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“I accept nothing on authority. A hypothesis must be backed by reason, or else it is worthless.”
— Isaac Asimov, “Reason”, I, Robot (1950)

In this paper, a discrete model is adopted, as proposed by Hencky for elastica
based on rigid bars and lumped rotational springs, to design the control of a
lightweight planar manipulator with multiple highly flexible links. This model is
particularly suited to deal with nonlinear equations of motion as those associated
with multilink robot arms, because it does not include any simplification due to
linearization, as in the assumed modes method. The aim of the control is to track
a trajectory of the end effector of the robot arm, without the onset of vibrations.
To this end, an energy-based method is proposed. Numerical simulations show
the effectiveness of the presented approach.

1. Introduction

Discrete formulations for continuous systems, usually, are required to avoid the
difficulty associated with solving partial differential equations and with satisfying
their boundary conditions. In order to eliminate the spatial dependence from the
problem and, thus, to deal with a set of ordinary differential equations which ap-
proximates the distributed-parameter system, a proper discretization can be made.
The adopted techniques for this purpose can be grouped into two main categories:
procedures based on the approximation of the solution by means of a finite se-
ries of given functions and approaches resulting in lumped parameter systems. In
particular, to model multilink flexible arms, many authors employed the assumed
modes method [Bellezza et al. 1990; Khorrami et al. 1991; De Luca and Siciliano
1991] and the finite element formulation [Ramachandran et al. 1992; Sharf 1996],
both of which belong to the first group; other authors prefer the lumped-parameter
approach [Rubinstein 1999; Dupac and Noroozi 2014; Giorgio and Del Vescovo
2018] for ease of use.
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In the assumed modes method, the solution representing the transverse deflec-
tion of the flexible beams is expanded into a finite summation of space-dependent
functions satisfying the geometric boundary conditions (i.e., admissible functions)
with time-dependent coefficients, i.e., the generalized coordinates. In this method,
the set of admissible functions is much larger than the set of eigenfunctions (i.e.,
normal modes); thus, the solution is affected by an error related to the choice of
the admissible functions. This error increases with the eigenfrequencies, and to
reduce it, a relatively large number of the terms of the truncated series is advisable
to be employed. Although this method has been widely used in the literature, it is
only applicable to discretize linear systems. Nevertheless, the equations related to
a multilink manipulator are strongly nonlinear. To overcome this issue, a simplified
assumption should be made considering that the motion could be characterized by
two distinct time scales: one “slower” for the overall motion and one “faster” for
the superimposed vibration. Therefore, the key idea is to linearize the nonlinear
equations around any configuration reached during the motion, or in other words
it is possible to assume that, in a reasonably small time interval, the overall motion
is sufficiently slow and the current configuration is almost time-constant when
compared to the vibration. In view of these considerations, the problem of the time
dependence of the frequency equation for planar multilink flexible arms [De Luca
and Siciliano 1991] could be solved by keeping constant the boundary conditions
due to mass terms for a fixed arm configuration. But in this way, many admis-
sible functions for the transverse displacement discretization are required, which
increases the number of discrete Lagrange equations obtained. An alternative way,
to keep the number of final ordinary equations lower, consists of updating the values
of the mass and inertia coefficients which appear in the boundary conditions at each
time step, thinking of them, in view of the two time scales, as constant parameters
and, hence, having a suitable approximation for the admissible functions (see, e.g.,
[Giorgio et al. 2019]).

The finite element formulation has the same basic idea as the assumed modes
method; the main difference between the two approaches lies in the nature of the
admissible functions. In the assumed modes method, the trial functions are defined
on the entire domain; in the finite element method, they are functions defined on
compact subdomains of the system, namely, the “finite elements”. This particular
subdivision of the entire domain allows one to use simpler admissible functions,
typically low-degree polynomials (i.e., interpolating functions). Unfortunately, the
greater flexibility of this method entails more degrees of freedom and, ultimately,
a greater number of discrete equations than those required by the assumed modes
method. Besides, analogously to the previous method, the natural frequencies
computed with the finite element analysis are overestimated. However, from a
computational point of view, this method requires fewer mathematical operations;
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therefore, it is particularly suited for dynamic model-based online controller im-
plementations [Theodore and Ghosal 1995]. Although the finite element method
can be identified as a different version of the assumed modes method, it can be
generalized to be used in a wider context, in particular, when nonlinear effects
arise as for a multilink manipulator [Sharf 1996; Eugster et al. 2014; Luongo and
D’Annibale 2013]. To address some issues related to failures in convergence that
are occasionally experienced, some authors have proposed a mixed formulation,
based on both stress and displacement degrees of freedom, which appears very
promising in this respect [Hodges 1990; Garcea et al. 1998]. However, this refor-
mulation of the problem involves a greater complexity of modeling. An alterna-
tive approach is based on the isogeometric formulation proposed by [Hughes et al.
2005] and further developed by many other research groups (see, e.g., [Greco and
Cuomo 2013; Balobanov et al. 2016; Cazzani et al. 2016; Weeger et al. 2013]
and more recently [Greco et al. 2017; Yildizdag et al. 2018]). The key concept of
the isogeometric analysis consists of using B-splines or NURBS curves both for
representing the geometry of the system and as interpolating functions in the finite
element method. Some examples in which such a method has been adopted within
the framework of nonlinear structural vibration analysis produced very promising
results. In addition, this formulation allows one to use fewer elements than the
classical polynomial-based finite element analysis without losing accuracy.

