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GENOTYPE-DEPENDENT VIRUS DISTRIBUTION
AND COMPETITION OF VIRUS STRAINS

NIKOLAI BESSONOV, GENNADY A. BOCHAROV,
CRISTINA LEON, VLADIMIR POPOV AND VITALY VOLPERT

Virus density distribution as a function of genotype considered as a continu-
ous variable and of time is studied with a nonlocal reaction-diffusion equation
taking into account virus competition for the host cells and its elimination by
the immune response and by the genotype-dependent mortality. The existence
of virus strains, that is, of positive stable stationary solutions decaying at infin-
ity, is determined by the admissible intervals in the genotype space where the
genotype-dependent mortality is less than the virus reproduction rate, and by the
immune response under some appropriate assumptions on the immune response
function characterizing virus elimination by immune cells. The competition of
virus strains is studied, first, without immune response and then with the immune
response. In the absence of immune response, the strain dynamics is different
in a short time scale where they converge to some intermediate slowly evolving
solutions depending on the initial conditions, and in a long time scale where their
distribution converges to a stationary solution. Immune response can essentially
influence the strain dynamics either stabilizing them or eliminating one of the
strains. An antiviral treatment can also influence the competition of virus strains,
and it can lead to the emergence of resistant strains, which were absent before
the treatment because of the competition with susceptible strains.

1. Introduction

A fundamental feature of many RNA virus infections of major public concern (e.g.,
human immunodeficiency virus type I (HIV) and hepatitis C virus (HCV)) is an
error-prone replication [Domingo and Perales 2018]. The high genetic variability
of HIV and HCV and selection of the most adapted mutants determine the ability
of the virus population to escape the immune response and develop resistance to
the antiviral therapy [Coffin and Swanstrom 2013; Gaudieri et al. 2009]. The
variability of the viruses is considered to be one of the key factors in the patho-
genesis of the respective infectious disease. Variation of the genetic structure of
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the viral population is the result of the interaction of the replication, mutation,
recombination, immune-mediated elimination, and drug-dependent suppression of
the virus replication. An important step towards a mechanistic understanding of
the evolution of the heterogeneous virus populations is provided by the models
which consider explicitly the infection of target cells, interaction with the immune
system, and drug-dependent blockade of the virus replication.

To describe and analyze the dynamics of genetic heterogeneity of evolving virus
populations, the concept of quasispecies provides a general framework to deal with
an ensemble of genomes [Eigen 1971; Biebricher and Eigen 2006]. A more formal
approach to studying the evolution of quasispecies is based on considering the
mutation-selection processes acting on the virus strains according to their fitness
values. The respective deterministic models are formulated using systems of ODEs.
The standard form of the quasispecies model in mathematical virology is the set
of ODE equations [Nowak and May 2000]

dv

dt
=Wv− d(v)v, W =


a1 Q11 a2 Q21 · · · an Qn1

a1 Q12 a2 Q22 · · · an Qn2
...

...
. . .

...

a1 Q1n a2 Q2n · · · an Qnn

 , d(v)=
∑n

i=1 aivi∑n
i=1 vi

.

(1-1)

Here, the vector v characterizes the abundance of genomes composing the pop-
ulation, v = {v1, v1, . . . , vn}, ai stand for the replication rates of i-th genome
(quasispecies), i = 1, . . . , n, and Q = (Qi j ) is the mutation matrix. The last
term describes the competition of the genomes for survival. The model considers
the balance of production and elimination of the quasispecies and as such bears no
specific link to real processes underpinning the collective dynamics of the genomes.
Another framework is provided by stochastic models taking the form of genetic
algorithms [Bocharov et al. 2005; Vijay et al. 2008]. The distributed parameter ap-
proach with respect to the mutant frequency as a continuous variable was proposed
in [Rouzine et al. 2001] using the forward Kolmogorov equation.

Some general regularities underlying the evolution of viral quasispecies (equiva-
lently, the ensembles of virus strains) have been elucidated empirically. The viruses
can escape immune control by generating mutations within the peptide epitopes,
and the epitope inducing the strongest T cell response is subject to the strongest se-
lective pressure [McMichael and Carrington 2019]. The dynamics of drug-resistant
mutants depends on a number of virus replication parameters, such as the avail-
ability and the spectrum of target cells, the epistatic interactions between specific
mutations, etc. [Martínez et al. 2011]. However, a deeper insight into the impact of
virus population properties and its sensitivity to drugs and the immune responses
requires the development of mathematical models with an explicit description of
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the interplay between the above processes in producing the survival advantages of
specific virus strains, characterized in general as the fitness values.

The fitness value can be estimated in vitro under certain special conditions
[Martínez et al. 2011]. However, its quantification for real infections remains a
challenge [Ganusov et al. 2011] as it results from a complex system of factors,
such as virus production in target cells, host-dependent immune responses, and
drug efficacy. We have recently developed a novel mathematical framework for
predicting and quantifying the virus diversity evolution during infection of a host
organism [Bessonov et al. 2020].

In this study we examine the properties of the formulated mathematical model
to shed new light on the collective behavior of virus genome ensembles (strains)
in relation to the parameters of mutation, replication, interaction with the immune
system, and the susceptibility to the antiviral drugs. We consider the equation

∂u
∂t
= D

∂2u
∂x2 + au(1− bI (u))− u f (u)− σ(x)u, (1-2)

describing the evolution of virus density depending on the genotype x considered
as a continuous variable and on time t . The first term in the right-hand side of
this equation characterizes virus mutation and the second term its reproduction;
the next term specifies virus elimination by immune response, and the last term its
death. We now describe each of these terms in more detail.

• Assuming there is a sequence of reversible mutations with consecutive geno-
types xi , we can write the equation for the density ui of virus with genotype xi :

dui

dt
= µ(ui−1− ui )+µ(ui+1− ui ), (1-3)

where µ is the frequency of mutations. This equation represents a discretiza-
tion of the diffusion equation with the diffusion coefficient proportional to µ.
Virus mutation described by the diffusion operator was previously considered
in [Kimura 1964; Sasaki 1994]. In a more general case, one should take into
account a more complex mutation pattern (see, e.g., [Martínez et al. 2011]).

• The virus multiplication term is proportional to the virus density u and to
the quantity of uninfected host cells (1− bI (u)). Here 1 is a dimensionless
total number of cells, and bI (u) is the number of infected cells, which is
proportional to the total virus quantity I (u)=

∫
∞

−∞
u(x, t) dx (see Section 4

for more detail).

• Virus elimination by immune cells is proportional to the virus density and to
the quantity of immune cells c. The latter is supposed to be a function of virus
density. The function f (u) is sufficiently smooth with f (u) > 0 for u > 0.
It grows for sufficiently small u, since the immune response is stimulated by
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antigens, and it can be down-regulated for sufficiently large u, since the high
viral load infection can suppress immune response (via exhaustion mecha-
nisms). This term can contain time delay taking into account clonal expansion
of immune cells [Bocharov et al. 2018], but we do not consider it in this work.

• The last term in the right-hand side of (1-2) describes virus natural death and
its elimination by some antiviral treatment. Let us note that the death rate can
depend on virus genotype x .

We consider virus strain as density distribution concentrated around some geno-
type value. Mathematically speaking, it is a positive solution of (1-2) decaying at
infinity. We will determine conditions of the existence of such solutions to delineate
the rules characterizing the competition of different strains and their response to
treatment. In particular, we will see how the elimination of some strains by treat-
ment can lead to the emergence of the strains resistant to treatment. We will begin
the analysis of the existence and competition of virus strains due to the genotype-
dependent mortality in the absence of immune response (Section 2), and we will
continue with the investigation of the influence of immune response (Section 3).
We discuss the modeling approach and the results in Section 4. Some technical
calculations and proofs are placed in Appendices A, B, and C in order to simplify
the reading of the paper.

2. Localized solutions in the absence of immune response

We begin the analysis of (1-2) in the case without immune response, f (u) ≡ 0.
We will present conditions on the death function σ(x) providing the existence of
localized positive solutions describing virus strains. After that, we will study the
competition of two strains.

2A. Existence of stationary solutions.

Model problem. Consider the equation

Du′′+ u(1− I (u))− σ(x)u = 0 (2-1)

on the whole axis, where I (u) =
∫
∞

−∞
u(x) dx , σ(x) = σ0 > 1 for |x | ≥ x0, and

σ(x)= 0 for |x |< x0, for x0 some positive number. We look for a positive bounded
solution of this equation. Clearly, it can exist only if I (u) < 1. Set

1− I (u)= k2. (2-2)

Then (2-1) can be written as

Du′′+ k2u = 0, |x |< x0, Du′′+ k2u− σ0u = 0, |x | ≥ x0. (2-3)
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Therefore,

u(x)= c1 cos(µx), |x |< x0, u(x)= c2e±λx , |x | ≥ x0,

where c1 and c2 are some positive constants, µ= k/
√

D, and λ=
√
σ0− k2/

√
D

(k2 < σ0). From the continuity of the solution and of its first derivative at x =±x0

we obtain the equalities

c1 cos(µx0)= c2e−λx0, c1µ sin(µx0)= c2λe−λx0 . (2-4)

Dividing the second equation by the first, we get the equation with respect to k:√
σ0− k2 = k tan(kx0/

√
D). (2-5)

We can now determine the integral I (u):

I (u)=
∫
∞

−∞

u(x) dx =
2c1

µ
sin(µx0)+

2c2

λ
e−λx0 .

Taking into account the first relation in (2-4), we have

I (u)= 2c1

(
1
µ

sin(µx0)+
1
λ

cos(µx0)

)
.

The coefficient c1 can be determined from (2-2):

c1 = (1− k2)/(2h(k)), h(k)=
1
µ

sin(µx0)+
1
λ

cos(µx0),

and c2 = c1eλx0 cos(µx0).

Let us recall that we are looking for a solution k < 1 of (2-5). Such solution
exists if x0/

√
D is greater than the critical value

ξ∗ =
1
k

arctan
√
σ0

k2 − 1, (2-6)

and it does not exist if x0/
√

D < ξ∗. For x0 large enough, there are multiple
solutions satisfying this condition. We can now formulate the following result.

Theorem 2.1. Let σ(x)= σ0 > 1 for |x | ≥ x0, and σ(x)= 0 for |x |< x0, where x0

is some positive number. Then (2-1) has a positive solution decaying at infinity for
x0/
√

D > ξ∗, and such solution does not exist for x0/
√

D ≤ ξ∗. Here ξ∗ is given
by expression (2-6).

Generalization of the existence result. The previous theorem is based on the ex-
plicit construction of a solution for a piecewise-constant function σ(x). The exis-
tence result can be generalized for some class of functions using a more sophisti-
cated mathematical method based on the topological degree and a priori estimates
of solutions (Leray–Schauder method).
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Figure 1. Solution u(x, t) of (1-2) in numerical simulations. Left:
projection of solution on the (t, u)-plane for t = 60. Right: 3D
solution for t = 105. The values of parameters are L = 1, a= b= 1,
D = 0.001, σ(x)= 0 for 0.2< x < 0.3 and 0.7< x < 0.8 and = 1
otherwise, and initial condition = 0.1 for 0.5< x < 0.52.

Theorem 2.2. Suppose that σ(x) is a sufficiently smooth bounded function such
that σ(x) = 0 for |x | ≤ x0 and σ(x) ≥ σ0 ≥ 1 for |x | ≥ x1, where x1 > x0 > π/2.
Then (2-1) has a positive solution decaying at infinity.

The proof of this theorem is given in Appendix C.

2B. Two admissible intervals. We showed in the previous subsection that a local-
ized positive solution of (2-1) exists for a sufficiently large admissible interval or for
a small mutation rate (diffusion coefficient). This localized solution corresponds
to a virus strain. In order to study the competition of two strains for the host cells,
we will now consider the death rate function σ(x) with two admissible intervals,
σ(x)= 0 for x1 ≤ |x | ≤ x2 and σ = σ0 > 0 otherwise. Here x2 > x1 > 0.

The analytical solution of (1-2) with such function σ(x) is quite complex, and it
is presented in Appendix A. It is shown that existence and multiplicity of solutions
can be formulated in terms of the parameter h = (x2− x1)/

√
D characterizing the

length of the admissible interval normalized by the diffusion coefficient. There
exists a positive solution decaying at infinity if h > hc for some critical value hc,
and such solution does not exist if h < hc. Moreover, it is shown that there are two
branches of solutions; one of them is a symmetric (even) function, while another
one is asymmetric. In order to study the stability of these solutions, we carry
out numerical simulations of the initial boundary value problem for (1-2) on a
bounded interval 0< x < L with periodic boundary conditions. We set f (u)≡ 0,
and I (u)=

∫ L
0 u(x, t) dx .

An example of numerical simulations is shown in Figures 1 and 2. Behavior
of solutions is characterized by a fast convergence to an intermediate solution and
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Figure 2. Solution u(x, t) of (1-2) in numerical simulations. The
intermediate stationary solution (projection on the (x, u)-plane) is
shown for different initial conditions equal to 0.1 for 0.48< x < 52
(left), 0.49 < x < 0.52 (middle), and 0.50 < x < 0.52 (right). A
small peak at the center of the interval shows the initial condition.
The values of parameters are L = 1, a = b = 1, D = 0.001, and
σ(x)= 0 for 0.2< x < 0.3 and 0.7< x < 0.8 and = 1 otherwise.

then by a slow convergence to a stationary solution (Figure 1). The intermediate
solution resembles two pulses with the maxima located at the centers of the ad-
missible intervals. Since the initial condition is not symmetric with respect to the
center of the interval, this solution is not symmetric either, and the ratio between
the pulses’ maxima depends on the initial condition (Figure 2). The characteristic
time T1 of the convergence to this solution is on the order of 10 (dimensionless
units). After reaching their intermediate values, in this time scale they remain
constant. The intermediate solution converges to the stationary solution in a longer
time scale determined by the value of the diffusion coefficient (Figure 1, right). For
D = 0.001 considered in this example, it is of the order 105, that is, four orders
of magnitude larger. The stationary solution resembles two pulses symmetric with
respect to the center of the interval. Thus, in terms of dynamical systems, we have
a fast manifold with convergence to the intermediate solution and a slow manifold
with convergence to the stationary solution. Though the stationary solution is glob-
ally asymptotically stable, dynamics of solutions in the realistic time scale can be
determined by the intermediate solution.

The convergence time exponentially grows with the decrease of D and becomes
so large for D< 0.001 that the stationary solution may not be reached (Appendix A,
Figure 9). In this case, the dynamics of the solution is determined by the interme-
diate solution, which depends on the initial condition and on the parameters.

Thus, we have an unusual and counterintuitive situation where instead of a
unique (for given parameters) globally stable stationary solution, we should con-
sider a continuous family of intermediate solutions. We will discuss below biolog-
ical implications of this result.
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3. The influence of immune response

3A. Virus reproduction and the effect of antiviral immune response. In order
to study the influence of immune response on virus distribution in the space of
genotypes, we begin with the case without natural genotype-dependent virus death,
σ(x)≡ 0. In this case, the equation for the virus density distribution is

∂u
∂t
= D

∂2u
∂x2 + au(1− bI (u))− u f (u). (3-1)

The immune response function is increasing for u sufficiently small and decreasing
for u sufficiently large. We begin with some model examples.

Constant immune response. Set f (u) ≡ c, where c is a positive constant. Inte-
grating (3-1), we get the equation with respect to integral I (u)(t) considered as a
function of time:

d I
dt
= aI (1− c/a− bI ). (3-2)

If c ≥ a, then I (t)→ 0 as t →∞. If c < a, then I (t)→ (1− c/a)/b. In both
cases, supx u(x)→ 0 as t→∞. Let us discuss this convergence in the case where
c < a. The stationary solution u = 0 of (3-1) is unstable in this case. Indeed,
the corresponding spectral problem has a part of the spectrum in the right half-
plane. However, we affirm that the solution of this equation converges to zero in
the uniform norm. This result seems counterintuitive, and it should be proved.

Proposition 3.1. Let u0(x) be a bounded integrable function. The solution of (3-1)
on the whole axis with the initial condition u(x, 0) = u0(x) uniformly converges
to 0 as t→∞.

Proof. Without loss of generality we can set a = b = 1 and c = 0. It follows from
(3-2) that |1− I (t)| ≤ k1e−t , where k1 is a positive constant. Therefore, solution
u(x, t) of (3-1) can be estimated from above by the solution u1(x, t) of the equation

∂u
∂t
= D

∂2u
∂x2 + k1e−t u. (3-3)

We will show that the solution of this equation with a bounded initial condition
decaying at infinity uniformly converges to 0. If the initial condition u(x, 0) does
not depend on x and it equals some constant k2, then its solution does not depend
on x either, and it satisfies the equation

dv
dt
= k1e−tv, v(0)= k2. (3-4)

We find v(t)= k2ek1e−k1e−t
. Hence,

|v(t)| ≤ k2, t ≥ 0, (3-5)

and a similar estimate holds for the solution u1(x, t) of (3-3).
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Consider a solution u2(x, t) of (3-3) with a bounded even positive integrable
initial condition decaying at infinity. Then the solution is also an even positive
function with a maximum at x = 0. It is bounded by virtue of estimate (3-5).

