E[Q]

GPa2 0.5 60.57 65.36 192 60.17 64.97 1916 60.31 65.73 3.7
0 59.69 76.16 59.29 75.81 59.38 79.16

1 58.37 58.37 53.38 53.38 52.54 52.54var[Q]
GPa4 0.5 56.23 63.46 218 51.85 51.85 2011 51.02 56.47 3.8

0 55.07 86.95 51.03 76.71 50.22 78.87

1 3856 3856 3864 3864 3894 3894
E[Q2
]

GPa4 0.5 3667 4277 110 3675 4282 1071 3688 4377 3.5
0 3560 5833 3569 5826 3576 6343

Table 5. Surrogate QoIs and computational times tC using MC
with nMC = 103, MC with nMC = 104 and PCE with n P = 2.
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Figure 16. Fuzzy-stochastic analysis: P-boxes at α-levels α1 = 0,
α6 = 0.5 and α11 = 1 for normal stresses (left) σ11, (center) σ22,
and (right) σ33.

hybrid fuzzy-stochastic variables, which can be seen in Figure 16, i.e, the CDFs of
σi i (ω, s) are not anymore given by a unique CDF as for a stochastic variable, e.g., in
Figure 14c–d. Instead, they are given by left upper bounds Fαk (σi i ) and right lower
bounds Fαk (σi i ) at each α-level, where the intervals of CDFs [Fαk (σi i ), Fαk (σi i )]

are called probability boxes (P-boxes). For further explanation on P-boxes the
reader is referred to [Ferson et al. 2003]. The P-boxes of the normal stresses σi i at
three α-levels 0, 0.5, and 1 are shown in Figure 16.

In addition, different statistical moments of the fuzzy-stochastic variables σi i can
be calculated. The expectation values E[σi i ] and variances var[σi i ] are illustrated in
Figures 17 and 18. While, as shown in Figure 16, σi i are fuzzy-stochastic random
variables, their moments in Figures 17 and 18 are fuzzy variables. The red dots in
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Figure 17. Fuzzy-stochastic analysis: output membership func-
tions for expectation values of normal stresses (left) E[σ11], (cen-
ter) E[σ22], and (right) E[σ33].
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Figure 18. Fuzzy-stochastic analysis: output membership func-
tions for variances of normal stresses (left) var[σ11], (center)
var[σ22], and (right) var[σ33].

Figure 16 indicate the expectation values of the left upper bounds Fαk (σi i ) and right
lower bounds Fαk (σi i ) at three α-levels α1 = 0, α6 = 0.5, and α11 = 1. The same
values are also shown by red dots in Figure 17. Among others, these figures are
suitable for investigating the influence of design variables s on statistical moments
E[σi i ] and var[σi i ], respectively. Both in Figures 17 and 18 the sensitivity of the
design variables s can be clearly seen. Higher values of s result in a larger increase
in statistical moments than for smaller values of s. The study of such influences
are of great importance in industrial applications and can be used in the risk and
reliability analysis.

5.3. Hybrid fuzzy-stochastic analysis. In the third representative example, all ma-
terial parameters are the same as in the previous example in Section 5.2 except
E‖, which is assumed as a polymorphic uncertain material parameter E‖(ω, s) as
illustrated in Figure 19. For a hybrid fuzzy-stochastic analysis the input material
parameter vector equation (41) is given as

κ(ω, s)= [E‖(ω, s), E⊥(s),G‖(s),G⊥, ν(ω)]T , (54)

whereas the design variable vector equation (1) of material parameters is given by

s = [s1, s2, s3, s4]
T
= [Ê‖0, Ê‖1, E⊥,G‖]T . (55)
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Figure 19. Hybrid fuzzy-stochastic analysis: P-boxes at α-levels
α1 = 0, α6 = 0.5, and α11 = 1 for E‖.

The PCE in (12) for the polymorphic uncertain and stochastic parameters E‖(ω, s)
and ν(ω) is truncated by n P = 2. The membership functions µ(s) and the den-
sity distributions for the purely fuzzy parameters E⊥(s) and G‖(s) and the purely
stochastic parameter ν(ω), respectively, remain unchanged according to Figures
11a,d and 14.

According to (13), the PCEs for the (fuzzy-)random variables E‖(ω, s) and ν(ω)
for n P = 2 are

E‖(ω, s)= Ê‖0(s)+ Ê‖1(s)θ1(ω)+ Ê‖2(s)θ2(ω),

ν(ω)= ν̂0 + ν̂1θ1(ω) + ν̂2θ2(ω).
(56)

We assume, further, that E‖(ω, s) and ν(ω) are stochastically independent such
that (56) renders

E‖(ω, s)= Ê‖0(s)+ Ê‖1(s)θ1(ω),

ν(ω)= ν̂0 + ν̂2θ2(ω),
(57)

with PC coefficients

Ê‖0(s)= E[E‖(s)] = s1, Ê‖1(s)= std[E‖(s)] = s2,

ν̂0 = E[ν] = 0.306, ν̂2 = std[ν] = 0.0528.
(58)

Consequently, the corresponding input matrix in (16) of material parameter PC
coefficients becomes

κ̂(s)=


Ê‖0(s) Ê‖1(s) 0
E⊥(s) 0 0
G‖(s) 0 0
G⊥ 0 0
ν̂0 0 ν̂2

=


s1 s2 0
s3 0 0
s4 0 0

3.9286 0 0
0.306 0 0.0528

 . (59)
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Figure 20. Hybrid fuzzy-stochastic analysis: input membership
functions for (left) the zeros Ê‖0 and (right) first Ê‖1 PC coeffi-
cients of E‖.