Lumped parameter models, applied to a beam-like structure, simplify the de-
scription of the behavior of one-dimensional continuum systems into an articulated
chain consisting of a discrete number of rigid bodies that approximate the behavior
of the distributed system under the assumption that all interactions between the
rigid segments take place via frictionless hinges with elastic rotational spring and
possibly dampers [Wang et al. 2015; Kocsis et al. 2017; Turco et al. 2016]. There-
fore, the lumped-parameter approach is the only method born naturally nonlinear.
The first author, to our knowledge, to propose the replacement of the continuum
structure with a discrete one was Hencky in 1920, who studied the buckling of a
beam. To solve dynamical problems, also the distributions of the mass should be
discretized, sometimes by taking into account the inertial properties of the rigid
segments [Rubinstein 1999] and other times by considering lumped masses in the
fictitious joints [Feliu et al. 1992]. In order to improve performances of trajectory
tracking for the end effector of a multilink manipulator, in this paper, for its simplic-
ity and nonlinear character, the latter method is adopted. Indeed, improving perfor-
mances means decreasing the overall time of the motion for the task; this makes
the hypothesis of linearization characterizing the assumed modes method no longer
satisfied in many applications. In any case, all the methods described have advan-
tages and disadvantages. Therefore, the wise judgment of the researcher should be
the guide in a case-by-case choice, depending on the particular application.
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The aim of the work concerns the modeling and control of flexible planar mul-
tilink arms. Many researchers have been recently paying attention to this kind of
system because of its increasing importance within the applications of so-called
soft robots. In addition, it is conceivable to use the present formulation to model
polymeric chains as well as some highly flexible structures in the space applications.
Thus, the considered model may find applications from nano- until macroscales.
The key point of the paper is using flexible hinges and their description using
finite rotations within the discrete modeling of the multilink arm. In particular,
an energy-based method is proposed to control the trajectory of the robot arm
end effector, without the onset of vibrations. The paper is organized as follows.
First, Section 2 gives the kinematic description for the introduced discrete method
applied to planar multilink flexible arms in a recursive form and, accordingly to a
Lagrangian approach, the equations of motion. Section 3 is devoted to describing
the proposed control strategy using a trajectory planning described in Section 3.1.
Section 4 reports simulation results for a two-link flexible arm. Conclusions are
presented in the final section.

2. Modeling

A planar articulated kinematic chain of n` flexible links of length `i — connected by
revolute joints — is considered. The i-th flexible link is studied as a lumped param-
eter system consisting of ne successive rigid rods of length η j (with j = 1, . . . , ne)
and connected by torsional springs. For the sake of simplicity, it is assumed that the
rods are arranged along a straight line in the undeformed configuration. Lumped
masses are placed at the boundaries of each rigid segment. As a result, each link is
a system of ne massless rigid rods and ne+ 1 point masses. The flexural stiffness
of links is given by torsional springs. Finally, actuators and payload are modeled
as rigid bodies. The center of mass of each actuator is located at the joint point of
the link, while the payload barycenter is located at the tip of the whole system.

In order to describe motions of the multilink arm, n` moving reference frames
are introduced, i.e., one for each flexible link in the spirit of the Denavit–Hartenberg
convention. The x-axis (abscissa) of the i-th link is oriented as its first rigid seg-
ment and its origin, whose position vector expressed in the global frame is denoted
by ri , coincides with the position of the actuated joint. Therefore, such moving
reference frames can be referred to as “pseudoclamped” frames (see Figure 1).

The following two Lagrangian coordinates are introduced for the multilink arm.
First is the joint angle, ϑi (t), i.e., the relative rotation between the first segment of
the i-th link and the last segment of the preceding link, which meet in the i-th joint.
The angle ϑ1(t) is evaluated with respect to the X0-axis of the global reference
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Figure 1. Discrete system corresponding to a planar two-link flex-
ible arm.

frame. Second is 8i j (t), with i = 1, . . . , n` and j = 1, . . . , ne, the relative angle
of the j-th segment with respect to the x-axis of i-th reference frame.

The relative angles between adjacent segments are defined as ϕi j (t)=8i j (t)−
8i j−1(t), with ϕi1(t)=8i1(t). Within the local reference frame related to link i ,
the position vector of any end point of rigid segments is denoted as i pi j (t). There-
fore, within the same i-th frame, the relation iri+1(t)= i pi ne(t) is valid owing to
the hinge constraint requiring the origin of the (i + 1)-th frame and the end point
of the i-th link to have the same position in space. By introducing the rotation
matrices

Ri =

[
cosϑi − sinϑi

sinϑi cosϑi

]
, R̂i j =

[
cos8i j − sin8i j

sin8i j cos8i j

]
(1)

the position of the generic point of the kinematic chain can be written in the local
reference frame using the recursive formula

i pi j =
i pi j−1+ R̂i j−1(8i j−1)

i pi1,
i pi1 ≡ [ηi , 0]T , (2)

and in the global reference frame as

pi j = ri + Qi
i pi j (3)
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where the global transformation operator Qi (with i = {1, . . . , n`}) is obtained by
the recursive equation

