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ON THE GENERALIZATION OF THE BREWSTER LAW

FABRIZIO DAVÌ

In classical photoelasticity of transparent isotropic materials, the Brewster law
states that the difference in principal refraction index (birefringence) is propor-
tional to the difference in principal stress. Here we show that such a relation can
be generalized to anisotropic crystals only for the high-symmetry classes of the
cubic group and for a specific plane stress, also for the high-symmetry classes
of the trigonal, tetragonal, and hexagonal groups. No further generalizations are
possible.

1. Introduction

One of the most important relations in photoelasticity is the one which, for transpar-
ent isotropic materials, shows that the difference in the principal refraction index
(birefringence) is proportional to the difference in the principal stress [Aben and
Guillemet 1993]:

ni − n j = fiso(σi − σ j ), i, j = 1, 2, 3, i 6= j, (1)

where ni are the principal refraction indexes, σi are the principal values of the
stress tensor T , and fiso is the photoelastic constant for isotropic materials which
depends on the components of the piezooptic tensor and on the refraction index no

of the unstressed material
Such a relation, obtained for the first time by David Brewster [1830] in 1818

and accordingly known as the “Brewster law”, is at the basis of the experimental
stress analysis based on photoelasticity. Besides the classical field of application in
experimental structural mechanics (viz., [Kuske and Robertson 1974; Bain 2019])
such a relation allows, for instance, for the characterization and the quality con-
trol of high-energy physics crystals like the ones used in the CMS calorimeter at
CERN or in the PANDA experiment at GSI in Darmstadt (viz., the recent review
in [Montalto et al. 2019]).
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When we look at (1) from a mechanical point of view, by keeping in mind
the much celebrated Mohr’s circle [Sokolnikoff 1956], we see that it states the
direct proportionality between the birefringence in the plane orthogonal to the k-th
principal direction of stress and the shear stress in the same plane:

(1n)k = 2 fisoτk, k = 1, 2, 3, (2)

where

(1n)k = ni − n j , τk =
σi − σ j

2
, i, j = 1, 2, 3, i 6= j 6= k. (3)

The experimental usefulness of such a relation thus becomes clear: the max-
imum birefringence is proportional to the maximum shear and accordingly can
be related to failure criteria. On the other hand, provided we known the principal
stress, a measurement of birefringence may allow for an experimental measurement
of some components of the piezooptic tensor.

Here we look at the possibility to generalize the Brewster law for anisotropic
materials to a more general relation in which the birefringences (1n)k , k = 1, 2, 3,
are linear combinations of the three shear stresses τ j , j = 1, 2, 3, with the coef-
ficients fk j of the linear combinations depending on the refraction index of the
unstressed material, on the components of the piezooptic tensor, and on the angle
between the principal optical and stress directions:1

(1n)k = (1n)ok + fk jτ j , k, j = 1, 2, 3. (4)

We look in detail at optically isotropic, uniaxial, and biaxial crystals and we
show that, in order to arrive at a relation like (4), the birefringence must not depend
on the spherical stress, an instance which depends on the crystal symmetry group
(besides the trivial case of purely deviatoric (traceless) stresses). We show that this
is possible for any stress in optically isotropic crystals, besides the isotropic case,
only for the high-symmetry classes of the cubic group; moreover, when the stress
has only diagonal component the obtained relation (4) simplifies into the isotropic
one.

When we deal with optically uniaxial and biaxial crystals we show that in the
general case it is not possible to arrive at (4). However, for uniaxial crystal we
show that, for plane stress in the plane orthogonal to the material symmetry axis and
provided the stressed crystal remains uniaxial, we can arrive at the isotropic relation
(1) in the same plane for the high-symmetry trigonal, tetragonal, and hexagonal
crystal classes.

1The same issue was addressed in [Rinaldi et al. 2018]; however, the results obtained there were
related to specific cases of stress without the formal and more general treatment we give here; further,
the treatment of cubic crystal was missing.
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No other generalizations of the Brewster law are possible, besides for very spe-
cific material and particular cases of stress.