We will prove that u2(0, t) converges to 0 as t→∞. Suppose that this is not
the case. Then there exists ε > 0 such that

u2(0, t)≥ ε (3-6)

for all t sufficiently large. Indeed, if this is not true, then u2(0, t) converges to 0
along a sequence t = tn . By virtue of the semigroup property of the solution and
estimate (3-5), we conclude that u2(0, t) converges to 0 for all t → ∞. This
contradiction proves (3-6). Next, since the last term in the right-hand side of (3-3)
converges to 0 as t→∞, then u2(x, t)≥ ε/2 for |x | ≤ N (t), where N (t)→∞ as
t→∞. Hence, J (t)=

∫
∞

−∞
u2(x, t) dx→∞ as t→∞.

Integrating (3-3) with respect to x from −∞ to ∞, we obtain the equation
for J (t):

d J
dt
= k1e−t J.

As above, we verify that its solution remains bounded. This contradiction proves
the convergence u2(0, t)→ 0. Since the maximum of this solution is reached at
x = 0, then u2(x, t) uniformly converges to 0 as t→∞.

It remains to note that any positive bounded integrable initial condition for (3-3)
can be estimated from above by an even function satisfying the conditions above.
Therefore, the solution with this initial condition uniformly converges to 0. �

It follows from this proposition that the solution of (3-1) with a constant immune
response uniformly converges to 0. If c ≥ a, then I (u) also vanishes for large time,
while for c< a, it converges to a positive constant. This means that in the first case
infection is completely eliminated, while in the second case, the total virus quantity
remains constant. Furthermore, they do not form a localized solution in the space
of genotypes corresponding to a virus strain but they diffuse in the genotype space
covering a growing genotype range.

Increasing immune response. Clonal expansion of immune cells is stimulated by
the antigen. Therefore, function f (u) is increasing, at least for not very large values
of u for which excess of the virus can lead to the exhaustion of immune response.
If b = 0, then (3-1) is a conventional reaction-diffusion equation in the monostable
case, and its solutions are described by reaction-diffusion waves.

Proposition 3.2. Suppose that f (u) is a smooth growing function, f (u) > 0 for
u > 0. Then (3-1) does not have a positive stationary solution with the zero limits
at infinity.
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Proof. Suppose that (3-1) has a positive stationary solution w(x) with the zero
limits at infinity. Then it satisfies the problem

w′′+w(1− I (w)− f (w))= 0, w(±∞)= 0, (3-7)

where we set, without loss of generality, D = a = b = 1. Then it has a maximum
at some point x = xm , wm = w(xm). Let us verify that

I (w)+ f (wm) < 1. (3-8)

Indeed, if I (w)+ f (wm) > 1, then we obtain a contradiction in signs in (3-7)
at x = xm . If I (w)+ f (wm) = 1, then by virtue of the uniqueness of solution,
w(x)≡ wm , and the conditions at infinity cannot be satisfied.

Since f (w) is an increasing function, it follows from (3-8) that the inequality
I (w)+ f (w(x))<1 holds for all x ∈R. Consider the equationw′′+w(k− f (w))=0,
where k=1− I (w)>0. Since k− f (0)>0, then the equationw′′+w(k− f (0))=0,
linearized about w = 0, does not have positive solutions vanishing at infinity. This
contradiction proves the proposition. �

This proposition affirms that (3-1) does not have a positive stationary solution.
Similar to Proposition 3.1, we can expect that the solution of the Cauchy problem
uniformly converges to zero. This statement is not yet proved, and it represents an
open question for future analysis.

Decreasing immune response. Since virus can kill immune cells and downregulate
immune response (e.g., HIV), we consider here a decreasing function f (u). In the
case of a bounded interval 0< x < L and the integral I (u)=

∫ L
0 u(x, t) dx , (3-1)

has a constant stationary solution. It can lose its stability, resulting in the emergence
of pulses (Figure 3). The bifurcation of pulses can be studied by the conventional
stability and bifurcation analysis. This analysis is not applicable in the case of the
whole axis.

Thus, the case of decreasing immune response is principally different in compar-
ison with a constant or an increasing immune response. Depending on parameters,
there can exist localized positive solutions corresponding to a virus strain.

We consider a model example where the existence of solutions can be proved.

Proposition 3.3. Let f (u)= p−u. Then there exist positive values p1, p2, p1< p2,
such that (3-1) has a positive stationary solution decaying at infinity for p1< p< p2,
and it does not have positive a solution for 0< p < p1 and p > p2.

Proof. We look for a positive solution of problem (3-7). Set k = 1− I (w). Since
0< I (w) < 1, then 0< k < 1. Then problem (3-7) can be written as

w′′+w(k− f (w))= 0, w(±∞)= 0. (3-9)
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Figure 3. Convergence to the stationary solutions of (1-2) for
f (u) = k2e−k3u and different values of the diffusion coefficient:
D = 0.0015 (left) and D = 0.0001 (right). The values of other
parameters are L = 1, a = b = 1, k2 = 0.2, and k3 = 1.

Existence of solution of this problem can be studied analytically. Suppose that such
solution exists, and denote it by wk(x), where the subscript k shows its dependence
on the parameter k. Then we obtain the following equation with respect to k:

1−
∫
∞

−∞

wk(x) dx = k. (3-10)

Existence of its solution determines the existence of solution of problem (3-7). For
f (w)= b−w, (3-9) becomes

w′′− pw+w2
= 0,

where p = b− k. Set w(x)= pv(
√

px). Then v(y) satisfies the equation

v′′− v+ v2
= 0.

It has a positive solution v0(y) such that v0(±∞)= 0. Hence, wk(x)= pv0(
√

px),
and from (3-10) we obtain

I0
√

b− k = 1− k, (3-11)

where I0 =
∫
∞

−∞
v0(y) dy. Assertion of the proposition follows from the analysis

of this equation. �

The method of solutions presented here can be generalized for the functions
f (u)= b− un , n > 1.

3B. Interaction of genotype-dependent virus mortality and immune response.
We can now study the interaction of immune response with the genotype-dependent
virus mortality. If the function σ(x) has two admissible intervals, then we showed
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Figure 4. Numerical simulations of (1-2). In the case of symmet-
ric initial condition, there is a bimodal virus density distribution
with equal peaks (left). A small asymmetry in the initial condition
leads to the disappearance of one peak and to the increase of the
other one (right). The values of parameters are L = 1, a = b = 1,
D = 0.001, σ(x)= 0 for 0.2< x < 0.3 and 0.7< x < 0.8 and = 1
otherwise, initial condition = 0.1 for 0.48 < x < 0.52 (left) and
0.481< x < 0.52 (right), f (u)= k2e−k3u , k2 = 0.2, and k3 = 1.

in Section 2B that two strains coexist. Their dynamics is described by intermedi-
ate solutions slowly convergent to the symmetric bimodal distribution. Immune
response influences these dynamics, and this influence depends on the immune
response function f (u).

Increasing immune response. We begin the analysis of the influence of immune
response on competing virus strains with the case of an increasing function f (u).
We consider for certainty a linear function, f (u) = k1u. In this case, even if the
initial condition is not symmetric, the solution rapidly converges to a symmetric
distribution with equal peaks in the admissible intervals. The intermediate solutions
observed before are not detected here.

Decreasing immune response. In the case of a decreasing function, f (u)= k2e−k3u ,
the bimodal solution is symmetric in the case of a symmetric initial condition.
However, a small asymmetry of the initial condition leads to the disappearance
of one strain and to the increase of another one (Figure 4). Thus, the symmetric
solution exists but is unstable.

Bell-shaped immune response. Consider the immune response function f (u) =
k1ue−k3u growing for small u and decaying for large u. In the case of two admissi-
ble intervals, the solution can converge to a unimodal or to a bimodal distribution
depending on the values of parameters (Figure 5). If k3 is sufficiently small, then
the growing branch of this function determines the behavior of solutions, and there
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Figure 5. Numerical simulations of (1-2) in the case of bell-
shaped function f (u) and two admissible intervals of the function
σ(x). Depending on the values of parameters, there are two per-
sistent strains, or one of them vanishes. The values of parameters
are L = 1, a= b= 1, σ(x)= 0 for 0.2< x < 0.3 and 0.7< x < 0.8
and = 1 otherwise, initial condition = 0.9 for 0.481 < x < 0.52,
f (u)= k1ue−k3u , and k1 = 1. Two examples of the simulations at
the right are carried out with D = 0.001, k3 = 1, and k3 = 1.2.

are two persistent strains. If k3 is large enough, then the decaying branch becomes
dominating, and only one strain survives.

3C. The influence of treatment. In the case of two admissible intervals of the
genotype-dependent mortality function σ(x), there are two persistent strains rapidly
converging to intermediate asymptotics depending on initial condition (Section 2B).
Immune response can either preserve both strains or eliminate one (Section 3B).

We will now analyze how the competition of virus strains is influenced by a
genotype-dependent virus treatment. We suppose that the function σ depends on
time,

σ(x, t)=
{
σ0(x), 0≤ t ≤ t0,
σ1(x), t > t0.

Here σ0(x) is the original mortality rate, t0 is the moment of time when treatment
is applied, and σ1(x) is the mortality rate for which the effect of treatment is taken
into account. In particular, treatment can eliminate one of the admissible intervals
and influence the corresponding strain.

Let us illustrate the influence of treatment on the dynamics of virus strains by a
simple case without immune response, f (u)≡ 0. Consider two admissible inter-
vals, I1 = [0.2, 0.3] and I2 = [0.7, 0.8], where σ0(x)= 0, and σ0(x)= 1 outside of
these two intervals. The emergence of virus strains depends on the initial condition.
If it is localized at the center of the interval (0.49< x < 0.51), then two equal strains
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Figure 6. Numerical simulations of (1-2) without immune re-
sponse and with a time-dependent mortality rate σ . In the case of
two equal strains, treatment eliminates one of them and reinforces
another one (left). In the case of a single strain, treatment elim-
inates it leading to the emergence of another strain (right). The
values of parameters are L = 1, a = b = 1, D = 0.0001, σ(x)= 0
for 0.2 < x < 0.3 and 0.7 < x < 0.8 and = 1 otherwise, initial
condition = 0.1 for 0.49 < x < 0.51 (left) and 0.24 < x < 0.26
(right), and f (u)≡ 0.

emerge in the corresponding admissible intervals (Figure 6, left). At some moment
of time t = t0 we change the mortality rate to the function σ1(x) such that it equals 0
only in the first admissible interval, and it equals 1 in the second interval. Then the
second strain rapidly disappears while the first strain grows. The total viral load
(the integral of solution) does not change.

In the second case, the support of the initial condition is localized inside the first
admissible interval, 0.24≤ x ≤ 0.26. Only one strain emerges while another one
is absent (cf. Section 2B). Applying treatment, we eliminate the first virus strain.
After some time, the second strain appears (Figure 6, right). It could not appear
before treatment because of the competition between the strains. Thus, an antiviral
treatment can lead to the emergence of new strains. Moreover, the new strain is
resistant to treatment since treatment acts on the first admissible interval but not
on the second one.

4. Discussion

Virus mutation represents a big challenge for biomedical research and clinical
medicine. There are hundreds of HIV mutants which can replace each other in the
process of treatment. Resistant strains can emerge due to their natural evolution
or due to antiviral treatment. On the other hand, virus evolution is an interesting
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object of theoretical studies. It has some features in common with the evolution of
biological species, but it is faster and explicit in the sense that the virus itself is a
relatively simple object, and its environment is also reduced to the host organism.
Immune response of the host organism is very complex, but in the first approxi-
mation its consideration can be reduced to the multiplication of immune cells as a
reaction to the antigen and to the elimination of the antigen.

Model. There are two main approaches to model virus mutations, discrete and
continuous. In the discrete approach, there is a finite number of strains interacting
with each other due to mutations (fluxes) and, possibly, due to the competition for
host cells [Nowak and May 2000]. The corresponding ODE models resemble the
models of competition of species in population dynamics. The advantage of such
models is that they can be biologically realistic since virus strains and mutation
characteristics can be taken from biological data. Furthermore, such models are
relatively simple and easy to study in the case of two or three strains. However,
they become very cumbersome for a large number of strains (equations), and their
detailed analysis is literally impossible.

In continuous models, virus density distribution is considered as a function of
genotype interpreted as a continuous variable [Kimura 1964; Sasaki 1994]. Though
it is more difficult in this approach to describe a complex graph of virus strain con-
nections by mutations, it is more appropriate to the investigation of the dynamics of
this distribution. In this work we further develop this approach taking into account
virus competition for host cells, immune response, and genotype-dependent mor-
tality either natural or due to the antiviral treatment. This model is represented by
the nonlocal reaction-diffusion equation (1-2), where the nonlocal term determines
the virus multiplication rate. Indeed, the rate of cell infection is proportional to the
virus density u with the logistic limitation term (1− bI (u)) depending on the total
virus quantity. It is similar to carrying capacity in population dynamics, and it
determines the limitation on the total infection supported by the organism. Hence,
the concentration of infected cells Ci is described by the equation

dCi

dt
= ku(1− bI (u))− γCi ,

where the last term on the right-hand side characterizes death of infected cells. In
the quasistationary approximation where the rates of cell infection and death are
sufficiently high, we get Ci = k/γ u(1− bI (u)). Thus, the virus multiplication
term, which is proportional to the concentration of infected cells Ci , can be written
as au(1− I (u)) (see (1-2)).

Let us note that there are two possible time delays in the model, one of them
in the virus multiplication term and another one in the immune response term due
to the clonal expansion of immune cells. Time delay in the immune response
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is taken into account in the reaction-diffusion models with time delay [Bessonov
et al. 2020; Bocharov et al. 2016; Trofimchuk and Volpert 2018]. In this work we
consider either stationary solutions of the corresponding equations or their long-
time dynamics. Moreover, the characteristic diffusion time related to mutations is
much longer than the characteristic time of virus multiplication or cell proliferation.
In this case, the influence of time delay can be neglected.

Virus strains. From the modeling point of view, a virus strain can be represented by
a density distribution concentrated around some genotype x0 and rapidly decaying
as the genotype x goes away from x0. A persistent virus strain corresponds to a
positive stable stationary solution u0(x) with a maximum at some x = x0. Existence
of such solutions is not a priori known, and one of the objectives of our modeling
study is to establish the conditions of the existence and stability of such solutions.

In our previous work [Bessonov et al. 2020], we showed that there are two
mechanisms leading to the existence of stable stationary solutions of (1-2). One of
them is determined by the admissible intervals where the virus mortality rate is low.
Another one is related to the immune response. It is important to note here that
the immune response function should have a decreasing branch. Otherwise, virus
strains considered as positive stationary solutions of (1-2) decaying at infinity do
not exist. For the existence of strains, admissible intervals should be sufficiently
large and the virus mutation rate (diffusion coefficient) sufficiently small.

Competition of strains. The main goal of this work is to study the competition of
virus strains emerging in two different admissible intervals. In the case without
immune response, the behavior of strains should be considered in two time scales,
fast and slow. In the fast time scale, they rapidly converge to some intermediate
stationary solutions. The characteristic convergence time is on the order of 10
dimensionless time units. In the time scale of 102–103 units, they do not practically
change. The relative abundance of the two strains depends on the initial viral load
(initial condition). Thus, there is a continuous family of intermediate stationary
solutions determined by the initial condition.

In a slow time scale on the order of 105 units, both strains become equal to
each other. It should be noted that the characteristic fast and slow scales strongly
depend on the diffusion coefficient. The values presented in our study are obtained
for D = 10−3. The order of magnitude of the slow time scale rapidly grows with
the decrease of the diffusion coefficient, and for D = 10−4 the limitation on the
computational time does not allow us to reach it.

From the biomedical point of view, the existence of a family of intermediate
solutions can bear important implications. In a short time scale, one needs to treat
the strains determined by the initial viral load and not by their asymptotics for large
time.



GENOTYPE-DEPENDENT VIRUS DISTRIBUTION AND COMPETITION OF STRAINS 117

We have shown that the mode of immune response strongly influences the be-
havior of solutions. A growing response function f (u) eliminates the long scale
dynamics, and the passage to the equal strains becomes fast. A decreasing response
function eliminates one of the two competing strains. Finally, a bell-shaped func-
tion can have both effects depending on which of its two branches is dominating.

Limitations and perspectives. Equation (1-2) is derived under the assumption of
consecutive mutations (see (1-3)). It can be considered as a small selection approx-
imation of a more general model [Saakian et al. 2008] with a symmetric fitness
function. The model considered in this work does not take into account complex
intracellular regulation of virus reproduction and of immune response, the participa-
tion of different cells in the immune response, and some other aspects of virus-host
interaction. On the other hand, this simplification allows us to reveal some general
qualitative properties of virus evolution which might be impossible to predict in a
more detailed model.

Overall, the presented modeling approach opens up interesting perspectives
and allows various developments including time delay, other nonlocal terms, two-
dimensional problems, and so on.

Appendix A: Stationary solution for two admissible intervals

Consider the equation

Du′′+ u(1− I (u))− σ(x)u = 0 (A-1)

on the whole axis, where σ(x) = 0 for x1 ≤ |x | ≤ x2 and σ(x) = σ0 for |x | < x1

and |x | > x2. Here σ0, x1, and x2 are some positive numbers, x1 < x2. We will
search for a nonzero bounded solution of this equation with zero limits at infinity.