Qi = Q̂i−1 Ri (ϑi ),

{
Q̂0 = I,

Q̂i = Qi R̂i ne(8i ne),
(4)

I being the identity operator. Similarly, the following expression is fulfilled by the
origins of the local reference frames:

ri+1 = ri + Qi
iri+1. (5)

The angular velocity of the i-th reference frame reads as

α̇i (t)=
i∑

j=1

ϑ̇ j (t)+
i−1∑
k=1

8̇k ne(t) (6)

while the angular velocity of the payload can be evaluated as α̇p(t)= α̇n`(t)+8̇n` ne

and, finally, the velocity vector of any point of the kinematic chain is easy to
compute as

ṗi = ṙi + Q̇i
i pi + Qi

i ṗi . (7)

The total kinetic energy of the mechanical system stemming from the above
assumptions is

K=

n∑̀
i=1

(Khi +K`i )+Kp (8)

where the following terms can be recognized:

(1) the kinetic energy of the actuator located at the i-th joint and characterized by
mass mhi and moment of inertia Jhi ,

Khi =
1
2 mhi ṙT

i ṙi +
1
2 Jhi α̇

2
i ,

(2) the kinetic energy of each link with lumped mass mi j ,

K`i =
1
2

ne∑
j=1

mi j ṗT
i j ṗi j ,

(3) and the kinetic energy of the payload with mass m p and moment of inertia Jp,

Kp =
1
2 m p ṗT

n` ne
ṗn` ne +

1
2 Jpα̇

2
p.

The elastic potential energy is assumed to be

U=

n∑̀
i=1

ne∑
j=1

bi [1− cosϕi j ] (9)
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where bi = Yi ji/ηi is the lumped bending stiffness of the introduced torsional
springs, Yi is the Young modulus of constituting material, and ji is the second
moment of area of the link’s cross-section. We remark that this model is able
to take into account also nonlinear elastic behaviors of the system; indeed, it has
been shown [dell’Isola et al. 2016] that such a model, in the homogenized limit,
converges to that of a nonlinear beam [Turco 2018; Pietraszkiewicz and Eremeyev
2009; Spagnuolo and Andreaus 2019] being shear undeformable, suitable for the
description of problems involving large displacements and large deformations (see
[Rosi et al. 2018; Placidi et al. 2017; Baroudi et al. 2019] for more details on
methods for obtaining material parameters), and whose deformation energy density
depends only upon the exact curvature. Note that the linearized form of (9) is
simply a quadratic form in the relative angle ϕi j . Here, the general expression (9) of
the strain energy is considered, because we are dealing with situations in which the
kinetic energy contains nonnegligible nonquadratic terms. It would not be coherent
to consider a quadratic approximation only for the elastic energy (while not for the
kinetic energy) and, in any case, it would not lead to any significant simplification.
Besides, the linearization of corresponding equation is a mathematical trick which
aims to obtain solutions more easily, but it is not always possible.

It is worth noting that the choice of8i j variables implies a simpler expression for
the kinetic energy, while the choice of ϕi j variables implies a simpler expression for
the elastic energy; therefore, since the kinetic energy represents the more complex
term in the Lagrangian, the first set of variables is used.

The equations of motion obeyed by the considered planar n`-link flexible arm
can be derived by introducing the Lagrangian:

L= K−U. (10)

Possibly, some viscous dissipation can also be introduced by means of a Rayleigh
potential as

D=

n∑̀
i=1

ne∑
j=1

1
2 ci ϕ̇

2
i j . (11)

By differentiating D with respect to the velocities ϕ̇i j and multiplying the result
by the virtual angular displacements δϕi j , the work done by dissipative moments∑n`

i=1
∑ne

j=1 ci ϕ̇i jδϕi j can be evaluated. This work becomes

n∑̀
i=1

ne∑
j=1

ci (8̇i j − 8̇i j−1)δ(8i j −8i j−1)

when it is expressed in terms of the chosen Lagrangian coordinates and, hence, the
dissipative terms to be added to the equations of motion are easily obtained.
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In order to model friction which may occur within the joints, a Lund–Grenoble
model is employed. The reason for such a choice lies in the fact that it is able to
take into account the predominant nonlinear effects involved in such phenomena
like presliding displacement, stick-slip motion, the Stribeck effect, and so forth
[Canudas de Wit et al. 1995]. Since this formulation is based on a dynamic model,
the friction torque evolves according to a differential equation conceived to match
experimental measures. A simple evolution rule for the friction torques τfi can be
assumed as

dτfi
dt
= ki ϑ̇i

(
1−

τfi

τL(ϑ̇i )
sign ϑ̇i

)
(12)

where τL(ϑ̇i ) = τC + (τS − τC) exp[−(ϑ̇i/νs)
2
] is the limit torque related to the

Stribeck effect. The quantity τS is the static friction torque, τC is the Coulomb
friction torque, and νs represents the Stribeck velocity.