2. Crystal photoelasticity

2.1. Propagation of light in crystals. We consider a three-dimensional region com-
posed of a polarized, nonconducting, and nonmagnetizable material: then for e
and h the electric and magnetic fields, respectively, a monochromatic and linearly
polarized light is the electromagnetic plane wave [Born and Wolf 1999]:

e= e0 cosω
(

t − m·x
v

)
, h = h0 cosω

(
t − m·x

v

)
, v =

c
n
, (5)

where e0 and h0 are the constant amplitudes, ω is the frequency, m is the direction
of propagation, ‖m‖ = 1, v is the velocity of propagation of electromagnetic fields
in a medium, c is the light velocity in the vacuum, and |n| < 1 is the refraction
index.

The propagation condition for (5) is provided by the Maxwell equations with
null total charge density,

curl e=−µo
∂h
∂t
, div d = 0, curl h =

∂d
∂t
, div h = 0, (6)

where d denotes the electric displacement and µ0 is the vacuum permeability.
For an anisotropic dielectric material the constitutive relation between the elec-

tric field and the electric displacement is given by [Sirotin and Shaskolskaya 1982;
Perelomova and Tagieva 1983; Nye 1985]2

e= ε−1
0 Bd, (7)

where B ∈ Sym+ is the dielectric rigidity (or dielectric impermeability or inverse
permittivity) tensor, normalized with respect to the dielectric permittivity of the
vacuum ε0.

By using (5) and (7) in (6) and since c2
= εoµo, then we arrive at the propagation

condition
(M(m)− n−2 P⊥(m))d = 0, (8)

where the characteristic tensor M(m) ∈ Sym is defined by

M(m)= P⊥(m)B P⊥(m), P⊥(m)= I −m⊗m; (9)

here P⊥(m) is the orthogonal projection on the plane normal to m and accordingly
M(m) is the restriction of B to the plane orthogonal to m.

2In the sequel we shall denote with Sym the subspace of symmetric tensors and Sym+ the sub-
space of positive-definite symmetric tensors; Dev is the subspace of traceless symmetric tensors
whereas Orth+ denotes the proper orthogonal group.
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Figure 1. The optical indicatrix.

By the positive-definiteness of B we can define the optical indicatrix or conju-
gate index ellipsoid that is the locus of normalized constant dielectric energy [Born
and Wolf 1999], which summarizes at a glance all the information about the crystal
optical anisotropy:

Bz · z = 1, (10)

where z is a normalized electric displacement; hence M(m) is associated with the
ellipse we get by intersecting the optical indicatrix with the plane orthogonal to m
through the ellipsoid center. See Figure 1.

The eigenvalue problem associated with the propagation condition (8) admits,
for each direction of propagation m, at most two eigencouples

(n−2
a , da), (n−2

b , db) (11)

whose eigenvectors are mutually orthogonal and lie in the plane orthogonal to m:
clearly the eigenvalues are the semiaxis of the ellipse described by M(m) and
whose directions are spanned by the eigenvectors.

Whenever na 6= nb we have two different velocities va 6= vb associated with a
given direction of propagation m: such a phenomena is called double refraction
and is measured in terms of the birefringence 1n:

1n = na − nb; (12)
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it makes sense to search for the directions of propagation m such that 1n = 0
and no double refraction holds. We define optic axis as these propagation direc-
tions and there are at most three possibilities, depending on the multiplicity of the
eigenvalues of B.

• Three equal eigenvalues:
B = n−2

o I . (13)

The material is optically isotropic, each direction is an optic axis, and there is no
birefringence.

• Two equal eigenvalues:

B = n−2
o (I − e⊗ e)+ n−2

e e⊗ e, ‖e‖ = 1. (14)

The material is optically uniaxial, the direction e is the unique optic axis, and the
maximum birefringence is attained for propagation directions orthogonal to e:

(1n)max = ne− no. (15)

We say ne and no are the extraordinary and ordinary refraction indices and we
define a crystal to be optically positive or negative when ne < no or ne > no,
respectively.