Set
1− I (u)= k2. (A-2)

If I (u)≥ 1, then u = 0 is the only bounded solution of (A-1). Hence, 0< I (u) < 1,
and k2 < 1. Then (A-1) can be written as

Du′′+ (k2
− σ0)u = 0, |x |< x1, |x |> x2, (A-3)

Du′′+ k2u = 0, x1 ≤ |x | ≤ x2. (A-4)

Assuming that k2 < σ0, we will look for its solution in the form

u(x)=


c1eλx , x <−x2,

c2 cos(µx)+ c3 sin(µx), −x2 ≤ x ≤−x1,

c4eλx
+ c5e−λx , −x1 < x < x1,

c6 cos(µx)+ c7 sin(µx), x1 ≤ x ≤ x2,

c8e−λx , x > x2,
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where
λ=

√
σ0− k2/

√
D, µ= k/

√
D.

From the continuity of the solution and of its first derivative,

u(±xi − 0)= u(±xi + 0), u′(±xi − 0)= u′(±xi + 0), i = 1, 2,

we get the equations

c1e−λx2 = c2 cos(µx2)− c3 sin(µx2), (A-5)

c1λe−λx2 = c2µ sin(µx2)+ c3µ cos(µx2), (A-6)

c4e−λx1 + c5eλx1 = c2 cos(µx1)− c3 sin(µx1), (A-7)

c4λe−λx1 − c5λeλx1 = c2µ sin(µx1)+ c3µ cos(µx1), (A-8)

c4eλx1 + c5e−λx1 = c6 cos(µx1)+ c7 sin(µx1), (A-9)

c4λeλx1 − c5λe−λx1 =−c6µ sin(µx1)+ c7µ cos(µx1), (A-10)

c8e−λx2 = c6 cos(µx2)+ c7 sin(µx2), (A-11)

−c8λe−λx2 =−c6µ sin(µx2)+ c7µ cos(µx2). (A-12)

Since we are looking for a nonzero solution, then the determinant of this system
should be equal zero. This condition gives an equation with respect to k. The
additional condition (A-2) will allow us to determine the coefficients ci and the
solution. From (A-5) and (A-6), we get

c2 = f2(λ, µ)c1, c3 = f3(λ, µ)c1, (A-13)

where
f2(λ, µ)= e−λx2(µ cos(µx2)+ λ sin(µx2))/µ,

f3(λ, µ)= e−λx2(−µ sin(µx2)+ λ cos(µx2))/µ.

From (A-7) and (A-8),

c4 = f4(λ, µ)c1, c5 = f5(λ, µ)c1, (A-14)

where

f4(λ,µ)=((λcos(µx1)+µsin(µx1)) f2+(−λsin(µx1)+µcos(µx1)) f3)eλx1/(2λ)

=(2λµcos(µ(x2−x1))+(λ
2
−µ2)sin(µ(x2−x1)))eλ(x1−x2)/(2λµ),

f5(λ,µ)=((λcos(µx1)−µsin(µx1)) f2−(λsin(µx1)+µcos(µx1)) f3)e−λx1/(2λ)

=(λ2
+µ2)sin(µ(x2−x1))e−λ(x1+x2)/(2λµ).

From (A-9) and (A-10), we get

c6 = f6(λ, µ)c1, c7 = f7(λ, µ)c1, (A-15)
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where

f6(λ, µ)= (( f4eλx1 + f5e−λx1)µ cos(µx1)− ( f4eλx1 − f5e−λx1)λ sin(µx1))/µ

= f4(µ cos(µx1)− λ sin(µx1))eλx1/µ+ f5(µ cos(µx1)+ λ sin(µx1))e−λx1/µ,

f7(λ, µ)= (( f4eλx1 + f5e−λx1)µ sin(µx1)+ ( f4eλx1 − f5e−λx1)λ cos(µx1))/µ

= f4(µ sin(µx1)+ λ cos(µx1))eλx1/µ+ f5(µ sin(µx1)− λ cos(µx1))e−λx1/µ.

From (A-11) and (A-12),

c6λ cos(µx2)+ c7λ sin(µx2)= c6µ sin(µx2)− c7µ cos(µx2).

Taking into account (A-15), we obtain

f4(2λµ cos(µ(x2− x1))+ (λ
2
−µ2) sin(µ(x2− x1)))eλx1

= f5(λ
2
+µ2) sin(µ(x2− x1))e−λx1 .

Substituting the expressions for f4, f5, we obtain f 2
4 = f 2

5 , or

2λµ cos(µ(x2−x1))+(λ
2
−µ2) sin(µ(x2−x1))=±(λ

2
+µ2) sin(µ(x2−x1))e−2λx1 .

Hence,

tan(µ(x2− x1))=
2λµ

µ2− λ2± (µ2+ λ2)e−2λx1
. (A-16)

This equality can be considered an equation with respect to k:

tan(k(x2− x1)/
√

D)=
2k
√
σ0− k2

2k2− σ0± σ0e−2
√
σ0−k2x1/

√
D
. (A-17)

Let us note that the sign + in this equation corresponds to the symmetric solution
and − to an asymmetric solution (see Figure 7). For x1 = 0 we obtain the same
equation as for the single admissible interval.

In order to describe the behavior of solutions of this equation under the variation
of parameters, let us denote h = (x2− x1)/

√
D. We will consider h as an indepen-

dent parameter and will vary it for the other parameters σ0 and x1/
√

D fixed. If h
is small enough, then (A-17) does not have solutions with |k|< 1. If h is greater
than some critical value h1

c , then there is a solution |k| < 1 of the equation with
sign +. In the interval k1

c < k < k2
c for some other critical value k2

c , there is only
one solution. The second solution, corresponding to the equation with − appears
for k > k2

c (Figure 8). The branch of solutions of the equation with − disappears
for some k3

c because the right-hand side of this equation becomes infinite. On the
other hand, another branch of tangent in the left-hand side of this equation provides
a solution with a negative k. Next, the first branch of solutions for the equation
with + disappears for some k4

c > k3
c , and it also reappears for k < 0.
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Figure 7. Graphical solution of (A-17) for the values of parame-
ters σ = 1.2, x1/

√
D = 1, (x2− x1)/

√
D = 1.2 (left), and = 2.8

(right). The function on the left-hand side of this equation is shown
by a solid line, and the right-hand side with + is shown by a dotted
line and with − by a dashed line.

Figure 8. Schematic representation of the bifurcation diagram.
The solid line corresponds to the solution of (A-17) with + and
the dashed line to the solution of the equation with sign −.

Thus, this equation can have zero, one, or two solutions depending on h. Further
increase of h brings other branches of tangent and the number of solutions grows.
However, we are interested only in positive and stable solutions. We expect that
the branch of solutions of the equation with + is stable for small h, and with − for
large h. There can exist an interval of bistability for h3

c < h < h4
c .

We can now find the integral I (u). In the symmetric case,

I (u)= 2
∫ 0

−∞

u(x) dx

= 2
[

c1

λ
e−λx2 +

1
µ
(c2 sin(µx)− c3 cos(µx))x1

−x2
+

c4

λ
(eλx
− e−λx)0

−x1

]
.
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Figure 9. The maximal value of the stationary solution (solid
line) and characteristic convergence time to the stationary solution
(dashed line). The values of parameters are L = 1, a = b = 1,
D = 0.001, σ(x)= 0 for 0.2< x < 0.3 and 0.7< x < 0.8 and = 1
otherwise, and initial condition = 0.1 for 0.49< x < 0.52.

From expressions (A-13), (A-14), and (A-15) and equality (A-2), we find c1. There-
fore, we can determine the coefficients c2, c3, c4 and the solution u(x). It can be
done similarly in the nonsymmetric case.

Figure 9 shows the dependence of the stationary solution on the diffusion coef-
ficient and of the convergence time to the stationary solution. We determine the
convergence time Tc as the time when the difference |u1

m − u2
m | of the two maxima

u1
m and u2

m of the pulses becomes less than 0.01. The convergence time rapidly
increases as the diffusion coefficient decreases, and the simulation time becomes
too large for D < 0.001.

Appendix B: Numerical implementation

In numerical simulations we consider the equation

∂u
∂t
= D

∂2u
∂x2 + au(1− bI (u))− u f (u)− σ(x)u

on a bounded interval 0< x < L with two different realizations:

• Periodic boundary conditions, and the integral is given by the formula

I (u)=
1

2N

∫ x+N

x−N
u(x, t) dx .

If the limits of the integral go beyond the interval [0, L], then the function
u(x, t) is continued by periodicity.
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• Neumann boundary conditions, and the integral is given by the formula

I (u)=
∫ L

0
u(x, t) dx .

The numerical results presented in the work have been obtained with the first
method. We have verified that the second method gives similar results.

Appendix C: Proof of Theorem 2.2

Consider the equation

u′′+ u(1− I (u))− σ(x)u = 0 (C-1)

on the whole axis, where I (u)=
∫
∞

−∞
u(x) dx and σ(x) is a bounded nonnegative

sufficiently smooth function. We look for positive solutions of this equations with
zero limits at infinity. We will apply here the topological degree method. We begin
with a priori estimates of solutions.

Lemma C.1. Let u(x) be a positive solution of (C-1), u(±∞)= 0. Then I (u) < 1.

The proof of the lemma follows directly from the maximum principle. Indeed, if
I (u)≥ 1, then u(x) is a solution of the equation u′′+q(x)u = 0 with q(x)≤ 0 and
q(x) 6≡ 0. Therefore, u(x) cannot have positive maximum or negative minimum.
Hence, u(x)≡ 0.

Lemma C.2. Suppose that σ(x)= σ0 > 1 for |x | ≥ x1 with some positive σ0 and x1.
Then u(x1) <

√
σ 0/2.

Proof. For x ≥ x1, (C-1) gives u′′−au = 0, where a = σ0− (1− I (u)) < σ0, a > 0.
Then

u(x)= u(x1)e−
√

a(x−x1),

∫
∞

x1

u(x) dx =
u(x1)
√

a
>

u(x1)
√
σ 0
.

Hence,

1> I (u) > 2
∫
∞

x1

u(x) dx >
2u(x1)
√
σ 0

.

This inequality proves the lemma. �

Lemma C.3. Suppose that σ(x) is a continuous function and supx σ(x)≤M. Then
a positive solution u(x) admits an estimate which depends only on M.

Proof. The solution u(x) of (C-1) satisfies the boundary problem

v′′+ b(x)v = 0, v(±x1)= u(±x1),

on the interval −x1≤ x ≤ x1. Here b(x)= 1− I (u)−σ(x) is a bounded continuous
function, |b(x)| ≤ M + 1 ≡ m. According to the previous lemma, the boundary
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values of the solution are bounded. Therefore, it is sufficient to estimate a maxi-
mum of the solution inside the interval. Suppose that the function v(x) has a global
maximum at some point x0 ∈ [−x1, x1]. Then

|v′(x)| =
∣∣∣∣∫ x

x0

v′′(y) dy
∣∣∣∣≤ mv(x0)|x − x0|.

Hence,

v(x)= v(x0)+

∫ x

x0

v′(y) dx ≥ v(x0)−
1
2 mv(x0)(x − x0)

2
= v(x0)g(x),

where g(x) = 1
2 −m(x − x0)

2. Denote by � the interval in [−x1, x1] where this
function is positive. Then

∫
�

g(x) dx ≥ κ > 0, where the constant depends only
on M and possibly on x1. Hence, 1 > I (v) > κv(x0). This estimate proves the
lemma. �

We will use the topological degree theory to prove the existence of solutions
[Volpert 2014]. Lemma C.3 above provides a priori estimates of solutions. Con-
sider the operator

Aθ (u)= u′′+ u(1− I (u))− σθ (x)u,

acting from the Hölder space C2+α(R) into the space Cα(R). Here 0< α < 1 and
θ ∈ [0, 1] is a parameter. We will suppose for simplicity that σθ (x) is an infinitely
differentiable function with respect to x and θ . Other conditions will be specified
later.

Denote by Lθ the operator obtained by linearization of the operator Aθ (u) about
u = 0:

Lθv = v′′+ v− σθ (x)v.

Lemma C.4. Suppose that the principal eigenvalue of the operator Lθ is positive
for θ0 ≤ θ ≤ θ1 and for some θ0, θ1. Then there exists ε > 0 such that um =

supx u(x)≥ ε for any positive solution of the equation Aθ (u)= 0, θ0 ≤ θ ≤ θ1.

Proof. Suppose that the assertion of the lemma does not hold and there is a sequence
of solutions uk(x) for θ = θk such that umk → 0. Without loss of generality we can
assume that θk→ θ∗ for some θ∗ ∈ [θ0, θ1]. Then

0= Aθk (uk)= Aθk (0)+ Lθk uk + o(‖uk‖)= Lθk uk + o(‖uk‖).

Set vk = uk/‖uk‖. Then Lθkvk = o(1). Since Lθk is proper with respect to v and θ ,
the sequence vk is compact and we can choose a convergent subsequence vk→ v0.
Hence, Lθ∗v0 = 0. Since the functions uk(x) are positive, then v0(x) > 0 for all x .
Therefore, the operator Lθ∗ has a zero eigenvalue with a positive eigenfunction.
However, the only positive eigenfunction corresponds to the principal eigenvalue.
We obtain a contradiction with the assumption that the principal eigenvalue of the
operator Lθ∗ is positive. �
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Theorem C.5. Suppose σ(x)= σ0 > 1 for |x | ≥ x1 with some positive σ0 and x1,
and the principal eigenvalue of the problem

u′′+ u− σ(x)u = λu (C-2)

is positive. Then (C-1) has a positive solution converging to 0 at infinity.

Proof. Set σθ (x) = (1− θ)σ (x)+ θσ0. Since σ0 > 1, then the operator L1 has
the spectrum in the left half-plane. Let us note that the essential spectrum Se(Lθ )
of the operator Lθ does not depend on θ , and Re Se(Lθ ) ≤ −δ < 0 for some
positive δ. Denote the principal eigenvalue of this operator, that is, the eigenvalue
with the maximal real part, by λ0(θ). According to the assumption of the theorem
λ0(0) > 0. It is a monotonically decreasing function of θ ∈ [0, 1], and there exists
such θ0 ∈ [0, 1] that

λ0(θ0)= 0, λ0(θ) > 0 for 0< θ ≤ θ0, λ0(θ) < 0 for θ0 < θ ≤ θ1.

Here θ1 is some value in the interval (θ0, 1]. Since the eigenvalue can approach the
essential spectrum, we cannot guarantee its existence for all θ ∈ [0, 1].

Let us consider the equation Aθ (u) = 0 in a small vicinity of the bifurcation
point θ = θ0. For this value of parameter, the trivial solution u = 0 loses its
stability, leading to the appearance of another solution uθ (x). This solution is
positive since the principal eigenfunction v0(x) is positive [Volpert and Volpert
2000]. Furthermore, the index of this solution, that is, the value of the degree
with respect to a small ball containing this solution, equals 1. Indeed, from the
homotopy invariance of the degree, it follows that

ind(0)+ ind(uθ )+ ind(ũθ )= 1

for all θ > θ0 and sufficiently close to θ0. Here ũθ (x) is a negative solution bifurcat-
ing from the trivial solution and approaching −v0(x). Since ind(0)=−1 because
it equals (−1)ν , where ν = 1 is the number of positive eigenvalues of the linearized
operator, then ind(uθ )= ind(ũθ )= 1.

It follows from Lemma C.3 that ‖u‖C2+α(R) < M0 for some positive constant M0

and for any positive solution u of the equation Aθ (u)= 0. Next, from Lemma C.4
we conclude that ‖u‖C2+α(R) > δ(θ) for some positive δ(θ), θ < θ0. Consider the
domain

�= {u ∈ C2+α(R) | u(x) > 0, x ∈ R, δ0 < ‖u‖C2+α(R) < M0}

for some δ0> 0 sufficiently small. Choose θ2<θ0 such that δ(θ)> δ0 for 0≤ θ ≤ θ2.
Since Aθ (u) 6= 0 for u ∈ ∂�, 0 ≤ θ ≤ θ2, then the value of the degree γ (Aθ , �)
does not depend on θ ∈ [0, θ2]. Hence, γ (A0, �)= γ (Aθ2, �)= ind(uθ2)= 1, and
equation A0(u)= 0 has a solution in �. �
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MODELING THE LINEAR DYNAMICS
OF CONTINUOUS VISCOELASTIC SYSTEMS

ON THEIR INFINITE-DIMENSIONAL CENTRAL SUBSPACE

ANGELO LUONGO AND FRANCESCO D’ANNIBALE

A metamodel of linear viscoelastic continuum is formulated. Internal variables,
of arbitrary number, are introduced to describe the viscous part of the strain, and
a wide class of constitutive laws, suggested by rheological models, is considered.
The spectral properties of the system are discussed. Based on the separation of
the eigenvalues occurring when the viscous moduli are small, the system is re-
duced to its infinite-dimensional central subspace, on which the steady dynamics
takes place. Both the center manifold method and the multiple scales method
are used to build the reduced model, which is formulated in terms of the only
observable variables. Examples relevant to one-, two-, and three-dimensional
continua are worked out to illustrate the theory, in conjunction with the standard
three-parameter model and the five-parameter model.

1. Introduction

Linear viscoelasticity, both in statics and dynamics, has often been considered a
“simple” matter, since it’s somewhat “similar” to linear elasticity. In fact, a well
known elastic-viscoelastic correspondence principle [Flügge 1975] states that the
two problems are formally equal when they are both transformed in the Laplace or
Fourier domains. Thus, transformation is believed to be the best way to study vis-
coelastic problems, although often nontrivial antitransformations are needed when
one desires to build the response time history [Narayanan and Beskos 1982].