3. Control strategy

In this section, an energy-based control approach is proposed to solve a trajectory-
tracking and vibration control problem. In particular, given a family of desired
trajectories for the tip of each link, xdes i (t), we propose to implement a strategy of
control based on the potential energy

U (ϑi , ϕi j )=

n∑̀
i=1

1
2 Kc i‖ pi ne(ϑi , ϕi j )− xdes i (t)‖2 (13)

where Kc i are positive constant control parameters. The virtual work related to
that “control action” can be easily expressed as

δU =
n∑̀

i=1

∂U
∂ϑi

δϑi +

n∑̀
i=1

ne∑
j=1

∂U
∂ϕi j

δϕi j (14)

where the negative gradient of the potential U , whose components are −∂U/∂ϑi

and −∂U/∂ϕi j , is the generalized conservative action which does work on the
Lagrangian coordinates ϑi and ϕi j . Indeed, these actions can be interpreted as
joint torques and lumped moments which bend the link in correspondence of the
connections between adjacent rigid segments. Therefore, measuring the variables
ϑi and ϕi j , it is possible to compute these generalized actions and to feed them
back to the multilink in order to mimic the above mentioned potential U . Re-
garding the design phase of the control, both the measurements of variables ϕi j

and the feeding of applied moments ∂U/∂ϕi j can be implemented by means of
piezoelectric patches located on the ends of the segments in which the system has
been discretized. We briefly recall, indeed, that piezoelectric transducers are simul-
taneously able to be employed as both sensors and actuators [Alessandroni et al.
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2005; Lumentut and Howard 2015; Chróścielewski et al. 2019; Lossouarn et al.
2015] and they can nowadays exert forces up to 70 kN [Aminzahed et al. 2017].
Thus, they are particularly suited for this kind of control, which results in being
colocated in the sense of [Cannon 1984]. In addition, the present technique can be
classified in the framework of a virtual passive approach. As it is characterized by
a passive constitutive law, it exhibits with respect to a purely active approach the
main advantage of being unconditionally stable [Juang and Phan 1992].

To improve the performance of the control, we can also introduce a dissipative
control action by means of the Rayleigh function

D(ϑi , ϕi j , ϑ̇i , ϕ̇i j )=

n∑̀
i=1

1
2Cc i‖ ṗi ne − ẋdes i (t)‖2 (15)

expressed in terms of the relative velocities between the moving ends of each link
and the desired points of the trajectory. The quantities Cc i are positive constant
control parameters related to the introduced damping. Analogously to what has
been done above, the virtual work done by the dissipative control action is

δD =
n∑̀

i=1

∂D
∂ϑ̇i

δϑi +

n∑̀
i=1

ne∑
j=1

∂D
∂ϕ̇i j

δϕi j , (16)

the quantities −∂D/∂ϑ̇i and −∂D/∂ϕ̇i j being the new generalized actions to be
added to the previous ones. In order to implement this additional contribution,
however, it is necessary to employ further velocity sensors for ϑ̇i and ϕ̇i j .

3.1. Trajectory planning. In this section, in order to analyze the capabilities of
the proposed control law, a two-link arm is considered and two geometric paths to
be followed by the end effector xdes n` = xdes n`(u) are introduced, defined by means
of a parametrization in terms of the scalar u: a rectilinear and a closed loop path.
Each geometric path is tracked according to the motion law u = u(t). In particular,
a polynomial function, whose coefficients have been determined in order to satisfy
proper boundary conditions, i.e., null values up to the time derivative of the jerk,
is employed as

udes(t)=u0+Ades[126(t/Ts)
5
−420(t/Ts)

6
+540(t/Ts)

7
−315(t/Ts)

8
+70(t/Ts)

9
]

(17)
where u0 is the value at the initial instant, Ades is the amplitude, and Ts is the time
of the task.

Once the trajectory is assigned to the end effector, the trajectories for the inter-
mediate joint points are obtained by assuming a rigid motion for the corresponding
links.



168 IVAN GIORGIO AND DIONISIO DEL VESCOVO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X
0
��P

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Y
0
��
P

Figure 2. Straight trajectory.

Rectilinear trajectory. The considered rectilinear trajectory is defined as{
xdes 2 = `1+ `2− udes cosα,
ydes 2 = udes sinα

(18)

where u0 = 0 and Ades =

√
`2

1+ (`1+ `2)2. The parameter udes ranges from 0
to Ades (achieved at time Ts); this means that initially the manipulator is arranged
along the axis X0, and finally the end effector reaches the Y0 axis at the point (0, `1).
Hence, α = atan[`1/(`1+ `2)].

Closed loop trajectory. The closed loop trajectory is defined as{
xdes 2 =

1
8

[
cos udes+

√
3+ 2 sin udes− sin(udes)2

]
,

ydes 2 =
1
4(1+ sin udes)+ `1/5

(19)

where u0 = 3/2π and Ades = 2π . The parameter udes ranges from u0 to u0+ Ades.
These values are chosen so as to have the end effector initially on the Y0 axis — at
the point (0, `1/5)— and returning to the same position at the end of the motion.