• Three different eigenvalues B1 > B2 > B3:

B = B1e1⊗ e1+ B2e2⊗ e2+ B3e3⊗ e3, Bi = n−2
i . (16)

The material is called optically biaxial; whenever the propagation direction coin-
cides with an optic axis the ellipse associated with M(m) degenerates into a circle
which lies in the plane containing e2; then there are two optic axes orthogonal to e2

and bisected by the direction spanned by e1.
We have three birefringences corresponding to directions of propagation m= u3,

m = u2, and m = u1, respectively:

(1n)3 = n1− n2, (1n)2 = n3− n1, (1n)1 = n2− n3, (17)

with
(1n)max = sup{|(1n)1|, |(1n)2|, |(1n)3|}. (18)

In biaxial crystals, if the value of intermediate refractive index is closer to that of
highest refractive index, the crystal is optically negative, and if it is closer to lowest
refractive index, then the crystal is optically positive.

2.2. Photoelasticity of crystals. In photoelastic crystals the dielectric imperme-
ability is a linear function of the Cauchy stress tensor T ∈ Sym:

B(T )= Bo+M[T ], (19)
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where M : Sym→ Sym is the fourth-order Maxwell piezooptic tensor and Bo is
the dielectric permeability in the unstressed state. We define the symmetry group G

for a photoelastic crystal as

G≡{Q∈Orth+ | QM[T ]QT
=M[QT QT

] and Q Bo QT
= Bo for all T ∈ Sym}.

Let 6 ≡ {e1, e2, e3} be an orthonormal frame; then the components of the piezo-
optic tensor obeys

Mi jhk =M j ihk =Mi jkh, i, j, h, k = 1, 2, 3, (20)

and the tabular form of these components for the various crystallographic classes
and groups is provided in the Appendix.

As far the tensor Bo is concerned, in the frame 6 its matrix has six indepen-
dent components for crystals of the triclinic group, whereas for the crystals of the
monoclinic group (all classes) we have

Bo ≡

B11 B12 0
· B22 0
· · B33

 , (21)

where e3 is directed as the monoclinic b-axis. For orthorhombic crystals (all
groups) we have instead

Bo ≡

B11 0 0
· B22 0
· · B33

 ; (22)

in all the three cases B admits the representation (16) and hence triclinic, mono-
clinic, and orthorhombic crystals are optically biaxial.

Crystals of the tetragonal, trigonal, and hexagonal group (all classes) are opti-
cally uniaxial, since Bo admits the representation (14):

Bo ≡

B11 0 0
· B11 0
· · B33

 , (23)

where e3 is directed in this case as the symmetry c-axis.
The tensor Bo for cubic crystals and isotropic materials has the representation

(13) and the material is optically isotropic.
The stress T changes the optical properties of materials: indeed an isotropic

material can become uniaxial or biaxial when stressed, and a uniaxial one can
behave biaxially upon the application of a stress: for a complete description of
such changes see the analysis presented in [Davì 2015].
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3. The generalization of the Brewster law for anisotropic crystals

For optically isotropic materials we have the following the stress-optic relation
called the Brewster law (viz., [Aben and Guillemet 1993]):

ni − nk = fiso(σi − σk), i, k = 1, 2, 3, i 6= k, fiso = n3
o

M1122−M1111

2
, (24)

where no is the isotropic refraction index and (σ1, σ2, σ3) are the principal compo-
nents of T . From a mechanical point of view (24) relates the birefringences (17)
with (twice) the shear stress in the same plane

Here we wish to obtain the restrictions on the piezooptic tensor and on the stress
which allow us to generalize (24) for anisotropic crystals to a relation between the
birefringences (17) and all (twice) the shear stresses:

(1n)k = (1n)ok+ f1k(σ2−σ3)+ f2k(σ3−σ1)+ f3k(σ1−σ2), k = 1, 2, 3, (25)

with (1n)ok depending on Bo and the constant fik depending on both Bo and M.
Let (σk,wk) be the eigencouples of a generic stress T with

wk = Rek, k = 1, 2, 3, R ∈ Orth+; (26)

then by the decomposition of T into its spherical and deviatoric parts

T = σm I + dev T , σm =
1
3(σ1+ σ2+ σ3), (27)

we get, in the frame 6T ≡ {w1,w2,w3},

dev T ≡
1
3

2σ1− σ2− σ3 0 0
· 2σ2− σ1− σ3 0
· · 2σ3− σ1− σ2

 , (28)

which can be rewritten in terms of the shear stresses

τ1 =
σ2− σ3

2
, τ2 =

σ3− σ1

2
, τ3 =

σ1− σ2

2
(29)

as

dev T ≡
2
3

τ3− τ2 0 0
· τ1− τ3 0
· · τ2− τ1

 . (30)