In this example, the corresponding artificially chosen input membership func-
tions for s1 = E[E‖(ω, s)] = Ê‖0 and s2 = std[E‖(ω, s)] = Ê‖1 are shown in
Figure 20. Therefore, E‖(ω, s) becomes a hybrid fuzzy-stochastic variable, i.e,
the CDF of E‖(ω, s) is not anymore given by unique function as depicted in
Figure 14c. Instead, the CDF is given by left upper bounds Fαk (E‖) and right
lower bounds Fαk (E‖) at each α-level. Then, the P-boxes of Young’s modulus
[Fαk (E‖), Fαk (E‖)] at three α-levels α1 = 0, α6 = 0.5, and α11 = 1 are shown in
Figure 19. The red dots in Figure 19 indicate the expectation values of left upper
bounds Fαk (E‖) and right lower bounds Fαk (E‖) at the three α-levels. The same
values are also shown by red dots in Figure 20, left.

The fuzzy and the stochastic analysis are combined to a hybrid fuzzy-stochastic
approach. In Figure 21, the resulting output membership functions of the optimiza-
tion problems in (37) for the three possible realizations of surrogate QoIs presented
in (20)–(22) are illustrated. The − and | marks show that from each pair of interval
bounds of the design variables sL

i,αk
and s R

i,αk
at each α-level αk , k = 1, . . . , 11,

in (49), the interval bounds of the QoIs QωL
αk

and QωR
αk

are obtained. Therefore,
for postprocessing, e.g., calculating the stresses σ(ω, s) in (38), the left and right
interval bounds sL

i,αk
and s R

i,αk
at each α-level αk , k = 1, . . . , 11, can be used.
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Figure 22. Hybrid fuzzy-stochastic analysis: P-boxes at α-levels
α1 = 0, α6 = 0.5 and α11 = 1 for normal stresses σ11, σ22, σ33.

The purely fuzzy or deterministic shear stresses remain unchanged compared
to the first example in Section 5.1. The P-boxes of the normal stresses σi i (ω, s),
which depend on deterministic G⊥, fuzzy E⊥(s) and G‖(s), stochastic ν(ω), and
hybrid fuzzy-stochastic E‖(ω, s) parameters, are shown in Figure 22 for three α-
levels. In contrast to the previous example in Section 5.2, wider breadth is obtained
between the left upper bounds Fαk (σ11) and right lower bounds Fαk (σ11) for each
α-level, whereas the bound distributions for σ22 and σ33 are narrow, which was
to be expected because of the wider input of E‖. In addition, the membership
functions for the expectation values and the variances of σ11, σ22, and σ33 are
given in Figure 23. The sensitivity of the design variables s can be clearly seen in
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Figure 23. Hybrid fuzzy-stochastic analysis: output membership
functions for expectation values (top row) and variances (bottom
row) of normal stresses.
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both figures. Higher values of s result in a larger increase in statistical moments
than for smaller values of s.

6. Conclusion and outlook

The objective of this article is to consider polymorphic uncertain material param-
eters, for unidirectional FRP, in a hybrid fuzzy-stochastic transversely isotropic
elastic model. For this purpose, a state and a target problem is formulated as (fuzzy)
stochastic equations that take into account PC expanded (fuzzy) random variables,
where the PC coefficients are interpreted as fuzzy design variables. To this end, a
stochastic Galerkin projection is applied to reduce the (fuzzy) stochastic equation
into a system of (fuzzy) equations. Hence, the target problem or the QoI depends
only on (fuzzy) PC coefficients. The fuzzy analysis, including α-level optimization,
is used to get representative membership functions for QoIs. Since the QoIs may be
random variables, surrogate QoIs based on empirical moments are used to perform
the fuzzy optimization. The material parameters for the proposed model are deter-
mined based on homogeneous experiments of tensile specimens with different fiber
orientations. This is followed by statistic evaluations of material parameters. These
results are used for the generation of stochastic distributions or fuzzy membership
functions, respectively, and applied as input quantities for the numerical analysis.
Representative examples, for fuzzy analysis, fuzzy-stochastic analysis, and hybrid
fuzzy-stochastic analysis demonstrate the versatility of the proposed model.

In the future, inhomogeneous experiments will be carried out for validation and
compared with the proposed hybrid fuzzy-stochastic transversely isotropic elastic
model of unidirectional FRP. Furthermore, a multiscale model should be developed,
which takes into account a polymorphic uncertain homogenization method, where
the composite material may exhibit polymorphic uncertainties in the constituent
material properties.
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