4. Numerical simulations

In performing numerical simulations we have considered the links in the two-link
planar manipulator having length `1 = `2 = 0.5 m and having a rectangular cross-
section of size 2 × 50 mm; the discretization of each link is made by dividing
it into four segments. The Young modulus of the material constituting the link is
Yb = 200 GPa, and thus, the bending stiffnesses are b1= b2= 53.3 N m; the lumped
masses are assumed to be mi j = 0.0981 kg for the inner points and half of this value
for the outermost points; the payload mass and moment of inertia are m p = 0.1 kg
and Jp = 0.005 kg m2, respectively; the hub mass and moment of inertia are mh1 =

mh2 = 1 kg and Jh1 = Jh2 = 0.1 kg m2, respectively. The considered dissipation
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Figure 3. Straight trajectory: angular joint positions (left), and
angular link deformations (right).
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Figure 4. Straight trajectory: joint torques (left), and lumped mo-
ments applied to ϕi j (right).

coefficients are c1 = c2 = 0.15 N m s. The parameters related to friction actions
are assumed to be the same for the two joints, and specifically they are: the static
friction torque τS = 0.2 N m, the Coulomb friction torque τC = 0.1 N m, the Stribeck
velocity νs = 0.1 rad/s, and the friction coefficients k1 = k2 = 103 N m.

As a first example, we consider the case in which the trajectory of the end
effector is rectilinear, as shown by stroboscopic moving pictures in Figure 2, and
lasts for 2 s. The control action consists only of torques and moments deriving
from (14). The control parameters should be positive for stability reasons, and are
set to be Kc1 = Kc2 = 4× 105 N/m. In Figure 2 the trajectories of the link tips
are highlighted in dark red for the actual motion. In particular, in Figure 3, the
trajectories of the joint angles ϑi and the angular deformations ϕi j are reported.
We note that the angular deformations are very small for the considered trajectory
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Figure 6. Closed loop trajectory.

planning; indeed, the maximum angular deformation associated to the variable ϕ11

is at most 1.2 degrees. The positioning error is not shown since it is negligible.
Figure 4 shows the plots of applied joint torques and the lumped moments on ϕi j ,

respectively. The nominal trajectory has a settling time of 2 s in order that from a
technological point of view it is possible to consider motors and actuators which are
reasonably powerful but not too big. Indeed, the moments required by piezoelectric
actuators are easily obtained by exploiting the potentiality provided by the latest
technologies.

Figure 5 shows, for the first and second joints, respectively, a comparison be-
tween the friction torques and the joint speeds. From this figure it is easy to
recognize nonlinear effects such as stick-slip motion and Stribeck effect.

Finally, the case of the closed loop trajectory is considered, as shown in Figure 6.
Here, the task time is set to 4 s. Regarding the control action, the control law of the
previous case is improved by adding a further damping action; see (16). With this
term, possible oscillations of the control actions which can cause some troubles in
the real implementation, especially at the beginning, can be avoided. The damping
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Figure 7. Closed loop trajectory: angular joint positions (left),
and angular link deformations (right).
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Figure 8. Closed loop trajectory: joint torques (left), and lumped
moments (right).

control parameters are set to be Cc1 = Cc2 = 1× 103 N s/m.
Figure 7 shows the joint angles ϑi and the angular deformations ϕi j for the new

case. Again, the angular deformations are very small and the maximum angular
deformation associated to the variable ϕ11 is at most 0.8 degrees. In Figure 8, the
applied joint torques and the lumped moments on ϕi j are plotted.

5. Conclusions

In this paper, a planar multilink robot manipulator made up of flexible beams has
been modeled by means of a discrete Hencky bar-chain model. An energy-based
control has been proposed and validated by numerical simulations.

The use of a Hencky bar-chain approach for space discretization has been mo-
tivated in order to consider cases in which the linearization at the basis of the
assumed modes method is not feasible. Indeed, the linearization underlying the
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assumed modes method would entail that the motion would be characterized by two
distinct time scales: one “slower” for the overall motion and one “faster” for the
superimposed vibration. Clearly, this is not possible when dealing with nonlinear
systems, as the two time scales are very close and, thus, not neatly distinct.

The finite element method could potentially be suitable for solving such non-
linear problems. Nevertheless, commercial codes which are currently available
are still lacking in this respect. Therefore, a homemade code would be needed.
The Hencky bar-chain model, for its simplicity and accuracy, has been preferred.
Indeed, increasing the number of rigid bars in the discretization results in the
Hencky model converging to the nonlinear “elastica” theory. Remarkably, in the
case of the proposed control, using a nonlinear model does not entail an excessive
computational burden as when employing the computed torque approach which,
differently from the energy-based control applied herein to the Hencky bar-chain
model, requires the online solution of the whole model.
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[Chróścielewski et al. 2019] J. Chróścielewski, R. Schmidt, and V. A. Eremeyev, “Nonlinear finite
element modeling of vibration control of plane rod-type structural members with integrated piezo-
electric patches”, Contin. Mech. Thermodyn. 31:1 (2019), 147–188.

[De Luca and Siciliano 1991] A. De Luca and B. Siciliano, “Closed-form dynamic model of planar
multilink lightweight robots”, IEEE Trans. Systems Man Cybernet. 21:4 (1991), 826–839.