By (19), (27), and (30) then

B(σm, τ1, τ2, τ3)= Bo+σmM[I]+ 2
3(τ3−τ2)M[w1⊗w1]

+
2
3(τ1−τ3)M[w2⊗w2]+

2
3(τ2−τ1)M[w3⊗w3]

= Bo+σmM[I]+ 2
3τ3M[w1⊗w1−w2⊗w2]

+
2
3τ2M[w3⊗w3−w1⊗w1]+

2
3τ1M[w2⊗w2−w3⊗w3]. (31)
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Let (Bk, uk) the eigencouples of B(T ) with

uk = R̂ek, k = 1, 2, 3, R̂ ∈ Orth+; (32)

then we have

Bk(σm, τ1, τ2, τ3)= B(σm, τ1, τ2, τ3) ·uk⊗uk, k = 1, 2, 3, not summed, (33)

and by (16)2 the principal refraction index of the stressed material is given by

nk(σm, τ1, τ2, τ3)=
1

√
Bk(σm, τ1, τ2, τ3)

, (34)

a relation that can be linearized into

nk(σm, τ1, τ2, τ3)

=
1

√
Bk(0)

−
1

2B3/2
k (0)

(
∂Bk

∂σm

∣∣∣∣
0
σm +

3∑
j=1

∂Bk

∂τ j

∣∣∣∣
0
τ j

)
+ o(‖T‖2). (35)

By (31) and (32) (in all of the following relation k is fixed and not summed)

Bk(0)= Bo · R̂ek ⊗ R̂ek = Bo
i j ei ⊗ e j · R̂ek ⊗ R̂ek

= Bo
i j (R̂ek · ei )(R̂ek · e j )= Bo

i j R̂ jk R̂ik; (36)

moreover,

∂Bk

∂σm

∣∣∣∣
0
=M[I] · uk ⊗ uk =M[I] · R̂ek ⊗ R̂ek = R̂T M[I]R̂ · ek ⊗ ek = Mkk, (37)

and by using also (26) finally we get

∂Bk

∂τ1

∣∣∣∣
0
=

2
3 M[w2⊗w2−w3⊗w3] · uk ⊗ uk

=
2
3 R̂T M[R(e2⊗ e2− e3⊗ e3)RT

]R̂ · ek ⊗ ek

= 2(M22kk −M33kk),

∂Bk

∂τ2

∣∣∣∣
0
=

2
3 M[w3⊗w3−w1⊗w1] · uk ⊗ uk

=
2
3 R̂T M[R(e3⊗ e3− e1⊗ e1)RT

]R̂ · ek ⊗ ek

= 2(M33kk −M11kk),

∂Bk

∂τ3

∣∣∣∣
0
=

2
3 M[w1⊗w1−w1⊗w1] · uk ⊗ uk

=
2
3 R̂T M[R(e1⊗ e1− e2⊗ e2)RT

]R̂ · ek ⊗ ek

= 2(M11kk −M22kk),

(38)
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where

Mhhkk =
1
3 R̂T M[R(eh ⊗ eh)RT

]R̂ · ek ⊗ ek, h, k fixed. (39)

By using (37), (38), and (29) in (35) we arrive at the linearized expression of
the principal refraction index in terms of the differences between principal stress:

n1(σ1, σ2, σ3)=
1

√
B1(0)

−
1

2B3/2
1 (0)

(σm M11+(σ2−σ3)(M2211−M3311)

+(σ3−σ1)(M3311−M1111)+(σ1−σ2)(M1111−M2211)),

n2(σ1, σ2, σ3)=
1

√
B2(0)

−
1

2B3/2
2 (0)

(σm M22+(σ2−σ3)(M2222−M3322)

+(σ3−σ1)(M3322−M1122)+(σ1−σ2)(M1122−M2222)),

n3(σ1, σ2, σ3)=
1

√
B3(0)

−
1

2B3/2
3 (0)

(σm M33+(σ2−σ3)(M2233−M3333)

+(σ3−σ1)(M3333−M1133)+(σ1−σ2)(M1133−M2233)).

