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THE OBJECT DETECTION BY AUTONOMOUS APPARATUS
AS A SOLUTION OF THE BUFFON NEEDLE PROBLEM

MIKHAIL A. GUZEV, GURAMI S. TSITSIASHVILI AND MARINA A. OSIPOVA

The problem of object detection by autonomous apparatus is considered. The
probabilistic formulation of the problem is proposed by means of a reduction to
the classical Buffon problem. The latter naturally arises when the problem is
formulated in the coordinate system associated with the apparatus. The problem
of detection is considered for devices moving in the open space along a circle
around one body, for vehicles patrolling along the linear boundary protecting
the bodies, and for devices protecting the system of bodies. The problem of
object detection was shown to admit an analysis in the presence of an asymptotic
parameter determined by the ratio of the local size of the apparatus scanning
area to the global size of the problem under consideration. For all problems,
the minimum number of apparatuses that could detect a penetrating object with
probability one was calculated.

1. Introduction

Nowadays, the attention of researchers is focused on the study of self-propelled
particle systems [Della Corte et al. 2016; Brambilla et al. 2013; Bellomo and Brezzi
2016; Adamatzky and Jones 2008; Herrero and Soler 2015]. Analysis of these
systems leads to the need to solve various problems closely related to the theory of
dynamical systems. The simplest systems can be the systems of particles studied in
the framework of Maxwell–Boltzmann, Fermi–Dirac, and Bose–Einstein statistics
[Kardar 2007]. Billiard systems, where stochastic properties can arise even with a
small number of particles and in the absence of random factors [Zaslavsky 2007],
are an important analogue of self-propelled particles systems.

When considering the self-propelled particle systems, the number of particles is,
as a rule, assumed to be sufficiently large. In particular, such assumptions are used
in modeling the movement of vehicles, crowds and flocks, financial markets, and
other socio-economic systems [Herrero and Soler 2015], consisting of a sufficiently
large number of self-driven particles. In this connection, one should point out
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Figure 1. The Buffon needle problem.

the model of the quantum economy [Maslov 2005], in which a large number of
self-driven particles leads to the appearance of synergistic effects — the nonlinear
(exponential or power) dependence of the efficiency indicators on the number of
particles.

At the same time, the self-propelled particle systems are close to the mobile
robot systems that can be equipped with artificial intelligence. To describe the
dynamics of the mobile robot systems, the models of differential games [Alspach
2004; Chung et al. 2011; Galceran and Carreras 2013], random graph models
[Hazra et al. 2018; 2017a; 2017b], which underlie many artificial intelligence sys-
tems, etc., are used. Within these model frameworks, different problems are solved:
determination of the shortest trajectory of a robot or a group of robots which covers
the entire field of vision [Alspach 2004; Galceran and Carreras 2013], searching
for the minimum number of robots that guarantee the capture [Chung et al. 2011],
and many others.

This paper is devoted to solving the problem of calculating the detection prob-
ability of a mobile object penetrating through a system of mobile robots modeled
by self-propelled particles and not possessing a sufficiently developed artificial
intelligence. Such a problem may arise when designing a system of mobile robots
that track the object penetration into a controlled area at sea, on land, in air, etc.

We analyze this problem using the solution of Buffon’s problem [Kendall and
Moran 1963; Ambartzumian 1982] about calculating the probability of intersection
of a random segment on a plane with a system of parallel lines. This model takes
into consideration the kinematic and geometric features of the movement of mobile
robots and the mobile object much more fully.

The Buffon problem (see Figure 1) is the determination of the probability of
intersection of a needle with length l, which is randomly thrown onto a plane ruled
by equally spaced parallel lines a distance L apart, with any one of these lines. This
problem formed the basis for stochastic geometry and was widely used in applied
statistics. The main elements of the probabilistic model in the Buffon problem are
the random variables that determine the mutual position of the segment, occupied
on the plane by the needle, and the equally spaced horizontal lines [Ambartzumian
1982; Kendall and Moran 1963]. The distance z from the segment’s lower end to
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the first overlying line and the angle ϕ < π between this line and the segment are
such random variables. Knowing the distribution law of the random vector (z, ϕ)
formed by these random variables, we can determine the probability of the event
P(l sinϕ ≥ z) of the needle intersection with one of the parallel straight lines. For
this event to happen, it is necessary and sufficient that the segment intersect with
a straight line lying directly above its lower end.