There exist, of course, studies in which the system dynamics is analyzed in the
time domain, for discrete or discretized systems, via finite or boundary elements
methods (see, e.g., [Golla and Hughes 1985; Sim and Kwak 1988; McTavish and
Hughes 1993; Schanz 1999; 2001; Hatada et al. 2000; Lewandowski et al. 2012;
Syngellakis 2003; Baroudi et al. 2019]). An example of analysis which makes use
of an the internal variable formulation is given in [Lewandowski et al. 2012]. All
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MSC2010: 74D05, 74H10, 74H40, 74H45, 74Q10.
Keywords: continuous viscoelastic metamodel, internal variables, linear dynamics, center manifold,

multiple scales method, viscoelastic beam on viscoelastic Winkler soil, viscoelastic plate,
viscoelastic Cauchy continuum.
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these studies, however, seem to not completely exploit the spectral characteristics
of viscoelastic systems when damping, as usual, is small. In this case, indeed, the
dynamics is made of a fast transient phase, and a successive steady-state phase,
which takes place in a space of reduced dimensions, equal to those of the elastic
system. This property was instead used by the authors in a recent paper [Luongo
and D’Annibale 2017a], where a reduction method was proposed to contract the
dimension of the discrete system to that of the associated elastic system. The
procedure was based on the center manifold method, which is a common tool
used in bifurcation analysis, designed to tackle nonlinear systems, and adapted in
[Luongo and D’Annibale 2017a] to linear systems (similarly to what was done in
[Shaw and Pierre 1991] in dealing with nonlinear normal modes).

The method discussed in [Luongo and D’Annibale 2017a] sheds light on an-
other form of the correspondence principle which does not seem to have been
explored yet, i.e., on a similarity holding not only in the transformed domains
(where it exactly holds), but also in the time domain, although in the context of
an asymptotic (and, therefore, approximate) theory. However, the procedure of
[Luongo and D’Annibale 2017a] was limited to discrete systems, and did not seem,
at first glance, to be straightforwardly extendible to infinite-dimensional systems.
As a matter of fact, the center manifold theorem has only been proved for finite-
dimensional central subspaces (i.e., for a finite number of eigenvalues lying on the
imaginary axis, or close to it). However, a favorable circumstance exists in the
viscoelastic case, namely that the whole space of displacement and velocities is
of interest. In other words, we do not have to worry about describing an infinite-
dimensional subspace in which a subset of displacements and velocities appear
(as, for example, would be the case for a system undergoing an infinite number of
buckling modes), but we have to take all the displacements and velocities which
are admissible for the model. In this paper, we will prove (by a heuristic approach)
that this circumstance still allows the use of the center manifold theorem.

The paper is organized as follows. In Section 2 a continuous viscoelastic meta-
model using internal variables is formulated. In Section 3 both the center manifold
and the multiple scales methods are applied to build a reduced system. In Sections
4, 5, and 6 sample systems, of increasing complexity, are worked out, and their
reduced counterparts are derived. In Section 7 some conclusions are presented.
Finally, in the Appendix an illustrative numerical example, concerning a homoge-
nized microstructured viscoelastic one-dimensional continuum, is detailed.

2. Continuous viscoelastic metamodel

A dynamic linear metamodel of viscoelastic continuum is formulated. To this
end a matrix notation is adopted, by denoting algebraic matrices by bold roman
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Figure 1. Rheological solid models: standard three-parameter
(left) and five-parameter (right).

characters and formal matrices, made of linear differential operators, by bold cal-
ligraphic characters.

Kinematics and equilibrium of the system are governed by

Du = e,

Da s = f (x, t)−Mü,
(1)

which are constrained by geometrical and mechanical boundary conditions. Here,
u(x, t), e(x, t), s(x, t) are column matrices collecting displacements, strains, and
stress fields, respectively, and depending on position x and time t ; D, and its
adjoint Da , are the kinematic and equilibrium operators, collecting derivatives with
respect to the coordinates x; f (x, t) is the column matrix of the active forces; M is
the inertia matrix; and the dot denotes differentiation with respect to the time t .

A class of viscoelastic constitutive laws is considered, which can be derived
through kinematics and equilibrium and constitutive equations of rheological mod-
els. These latter are multiparameter solid models, made of Kelvin–Voigt (in-parallel
spring/dashpot) elements, which are assembled in series to a spring device. Accord-
ingly, the constitutive law reads

s = Ce(e− ev),

ev =�κ,

κ̇ =3ee−3Rκ .

(2)

Here, ev is the viscous part of the strain, so that e−ev is the elastic part; stresses are
assumed to be proportional to these latter parts by way of the squared elastic matrix
Ce = CT

e . The viscous strains, however, are linearly dependent on a generally
larger number of internal variables κ [Moreau 1970; Maugin and Muschik 1990;
Lemaitre and Chaboche 1990], to which they are connected via the rectangular
matrix �, accounting for the topology of the underlying rheological model. For
example, if reference is made to the standard three-parameter model (Figure 1,
left), then ev and κ coincide, being equal to the elongation εKV of the Kelvin–
Voigt submodel; if, instead, the five-parameter model is adopted (Figure 1, right),
ev = κ1+ κ2, with κi (i = 1, 2) the elongation of the i-th Kelvin–Voigt submodel.
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Equation (2)1 is the state law, while (2)3 is the flow law, governing the evolution
of the internal variables, here taken as linear; in it, 3e,3R are matrices of material
constants, having dimension of the inverse of time, here referred to as relaxation
matrices.

By combining (1) and (2) the following equations of motion, in state form, are
derived: u̇

v̇

κ̇

=
 0 I 0
−M−1Ke 0 M−1Da Ce�

3eD 0 −3R

u
v

κ

+
 0

M−1 f (x, t)
0

 (3)

where Ke :=Da CeD is the elastic stiffness operator. They are a set of equations
in N scalar displacement fields u, N scalar velocities v, and M internal variables κ .
System (3) must be integrated with boundary conditions and the initial conditions
(assuming the system is initially at rest)

u(0)= 0, v(0)= 0, κ(0)= 0. (4)

3. Subspace reduction

The main hypothesis that all the viscous moduli of the structure are small is in-
troduced so that the system is weakly damped. This smallness is accounted for
by letting O(|3ϑ |)= ε

−1, with ε a small perturbation parameter (ϑ = e, R). The
existence of this parameter in the flow law makes the equations of motion singularly
perturbed (since a small parameter affects the highest derivative [Fusco and Hale
1989; Nayfeh 2000]). It is easy to check, for example via a perturbation method
[Luongo and D’Annibale 2017a], that such systems admit a well separated set
of eigenvalues: (a) strongly damped real eigenvalues, on the order of ε−1, and
(b) weakly damped complex conjugate eigenvalues, whose negative real part is of
order ε. The real eigenvalues are responsible for fast decaying motions and the
complex eigenvalues for weakly decaying oscillatory motions. When ε decreases
towards zero, the real eigenvalues move to the left side of the complex plane, mak-
ing the decaying motion faster; the complex eigenvalues instead approach the imag-
inary axis, rendering the oscillatory motion more weakly decaying. The contrary,
of course, occurs, when ε increases from zero.1

It is important to underline the fact that such a well separated spectrum can be
recognized in viscoelastic structures when the order of magnitude of the relaxation
time of the viscoelastic material is smaller than the natural periods of the structure.

1Note that this occurrence is completely different from the classical static phenomena of creep and
relaxation tests, performed, e.g., on concrete and steel specimens. In those cases, indeed, damping
is so strong that the real eigenvalues are closer to the imaginary axis than the complex eigenvalues,
so that oscillations are fast damped, and the evolution is slow and quasistatic, driven by the real
eigenvalues.
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This requirement cannot be met by most structural materials, since the behavior of
a viscoelastic material with such a small relaxation time is close to that of a fluid.
This demand could instead be satisfied, e.g., (i) in multilayered composites, (ii) in
structures equipped with viscoelastic suspensions, or with fluid dampers (see, e.g.,
[Muscolino and Palmeri 2007]), or (iii) in homogenized microstructured viscoelas-
tic systems and metamaterials, where specifically damping properties are designed
(see, e.g., [Lekszycki et al. 1992; Manimala and Sun 2014; Del Vescovo and Gior-
gio 2014; Altenbach and Eremeyev 2015; Frazier and Hussein 2015; Giorgio et al.
2017; Lewińska et al. 2017; Barchiesi et al. 2019; Eugster et al. 2019]). In the
Appendix, a one-dimensional example, i.e., a homogenized microstructured con-
tinuum, whose periodic microstructure is composed by standard three-parameter
oscillators, sheds light on these aspects and permits discussing them numerically.
All the sample systems, for which the subspace reduction will be carried out in the
next sections, should be thought of as belonging to the categories mentioned above.

Coming back to slightly damped systems, it can be noticed that, if the transient
dynamics related to the decaying eigenvalues is ignored, motions occur in a sub-
space spanned by the eigenvectors associated with the complex eigenvalues. This
space, indeed, is much smaller than the original state space, so it is convenient
to derive a reduced order model able to describe these dynamics. To construct
the model, the space must be contracted without, of course, evaluating all the
eigenvectors of the subspace; this is, indeed, possible, as will be illustrated soon.

Two alternative methods are worked out to achieve the goal, both of them bor-
rowed from bifurcation theory, where they are commonly used to deal with nonlin-
ear systems, namely (a) the center manifold method, and (b) the multiple scales
method. The first one is a direct (but not trivial) generalization of the algorithm
developed in [Luongo and D’Annibale 2017a] for discrete systems.

Center manifold method. According to the center manifold method, the eigenval-
ues are separated in the set of the stable eigenvalues (leftmost) and in the set of
the central eigenvalues (close to the left side of imaginary axis). The associated
eigenvectors span the stable and the central subspaces. The center manifold theo-
rem [Guckenheimer and Holmes 1983; Wiggins 2003; Troger and Steindl 1991]
assures that there exists an invariant manifold of the same dimensions as the central
subspace π that contains the origin, is tangent to the subspace π , and is attractive
for the dynamics. Of course, since the system under study is linear, the manifold
coincides with the subspace itself. However, differently from the hypotheses of the
theorem, the center subspace is infinite-dimensional; in spite of this, the method is
heuristically applied.

The Cartesian equations of the unknown subspace π are

κ =Pu+Qv (5)
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where P and Q are unknown differential operators. If these operators are known,
the first two equations of motion (3)1,2 can be rewritten as(

u̇
v̇

)
=

[
0 I

−M−1(Ke−Da Ce�P) M−1Da Ce�Q
](

u
v

)
+

(
0

M−1 f

)
(6)

or

Mü+Br u̇+Kr u = f (7)

where
Br := −Da Ce�Q,
Kr :=Ke−Da Ce�P .

(8)

Equation (7) governs the linear dynamics of the system, reduced to the central
subspace.

The task, therefore, is to determine P and Q. This is accomplished by substitut-
ing (5) in the flow law (3)3, with the help of (3)1,2, and requiring it to be satisfied
separately for independent u, v. It follows that

(−QM−1Ke+QM−1Da Ce�P −3eD+3RP)u = 0,

(P +QM−1Da Ce�Q+3RQ)v = 0.
(9)

In order to solve these nonlinear equations, a perturbation method is developed
here. The viscous moduli are rescaled at the ε−1-order, so that 3ϑ → ε−13ϑ
(ϑ = e, R) and, by multiplying the equations by ε,

[3RP −3eD− εQM−1(Ke−Da Ce�P)]u = 0,

[3RQ+ ε(P +QM−1Da Ce�Q)]v = 0.
(10)

An inspection of these latter equations reveals that P(−ε)=P(ε), while Q(−ε)=
−Q(ε). Thus, the unknown matrices are expanded in series of even or odd powers
of ε, respectively:

P =P0+ ε
2P2+ · · · ,

Q= εQ1+ ε
3Q3+ · · · ,

(11)

where Pk =
1
k!

dkP
dεk

∣∣
ε=0, with k = 0, 2, . . . , and Qk =

1
k!

dkQ
dεk

∣∣
ε=0, with k = 1, 3, . . . .

The following linear perturbation equations are then obtained:

ε0
: (3RP0−3eD)u = 0,

ε1
: (3RQ1+P0)v = 0,

ε2
: (3RP2−Q1 M−1(Ke−Da Ce�P0))u = 0.

(12)
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By solving them in cascade, it is found that

P0 =3
−1
R 3eD,

Q1 =−3
−2
R 3eD,

P2 =−3
−3
R 3eDM−1(Ke−Da Ce�3

−1
R 3eD).

(13)

Finally, by reabsorbing the perturbation parameter, it follows that

P =3−1
R 3eD−3−3

R 3eDM−1(Ke−Da Ce�3
−1
R 3eD)+ · · · ,

Q=−3−2
R 3eD+ · · · .

(14)

Equations (14) are explicit relations that, once substituted in (8), permit us to
build the reduced system (7). By truncating the analysis at the first nonzero term,

Br :=Da Ce�3
−2
R 3eD,

Kr :=Ke−Da Ce�3
−1
R 3eD.

(15)

If, instead, an additional term is kept in the expansion of P , an increment of stiff-
ness must be added, so that KII

r :=Kr +1Kr , with

1Kr =Da Ce�3
−3
R 3eDM−1Kr . (16)

The first-order expressions (15) suggest two considerations. First, the damping
matrix is a linear combination of the same differential operators which form the
elastic (as well as the reduced) stiffness operator. However, due to the structure of
the relaxation matrices, the coefficients of the linear combinations are different for
the two matrices. Only under special circumstances does it occur that Br and Kr

are proportional; in general, the Rayleigh model of damping is not recovered.
As a second remark, the stiffness Kr has an important physical meaning. Indeed,

if reference is made to a relaxation test, at the time t =∞, it is κ̇∞ = 0; therefore,
from the flow law (3)3, it follows that 3Rκ∞ =3eDu. Hence, from (15)2,

Kr u =Da CeDu−Da Ce�3
−1
R 3eDu =Da Ce(e−�κ∞)=Da s∞ (17)

where the elastic law (2)1 is used. By defining an elastic matrix at the equilibrium
Ce∞, such that Ce∞e= s∞, it is concluded that

Kr =Da Ce∞D =:Ke∞, (18)

i.e., at the first order of the asymptotic expansion, the stiffness operator of the
reduced system coincides with the elastic matrix, but with the elastic constants
replaced by the equilibrium values of the relaxation moduli. This result is not
surprising, since a weakly damped system is under consideration, for which the
relaxation time is short and of the same order as the transient dynamics. Thus,
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when steady-state dynamics takes place on the central subspace, the relaxation
moduli have attained their equilibrium values.

Multiple scales method. Now an alternative approach, based on the multiple scales
method [Nayfeh 2000; Nayfeh and Mook 1979; Luongo and Zulli 2012a; 2012b;
2014; Luongo and D’Annibale 2013; 2017b; Luongo et al. 2016], is discussed.
The flow law (3)3 is rewritten with damping rescaled:

εκ̇ =3eDu−3Rκ . (19)

This is a singularly perturbed differential equation in which u (the active variable)
is taken as known, and κ (the passive variable) as unknown. Although this equation
is linear, with constant coefficients, the multiple scales method is applied to solve
it, in order to get an asymptotic solution, useful to the reduction process.

First, several time scales tk := εk t with k = 0, 1, 2, . . . are introduced and it
assumed that u(x, t)= u(x, t0, t1, . . . ) and κ(x, t)=κ(x, t0, t1, . . . ); consequently,
d
dt = ∂t0 + ε∂t1 + · · · . Second, the unknown is expanded as

κ = κ0+ εκ1+ ε
2κ2+ · · · (20)

where κk =
1
k!

dkκk
dεk

∣∣
ε=0, with k = 0, 1, 2, . . . . The following perturbation equations

are derived:
ε0
: 3Rκ0 =3eDu,

ε1
: 3Rκ1 =−∂t0κ0,

ε2
: 3Rκ2 =−∂t0κ1− ∂t1κ0.

(21)

The singular nature of the problem is encompassed by the fact that the generating,
lower-order equation is not a differential equation in time. By solving the equations
in cascade, it follows that

κ0 =3
−1
R 3eDu,

κ1 =−3
−2
R 3eD∂t0 u,

κ2 =3
−3
R 3eD∂2

t0 u−3−2
R 3eD∂t1 u.

(22)

By coming back to the series for κ , reabsorbing the perturbation parameter, and
applying the “reconstitution principle” [Nayfeh 2000; Nayfeh and Mook 1979;
Luongo and Paolone 1999], it is

κ =3−1
R 3eDu−3−2

R 3eDu̇+3−3
R 3eDü+ · · · , (23)

having taken into account that u̇ = ∂t0 u + ε∂t1 u + · · · and ü = ∂2
t0 u + · · · and,

consistently, having truncated the expansions.
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By substituting this latter expression in the equations of motion (3)1,2 the re-
duced model is finally obtained as

(M−Da Ce�3
−3
R 3eD)ü+(Da Ce�3

−2
R 3eD)u̇+(Ke−Da Ce�3

−1
R 3eD)u= f .

(24)
In this equation, the stiffness and the damping operators are identical to those
derived by the center manifold approach (see (15)). Moreover, a reduced mass (dif-
ferential) operator appears, which was absent in the previous derivation. However,
if the lower-order approximation (rendered homogeneous) is taken for ü, namely
ü =−M−1Kr u, it is found that this extra term is consistent with the increment of
stiffness (16). Therefore, the two approach are asymptotically equivalent.