(40)

We are now in position to write the birefringences (17) as

(1n)1 = (1n)o1+ f1σm + f11(σ2− σ3)+ f21(σ3− σ1)+ f31(σ1− σ2),

(1n)2 = (1n)o2+ f2σm + f12(σ2− σ3)+ f22(σ3− σ1)+ f32(σ1− σ2),

(1n)3 = (1n)o3+ f3σm + f13(σ2− σ3)+ f23(σ3− σ1)+ f33(σ1− σ2),

(41)

where

(1n)o1 = B−1/2
2 (0)− B−1/2

3 (0),

(1n)o2 = B−1/2
3 (0)− B−1/2

1 (0), (42)

(1n)o3 = B−1/2
1 (0)− B−1/2

2 (0),

f1 =
1

2B3/2
3 (0)

M33−
1

2B3/2
2 (0)

M22,

f2 =
1

2B3/2
1 (0)

M11−
1

2B3/2
3 (0)

M33, (43)

f3 =
1

2B3/2
2 (0)

M22−
1

2B3/2
1 (0)

M11,
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and with the components of the nonsymmetric matrix [ fik] given by

f11 =
1

2B3/2
2 (0)

(M3322−M2222)+
1

2B3/2
3 (0)

(M2233−M3333),

f12 =
1

2B3/2
2 (0)

(M1122−M3322)+
1

2B3/2
3 (0)

(M3333−M1133),

f13 =
1

2B3/2
2 (0)

(M2222−M1122)+
1

2B3/2
3 (0)

(M1133−M2233),

f21 =
1

2B3/2
3 (0)

(M3333−M2233)+
1

2B3/2
1 (0)

(M2211−M3311),

f22 =
1

2B3/2
3 (0)

(M1133−M3333)+
1

2B3/2
1 (0)

(M3311−M1111),

f23 =
1

2B3/2
3 (0)

(M2233−M1133)+
1

2B3/2
1 (0)

(M1111−M2211),

f31 =
1

2B3/2
1 (0)

(M3311−M2211)+
1

2B3/2
2 (0)

(M2222−M3322),

f32 =
1

2B3/2
1 (0)

(M1111−M3311)+
1

2B3/2
2 (0)

(M3322−M1122),

f33 =
1

2B3/2
1 (0)

(M2211−M1111)+
1

2B3/2
2 (0)

(M1122−M2222).

(44)

Relations (41) differ from the desired expression (25) by the presence of the
terms in σm : at a glance, we see that the necessary condition to have a generalized
Brewster law (25) is that either T is traceless or, in the general case,

f1 = f2 = f3 = 0, (45)

a condition which, in terms of the piezooptic tensor M and the inverse permittivity
Bo, reads

B2/3
2 (0)M33− B2/3

3 (0)M22 = 0,

B2/3
3 (0)M11− B2/3

1 (0)M33 = 0,

B2/3
1 (0)M22− B2/3

2 (0)M11 = 0;

(46)

it is easy to show that (46) admits the solution

Mkk = αB2/3
k (0), k = 1, 2, 3, α ∈ R. (47)

In the following subsections we shall deal in detail with condition (47) and with the
expression of the components of (25) for the various symmetry groups and classes:
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in particular we shall search for the cases in which (47) holds and those in which
the matrix [ fik] is symmetric or diagonal.

3.1. Optically isotropic. For optically isotropic materials, the inverse permittivity
has the representation (13): accordingly Bk(0)= n−2

o and (1n)ok = 0 for all k. As
far as the piezooptic tensor and conditions (47) are concerned, we need to analyze
in detail the various cases.

3.1.1. Isotropic materials. For isotropic materials the piezooptic tensor is symmet-
ric and from (13), (19), and (78) of the Appendix we get

B(T )= n−2
o + σm(M1111+ 2M1122)I + (M1111−M1122) dev T , (48)

and the principal directions of B(T ) coincide with those of dev T with R = R̂; by
the definition of isotropic group

R̂T M[R ART
]R̂ = R̂T RM[A]RT R̂ =M[A] for all A ∈ Sym, (49)

then we have

Mkk =M[I] · ek ⊗ ek =
1
3(M1111+ 2M1122)I · ek ⊗ ek

=
M1111+ 2M1122

3
for all k, (50)

and condition (47) is verified for 3α = (M1111+ 2M1122)n3
o.