In this paper we tried to adopt the Buffon problem to consider object detection
by autonomous apparatus. The article outline is as follows.

In Section 2 we describe the joint motion of the vehicles and the object in order
to calculate the probability of the intersection of the trajectory of an object, which
is moving toward the body, with the apparatus scanning area. To determine the
probability of the object detection, this model is recorded in a coordinate system
associated with devices moving along a circle around the protected body.

In Section 3, we performed an analytical study of the proposed model for move-
ment of the vehicles and the object in the polar coordinate system. With a certain
ratio between the linear size of the detection area and the size of the area of the
devices’ motion, this task differs little from the classical Buffon problem. The
resulting reduction allows us to calculate the minimum number of vehicles at which
the probability of detecting an object is close to one.

Cyclic motion of vehicles along a closed linear segment is analyzed in Section 4.
To calculate the minimum number of vehicles for which the probability of the
object detection is close to one, the approach proposed in Section 2 is used, which
consists of a transition to the coordinate system of the moving device.

In Section 5, we consider the protection model of the network structure of bodies
which are located in the nodes of a square lattice bounded by the circle along
which the vehicles move. For two different strategies of the vehicles’ movement,
the minimum number of vehicles was determined at which the probability of the
object detection is close to one, and the most effective strategy is indicated.

Section 6 presents the final comments on the study performed and identifies the
statements of new problems that follow from the considerations made in this paper.

Material of the article is partially presented in [Guzev et al. 2018], which ex-
amines the vehicle’s movement along a circle around a single protected body and
along a straight line segment.

2. Buffon problem in the coordinate system associated with
vehicles moving around a circle

Let n vehicles move along a circle of radius R with a fixed linear velocity v and at
an equal distance from each other. Each of these vehicles is equipped with circular
radar with scanning radius r (see Figure 2). We will use the following symbols
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Figure 2. The vehicles’ movement around a circle in a stationary
coordinate system.

in all drawings: black dots are protected bodies, black arrows show the direction
of vehicle motion, filled circles are the area of the locator survey, and wide filled
arrows show the direction of object motion.

The circular radar can be understood as a vehicle that rotates a beam with an
angular velocity large enough for the linear velocity of the beam to notably exceed
the linear speed of the vehicle.

It is required to calculate the probability of detection of a mobile object by means
of locators installed on the vehicles. By detection, we mean here that the object
falls into a circle which is scanned by any of the vehicles.

The peculiarity of the task of calculating the probability of detecting a mobile
object in a stationary coordinate system, associated with an external observer, is
that both the vehicle and the object are moving, and therefore, some transition to
the Buffon problem, in which at least parallel straight lines are fixed, is required.

Such a transition is realized when the motion of the object under study is con-
sidered in a coordinate system associated with vehicles rotating around a certain
point O along a circle C of radius R. In this coordinate system, the radar scan cir-
cles with radius r become fixed. To be detected by the vehicle, the object trajectory
should intersect one of these circles.

In order to simplify the study of this problem, we suppose that, in a stationary
coordinate system, the mobile object moves with the velocity u along a segment
connecting the starting point of its movement with the center O of the circle C .

In a rotating coordinate system, the shape of the object trajectory Aψ differs from
the segment (see Figure 3): it will be some curve that starts at a random point ψ
of the circle C∗, with radius R+ r and with center at O . Thus, in the coordinate
system associated with the orbiting vehicles, circles of radius r play the role of
parallel lines and curves Aψ the role of the segments in the problem of Buffon.

We further assume everywhere in this paper that the random angle ψ has a
uniform distribution on the segment [0, 2π ]. The transition from the curve Aψ ′
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Figure 3. Trajectory of object motion in a Cartesian coordinate
system associated with vehicles moving around a circle.
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Figure 4. Control area of one circle of radar scan in the Cartesian
coordinate system (x, y) associated with moving vehicles.

to the curve Aψ ′′ is carried out by rotation of the curve Aψ ′ around the point O
by the angle ψ ′′ − ψ ′. It should be noted that, on the circle C∗, each circle Di

with radius r allocates an arc Fi bounded by two curves Aψ ′i and Aψ ′′i that touch
the circle Di , i = l, . . . , n, from the outside (see Figure 4). Thus, on the circle
C∗, the scan circle Di with the center at the point, where the apparatus i is located,
allocates the arc Fi , i = 1, . . . , n. Now we can calculate the probability of detection
of a mobile object by circular view radars installed on vehicles. Let the set F be
the union of the arcs Fi : F =

⋃n
i=1 Fi . This set is the union of a finite number

of disjoint arcs (which may be less than n). Then the total angular length s(F) of
those arcs divided by 2π is the required probability of detection a mobile object
by radar locators installed on the vehicles.