The algorithm illustrated here better underlines the sequence of approximations,
which is able to shed light on the physics of the systems. First, the internal variables
are linked to the observable variables as ėv = 0, this approximation being sufficient
to determine the reduced stiffness with the equilibrium relaxation moduli. Second,
the resultant expression for ev supplies the strain rate ėv , from which the damping
is evaluated. Third, a better approximation for ėv is computed that modifies the
mass or, equivalently, the stiffness.

Throughout the following working examples, the second-order approximation
is neglected.

4. Viscoelastic Euler–Bernoulli beam on Winkler viscoelastic soil

Model. The transverse motion of a shear-undeformable planar beam resting on
viscoelastic soil is considered (Figure 2). Kinematics is described by

χ = u′′, ε = u (25)

where u(s, t) is the deflection of the beam, χ(s, t) its curvature, and ε(s, t) the elon-
gation of soil, with s the abscissa, t the time, and a prime denoting s-differentiation.

b

Figure 2. Planar viscoelastic beam on viscoelastic soil.
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Equilibrium entails

M ′′ =−r(s, t)−mü+ f (s, t) (26)

where M(s, t) is the bending moment, r(s, t) the linear density of the soil reaction,
m the mass per unit length of the beam, and f (s, t) the linear density of the external
active forces.

The constitutive behavior of the beam and of the soil obeys the viscoelastic stan-
dard three-parameter model (Figure 1, left). The constitutive law for the beam is

M = E0 I (χ −χv),

χ̇v =
E0

η
(χ −χv)−

Ev
η
χv

(27)

where E0, Ev, η are material constants, χv is an internal variable having the mean-
ing of viscous curvature, and I is the cross-section inertia moment. The constitutive
law for the soil is

r = c0(ε− εv),

ε̇v =
c0

b
(ε− εv)−

cv
b
εv

(28)

where c0, cv, b are soil constants and εv is an internal variable describing the vis-
cous deformation of the soil. When all these equations are collected, and put in
the state form, the viscoelastic problem reads

u̇ = v,

mv̇+ E0 I (u′′′′−χ ′′v )+ c0(u− εv)= f (s, t),

χ̇v =3ebχ −3Rbχv,

ε̇v =3esε−3Rsεv

(29)

with v the velocity, and the relaxation coefficients of beam and soil defined as

3eb :=
E0

η
, 3Rb :=

E0+ Ev
η

, 3es :=
c0

b
, 3Rs :=

c0+ cv
b

. (30)

It is easy to check that (29) are of the type (3) with the identifications

u := [u], v := [v], e=
[
χ

ε

]
, κ =

[
χv

εv

]
,

D =
[
∂2

s
1

]
, Da

=
[
∂2

s 1
]
, M := [m], Ce =

[
E0 I 0

0 c0

]
,

Ke = [E0 I∂4
s + c0], 3e =

[
3eb 0

0 3es

]
, 3R =

[
3Rb 0

0 3Rs

]
, �=

[
1 0
0 1

] (31)

where ∂k
s :=

∂k

∂sk .
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Equations (29) must be constrained by boundary conditions. For example, if the
beam is simply supported at the ends A,B, boundary conditions read

u H = 0, E0 I (u′′H −χvH )= 0, H = A,B. (32)

Reduced system. The reduction process requires linearly linking the internal vari-
ables to the observable variables via unknown differential operators Pϑ and Qϑ

(ϑ = b, s) (remember (5)):(
χv

εv

)
=

[
Pb

Ps

]
u+

[
Qb

Qs

]
v =Pu+Qv. (33)

By using (14) and the definitions (31), truncated at the first term, it is found that

P =
[
(3eb/3Rb)∂

2
s

3es/3Rs

]
, Q=−

[
(3eb/3

2
Rb)∂

2
s

3es/3
2
Rs

]
(34)

so that the operators are mixed, differential-algebraic. With these, from (8), or (15),
the stiffness and damping of the reduced system are found, namely

Br =

[
E0 I

3eb

32
Rb
∂4

s + c0
3es

32
Rs

]
,

Kr =

[
E0 I

(
1−

3eb

3Rb

)
∂4

s + c0

(
1−

3es

3Rs

)]
.

(35)

Finally, the reduced equation of motion (7), in terms of only observable variables,
reads

mü+α I u̇′′′′+ b?u̇+ E∞ I u′′′′+ c∞u = f (36)

where, by accounting for the definitions (30), the following viscoelastic coefficients
have been introduced:

α := η

(
E0

E0+Ev

)2

, b? := b
(

c0

c0+cv

)2

, E∞ :=
E0 Ev

E0+Ev
, c∞ :=

c0cv
c0+cv

. (37)

Note that this model describes an internally and externally damped beam on a
Winkler elastic soil; in particular, α is the internal damping coefficient, depending
on the elastic and viscous properties of the beam; b? is the external damping coeffi-
cient, which depends on the elastic and viscous properties of the soil; and E∞, c∞
are the relaxation moduli at the equilibrium. It is worth noticing that, in this model,
damping is not proportional to the stiffness.

The internal damping of the beam. When the beam is in the air (i.e., not resting
on soil, so c0 = cv = 0) the reduced model (36), in the absence of external forces,
becomes

mü+ η
(

E0

E0+ Ev

)2

I u̇′′′′+ E∞ I u′′′′ = 0. (38)
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Let φ j (s) be the j-th natural mode of the elastic beam, of frequency ω j , satisfying

E∞ Iφ′′′′j −mω2
jφ j = 0 (39)

with the relevant boundary conditions. Since damping is now of proportional
type, φ j is also an eigenvector for the viscoelastic beam. Thus, by substituting
u(s, t)= x j (t)φ j (s) in the equation of motion, and accounting for (39), an ordinary
differential equation for the modal amplitude x j (t) is obtained, namely

ẍ j + ηω
2
j
E∞
E2
v

ẋ j +ω
2
j x j = 0. (40)

With the usual definition of damping factor, and by using (37)3 and (30)2, it is
found that

ξ j =
1
2
η

E∞
E2
v

ω j ≡
1
2

E0

Ev

ω j

3R
(41)

where 3R ≡ 3Rb and which, consistently with the Rayleigh model of damping
(proportional to the stiffness), is proportional to the undamped natural frequency.
This last expression is believed to be useful in damping modeling and design of
beams.

5. Viscoelastic Kirchhoff plate

Model. The transverse vibrations of a thin viscoelastic plate, modeled according
to Kirchhoff’s theory, are considered (see Figure 3).

Kinematics is described by χx

χy

χxy

=
 ∂2

xx
∂2

yy
2∂2

xy

 (u) (42)

where u(x, t) is the transverse deflection, with x= xax+ yay the position; χx(x, t),
χy(x, t) are flexural curvatures and χxy(x, t) the torsional curvature; and finally

h

Figure 3. Viscoelastic Kirchhoff plate.
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∂k
ϑ1···ϑk

(ϑi = x, y) denotes the partial derivative of order k with respect the homony-
mous variables.

Equilibrium is ruled by

[∂2
xx , ∂

2
yy, 2∂2

xy]

 Mx

My

Mxy

= f − ρü (43)

where Mx ,My are bending moments and Mxy the torsional moment; moreover,
f (x, t) is the surface load density, and ρ the surface mass density.

The constitutive law of the plate is assumed to be governed by the five-parameter
model, which is made of one spring E0, placed in series with two Kelvin–Voigt
systems of constants Evi , ηi (i = 1, 2) (Figure 1, right). Moreover, it is also ad-
mitted that all the stress components could evolve by the same law with strain
components (thus entailing that the deviatoric and spherical stresses of the under-
lying three-dimensional model have the same viscoelastic evolution). Under these
assumptions, the elastic law is Mx

My

Mxy

= D0

1 ν 0
ν 1 0
0 0 (1− ν)/2

 χx − κx1− κx2

χy − κy1− κy2

χxy − κxy1− κxy2

 (44)

where κϑi (ϑ = x, y, xy and i = 1, 2) are the viscous curvatures, relevant to the
i-th subcomponent of the rheological model, and D0 :=

1
12 h3 E0/(1− ν2) is the

bending stiffness, with E0, ν the Young modulus and the Poisson ratio, and h the
plate thickness.

The flow laws, governing the evolution of the internal variables κϑi , are(
κ̇ϑ1

κ̇ϑ2

)
=

[
E0/η1

E0/η2

]
(χϑ)−

[
(E0+ Ev1)/η1 E0/η1

E0/η2 (E0+ Ev2)/η2

](
κϑ1

κϑ2

)
,

ϑ = x, y, xy. (45)

All these equations are in the form (1)–(2) and, therefore, implicitly define (i) the
differential operators D, Da in (42)–(43), (ii) the topological matrix �, linking the
internal variables, i.e., the viscous curvatures κϑi , to the viscous strains (remember
(2)2), and (iii) the elastic matrix Ce. They read

D :=
 ∂2

xx
∂2

yy
2∂2

xy

 , Da
:= [∂2

xx , ∂
2
yy, 2∂2

xy],

� :=

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 , Ce := D0

1 ν 0
ν 1 0
0 0 (1− ν)/2

 .
(46)
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Moreover, from (45) the definition of 3e, 3R follows, namely

3e :=



E0/η1 0 0
E0/η2 0 0

0 E0/η1 0
0 E0/η2 0
0 0 E0/η1

0 0 E0/η2


,

3R :=



F1 E0/η1 0 0 0 0
E0/η2 F2 0 0 0 0

0 0 F1 E0/η1 0 0
0 0 E0/η2 F2 0 0
0 0 0 0 F1 E0/η1

0 0 0 0 E0/η2 F2



(47)

where F j = (E0+ Ev j )/η j ( j = 1, 2). The equations of motion, when rearranged
in the state form (3), are

ẇ =Aw+ f (48)

where the definitions

w :=
(
u v κx1 κx2 κy1 κy2 κxy1 κxy2

)T
,

f :=
(
0 f/ρ 0 0 0 0 0 0

)T
,

A :=
 0 I 0
−(1/ρ)Ke 0 (1/ρ)Da Ce�

3eD 0 −3R

 (49)

hold and in which

Ke := D0∇
4,

Da Ce�= D0
[
∂2

xx+ν∂
2
yy ∂

2
xx+ν∂

2
yy ∂

2
yy+ν∂

2
xx ∂

2
yy+ν∂

2
xx (1−ν)∂

2
xy (1−ν)∂

2
xy
]
,

3eD :=



(E0/η1)∂
2
xx

(E0/η2)∂
2
xx

(E0/η1)∂
2
yy

(E0/η2)∂
2
yy

2(E0/η1)∂
2
xy

2(E0/η2)∂
2
xy


.

(50)

The dynamics is, therefore, governed by a system of partial differential equations
in two observable variables (displacement and velocity) and six internal variables
(two viscous components for each of the three curvatures).
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Reduced system. Aimed at reducing the system to the sole observable variables,
the internal variables are linked to them via unknown differential operators P,Q,
i.e., 

κx1

κx2

κy1

κy2

κxy1

κxy2


=



Px1

Px2

Py1

Py2

Pxy1

Pxy2


u+



Qx1

Qx2

Q y1

Q y2

Qxy1

Qxy2


v =Pu+Qv. (51)

With the definitions (50) and by using the first-term approximation in (14),

P = E0

E0 Ev1+Ev1 Ev2+E0 Ev2



Ev2∂
2
xx

Ev1∂
2
xx

Ev2∂
2
yy

Ev1∂
2
yy

2Ev2∂
2
xy

2Ev1∂
2
xy


,

Q= E0

(E0 Ev1+Ev1 Ev2+E0 Ev2)2



−(E0 Ev2η1+E2
v2η1−E0 Ev1η2)∂

2
xx

(E0 Ev2η1−E2
v1η2−E0 Ev1η2)∂

2
xx

−(E0 Ev2η1+E2
v2η1−E0 Ev1η2)∂

2
yy

(E0 Ev2η1−E2
v1η2−E0 Ev1η2)∂

2
yy

−2(E0 Ev2η1+E2
v2η1−E0 Ev1η2)∂

2
xy

2(E0 Ev2η1−E2
v1η2−E0 Ev1η2)∂

2
xy



(52)

so that the operators (8) of the reduced system are

Br := α∇
4, Kr := D∞∇4 (53)

where the definitions

α := D0
E0(E2

v2η1+ E2
v1η2)

(E0 Ev1+ Ev1 Ev2+ E0 Ev2)2
, D∞ :=

h3

12
E∞

1− ν2 (54)

hold, D∞ being the stiffness of the plate at t =∞ with

E∞ :=
E0 Ev1 Ev2

E0 Ev1+ Ev1 Ev2+ E0 Ev2
(55)

the stiffness of the three in-series springs of the five-parameter model.
By summarizing, the reduced model is governed by

D∞∇4u+α∇4u̇+ ρü = f. (56)

In this case the damping, governed by the coefficient α, is found to be of propor-
tional type, due to the hypotheses made on the constitutive law.
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6. The Cauchy viscoelastic continuum

Model. An isotropic Cauchy continuum is considered. The vector of displace-
ments, at point x and time t , is denoted by u(x, t), the infinitesimal strain tensor
by E(x, t), and the stress tensor by T (x, t). Then the tensors are decomposed in
their spherical and deviatoric parts, namely E = 1

3δ I+ E? and T = θ I+T ?, where
δ := tr E is the volumetric strain, θ = tr T is the hydrostatic stress, I is the identity
tensor, and a star denotes the deviatoric part.

Kinematics states that

δ =∇ · u, E?
=

1
2 [∇u+ (∇u)T ] − 1

3(I∇ · u). (57)

Equilibrium calls for
∇ · (θ I + T ?)− ρ ü+ b= 0 (58)

where ρ is the mass density and b the bulk forces.
It is assumed that the body is linear viscoelastic in the deviatoric part, while it is

elastic in the spherical part. By adopting the standard three-parameter model, the
constitutive law is written as

T ?
= 2µ(E?

− E?
v),

Ė?
v =3e E?

−3R E?
v,

θ = K δ

(59)

where E?
v is the viscous part and E?

− E?
v the elastic part of the deviatoric strain

tensor; µ and K := λ+ 2
3µ are elastic constants, namely the Lamé constants λ,µ

and the bulk modulus K ; and finally, 3e,3R are relaxation constants.
By arranging the previous equations in the state form (accounting for ∇ ·∇u =
∇

2u, ∇ · (∇u)T =∇(∇ · u), and ∇ · (I∇ · u)=∇(∇ · u)), it is

u̇ = v,

µ∇2u+ (µ+ λ)∇(∇ · u)− 2µ∇ · E?
v − ρv̇+ b= 0,

Ė?
v =3e

[ 1
2∇u+ 1

2(∇u)T − 1
3 I∇ · u

]
−3R E?

v .

(60)

These equations are of the general form (3), although here a different notation is
used (vector form, instead of matrix form). When E?

v ≡ 0 and the flow law is sup-
pressed, they reduce to the well known Navier equations for the elastic continuum.

Reduced system. To reduce the system to the central subspace, the procedure il-
lustrated for a general system is repeated, by using the vector notation. First, the
internal variables are expressed as a linear combination of the displacement and
velocity:

E?
v =Pu+Qv (61)
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where P,Q are unknown linear differential operators. By differentiating this latter
equation with respect to time, using (60)1,2 (rendered homogeneous) to eliminate
u̇, v̇, and similarly using (61) to eliminate E?

v , (60)3 reads

Pv+ 1
ρ
Q[µ∇2u+ (µ+ λ)∇(∇ · u)− 2µ∇ · (Pu+Qv)]

=3e
[1

2∇u+ 1
2(∇u)T − 1

3 I∇ · u
]
−3R(Pu+Qv). (62)

By requiring it holds for any u, v, it follows that

1
ρ
Q[µ∇2u+(µ+λ)∇(∇·u)−2µ∇·(Pu)]−3e

[1
2∇u+ 1

2(∇u)T− 1
3 I∇·u

]
+3R(Pu)= 0,

Pv− 2µ
ρ

Q[∇ · (Qv)] +3RQv = 0.

(63)

Then, by rescaling 3ϑ → ε−13ϑ (ϑ = e, R) and expanding the operators as P =
P0+O(ε) and Q= εQ1+O(ε2), the leading perturbation equations

−3e
[ 1

2∇u+ 1
2(∇u)T − 1

3 I∇ · u
]
+3R(P0u)= 0,

P0v+3RQ1v = 0
(64)

are obtained, whose solution is

P0u =
1
2
3e

3R
[∇u+ (∇u)T ] −

1
3
3e

3R
I∇ · u,

Q1v =−
1
2
3e

32
R
[∇v+ (∇v)T ] +

1
3
3e

32
R

I∇ · v.
(65)

Therefore, from (61), at the leading order, it is found that

E?
v =

1
2
3e

3R
[∇u+(∇u)T ]−

1
3
3e

3R
I∇ ·u−

1
2
3e

32
R
(∇v+∇T v)+

1
3
3e

32
R

I∇ ·v, (66)

which permits us to write the balance equations (60)1,2 in terms of displacements
only:

µ∞∇
2u+

[
µ∞(3e− 33R)

3(3e−3R)
+ λ

]
∇(∇ · u)−

µ∞3e

3R(3e−3R)

(
∇

2u̇+ 1
3∇(∇ · u̇)

)
− ρ ü+ b= 0 (67)

where µ∞ := µ(1−3e/3R) is the Lamé constant at t =∞.
It is worth noticing that, differently from the plate model, now viscosity changes

the stiffness in a nonproportional way, since the body is considered viscously vol-
umetrically incompressible; for the same reason, damping is of nonproportional
type.
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7. Conclusions

A linear metamodel of viscoelastic continuum has been formulated. It is expressed
in terms of internal variables, having the meaning of the viscous elongations of
the (arbitrary in number) dashpots of the underlying rheological model. It was
observed that, due to the smallness of damping, the eigenvalue spectrum is well
separated, so it entails that the dynamics is rapidly attracted by the space spanned
by the (finite-dimensional) central eigenvectors. Two alternative algorithms, based
on the center manifold method and the multiple scales method, have been worked
out to derive the reduced system. Both methods avoid the evaluation of the central
eigenvectors, as instead needed in bifurcation theory. The reduction allows elimi-
nating the (passive) internal variables, while accounting for them as slaves of the
(active) observable variables.