[dell’Isola et al. 2016] F. dell’Isola, I. Giorgio, M. Pawlikowski, and N. L. Rizzi, “Large deforma-
tions of planar extensible beams and pantographic lattices: heuristic homogenization, experimental
and numerical examples of equilibrium”, P. Roy. Soc. London A 472:2185 (2016), 20150790.

http://dx.doi.org/10.1016/j.compstruc.2004.08.028
http://dx.doi.org/10.1016/j.compstruc.2004.08.028
http://dx.doi.org/10.1007/s12008-015-0283-2
http://dx.doi.org/10.1007/s12008-015-0283-2
http://dx.doi.org/10.1007/s12008-015-0283-2
http://dx.doi.org/10.1007/978-3-319-31721-2_3
http://dx.doi.org/10.1007/978-3-319-31721-2_3
http://dx.doi.org/10.1002/zamm.201800121
http://dx.doi.org/10.1002/zamm.201800121
http://dx.doi.org/10.1002/zamm.201800121
http://dx.doi.org/10.1109/ROBOT.1990.126073
http://dx.doi.org/10.1109/ROBOT.1990.126073
http://dx.doi.org/10.1177/027836498400300303
http://dx.doi.org/10.1177/027836498400300303
http://dx.doi.org/10.1177/1081286514531265
http://dx.doi.org/10.1177/1081286514531265
http://dx.doi.org/10.1007/s00161-018-0672-4
http://dx.doi.org/10.1007/s00161-018-0672-4
http://dx.doi.org/10.1007/s00161-018-0672-4
http://dx.doi.org/10.1109/21.108300
http://dx.doi.org/10.1109/21.108300
http://dx.doi.org/10.1098/rspa.2015.0790
http://dx.doi.org/10.1098/rspa.2015.0790
http://dx.doi.org/10.1098/rspa.2015.0790


ENERGY-BASED TRAJECTORY TRACKING AND VIBRATION CONTROL 173

[Dupac and Noroozi 2014] M. Dupac and S. Noroozi, “Dynamic modeling and simulation of a
rotating single link flexible robotic manipulator subject to quick stops”, Stroj. vestn. J. Mech. Eng.
60:7–8 (2014), 475–482.

[Eugster et al. 2014] S. R. Eugster, C. Hesch, P. Betsch, and C. Glocker, “Director-based beam finite
elements relying on the geometrically exact beam theory formulated in skew coordinates”, Int. J.
Numer. Methods Eng. 97:2 (2014), 111–129.

[Feliu et al. 1992] V. Feliu, K. S. Rattan, and H. B. Brown, “Modeling and control of single-link
flexible arms with lumped masses”, ASME J. Dyn. Sys. Measure. Cont. 114:1 (1992), 59–69.

[Garcea et al. 1998] G. Garcea, G. A. Trunfio, and R. Casciaro, “Mixed formulation and locking in
path-following nonlinear analysis”, Comput. Methods Appl. Mech. Eng. 165:1–4 (1998), 247–272.

[Giorgio and Del Vescovo 2018] I. Giorgio and D. Del Vescovo, “Non-linear lumped-parameter
modeling of planar multi-link manipulators with highly flexible arms”, Robotics 7:4 (2018), 60.

[Giorgio et al. 2019] I. Giorgio, A. Della Corte, and D. Del Vescovo, “Modelling flexible multi-link
robots for vibration control: numerical simulations and real-time experiments”, Math. Mech. Solids
24:1 (2019), 52–71.

[Greco and Cuomo 2013] L. Greco and M. Cuomo, “B-spline interpolation of Kirchhoff–Love space
rods”, Comput. Methods Appl. Mech. Eng. 256 (2013), 251–269.

[Greco et al. 2017] L. Greco, M. Cuomo, L. Contrafatto, and S. Gazzo, “An efficient blended mixed
B-spline formulation for removing membrane locking in plane curved Kirchhoff rods”, Comput.
Methods Appl. Mech. Eng. 324 (2017), 476–511.

[Hodges 1990] D. H. Hodges, “A mixed variational formulation based on exact intrinsic equations
for dynamics of moving beams”, Int. J. Solids Struct. 26:11 (1990), 1253–1273.

[Hughes et al. 2005] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry and mesh refinement”, Comput. Methods Appl. Mech. Eng.
194:39–41 (2005), 4135–4195.

[Juang and Phan 1992] J.-N. Juang and M. Phan, “Robust controller designs for second-order dy-
namic systems: a virtual passive approach”, J. Guid. Control Dynam. 15:5 (1992), 1192–1198.

[Khorrami et al. 1991] F. Khorrami, S. Jain, W. Grossman, A. Tzes, and W. Blesser, “Nonlinear
control with input preshaping for flexible-link manipulators”, pp. 96–101 in Fifth International
Conference on Advanced Robotics: Robots in unstructured environments (Pisa, Italy, 1991), vol. 1,
IEEE, Piscataway, NJ, 1991.

[Kocsis et al. 2017] A. Kocsis, N. Challamel, and G. Károlyi, “Discrete and nonlocal models of
Engesser and Haringx elastica”, Int. J. Mech. Sci. 130 (2017), 571–585.

[Lossouarn et al. 2015] B. Lossouarn, J. F. Deü, and M. Aucejo, “Multimodal vibration damping
of a beam with a periodic array of piezoelectric patches connected to a passive electrical network”,
Smart. Mater. Struct. 24:11 (2015), 115037.

[Lumentut and Howard 2015] M. F. Lumentut and I. M. Howard, “Effect of shunted piezoelectric
control for tuning piezoelectric power harvesting system responses–analytical techniques”, Smart.
Mater. Struct. 24:10 (2015), 105029.