Therefore, if the arcs Fi , i = 1, . . . , n, do not intersect, the probability of the
object detection by the vehicles is P = ns(Fi )/(2π), where s(Fi ) is the angular
length of the arc Fi . In the general case, P =min(1, ns(Fi )/(2π)).
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3. Buffon problem in the polar coordinate system

The task of determining the curves Aψ and finding the arcs Fi is solved, as a rule,
numerically. However, at some additional assumptions, it is possible to obtain
analytical formulas. Let us transition from the rectangular coordinate system (x, y)
associated with the vehicle rotating around point O to the polar coordinate system
(see Figure 5, left) with the vertical coordinate ρ =

√
x2+ y2 and the horizontal

coordinate ϕ = arctan(x/y).
In a rectangular coordinate system (x, y), a circle of radius r centered at (O, R)

is described by equations

x = x(ψ)= r cosψ, y = y(ψ)= R+ r sinψ, 0≤ ψ ≤ 2π,

giving a parametric definition of the circle: ψ is a parameter. In the polar coordinate
system (ρ, ϕ) this circle is given parametrically by the equations

ρ

R
=

(
r2

R2 cos2 ψ +

(
1+

r
R

sinψ
)2 )1/2

, ϕ = arctan
(r/R) cosψ

1+ (r/R) sinψ
,

since ψ remains a parameter. A typical image of a circle with a radius r in this
polar coordinate system looks like an oval with pointed upper end (see Figure 5,
left). For small values of the parameter r/R� 1, the last system of equations can
be approximated as

ρ

R
≈ 1+

r
R

sinψ, ϕ ≈
r
R

cosψ.

Thus, a circle of radius r in the coordinate system (x, y), rotating with the appara-
tus, transforms into almost a circle of radius r/R in a normalized polar coordinate
system (ρ/R, ϕ) (see Figure 5, right). The linear speed of the vehicle is v, and

ϕ

2πO

R

R+ r

ρ

l

ϕ

2π

α

O
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r
R
+ 1

ρ/R
s

Figure 5. The control area of one circle of radar scan in the polar
coordinate system (left) and in the normalized polar coordinate
(right) associated with moving vehicles.
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the speed of the mobile object in the fixed coordinate system is u, so in a fixed
Cartesian coordinate system, the object moves to the center O of the circle C∗
with velocity v, and the vehicles move along the circle C (in the angle ϕ) with the
angular velocity u/R. In the fixed polar coordinate system (ρ/R, ϕ), the object
moves along the radial coordinate ρ/R with velocity v/R, and the vehicles move
along the angular coordinate ϕ with velocity u/R. Therefore, in the polar coordi-
nate system (ρ/R, ϕ) associated with the vehicles, the vehicles are fixed, whereas
the object moves along the radial coordinate ρ/R with the velocity v/R, and along
the angular coordinate ϕ with velocity −u/R [Dreizler and Lüdde 2010].

Then, in the normalized polar coordinate system (ρ/R, ϕ) associated with the
moving vehicles, the speed of the mobile object is equal to

√
v2+ u2/R and makes

an angle α = arctan(u/v) with line ρ/R = 0. Therefore, each circle representing
the control area of the radar locator overlaps a segment of length s = 2r/(R sinα)
for the mobile object (see Figure 5, right).

Let’s move from the probability of the object detection to the minimum number
of vehicles M = min(n : ns ≥ 2π) at which the probability of a mobile object
detection is equal to one; then

M =min(n : nr ≥ R sinα),
R sinα

r
≤ M ≤

R sinα
r
+ 1. (1)

If the number of vehicles is n = M , then the distance between the centers of the
neighboring survey circles can obviously be less than l.

4. The movement of vehicles along a straight line

Now let the vehicles move along a segment B A of length L in one direction and,
after reaching its end, turn and move in the opposite direction (see Figure 6). We
believe that the distance between neighboring vehicles is 2L/n; a similar model
was considered in [Kozhemyakin et al. 2017].