Three sample continua of increasing spatial dimensions have been considered
for illustrative purposes, namely (a) the transverse vibrations of an Euler–Bernoulli
beam resting on a Winkler-type soil, the viscoelastic properties of both being de-
scribed by the standard three-parameter viscoelastic model, (b) the transverse vibra-
tions of a Kirchhoff plate, obeying to the five-parameter viscoelastic solid model,
and (c) a three-dimensional Cauchy continuum, whose volumetric strains are elas-
tic and deviatoric strains viscoelastic. The following conclusions can be drawn.

(1) The lowest-order approximation of the center subspaces supplies a reduced
stiffness operator which coincides with the elastic one, but with elastic moduli
replaced by the equilibrium values (at infinite time) of the relaxation moduli.
This is due to the fact that low damping entails short relaxation times, on the
order of the transient duration, so that the steady dynamics occurs when the
moduli reach their asymptotic values.

(2) The reduced damping operator is made of a linear combination, with relax-
ation moduli, of the derivatives which form the stiffness operator. In general,
however, damping and stiffness are not proportional, so the Rayleigh simplis-
tic model of damping is not recovered.

(3) The beam on viscoelastic soil can be reduced to an internally and externally
damped beam on elastic Winkler soil. Reduction provides the equivalent
characteristics. Since viscosity in the two substructures acts independently,
the resulting damping is nonproportional. However, if the beam is in air (no
soil), damping is of proportional type. A formula has been given for practical
design of damping.

(4) The viscoelastic five-parameter plate shows the power of the model, which
permits elimination of six internal variables (two for each of the three curva-
tures), and a strong lowering of dimensions. Due to the fact that the same
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constitutive law has been adopted for all the components of stress, a damping
operator proportional to the stiffness has been found.

(5) The three-dimensional Cauchy continuum, in which viscous incompressibility
has been adopted, can also be reduced to an internally damped continuum,
expressed in terms of displacements and velocities only. The elastic part of
the equation consists of the classical Navier equation, in which, however, the
Lamé constants are modified as their value at infinite time, in a nonpropor-
tional way, due to the different behavior of the deviatoric and spherical parts.
Damping is found to be of nonproportional type.

Appendix: A microstructured homogenized one-dimensional continuum

The chain of oscillators displayed in Figure 4, top, made of n cells of length h, is
considered. Each cell is a standard three-parameter viscoelastic oscillator, carrying
a mass M , whose constitutive parameters c0, cv , and b are constant along the chain.
A homogenization procedure is here developed to obtain an equivalent continuum,
representative of the behavior of the chain.

The free dynamics of the continuum is then analyzed under the assumption of
small viscous modulus, by making use of asymptotic solutions. It will be shown
that a suitable design of the microstructure could lead to spectral properties of the
continuum somewhat analogous to those discussed in Section 3.

The considered target continuum is a viscoelastic one-dimensional model, i.e.,
a bar of length ` = nh and mass per unit length m = M/h (Figure 4, bottom).
In what follows the chain is referred to as the fine model and the homogeneous
continuum as the coarse model.

The constitutive law of the periodic structure. The i-th cell (Figure 5, left) is
taken as the representative volume of the periodic structure. Its constitutive law can

h
b

MM/2 M

b b

MM1 2

b

Mi n M/2

Figure 4. Viscoelastic one-dimensional systems: fine discrete pe-
riodic model (top) and homogeneous bar (bottom).
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h
b

M/2 M/2
i

h
b

i

h
b

i

Figure 5. Fine model: cell (left), kinematics (center), and statics (right).

be written by rearranging kinematics (Figure 5, center) and equilibrium (Figure 5,
right) equations of the rheological model [Luongo and D’Annibale 2017a]. It reads

Ni = c0(1i − κi ),

κ̇i =
c0

b
1i −

c0+ cv
b

κi
(68)

where Ni is the axial force and 1i and κi are the total and viscous displacements,
respectively.

The viscoelastic one-dimensional continuum model. The axial motion of a vis-
coelastic one-dimensional bar is then considered (Figure 4, bottom). Kinematics
and equilibrium are described by

u′ = ε,

−N ′ = f −mü
(69)

where u(s, t), ε(s, t), N (s, t), and f (s, t) are the axial displacement, the unit exten-
sion, the cross-section normal force, and the horizontal external load, respectively,
which are functions of the abscissa s and time t . Moreover, the prime and the dot
denote spatial and time differentiation, respectively. It is worth noticing that (69)
are in the same form as (1).

According to the standard three-parameter model, the constitutive law reads

N = E0 A(ε− εv),

ε̇v =
E0

η
ε−

E0+ Ev
η

εv
(70)

where E0, Ev, η are material constants, εv is an internal variable having the mean-
ing of viscous extensional strain, and A is the area of the cross-section. It is
important to remark that (70) are in the same form as (2) of the metamodel.

The constitutive coefficients of the coarse model are determined in the frame-
work of the homogenization procedure. In particular, this is carried out by exploit-
ing the periodicity of the fine model and following the next steps: (i) the constitutive
law for one of its cells (68) is written in terms of strains of the coarse model, thus
entailing 1i = εh and κi = εvh and (ii) the constitutive law of the cell is attributed



MODELING THE LINEAR DYNAMICS OF CONTINUOUS VISCOELASTIC SYSTEMS 147

to a slice of the equivalent bar of the same length. The following identification of
the coefficients of the equivalent bar holds:

E0 A := hc0,
E0

η
:=

c0

b
,

Ev
η
:=

cv
b
. (71)

By combining (69) and (70) in the state space form (u̇= v), the equations of motion
of the bar read u̇

v̇

ε̇v

=
 0 1 0
(E0 A/m)∂2

s 0 −(E0 A/m)∂1
s

(E0/η)∂
1
s 0 −(E0+ Ev)/η

 u
v

εv

+
 0

f/m
0

 . (72)

These equation are in the form of (3). They must be integrated with initial con-
ditions (assuming the system is initially at rest). Moreover, it is assumed that
geometric boundary conditions at the ends prescribe null horizontal displacement,
i.e., uA = uB = 0.

Free dynamics. The solution of (72), which (exactly) satisfies the spatial eigen-
value problem, is in the form(

u
v

)
=

(
û(t)
v̂(t)

)
sin
(

kπs
`

)
, εv = ε̂v(t) cos

(
kπs
`

)
(73)

where û(t), v̂(t), and ε̂v(t) are (time-dependent) amplitudes and k denotes the
wave number. Therefore, the associated characteristic equation of the (unforced)
system (72) reads

ηλ3
+ (E0+ Ev)λ2

+
ηE0 A

m

(
kπ
`

)2

λ+
E0 EvA

m

(
kπ
`

)2

= 0. (74)

Approximated roots of (74) in the case η is small can be determined through a
perturbation method (details not reported here). It is found that

λ1 =−
E0+Ev
η
+O(1) =: −

1
trel
,

λ2,3 =−
ηE2

0 A
2m(E0+Ev)2

(
kπ
`

)2

±i

√
E0 EvA

m(E0+Ev)

(
kπ
`

)2

+O(ε2)=: −ξω±iω
(75)

where trel is the relaxation time of the standard three-parameter model. In particular,
accordingly to the discussion of Section 3, it can be seen that one eigenvalue λ1

is real, of order ε−1, and its magnitude is inversely proportional to trel, while the
other two eigenvalues λ2 and λ3 are complex-conjugate with order-ε negative real
part. Moreover, the following positions hold:

ω2
:=

E∞A
m

(
kπ
`

)2

, ξ :=
ηE2

0 A
2mω(E0+ Ev)2

(
kπ
`

)2

, (76)
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M [kg] h [m] c0 [N/m] cv [N/m] b [Ns/m]
1 0.2 800 800 50

Table 1. Numerical values of the parameters of the microstructure.

E∞ := E0 Ev/(E0+ Ev) being the elastic modulus at infinite time. As shown in
[Luongo and D’Annibale 2017a], definitions (76) represent the (undamped) fre-
quency and damping ratio of a reduced oscillator, which is able to recover the
oscillatory dynamics of the bar after the exponential transient motion decays, and
whose motion is governed by the equation

ü+ 2ξωu̇+ω2u =
f

m
. (77)

Discussion about the validity of the perturbation solution. The ratio between the
moduli of the real parts of eigenvalues (75) can be written as

r :=
|Re λ2,3|

|Re λ1|
=

E0ω
2

2Ev
t2
rel. (78)

In particular, by considering Ev and E0 of the same order of magnitude, e.g., Ev =
E0/2,

r = ω2t2
rel ' 40

(
trel

T

)2

, trel =
2
3
η

E0
, (79)

T := 2π/ω being the (undamped) period of the structure. By requiring the spectrum
of eigenvalues to be well separated, i.e., r = O(ε2)= 10−2, it is found that

trel

T
'

1
65
. (80)

It means that, if the period of the structure is on the order of the second, as occurs in
civil structures, η must be small, i.e., η ' 0.02E0. However, the relaxation time of
a structural material, as, e.g., identified by a relaxation test, is found of some order
of magnitude greater with respect to the structural period. For example for rubber
trel ∼ 100 s, thus entailing η large (η' 150E0). It is concluded that a well separated
spectrum is representative of those viscoelastic structures, in which the relaxation
time of the underlying viscoelastic constitutive model is sufficiently smaller than
their fundamental period.

The ratio (80) can be easily achieved in the microstructured continuum, by de-
signing its microstructure. As an example, by taking the numerical values reported
in Table 1, and n = 20, the coefficients of Table 2 follow for the equivalent bar. It is
found that the first (undamped) period of the structure is T = 2 s, and its relaxation
time trel =

1
32 s, thus corresponding to trel/T = 1

64 . Finally, in Figure 6 the very
good agreement between the complex-conjugate exact eigenvalues (gray circles)
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m [kg/m] ` [m] E0 A [N] E0/η [s−1
] Ev/η [s−1

]

5 4 160 16 16

Table 2. Numerical values of the parameters of the equivalent bar.

-�� -�� -�� -�� -�� -�

-�

-�

-�

�

�

�

Figure 6. Eigenvalues of the exact (gray circles) and reduced
(black dots) systems.

and the asymptotic ones (black dots), obtained by the (unforced) (77), is shown
when k = 1. The exact real eigenvalue is filtered by the reduction procedure.
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THE METHOD OF VIRTUAL POWER
IN THE MECHANICS OF CONTINUOUS MEDIA

I: SECOND-GRADIENT THEORY

PAUL GERMAIN

Translated by Marcelo Epstein and Ronald E. Smelser

The systematic application of the definition of internal forces, by means of the
virtual power produced in a class of virtual motions, leads to a consistent math-
ematical representation of stresses and strains in any given mechanical model.
It is thus possible to write the statical and dynamical equations and to state
well posed boundary value problems. The second-gradient theory, presented
here by way of example, can be developed without any ambiguity. An essential
distinction is drawn between intrinsic and classical stresses so as to avoid certain
issues of interpretation. It is shown that all the results of classical linear elasticity
can be immediately extended to the case of second-gradient elastic media. The
constitutive equations of nonlinear elasticity are also formulated.

Main notation

(1) Kinematic quantities

velocity Ui (x, t)
strain-rate tensor Di j =

1
2 (Ui, j +U j,i )

rotation-rate tensor �i j =
1
2 (Ui, j −U j,i ){rotation-rate vector ωi =−
1
2εi pq�pq , �i j =−εi jkωk

tangential component ω̃i

rotation-gradient tensor Ki j = ωi, j =−
1
2εi pq�pq, j =−

1
2εi pqUp,q j

symmetric part of the tensor of
second gradient of the velocities Ki jk =

1
3 (Ui, jk +U j,ki +Uk,i j )

Communicated by .
Original French: “La méthode des puissances virtuelles en mécanique des milieux continus, pre-
mière partie: Théorie du second gradient”, Journal de Mécanique 12:2 (1973), 235–274. Used with
permission. Translators’ footnotes are identified with the symbols TN.

See also the next article in this issue: Marcelo Epstein and Ronald E. Smelser, “An appreciation and
analysis of Paul Germain’s ‘The method of virtual power in the mechanics of continuous media, I:
Second-gradient theory’ ”, Math. Mech. Complex Systems, 8:1 (2020), pp. 191–199.
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(2) Internal and external forces

volumetric force fi

volumetric couple Ci j (=−C j i )

volumetric symmetric double force 8i j (=8 j i )

surface traction (stress vector) Ti

surface double traction (couple stress vector) M̃i

doubly normal stress (surface density) N
edge stress (line density) Ri

surface force on ∂S ti
tangential surface couple m̃i

doubly normal force n
edge force (line density) ri

intrinsic stress tensor (1st order) σi j (= σ j i )

intrinsic stress tensors (2nd order)
{µi j (µi i = 0)
µi jk (completely symmetric)

(3) Derivative operators on a surface (with unit vector ni )

normal gradient
scalar function ϕ Dϕ = nlϕ,l

vector function Vi DVi = nl Vi,l

tangential gradient
scalar function ϕ Diϕ = ϕ,i − ni Dϕ
vector function Vi D j Vi = Vi, j − n j DVi

(4) Small strains

displacement X i (x, t)
strain tensor εi j =

1
2 (X i, j + X j,i )

rotation tensor ϕi j =
1
2 (X i, j − X j,i ){rotation vector ϕi =−

1
2εi pqϕpq

tangential component ϕ̃i

rotation-gradient tensor ηi j =−
1
2εi pq X p,q j

symmetric part of the tensor of
second gradient of the displacements ηi jk =

1
3 (X i, jk + X j,ki + Xk,i j )

(5) Finite strains

gradient matrix Fiα =
∂xi

∂aα
Green–Lagrange strain tensor Lαβ = 1

2 (FiαFiβ − δαβ)

intrinsic Piola–Kirchhoff stress tensor (1st order) sαβ

intrinsic stress tensors (2nd order)
{5αβ (5αα = 0)
5αβγ (completely symmetric)
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1. Introduction

It has long been recognized that in mechanics there are two ways to represent math-
ematically the forces exerted at a given time t upon a system S. The first, age-old,
way consists in representing a force by means of a vector, a mathematical entity that
has an origin, a direction, and a magnitude. The completely natural generalization
of this idea when attempting to represent the forces exerted on a continuous system
leads to a description in terms of a field of vectors associated with a measure, and
it is in this way that one speaks of “volumetric forces”, “surface forces”, “forces
per unit mass”, etc. While forces are thus represented, it is desirable to utilize as
a basic statement of dynamics the fundamental law stipulating that “there exists
at least one reference (frame and time), said to be absolute, in which at each time
and for each system, the wrench produced by the masses times the accelerations is
equal to the wrench of the exterior forces exerted on the system”.

But there exists also, at least since d’Alembert, a second possible avenue, namely,
the method of virtual power (or virtual work). Contrary to what is sometimes
believed, this second way is as absolutely natural as the first, since it is nothing but
the expression of a very common physical experience. If one wants to know if a
suitcase is heavy, one tries to lift it slightly; to estimate the tension in a transmission
belt, one displaces it a little bit from its stable position; and it is while trying to push
a car that one becomes aware of the presence of the internal and external friction
forces opposing the motion. From the mathematical point of view, the situation can
be described as follows: at a given time t , one considers on S a vector field V that
defines at that instant a virtual movement of S — the vectors of the field represent-
ing the velocities or the elementary (infinitesimal) displacements during an elemen-
tary (infinitesimal) time δt — ; the forces that produce this virtual movement V are
known if their “virtual power” P (a real number associated with V ) is known. More
precisely, we consider a set V of virtual motions V , where V is a normed vector
space, and we say that we know the forces exerted on S by the space V if there
exists a continuous linear form L(V ), defined on V, whose value for each field V is
equal to the virtual power of these forces during the virtual motion defined by V .

The essential idea of this second avenue is that of “duality”. Moreover, this
avenue is not only very close to everyday experience, as we have already remarked,
but it is also very versatile; according to the choice of a vector space more, or less,
“vast”, we will have a description of forces more, or less, fine. Thus, we can con-
sider only those expressions that describe the forces that we need by conveniently
choosing the space V. Once V has been fixed, the set of forces recognized by V

form themselves a vector space, namely, the dual V∗ of V.

We must acknowledge that the notion of a linear map over a vector space is
more abstract than that of a vector field, and it is for this reason that the “virtual



156 PAUL GERMAIN

power approach” has always — at least up until now — appeared to be more diffi-
cult. Above all, one has to acknowledge that at the time when the notion of virtual
motion was introduced in mechanics the mathematical idea of duality had not yet
been sufficiently elaborated so as to completely translate this new notion, which
in a certain sense can be considered as the precursor of the notions of measure or
of distribution. It is only when the space V is of finite dimension that no special
difficulty arises, and this is why, very early on, we have witnessed the development
of the analytical mechanics of systems of a finite number of degrees of freedom,
which utilizes in fact, with the notion of “generalized forces”, a description of
forces by means of the concept of virtual power.