[Luongo and D’Annibale 2013] A. Luongo and F. D’Annibale, “Double zero bifurcation of non-
linear viscoelastic beams under conservative and non-conservative loads”, Int. J. Non-Linear Mech.
55 (2013), 128–139.

[Pietraszkiewicz and Eremeyev 2009] W. Pietraszkiewicz and V. A. Eremeyev, “On vectorially pa-
rameterized natural strain measures of the non-linear Cosserat continuum”, Int. J. Solids Struct.
46:11–12 (2009), 2477–2480.

http://dx.doi.org/10.5545/sv-jme.2013.1544
http://dx.doi.org/10.5545/sv-jme.2013.1544
http://dx.doi.org/10.1002/nme.4586
http://dx.doi.org/10.1002/nme.4586
http://dx.doi.org/10.1115/1.2896508
http://dx.doi.org/10.1115/1.2896508
http://dx.doi.org/10.1016/S0045-7825(98)00068-1
http://dx.doi.org/10.1016/S0045-7825(98)00068-1
http://dx.doi.org/10.3390/robotics7040060
http://dx.doi.org/10.3390/robotics7040060
http://dx.doi.org/10.1177/1081286517729868
http://dx.doi.org/10.1177/1081286517729868
http://dx.doi.org/10.1016/j.cma.2012.11.017
http://dx.doi.org/10.1016/j.cma.2012.11.017
http://dx.doi.org/10.1016/j.cma.2017.06.032
http://dx.doi.org/10.1016/j.cma.2017.06.032
http://dx.doi.org/10.1016/0020-7683(90)90060-9
http://dx.doi.org/10.1016/0020-7683(90)90060-9
http://dx.doi.org/10.1016/j.cma.2004.10.008
http://dx.doi.org/10.1016/j.cma.2004.10.008
http://dx.doi.org/10.2514/3.20968
http://dx.doi.org/10.2514/3.20968
http://dx.doi.org/10.1109/ICAR.1991.240469
http://dx.doi.org/10.1109/ICAR.1991.240469
http://dx.doi.org/10.1016/j.ijmecsci.2017.05.037
http://dx.doi.org/10.1016/j.ijmecsci.2017.05.037
http://dx.doi.org/10.1088/0964-1726/24/11/115037
http://dx.doi.org/10.1088/0964-1726/24/11/115037
http://dx.doi.org/10.1088/0964-1726/24/10/105029
http://dx.doi.org/10.1088/0964-1726/24/10/105029
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.05.007
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.05.007
http://dx.doi.org/10.1016/j.ijsolstr.2009.01.030
http://dx.doi.org/10.1016/j.ijsolstr.2009.01.030


174 IVAN GIORGIO AND DIONISIO DEL VESCOVO

[Placidi et al. 2017] L. Placidi, E. Barchiesi, and A. Battista, “An inverse method to get further
analytical solutions for a class of metamaterials aimed to validate numerical integrations”, pp. 193–
210 in Mathematical modelling in solid mechanics, edited by F. dell’Isola et al., Adv. Struct. Mater.
69, Springer, 2017.

[Ramachandran et al. 1992] S. Ramachandran, T. Nagarajan, and N. Siva Prasad, “A finite element
approach to the design and dynamic analysis of platform type robot manipulators”, Finite Elem.
Anal. Des. 10:4 (1992), 335–350.

[Rosi et al. 2018] G. Rosi, L. Placidi, and N. Auffray, “On the validity range of strain-gradient elas-
ticity: a mixed static-dynamic identification procedure”, Eur. J. Mech. A Solids 69 (2018), 179–191.

[Rubinstein 1999] D. Rubinstein, “Dynamics of a flexible beam and a system of rigid rods, with
fully inverse (one-sided) boundary conditions”, Comput. Methods Appl. Mech. Eng. 175:1–2 (1999),
87–97.

[Sharf 1996] I. Sharf, “Geometrically non-linear beam element for dynamics simulation of multi-
body systems”, Int. J. Numer. Methods Eng.. 39:5 (1996), 763–786.

[Spagnuolo and Andreaus 2019] M. Spagnuolo and U. Andreaus, “A targeted review on large defor-
mations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling”, Math.
Mech. Solids 24:1 (2019), 258–280.

[Theodore and Ghosal 1995] R. J. Theodore and A. Ghosal, “Comparison of the assumed modes and
finite element models for flexible multilink manipulators”, Int. J. Rob. Res. 14:2 (1995), 91–111.

[Turco 2018] E. Turco, “Discrete is it enough? The revival of Piola–Hencky keynotes to analyze
three-dimensional elastica”, Contin. Mech. Thermodyn. 30:5 (2018), 1039–1057.

[Turco et al. 2016] E. Turco, F. dell’Isola, A. Cazzani, and N. L. Rizzi, “Hencky-type discrete model
for pantographic structures: numerical comparison with second gradient continuum models”, Z.
Angew. Math. Phys. 67:4 (2016), 85.

[Wang et al. 2015] C. M. Wang, H. Zhang, R. P. Gao, W. H. Duan, and N. Challamel, “Hencky
bar-chain model for buckling and vibration of beams with elastic end restraints”, Int. J. Struct. Stab.
Dyn. 15:7 (2015), 1540007.