Moreover, by (49), relation (39) yields

Mhhkk =
1
3 M[eh ⊗ eh)] · ek ⊗ ek =

1
3 Mkkhh, h, k fixed, (51)

and (44) gives in turn

f11 = f22 = f33 =
n3

o

2
2
3
(M1122−M1111),

f12 = f12 = f13 = f31 = f23 = f32 =−
n3

o

2
1
3
(M1122−M1111),

(52)

and accordingly (41) reduces to (24).

3.1.2. Cubic crystals, classes 432, 4̄3m, and m3m. Also in this case the piezooptic
tensor is symmetric and from (76) of the Appendix we have

Mkk = R̂T M[I]R̂ · ek ⊗ ek =
1
3(M1111+ 2M1122)R̂T R̂ · ek ⊗ ek

=
M1111+ 2M1122

3
for all k; (53)

then, even for these cubic classes condition (47) is verified for the same value of α
as in the isotropic case and the Brewster law can be generalized to the form (25)
with (1n)ok = 0, k = 1, 2, 3.
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By (39) and (44) the components of [ fik] depend not only on the components
of M but also on both R and R̂: however, if we assume that the frame 6 is also
the principal frame for T , that is R = I , then by (76) we obtain again relation (48);
accordingly the results for isotropic material still apply with the components of
[ fik] given by (52) and (24), which holds even in this case.

3.1.3. Cubic crystals, classes 23 and 3m. The tensor M for these classes is not
symmetric and hence we cannot apply the results of [Mehrabadi and Cowin 1990].
However, since

M[I] = (M1111+M1122+M1133)e1⊗ e1+ (M1111+M1122+M2211)e2⊗ e2

+ (M1111+M2211+M3311)e3⊗ e3, (54)

then condition (47) cannot be verified for any R̂ for a unique value of α. Therefore
for cubic crystal of these classes it is not possible, in general, to arrive at the
Brewster-type relation (25).

3.2. Optically uniaxial. For optically uniaxial crystals, the inverse permittivity
has the representation (14). We set e3 = e and therefore,

(1n)o1 =−(1n)o2 = no− ne, (1n)o3 = 0, (55)

whereas condition (47) requires

M11 = M22 = αn2
o, M33 = αn2

e . (56)

Relation (56) may be verified for some specific crystals but, in the general case,
cannot be satisfied and we may conclude that for uniaxial crystal the generalization
(25) of the Brewster law is not possible, unless the stress is a purely deviatoric one.

Whereas it is still possible to arrive at (41), we may restrict our analysis to plane
stress in the plane orthogonal to the optic axis, say T e3 = 0. In this case e3 = w3

with σ3 = 0 and R is a rotation about e3.
Further, if we choose α which satisfies (56), then we may write (41)3 as

n1− n2 = f13σ2− f23σ1+ f33(σ1− σ2), (57)

which can be rewritten in the Brewster-like form

n1− n2 = ( f33− f13)(σ1− σ2), (58)

provided the following condition holds:

f13 = f23. (59)

From (44), the requirement that (59) be verified for any refraction indices no

and ne is equivalent to the two conditions

M1133 =M2233, M1111+M1122 =M2222+M2211. (60)
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Since e3 is an axis of symmetry for trigonal, tetragonal, and hexagonal crystals,
the rotations about e3 belong to their symmetry group G and we can write (39) as

Mhhkk =
1
3 QM[eh ⊗ eh]QT

· ek ⊗ ek =
1
3 Mi jhh(Qei · ek)(Qe j · ek), h, k fixed,

(61)
where Q = R̂T R ∈ Orth+.