The situation today is different. Functional analysis has been considerably de-
veloped and its applications to mechanics, and most particularly to the mechanics
of continuous media, are already numerous and of great importance, as it is demon-
strated, for example, by the recent work of Duvaut and Lions [1]. The concept of
duality is imparted very early on in university curricula. Moreover, the time seems
to have arrived to attempt a rather systematic application of the notion of virtual
power to continuum mechanics. Such is the objective of this article and of those
that will follow under the same general heading.

When utilizing a description of forces by means of virtual power, the most suit-
able fundamental statement of the laws of dynamics is the principle of virtual
power. We will limit ourselves in this first article to the case of statics, a case
where this principle can be stated as follows:

“In an absolute reference, at each time t and for every system, the virtual
power of all the forces, internal as well as external, applied to the system
vanishes, whatever the virtual motion considered.”

As is well known, the statement valid for the dynamic case is obtained by adding
to the external forces the absolute forces of inertia.

Our procedure is thus very simple and elementary. We want to show that a
mechanical theory — and in particular a theory of the mechanics of continuous
media — is completely determined once we provide the space V of virtual motions
that we intend to consider and that establishes in some sense the degree of fineness
of the theory. The corresponding representation of the forces is deduced by duality,
and the collection of all the equations of statics (and more generally, of dynamics)
is obtained by application of the principle of virtual power. By way of example,
we will start in Section 2 with a short review of the cases of a material point and
of a rigid body, classical cases where V is of finite dimension. After some general
remarks about the application of the method to continuous media (Section 3), we
will satisfy ourselves in Section 4 with an examination of the so-called first-gradient
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theory — which is in fact nothing but a slight generalization of the classical the-
ory — and in Section 5 we will present the second-gradient theory. To avoid any
error of interpretation, let us note at the outset that our terminology differs from
that employed by other authors; the second gradient under consideration here is
that of the field of velocities, so that the theory thus named must be compared with
the theory of first gradient of the strain (for instance, that developed by Mindlin
and Eshel [2]). The results obtained lay the groundwork for the formulation of
the thermodynamic properties of the media considered and, consequently, the for-
mulation of the constitutive laws, at least if we resort to the method of local state
(see, for example, Germain [3]). By way of illustration we indicate in Section 6
the general features of linear elasticity within the second-gradient theory, and in
Section 7, some remarks about nonlinear elasticity that lead in a simple way to the
formulation of constitutive laws.

It is not our intention in this article to provide many new results; a large part
of the results established below can be found in the literature, in a more or less
equivalent form, particularly in the articles listed in the bibliography, at least for
the case of elastic media. But, to the best of this author’s knowledge, the use of
the method of virtual power to define a mechanical model within a given frame-
work of representation has not been the object of a systematic exposition. The
second-gradient theory, offered here by way of illustration, permits us to reveal the
advantages of this approach. On the one hand, the results remain valid if one wants
to take into consideration nonelastic effects. On the other hand, a certain number
of difficulties of interpretation that are often present in previous presentations are
here automatically removed.

We will not insist here on the strictly mechanical interest of the second-gradient
theory, and we refer the reader in this regard to the articles of Mindlin and Eshel [2]
and of Toupin [6] and, above all, to the contributions of Casal [13; 14; 15], who has
clearly exposed the points of contact between this theory and that of the phenomena
of capillarity, thus bringing to light a very interesting physical interpretation, which
has not yet received the attention that it deserves.

2. Elementary remarks on the material point and the rigid body

The case of the material point is reviewed here only for reference: at a given time,
a virtual motion of the point M is determined by giving the virtual velocity VM

of M ; the space V is, therefore, a Euclidean vector space (of dimension 3). A linear
form on V can be written as an inner product; thus, it determines an element FM

of the dual space, and one can write the virtual power as

P= L(VM)= FM · VM .
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In this way, we recover the representation of the forces exerted on a point by the
force vector FM , such as provided by the first kind of description of forces recalled
at the beginning of the introduction.

Analogously, the case of the rigid body leads to a classical result, although its
meaning does not always emerge quite as clearly. Let us consider at a fixed time t a
system S, which we will refer to an orthonormal frame — with x1, x2, x3 indicating
the coordinates of a point of S, which we will simply denote by x . It is known that,
if S is a rigid body, the velocity field Ui (x) of the points of S satisfies an identity
of the form

Ui (x)=Ui (o)+�i j x j , (1)

where �i j is a skew-symmetric matrix, independent of x , called the rotation-rate
matrix, representing, in this frame, the skew-symmetric second-order rotation-rate
tensor (or spin tensor). A field that satisfies the identity (1) for every x in S is said
to be defined by means of a twist (or a distributor). A twist is thus defined by the
six scalars �i j = −� j i and Ui (o), which are called its elements of reduction at
the origin. It is also equally well defined by its elements of reduction at any other
point of S.

At some fixed time t , let us take as the space of virtual motions V the (6-dimen-
sional) vector space C of the twists, a twist being denoted by {C}. We say that
these virtual motions “preserve the rigidity of S” if S is a rigid body or, if S is a
deformable medium, that these are “virtual motions that rigidify S”. The virtual
power of the forces applied on S is a linear form over C, namely,

P= L({C}). (2)

We say that this form defines the screw or wrench of the forces, which we denote
by [T]. Such a screw is an element of the dual space T of the space C. If we
represent {C} by its elements of reduction at the origin, we can write P in the form

P= Ti (o)Ui (o)+Mi j (o)�i j . (3)

The real numbers Ti (o) and Mi j (o) are the elements of reduction of [T] at the origin.
It is clear that, since �i j is a skew-symmetric matrix, we can assume without loss
of generality that Mi j is also skew-symmetric. It is also clear that, since Ui and �i j

are, respectively, components of a vector and of a second-order skew-symmetric
tensor, the same is true for Ti and Mi j , respectively.∗ Naturally, we could also have
expressed the linear form (2) while representing {C} by its elements of reduction
at another point x arbitrarily chosen, and we could have written

P= Ti (x)Ui (x)+Mi j (x)�i j . (4)

∗In other words, these are also components of a vector and of a tensor, respectively. — (TN)
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Subtracting (3) from (4), and invoking (1), we obtain

(Ti (x)− Ti (o))Ui (o)+ (Mi j (x)−Mi j (o)+ Ti (x)x j )�i j = 0.

This equation holds true for arbitrary values of Ui (o) and of �i j = −� j i . This
implies that the coefficient of Ui (o) must vanish identically and that the coefficient
of �i j must be symmetric in i and j . The vector T , called the vector or resultant
of the wrench [T], is therefore independent of x , and the skew-symmetric second-
order tensor field defined by the matrices Mi j is an affine linear function of the
coordinates and satisfies the identity

Mi j (x)= Mi j (o)+ x[i T j], (5)

where A[i j] denotes the skew-symmetric part of Ai j .∗

The preceding treatment is valid regardless of the (finite) dimension of the
Euclidean space in which the system S is found. The velocity field (1) and the
moment field (5), associated, respectively, to the twist and the wrench, are entities
of different mathematical nature. Indeed, the velocity is a vector field while the
moment is a second-order skew-symmetric tensor field. It is only in the case of a
3-dimensional space that certain correspondences between these two entities can
be made. Let us introduce in this space the alternating tensor with components εi jk ,
and let us define

ωk =−
1
2εki j�i j , mk =−εki j Mi j . (6)

Equations (1) and (5) can then be rewritten in the classical form

UM = U0+ω∧ O M; mM = m0+M O ∧ T , (7)

while P can be expressed as

P= T ·UM +ω ·mM = [T] · {C}. (8)

The vector ω is the rate of rotation (or angular velocity) vector of the twist {C}.
The vector field mM is the moment field of the wrench [T].

Let us underscore once again the significance of the results just obtained: in the
mechanics of rigid bodies, it is futile or superfluous to represent the forces acting
on the rigid body other than by means of the wrench that they determine; any other
finer representation is redundant.

∗Note, as a matter of detail, that on taking the skew-symmetric part of the tensor product x⊗ T ,
a factor of 1

2 is introduced, thus explaining the lack of it later in the second equation (6). — (TN)
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3. General remarks on the application of the virtual power method
in continuum mechanics

From the outset, let us note the essential role played by the following axiom of the
virtual power of the internal forces:

The virtual power of the internal forces of a system S vanishes for any
rigidifying virtual motion of S at the time t being considered.

Let us recall that it is thanks to this axiom that the statement of the principle of
virtual power entails the fundamental classical law of mechanics. If, at an arbitrary
time t , we consider a rigidifying virtual motion of S, defined by a twist {C}, the
virtual power of all the applied forces is reduced to that of the external forces alone,
and since S is assumed to be in equilibrium, the virtual power, written as [T] · {C},
where [T] is the wrench of the external forces, must vanish for arbitrary {C}. We
immediately deduce that [T] = 0, which is precisely the statement of the funda-
mental law of statics.

The remarks that follow do not have the compulsory and general character of
the axiom just formulated; rather, they constitute working hypotheses that could
be called into question in theories other than those presented below by way of
illustration of the general method.

(a) The systems S to be considered will always be 3-dimensional. We will assume
that S is a connected and bounded open domain of the Euclidean space and
that its boundary ∂S is piecewise twice continuously differentiable, namely
that, except on certain lines which are the edges of ∂S, the surface ∂S has
at each of its points a well defined exterior unit normal vector, say n, and a
curvature tensor which is continuous in a neighborhood of each P belonging
to ∂S.

(b) We will apply the principle of virtual power, be it to S or to any subsystem D

of S, for which we will make the same regularity assumptions as for S.

(c) The functions chosen to describe the virtual motion of D, that is, those func-
tions that define an arbitrary element of the normed vector space V, will be
assumed to be continuously differentiable over the closure D+ ∂D of D, as
many times as necessary (for example, infinitely differentiable).

(d) The natural language suited to such a theory is that of the theory of distri-
butions. Nevertheless, in order to simplify the exposition and so as to re-
cover directly the classical formulas, we will not make use of it here. This
is tantamount to admitting that the distributions that represent the forces are
sufficiently regular to be defined in terms of densities, that is, (continuously
differentiable) functions defined over certain manifolds. This simplification
is more often than not a legitimate one, since we are dealing with notions
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pertaining to continuous media, themselves a depiction of an essentially dis-
continuous reality. The linear forms that will define the virtual power can,
therefore, be written by means of volume, surface, or line integrals.

In fact, the results obtained under this working hypothesis remain valid in
the general case as long as we interpret the various quantities appearing there
in the sense of distributions.

(e) The virtual power of the internal forces in the subsystem D will be denoted
as P(i)(D). We will always assume that it can be expressed in the form of a
volume integral over the open set D.

(f) The external forces exerted on the subsystem D, interior to S, will be assumed
to be of two types. The first consists of these forces exerted on D by the
systems external to S; these are the actions at a distance, which, moreover,
will be considered in general as given. We will denote their virtual power
by P(d), and we will assume that it is expressed in the form of a volume
integral over the open set D. The second kind of external forces consists of
those forces exerted on D by the parts of S exterior to D. We will assume here
that, as is customary in the mechanics of continuous media, these are contact
forces — thus implying that the actions at a distance originating within S are
negligible. The virtual power of the contact forces will be denoted by P(c),
which will be expressible by means of a surface integral1 over ∂D.

Analogously, we will assume that the external forces exerted on S also
comprise actions at a distance and contact forces on ∂S.

(g) Since we limit ourselves to the case of statics, the principle of virtual power
is expressed by the equation

P(d)+P(c)+P(i) = 0, (9)

which must be satisfied for any subdomain D and any virtual motion consid-
ered in V. The relations that express the necessary and sufficient conditions
for this to be true constitute the set of equations of statics for the system under
consideration.

The meaning of these remarks will become clearer through the two examples
that we will presently consider.

4. First-gradient theory

The first-gradient theory is, in fact, a rather simple generalization of the classical
formulation of the theory of continuous media. The name given to this first-gradient

1As we will see in Section 5, in certain cases it may be appropriate to include an additional term
expressed in the form of a line integral (over the edges of ∂D).
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theory arises from the fact that for a given subsystem D the space of virtual motions
V is that of continuous and at least once continuously differentiable velocities over
the closure D+ ∂D of D, where the norm of V is that of the uniform convergence
for the velocities and their first derivatives with respect to the coordinates xi . We
will denote by Ui the velocity components and by Ui, j their first derivatives. We
will, moreover, introduce the canonical decomposition of the velocity gradient into
a symmetric part and a skew-symmetric part, namely,

Ui, j = Di j +�i j ; Di j = D j i , �i j =−� j i . (10)

We know that Di j is the matrix that represents the strain-rate tensor and that �i j is
the matrix representing the rotation-rate tensor. The continuous linear forms on this
space V are, in all generality, distributions of order 1, that is, measure derivatives.
But we have already explained in the preceding section that we will not resort here
to this generality and that we will assume that the virtual power can be expressed
by means of integrals.

4.1. We shall always commence by formulating the virtual power of the internal
forces. This will be done for two reasons. In the first place, this is the essentially
new notion brought about by continuum mechanics. In the second place, we have
at our disposal the axiom stated above, which permits us to simplify its expression.
Moreover, we will find that, in writing the virtual work of the external forces, we
will be guided by the results already gained for the expression of the virtual power
of the internal forces.

We know that P(i) is a volume integral over D (in accordance with remark (e)
above). We will write, therefore,

P(i) =−

∫
D

p dv. (11)

Except for the sign, p is the virtual power of the internal forces per unit volume,
or the energy of the internal forces per unit volume. Furthermore, by hypothesis,
p must be a linear form in the arguments Ui , Di j , and �i j . But, by virtue of the
axiom, we can state:

Proposition 1. The density p can be written in the form

p = σi j Di j , (12)

where σi j is a symmetric matrix representing a symmetric second-order tensor
called the intrinsic stress tensor (of order 1), which is an objective quantity.

The proof is straightforward. It is clear that, without loss of generality, we
can assume that σi j is symmetric with respect to the indices i and j .∗ Since Di j

∗Assuming, of course, that we’re in the case where (12) is valid. — (TN)



SECOND-GRADIENT THEORY 163

represents a tensor, the same must be true for σi j , as can be concluded by a change
of frame at the time under consideration. Moreover, by virtue of the axiom, P(i) and
p preserve their values under a change of reference, since evidently the difference
of the velocity fields of one and the same virtual motion as observed in two different
references is the velocity field of some twist. We still need to show that p can
depend neither on Ui nor on �i j . If, for instance, there were in (12) a term in Ui

having a coefficient not identically zero in the neighborhood of a point M of S, one
could find a subsystem 1 of S, containing M , and a virtual motion of translation
defined on 1, for which p would not vanish identically, contrary to the stipulation
of the axiom. The impossibility of having a nonvanishing term in �i j in (12) can
be established by a similar reasoning. The proposition is thus proven.

We assume (remark (d)) that the components σi j are continuously differentiable
in xi . The divergence theorem permits us to derive, having duly noted that σi j Di j =

σi jUi, j , the following useful expression for the virtual power of the internal forces:

P(i) =

∫
D
σi j, jUi dv−

∫
∂D
σi j n jUi da. (13)

If we take Ui as the velocity field of a twist,∗ the left-hand side of (13) vanishes,†

so that, incidentally, we obtain the following:

Proposition 2. The wrench defined by the volumetric density σi j, j in D is equal to
that defined by the surface density σi j n j on ∂D.

This result is usually conveyed in more compact notation‡ as

[σi j, j ]D = [σi j n j ]∂D. (14)

4.2. We will presently formulate the power of the external forces exerted on D,
while adhering to the working hypotheses stated in the preceding section. We will
proceed systematically by writing general linear forms over V and postponing until
the end of this section a brief discussion of the physical meaning of the quantities
used. As far as P(d) is concerned, we will write

P(d) =

∫
D
( fiUi +Ci j�i j +8i j Di j ) dv. (15)

This definition implies that the external actions at a distance can be represented by

• a field of volumetric forces defined by the density fi ,

• a field of volumetric couples defined by the density Ci j , representing a skew-
symmetric tensor, namely, Ci j =−C j i ,

∗That is, a rigidifying motion. — (TN)
†According to the axiom. — (TN)
‡That is, using screw (or torsor) “notation” as in Equation (8) of [16]. — (TN)
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• a field of volumetric “symmetric double forces” defined by the density 8i j ,
representing a symmetric tensor, namely, 8i j =8 j i .

It is convenient to transform the equality (15) following the procedure used
above. Noting the identities

Ci j�i j = Ci jUi, j = (Ci jUi ), j −Ci j, jUi ,

8i j Di j =8i jUi, j = (8i jUi ), j −8i j, jUi ,

and applying the divergence theorem, we obtain

P(d) =

∫
D
( fi −Ci j, j −8i j, j )Ui dv+

∫
∂D
(Ci j +8i j )n jUi da. (16)

All that remains is to deal with the external contact forces. Their virtual power
is defined by a scalar surface density which is, a priori, a linear function of Ui and
of the first derivatives of Ui . But, anticipating the formulation of the principle of
virtual power, we become aware that these last terms vanish identically, since they
could not be possibly balanced by any analogous term in the expressions (13) and
(16) of the virtual power of the internal forces and the actions at a distance. More-
over, we can obtain this result in an absolutely explicit fashion from the expression
(34), given farther below. We will, therefore, simply write

P(c) =

∫
∂D

TiUi da, (17)

where, by definition, Ti represents the stress vector at a point of ∂D acting perpen-
dicularly to ∂D; this is a surface density of contact forces.