[Weeger et al. 2013] O. Weeger, U. Wever, and B. Simeon, “Isogeometric analysis of nonlinear
Euler–Bernoulli beam vibrations”, Nonlinear Dynam. 72:4 (2013), 813–835.

[Canudas de Wit et al. 1995] C. Canudas de Wit, H. Olsson, K. J. Åström, and P. Lischinsky, “A new
model for control of systems with friction”, IEEE Trans. Automat. Control 40:3 (1995), 419–425.

[Yildizdag et al. 2018] M. E. Yildizdag, M. Demirtas, and A. Ergin, “Multipatch discontinuous
Galerkin isogeometric analysis of composite laminates”, Contin. Mech. Thermodyn. (online publi-
cation July 2018).

Received 27 Dec 2018. Revised 17 Feb 2019. Accepted 20 Mar 2019.

IVAN GIORGIO: ivan.giorgio@uniroma1.it
Department of Mechanical and Aerospace Engineering, Università di Roma “La Sapienza”, Italy

and

International Research Center on Mathematics and Mechanics of Complex Systems,
Università degli studi dell’Aquila, Italy

DIONISIO DEL VESCOVO: dionisio.delvescovo@uniroma1.it
Department of Mechanical and Aerospace Engineering, Università di Roma “La Sapienza”, Italy

and

International Research Center on Mathematics and Mechanics of Complex Systems,
Università degli studi dell’Aquila, Italy

MM ∩
msp

http://dx.doi.org/10.1007/978-981-10-3764-1_13
http://dx.doi.org/10.1007/978-981-10-3764-1_13
http://dx.doi.org/10.1016/0168-874X(92)90020-D
http://dx.doi.org/10.1016/0168-874X(92)90020-D
http://dx.doi.org/10.1016/j.euromechsol.2017.12.005
http://dx.doi.org/10.1016/j.euromechsol.2017.12.005
http://dx.doi.org/10.1016/S0045-7825(98)00321-1
http://dx.doi.org/10.1016/S0045-7825(98)00321-1
http://dx.doi.org/10.1002/(SICI)1097-0207(19960315)39:5<763::AID-NME879>3.0.CO;2-X
http://dx.doi.org/10.1002/(SICI)1097-0207(19960315)39:5<763::AID-NME879>3.0.CO;2-X
http://dx.doi.org/10.1177/1081286517737000
http://dx.doi.org/10.1177/1081286517737000
http://dx.doi.org/10.1177/027836499501400201
http://dx.doi.org/10.1177/027836499501400201
http://dx.doi.org/10.1007/s00161-018-0656-4
http://dx.doi.org/10.1007/s00161-018-0656-4
http://dx.doi.org/10.1007/s00033-016-0681-8
http://dx.doi.org/10.1007/s00033-016-0681-8
http://dx.doi.org/10.1142/S0219455415400076
http://dx.doi.org/10.1142/S0219455415400076
http://dx.doi.org/10.1007/s11071-013-0755-5
http://dx.doi.org/10.1007/s11071-013-0755-5
http://dx.doi.org/10.1109/9.376053
http://dx.doi.org/10.1109/9.376053
http://dx.doi.org/10.1007/s00161-018-0696-9
http://dx.doi.org/10.1007/s00161-018-0696-9
mailto:ivan.giorgio@uniroma1.it
mailto:dionisio.delvescovo@uniroma1.it
http://www.univaq.it
http://memocs.univaq.it/
http://msp.org


MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS
msp.org/memocs

EDITORIAL BOARD
ANTONIO CARCATERRA Università di Roma “La Sapienza”, Italia

ERIC A. CARLEN Rutgers University, USA
FRANCESCO DELL’ISOLA (CO-CHAIR) Università di Roma “La Sapienza”, Italia

RAFFAELE ESPOSITO (TREASURER) Università dell’Aquila, Italia
ALBERT FANNJIANG University of California at Davis, USA

GILLES A. FRANCFORT (CO-CHAIR) Université Paris-Nord, France
PIERANGELO MARCATI Università dell’Aquila, Italy

JEAN-JACQUES MARIGO École Polytechnique, France
PETER A. MARKOWICH DAMTP Cambridge, UK, and University of Vienna, Austria

MARTIN OSTOJA-STARZEWSKI (CHAIR MANAGING EDITOR) Univ. of Illinois at Urbana-Champaign, USA
PIERRE SEPPECHER Université du Sud Toulon-Var, France

DAVID J. STEIGMANN University of California at Berkeley, USA
PAUL STEINMANN Universität Erlangen-Nürnberg, Germany

PIERRE M. SUQUET LMA CNRS Marseille, France

MANAGING EDITORS
MICOL AMAR Università di Roma “La Sapienza”, Italia

ANGELA MADEO Université de Lyon–INSA (Institut National des Sciences Appliquées), France
MARTIN OSTOJA-STARZEWSKI (CHAIR MANAGING EDITOR) Univ. of Illinois at Urbana-Champaign, USA

ADVISORY BOARD
ADNAN AKAY Carnegie Mellon University, USA, and Bilkent University, Turkey

HOLM ALTENBACH Otto-von-Guericke-Universität Magdeburg, Germany
MICOL AMAR Università di Roma “La Sapienza”, Italia
HARM ASKES University of Sheffield, UK
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