Then the scan circles associated with the vehicle locators move along the cylin-
drical surface with the generatrix A∗A∗∗ = B∗B∗∗ of length 2r and the directrix

A∗

A

A∗∗ B∗∗

B∗

a

b

Figure 6. Vehicle and object motion in a fixed coordinate system.
The bold arrow indicates the direction the object is moving.
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Figure 7. Vehicle and object motion in a coordinate system asso-
ciated with the vehicles moving along the cylindrical surface.

B∗A∗B∗ of length 2L . In a fixed coordinate system, the object moves vertically,
and its horizontal coordinate at the time of crossing the strip is a, 0≤ a ≤ L . Let’s
transition to the coordinate system associated with the vehicles moving along the
cylindrical surface and denote as b the distance from point B to the nearest vehicle
in the movement direction (from right to left in Figure 6).

Let the probabilistic distribution of the random vector (a, b) be uniform on the
rectangle [0, L]× [0, 2L/n]. Then, in the coordinate system associated with mov-
ing vehicles, we can specify subsegments of length l = 2r/ sinα on the segment
A∗B∗, where the object can be detected (see Figure 7).

The task of calculating the probability of the object detection is more com-
plicated when the vehicles are moving along a straight line but not along a cir-
cle. A relatively simple solution to this problem was obtained by transitioning
from the probability of the object detection to the minimum number M of ap-
paratuses for which the probability of the object detection is equal to one, namely
M =min(n : nr ≥ L sinα). Such a technique can be applied for multiagent systems,
considered in [Maggio et al. 2013].

5. Protection of the net structure

The network structure consists of bodies in the nodes of a square lattice located
inside a large circle. To protect the network structure, the following strategies can
be proposed. The first strategy involves the protection of each body separately
(see Figure 8, left). Let M1(n) be the minimum number of devices that implement
this strategy. However, we are trying to choose a defense strategy that reduces
the number of devices. Therefore, we propose a second strategy to protect the
entire network structure (see Figure 8, right). The minimum number of machines
implementing the second strategy is denoted by M2(n). The calculation of M1(n)
and M2(n) is based on formula (1), which determines the minimum number of
vehicles moving around the body at the center of the circle.

For convenience in describing various ways to protect the network structure of
bodies from object penetration, we transition from a Cartesian coordinate system
(x, y) to a system of dimensionless coordinates (X, Y ), X = x/(2(r + R)) and
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Figure 8. Strategies of apparatus motion: first (left) and second (right).

Y

X

Figure 9. The location of bodies in the network structure.

Y = y/(2(r + R)). The parameters r and R were defined earlier in Section 2.
In this coordinate system, a circle of radius r + R is transformed into a circle of
radius 1

2 . In the coordinate system (X, Y ), consider a circle Cn of radius n centered
at the coordinate origin and an integer square lattice (see Figure 9). Suppose that
there are bodies in the nodes of this lattice inside the circle Cn , and N (n) denotes
the number of these bodies. In the original coordinate system (x, y), the circle Cn

has a radius Tn = 2(r + R)n.
Around each of these bodies, its own group of vehicles moves along a circle

of radius R/(r 2(r + R)); in the coordinate system (x, y), this circle has radius R.
Obviously, these circles do not intersect each other and lie entirely in a circle of
radius n+1. Then, in accordance with (1), M1(n)∼ N (n), N (n)� 1, vehicles are
needed to find with probability one an object that can move to any of these N (n)
bodies, and by virtue of (1),

N (n) f ≤ M1(n)≤ N (n)( f + 1), f =
R sinα

r
. (2)

Consider an alternative protection system for N (n) bodies, assuming that the
vehicles move along a circle with a center at (0, 0) and a radius of n+ 1; in the
(x, y) coordinate system, the radius of this circle is 2(n + 1)(r + R). Then the
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minimum number of vehicles M2(n)moving along a circle of radius 2(n+1)(R+r)
(in the coordinate system (x, y)) satisfies the relations

2(n+ 1)g ≤ M2(n)≤ 2(n+ 1)g+ 1, g =
(R+ r) sinα

r
. (3)

We now use the known estimates for N (n). So in [Hardy 1999] an estimate of
Gauss is given, showing that the number N (n) is equal to the area of the figure
composed of unit squares of the lattice, for which the lower left corner lies in the
circle Cn . Since the greatest distance between the points of the unit square does not
exceed

√
2, all unit squares that intersect the boundary of the circle Cn are located

in the ring

{(X, Y ) : (n−
√

2)2 ≤ X2
+ Y 2

≤ (n+
√

2)2}

with area 4π
√

2n. Therefore, relations∣∣∣∣N (n)
πn2 − 1

∣∣∣∣≤ 4
√

2
n

=⇒ N (n)∼ πn2, n� 1 (4)

hold.
Thus, M1(n)∼ N (n)∼ n2 and M2(n)∼ n, n� 1 (it follows from (3) and (4)).