Under the additional hypothesis that also R̂ is a rotation about the material sym-
metry axis e3,3 then we have that Qe3 = e3 and Qeα · e3 = 0, α = 1, 2. Therefore
from (61) we can write

M1111+M1122 =
1
3((M1111+M1122) cos2 ϕ+ (M2222+M2211) sin2 ϕ

− (M1211+M1222+M2111+M2122) sinϕ cosϕ),

M2222+M2211 =
1
3((M1111+M1122) sin2 ϕ+ (M2222+M2211) cos2 ϕ

+ (M1211+M1222+M2111+M2122) sinϕ cosϕ),

M1133 =
1
3 M3311,

M2233 =
1
3 M3322,

(62)

where ϕ is the rotation angle about e3. Accordingly condition (60)1 together with
the requirement that (60)2 holds for any value of ϕ leads to the following restric-
tions on the symmetries of M:

M3311 =M3322,

M1111+M1122 =M2222+M2211,

M1211+M1222+M2111+M2122 = 0.

(63)

From the tabular data in the Appendix it easy to show that these conditions hold
only for the high-symmetry classes of trigonal (3̄m, 32, 3m), tetragonal (4mmm,
422, 4/mm, and 4̄2m) and hexagonal (6̄m2, 622, 6mm, and 6/mmm) crystals, in
which cases (58) reduces once again to (24).

3.3. Optically biaxial. In the case of optically biaxial crystals, the inverse per-
mittivity has either the representation (21) or (22). In any case it is (1n)ok 6= 0,
k = 1, 2, 3, and (47) leads to

M11 = αn2
1, M22 = αn2

2, M33 = αn2
2, (64)

and it is not possible to obtain the relation (25), unless (64) is verified for some
specific crystals. However, it is possible to arrive at the relation (41) which on
the other hand didn’t simplify the expression for birefringence to an appreciable
degree. Accordingly we didn’t go into further details.

3This assumption means that the stressed crystal remains uniaxial: a complete characterization
of the stresses which leave uniaxial crystal still uniaxial is provided in [Davì 2015].
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4. Conclusions

We looked at the possibility of generalizing the Brewster law for isotropic trans-
parent materials to anisotropic crystalline materials. First we show that the bire-
fringence can be written as a linear function of the spherical and shear stresses
expressed as the difference in the principal stress, by taking into account the com-
ponents of the unstressed inverse permittivity, those of the piezooptic tensor and
the rotation of the stress, and the optical principal directions with respect to the
symmetry axis of the material; then we show that this result can be formulated in a
“Brewster-like” manner only when the birefringence is independent of the spherical
part of the stress, a fact which is related to the crystal symmetry. We showed that
the relation can be generalized for any stress only for the high-symmetry classes
of the cubic group and that when the stress tensor is diagonal we obtain once more
the isotropic relation.

For uniaxial crystals the relation can be generalized only for plane stress in
the plane orthogonal to the optic axis and provided the stressed crystal remains
uniaxial: also in this case we arrive at the isotropic-like relation in the plane of
stress. We show that no general extension of the Brewster law is possible, in the
general case, for biaxial crystals.

Appendix

In order to make the paper self-contained, in this appendix we list the tabular form
of the piezooptic tensor M of the various crystallographic classes, from [Authier
2003].

Monoclinic. All classes:

[M] ≡



M1111 M1122 M1133 0 M1113 0
M2211 M2222 M2233 0 M2213 0
M3311 M3322 M3333 0 M3313 0

0 0 0 M2323 0 M2312

M1311 M1312 M1333 0 M1313 0
0 0 0 M1223 0 M1212


. (65)

Orthorhombic. All classes:

[M] ≡



M1111 M1122 M1133 0 0 0
M2211 M2222 M2233 0 0 0
M3311 M3322 M3333 0 0 0

0 0 0 M2323 0 0
0 0 0 0 M1313 0
0 0 0 0 0 M1212


. (66)
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Trigonal. Classes 3̄m, 32, and 3m:

[M] ≡



M1111 M1122 M1133 M1123 0 0
M1122 M1111 M1133 −M1123 0 0
M3311 M3311 M3333 0 0 0
M2311 −M2311 0 M2323 0 0

0 0 0 0 M2323 2M2311

0 0 0 0 M1123 M1111−M1122


. (67)

Classes 3 and 3̄:

[M] ≡



M1111 M1122 M1133 M1123 −M2213 2M1222

M1122 M1111 M1133 −M1123 M2213 −2M1222

M3311 M3311 M3333 0 0 0
M2311 −M2311 0 M2323 M2313 2M1322

−M1322 M1322 0 −M2313 M2323 2M2311

−M1222 M1222 0 M2213 M1123 M1111−M1122


. (68)

Tetragonal. Classes 4, 4̄, and 4/m:

[M] ≡



M1111 M1122 M1133 0 0 M1112

M1122 M1111 M1133 0 0 −M1112

M3311 M3311 M3333 0 0 0
0 0 0 M2323 M2313 0
0 0 0 −M2313 M2323 0

M1211 −M1211 0 0 0 M1212


. (69)

Classes 4mmm, 422, 4/mm, and 4̄2m:

[M] ≡



M1111 M1122 M1133 0 0 0
M1122 M1111 M1133 0 0 0
M3311 M3311 M3333 0 0 0

0 0 0 M2323 0
0 0 0 0 M2323 0
0 0 0 0 0 M1212


. (70)

Hexagonal. Classes 6, 6̄, and 6/m:

[M] ≡



M1111 M1122 M1133 0 0 2M1222

M1122 M1111 M1133 0 0 −2M1222

M3311 M3311 M3333 0 0 0
0 0 0 M2323 M2313 0
0 0 0 −M2313 M2323 0

−2M122 2M1222 0 0 0 M1111−M1122


. (71)



44 FABRIZIO DAVÌ

Classes 6̄m2, 622, 6mm, and 6/mmm:

[M] ≡



M1111 M1122 M1133 0 0 0
M1122 M1111 M1133 0 0 0
M3311 M3311 M3333 0 0 0

0 0 0 M2323 0 0
0 0 0 0 M2323 0
0 0 0 0 0 M1111−M1122


. (72)

Cubic. Classes 23 and 3m:

[M] ≡



M1111 M1122 M1133 0 0 0
M2211 M1111 M1122 0 0 0
M3311 M2211 M1111 0 0 0

0 0 0 M1212 0 0
0 0 0 0 M1212 0
0 0 0 0 0 M1212


. (73)

Classes 432, 4̄3m, and m3m:

[M] ≡



M1111 M1122 M1122 0 0 0
M1122 M1111 M1122 0 0 0
M1122 M1122 M111 0 0 0

0 0 0 M1212 0 0
0 0 0 0 M1212 0
0 0 0 0 0 M1212


. (74)

Isotropic.

[M] ≡



M1111 M1122 M1122 0 0 0
M1122 M1111 M1122 0 0 0
M1122 M1122 M1111 0 0 0

0 0 0 M1212 0 0
0 0 0 0 M1212 0
0 0 0 0 0 M1212


, (75)

with 2M1212 =M1111−M1122.
We remark that, for isotropic materials and cubic crystals of classes 432, 4̄3m,

and m3m, the piezooptic tensor is symmetric, i.e., Mi jhk =Mhki j and accordingly
the results obtained in [Mehrabadi and Cowin 1990] for the eigenvalues and eigen-
tensor of the symmetric elasticity tensor still apply.

In particular we shall make use of the two following results from [Mehrabadi
and Cowin 1990].
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• Cubic crystals, classes 432, 4̄3m, and m3m:

M= (M1111+ 2M1122)
1
3 I ⊗ I + (M1111−M1122)

( 3∑
k=1

Ek ⊗ Ek −
1
3 I ⊗ I

)

+ 2M1212

6∑
k=4

Ek ⊗ Ek, (76)

where
Ek =

1
√

2
ek ⊗ ek, k = 1, 2, 3,

E4 =
1
2(e2⊗ e3+ e3⊗ e2),

E5 =
1
2(e1⊗ e3+ e3⊗ e1),

E6 =
1
2(e2⊗ e1+ e1⊗ e2).

(77)

• Isotropic materials:

M= (M1111+ 2M1122)
1
3 I ⊗ I + (M1111−M1122)D, (78)

where D : Sym→ Dev is given by

D=

6∑
k=1

Ek ⊗ Ek −
1
3 I ⊗ I, (79)

i.e., D[T ] = dev T .
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