Combining relations (2)–(4), we obtain that for n� 1 estimates M1(n)/M2(n)∼ n
are valid.

Consequently, the application of the protection of the body system reduces the
number of vehicles in proportion to n � 1 compared to the protection of each
body separately. The value of n is equal to the radius Tn of the large circle which
surrounds the lattice points, divided by the lattice step 2(r + R).

The estimation of the N (n) value, given in (4), was repeatedly refined. Thus,
Gauss showed that |N (10)/(π · 102) − 1| ≤ 1

100 , whereas for n = 10 the right-
hand side of inequality (4) is approximately equal to 566

1000 . The refinement of the
estimation of the N (n) value [Hardy 1915; Huxley 2002] continues nowadays and
is one of the key problems of analytic number theory.

It should be emphasized in conclusion that we considered a dynamic version
of the Buffon problem which includes such characteristics as the trajectories and
speeds of the mobile extraneous object and unmanned underwater vehicles. This
circumstance leads to the necessity of transitioning to coordinate systems associ-
ated with moving vehicles and to additional, not always obvious, geometric con-
structions and the application of the small parameter method.

In addition to the trajectory of the object movement to the center O of circle C
(see Figure 2) along the radius, other trajectories are possible, for example, helically
[Guzev et al. 2017]. In this case, the body is protected if the viewing circle of each
locator intersects with the viewing circle of another locator (see Figure 10). The
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Figure 10. The disposition of the viewing circles of the locators
to control the object movement along an arbitrary trajectory.

minimum number of devices detecting an object with probability one is M ′ =
min(n : ns ′ ≥ 2π), s ′ = 2d and d = arcsin(r/R), and hence π/d ≤ M ′ ≤ π/d + 1.

Let M ′1(n) be the minimum number of vehicles that provide the detection of the
object arbitrarily moving towards each body in the specified system; then

N (n)
π

d
≤ M ′1(n)≤ N (n)

(
π

d
+ 1

)
. (5)

Let M ′2(n) be the minimal number of vehicles moving along a circle of radius
2(n+ 1)(R+ r) and providing detection of an object in its arbitrary moving; then

π

(
arcsin

r
2(n+ 1)(R+ r)

)−1

≤M ′2(n)≤π
(

arcsin
r

2(n+ 1)(R+ r)

)−1

+1. (6)

From (4)–(6) we obtain that, in the case of an object with arbitrary motion, the
protection of a system of bodies also requires a smaller number of vehicles than
the protection of each body separately. The decrease in the vehicle number is
proportional to n � 1, equal to the radius Tn divided by the step length of the
lattice 2(r + R): M ′1(n)/M ′2(n)∼ n.

6. Conclusions

In searching for a solution to the problem of detecting the object, which is mov-
ing to the protected body, we came to the classical Buffon model. With such a
reduction, obtaining the corresponding analytical results of the original problem
turned out to be possible, provided that the vehicles move along a circle around
the protected body. The constructed solution was used to analyze the possibilities
of protecting the network structure of the body system. Note that the application
of the results obtained for a single body to the body system became possible due
to the homogeneity of the internal structure of the system and to the preservation
of the geometry of the original problem at the system boundary. In particular, such
a structure homogeneity is fixed by choosing the same scales in two orthogonal
directions, and the geometry of the boundary is given by a circle.
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The generalization of the results obtained is possible if we expand the set of the
vehicles’ trajectories. For engineering applications, the use of the zigzag motions
is of interest [Galceran and Carreras 2013; Tuphanov and Scherbatyuk 2015], the
effectiveness of which is confirmed in practice. However, an understanding of
the fundamental aspects of the choice of control parameters for such a strategy
is a blind spot of modern model theory. Therefore, gaining new knowledge for
researchers engaged in this field is undoubtedly relevant.
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