4.3. It remains to apply the principle of virtual power, that is, (9). Taking (13),
(16), and (17) into consideration, we obtain

0 =
∫

D
( fi+σi j, j−Ci j, j−8i j, j )Ui dv+

∫
∂D
(Ti−(σi j−Ci j−8i j )n j )Ui da. (18)

We are thus led to define

τi j = σi j −Ci j −8i j . (19)

By definition, τi j represents the stress tensor.
Let us apply first the identity (18) taking as Ui an arbitrary field that vanishes

outside a compact set contained in D. In that case, we are just left with the volume
integral, and since Ui is otherwise arbitrary, we obtain at each point of this compact
set, that is, at each interior point of D, the equation

fi + τi j, j = 0. (20)

Consequently, the volume integral in (18) vanishes identically. Introducing now
in (18) a field Ui that vanishes outside a compact set with an arbitrarily chosen
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nonempty intersection 6 with ∂D, we obtain∫
6
(Ti − τi j n j )Ui da = 0.

Since Ui itself can be chosen arbitrarily in the interior of 6, we conclude that at
each point of ∂D we must have necessarily that

Ti = τi j n j . (21)

Equation (21) is the usual relation providing the stress vector in terms of the
direction n of the exterior normal. Equation (20) is nothing but the classical equilib-
rium equation. Splitting in (19) symmetric and skew-symmetric parts, we can write

τ[i j]+Ci j = 0, (22)

τi j +8i j = σi j . (23)

Up to this point we have always assumed that D is interior to S. For the sake of
completeness, we should apply the principle of virtual power to S itself. To this
end, we will assume that the forces external to S comprise, beyond the actions at a
distance already mentioned, contact forces (whether known or unknown) defined
by surface forces of density ti . Reasoning just as before to obtain (21), we find the
boundary condition that must be satisfied at each point of ∂S, namely,

ti = Ti = τi j n j . (24)

In this equation, ni denotes the exterior unit normal at a point of ∂S, and Ti denotes
the stress vector for the direction n obtained by a passage to the limit, the point
of ∂S being an accumulation point of a set of nearby points interior to S. The collec-
tion of the results obtained thus far can be summarized in the following statement.

Theorem 1. The necessary and sufficient conditions ensuring that the system S is
in equilibrium establish that the stress tensor satisfies Equations (20) and (22) at
each interior point of S and Equation (24) at each point of the boundary ∂S. More-
over, the intrinsic stress tensor and the volumetric energy of the internal forces are
given, respectively, by (23) and (12).

Equations (20), (22), and (24) are those provided by the application of the fun-
damental law of conservation of linear momentum (Germain [3]); in addition, in
that case, it is necessary to assume from the start that, at each point of ∂D, Ti is
a function of n j , an assumption which we did not need to invoke in the present
treatment. On the other hand, this fundamental law cannot give us any information
about the influence of the symmetric double forces that participate in the determi-
nation of the volumetric energy of the internal forces. Thus, even in the simple
case of the first-gradient theory, it is not without interest to construct the general
equations supplying the mechanical description of the system starting from the
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notion of virtual power. In the classical formulation of continuum mechanics, this
advantage disappears, since in that case

8i j = Ci j = 0,

so that

τi j = σi j .

The intrinsic stress tensor, therefore, coincides in this case with the stress tensor
proper.

Remark. As we have already stated, we wanted to present the first-gradient theory
in a systematic fashion. One can legitimately ask if, except for the classical case,
this theory presents any physical interest. This point raises the question as to the
physical meaning of the volumetric double forces, that is, the couples Ci j and
the symmetric double forces 8i j . These forces can be properly interpreted if we
assume that each material point of S is equipped with a microstructure, and it is, in
fact, very instructive to draw a correlation between the present theory and the theory
of media endowed with microstructure, which we intend to do in a forthcoming
article. At first sight, it may seem strange that the microstructure might participate
at the level of the modeling of the external actions at a distance or that it might
play any role in the modeling of the internal forces. It appears, however (see,
for example, Lobdell [4]), that the first-gradient theory may be useful to describe
certain electromechanical phenomena in solids.

Be that as it may, it is clear that this first-gradient theory is nothing but a slight
extension of the classical theory, an extension that manifests itself in a nutshell in
the formula (19). We only developed this theory here so as to show how to apply
the virtual power method in a simple context in order to build a mechanical model
of continuous media.

5. Second-gradient theory

The theory we are about to construct will be finer than the preceding one. We will
consider as the space V of virtual motions the space of continuous and at least
twice differentiable velocity fields defined on the closure D+ ∂D of D, the norm
in V being that of the uniform convergence for the velocities and their derivatives
up to order 2 with respect to xi . Our calculations will be analogous to those that
can be found in [2] (see also [5; 6]), but the interpretation given here is different
and more comprehensive, and since our notation is not exactly the same as in those
works, we believe that it is a good idea to repeat it here, at least in the Appendix, for
the sake of assisting in the reading process. It is appropriate to choose a canonical
representation of the (third-order) tensor of the second derivatives of Ui . Mindlin
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and Eshel [2] propose three different ones. We will content ourselves here with
choosing the third one. Defining in the first place the rate of rotation vector ωi as

ωi =−
1
2εi pq�pq , �i j =−εi jkωk, (25)

we introduce the gradient tensor of the rate of rotation

Ki j = ωi, j =−
1
2εi pq�pq, j =−

1
2εi pqUp,q j . (26)

This tensor Ki j is actually a deviator; that is, its trace Ki i vanishes. It has, therefore,
eight independent components. In the second place, we consider the completely
symmetric part of the second gradient of the velocities

Ki jk =
1
3(Ui, jk +U j,ki +Uk,i j ). (27)

The value of Ki jk remains invariant under every permutation of the indices i, j, k.
This tensor, therefore, has ten different components. The collection of the Ki j and
the Ki jk determines completely the eighteen second derivatives Ui, jk (and vice
versa):

Ui, jk = Ki jk −
2
3εi jl Klk −

2
3εikl Kl j . (28)

This relation can be easily established noting beforehand that, according to (26),
we have

εlmi Ki j =
1
2(Ul,mj −Um,l j ).

5.1. We will start once again by formulating the virtual power of the internal forces,
adopting evidently the working hypotheses stated in Section 3. Recalling the con-
siderations developed in Section 4.1, and particularly formula (11), we see that, by
virtue of the axiom, we can write the volumetric energy of the internal forces in
the form

p = σi j Di j +µi j Ki j +µi jk Ki jk . (29)

The coefficients µi j are components of a second-order tensor, which is, incidentally,
a deviator (µi i = 0); the µi jk are components of a totally symmetric third-order
tensor (µi jk remains invariant under every permutation of the indices). These two
tensors constitute a (canonical) representation of the intrinsic stresses of order 2.
All that is left now is to write P(i) in the appropriate canonical form necessary to
be able to apply the principle of virtual power. This is achieved proceeding, as in
the preceding section, to carry out integrations by parts on the expression

P(i) =−

∫
D
(σi j Di j +µi j Ki j +µi jk Ki jk) dv. (30)

For the first term, the integration by parts needs to be performed once; the result
is the one obtained on the right-hand side of formula (13). For the remaining two
terms, the calculation is slightly more complicated, since it is necessary to integrate



168 PAUL GERMAIN

twice; this is shown in the Appendix, and the results are those of formulas (A-11)
and (A-9), respectively. We see, therefore, that we can write P(i) in the form

P(i) =

∫
D

FiUi dv+
∫
∂D
(TiUi + M̃ω̃i +NDnn) da+

∫
0x

RiUi ds, (31)
where we have put

Fi = σi j, j −
1
2εi pjµpq,q j −µi jk, jk,

Ti =−
(
σi j −

1
2εi pjµpq,q −µi jk,k

)
n j +

1
2εi pj D j (µnnn p)

+ (D j − n j (Dpn p))(µi jknk +µ jlkni nlnk),

M̃i = 2εikqµk jpn j n pnq − (µiqnq − niµnn),

N=−µi jkni n j nk,

Ri =−
[[ 1

2δimµnn + ε jmqnknq(µi jk +µpjkni n p)
]]
τm .

(32)

The meaning of the symbols used in the formulas (32) is better given in the Ap-
pendix; ω̃i is the part of the rate of rotation vector ωi tangential to ∂D; Dnn and
µnn are real numbers representing the doubly normal component of the tensors Di j

and µi j .∗ The symbol Di is an operator of derivation tangential to the surface ∂D,
whose explicit expression is given in (A-2) (and, incidentally, Dpn p is nothing
other than twice the mean curvature); 0 denotes the edges of the boundary sur-
face ∂D along which the tangent plane (or the normal vector n) is discontinuous;
τi is the unit vector tangent to 0, whose orientation can be chosen arbitrarily, but
consistently; finally, the symbol [[ ]] denotes the jump of the bracketed quantity
across 0. It is worthwhile noting that the sense across 0 on which the jump takes
place, and the sense of 0 must be related, in agreement with the usual Stokes’
formula.

It should be noted that the vector M̃i is tangential to the surface ∂D, since we
have that Ri M̃i = 0. It is precisely this fact that the tilde is supposed to indicate.

5.2. We must presently formulate the expression of the virtual power of the exter-
nal forces. If we want to proceed systematically, we must write the power of the
actions at a distance, taking into consideration the remarks made in Section 3, in
the form

P(d) =

∫
D
( fiUi +Ci j�i j +8i j Di j +4i j Ki j +4i jk Ki jk) dv. (33)

On comparing (33) with (15), we perceive that there appear here additional
forces, namely, the volumetric triple forces defined by 4i j — which is a deviator —
and those defined by 4i jk , which is a completely symmetric third-order tensor. In
fact, we will assume, for the sake of simplicity, that these triple forces vanish;

∗As indicated later, an underlined subscript nullifies the summation convention with respect to
that subscript. — (TN)
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it should not be difficult to indicate how the expressions given below are to be
modified if we want to take these forces into account. We will, therefore, accept
that P(d) is still given by (15) or, better, by (16), which is more suitable for the
application of the principle of virtual power.

As far as the virtual power of the contact forces acting on the boundary surface
∂D is concerned, we are guided, as we were in the preceding section, to write the
most suitable expression, by anticipating the application of the principle and taking
into consideration the formula (31) already found for P(i). We are thus led to write

P(c) =

∫
∂D
(TiUi + M̃i ω̃i + N Dnn) da+

∫
0x

RiUi ds. (34)

As before, Ti denotes the stress vector; M̃i , a vector tangent to ∂D, is a surface
density of a tangential couple; N is a scalar surface density of a doubly normal
double force; Ri is a vector that defines a line density of a force applied along the
edges of 0.

5.3. It remains only to apply the principle of virtual power, that is, equality (9). We
will substitute in it the expressions given in (16), (31), and (34); we thus obtain an
equation that must be satisfied for every field Ui twice continuously differentiable
in the closure D+ ∂D of D.

Let us consider first fields Ui that vanish outside a compact set interior to D.
The only survivor is the volume integral that can be written as∫

D
( fi + τi j, j )Ui dv = 0,

if we set

τi j = σi j −
1
2εi pjµpq,q −µi jk,k −Ci j −8i j . (35)

It follows that at each interior point of D we necessarily have

fi + τi j, j = 0. (36)

In the equation expressing the principle of virtual power, therefore, the only remain-
ing terms in the general case are the surface integral over ∂D and the line integral
over the edges 0. Let us consider a fixed arbitrary closed connected area 6 which
is a subset of ∂D not having any point in common with an edge, and let us denote
by C2(6) the collection of twice continuously differentiable scalar-valued func-
tions defined over 6 and vanishing outside a compact set interior to 6. We state:

Lemma. Given seven functions in C2(6)— V1(P), V2(P), V3(P), �̃1(P), �̃2(P),
�̃3(P), D(P)— constrained by the single relation ni�̃i = 0, it is possible to con-
struct a twice continuously differentiable field Ui on the closure D+ ∂D attaining
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on the boundary ∂D the following values:

at each point of 6, Ui = Vi , ω̃i = �̃i , Dnn = D,

at all other points of ∂D, Ui = �̃i = Dnn = 0.

(37)

The proof is straightforward. The velocity field that we are trying to construct
has, according to equalitites (37), known values on 6 and a gradient that also has
known values on 6 (the tangential derivatives are determined by those of Vi , the
normal derivatives of the tangential components are next determined by �̃i , and
the normal derivative of the normal component by D). Let us consider the subset
1 of D made up of the points M such that M P = ζn, with 0≤ ζ ≤ ζ0(P), where
ζ0(P) is a function defined over 6 and infinitely differentiable on 6 vanishing on
the boundary and attaining at each point of 6 sufficiently small values so that at
each point of 1 there is a unique normal to 6. It is clear that we can construct
in 1 a field Ui (M)=Ui (P, ζ ) such that it and its first derivatives attain the values
prescribed on 6 and also such that it and its derivatives up to order 2 vanish over
the part of ∂1−6 of the boundary of 1. Thus, in a trivial fashion, we complete
the definition of Ui by assigning to it zero values on the set D+ ∂D−1, and this
field satisfies perfectly the conditions of the lemma.

Applying the equation of virtual power to such a field Ui yields∫
6

{
(Ti +Ti +Ci j n j +8i j n j )Vi + (M̃i + M̃i )�̃i + (N +N)D

}
da = 0,

for arbitrary functions Vi , �̃i , D, constrained by the single relation ni�̃i = 0. Fur-
thermore, since the vector M̃i + M̃i is a vector tangent to the surface 6, the quan-
tities within the parentheses ( ) under the integral sign must vanish individually at
each point of 6 and, consequently, taking into account the latitude with which 6
can be chosen, also at each point of the boundary ∂D not belonging to an edge. In
accordance with (32), we can write

Ti = τi j n j + T ′i = T̂i + T ′i ,

T ′i = (n j (Dpn p)− D j )(µi jknk +µl jkni nlnk)−
1
2εi pj D j (n pµnn),

M̃i = µiqnq − niµnn − 2εikqµk jpn j n pnq ,

N = µi jkni n j nk .

(38)

Let us note that the last term appearing in the expression of T ′i also can be written
as in (A-12), that is,

−
1
2εi pj D j (n pµnn)=−

1
2εi pj n pµnn, j .

These equations show how the stress vector Ti , the surface tangential couple M̃i ,
and the (surface) normal double force N are expressed in terms of the intrinsic
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stress tensors of orders 1 and 2. We can still call τi j the stress tensor, given that the
equilibrium equation has the usual form, but it must be noted that in the present case
this tensor is no longer sufficient to define the stress vector Ti . Finally, taking into
consideration the results already obtained, the equality of virtual powers reduces to∫

0
(Ri +Ri )Ui ds = 0,

and therefore, taking (32) into account, we have

Ri =
[[1

2δmiµnn + ε jmqnknq(µi jk +µpjkni n p)
]]
τm, (39)

an equation that allows us to express the line force along the edges as a function
of the intrinsic stress tensors.

In addition, it remains to apply the principle to S itself in order to find the
boundary conditions. To this end, we are led to admit that the external forces
exerted on S comprise, beyond the volume actions at a distance already considered,
surface effects defined by surface forces of density ti , couples tangential to S of
surface density m̃i , and doubly normal double forces of surface density n. We can
easily show that we must have{

Ti = ti , M̃i = mi , N = n on ∂S,
Ri = ri on 0.

(40)

We have thus exhausted the consequences that can be extracted from the principle
of virtual power, and we can consequently establish the following:

Theorem 2. The necessary and sufficient conditions ensuring that the system S
is in equilibrium, for the case in which the external triple volume forces are ne-
glected, are expressed by the relations (35) and (36), that must be satisfied at each
interior point of S, and the relations (40), that must be satisfied at each point of
the boundary ∂S. Moreover, in the interior of S, the surface contact forces are
defined by (38) and the line forces by (39). When the external triple volume forces
are taken into consideration, the fundamental equations of statics of the second-
gradient theory are obtained by replacing in the previous equations µi j and µi jk

by µi j −4i j and µi jk −4i jk , respectively.

5.4. It is instructive to interpret the preceding results in terms of the classical fun-
damental law. In so doing, we will discover the extra information and precision
contributed by the formulation herein advocated, which turns out to be better suited
when we are dealing with a medium for which the modeling must be finer than in
the classical case.

Let us recall a remark already made above: the statements purveying the funda-
mental law can be obtained from the equations expressing the principle of virtual
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power by considering only the rigidifying virtual motions of D, for which the ve-
locity field is determined by a twist, that is, a velocity field of the form

Ui = Vi + εik jωk x j , (41)

where ωi and Vi are the elements of reduction of the twist at the origin.
Here is a first application. Let us take up again the expression of the virtual

power of the internal forces given by (30), and instead of proceeding to carry out
two integrations by parts to end up with (31), let us retain the intermediate result
obtained after a single integration. Setting

βi j = σi j −
1
2εi pjµpq,q −µi jk,k,

that is, according to (35),

τi j = βi j −Ci j −8i j , (42)

we can write

0=
∫

D
βi j, jUi dv−

∫
∂D
βi j n jUi da+

∫
∂D

( 1
2εi j pµpqnqUi, j −µi jknkUi, j

)
da.

Let us apply this equation using the field (41); the term in µi jk does not con-
tribute at all, by virtue of the symmetry with respect to the first two indices. If we
set

γi = µi j n j , (γi )∂D =

∫
∂D
γi da,

where (γi )∂D denotes the couple defined by the surface density of the couples γi

on ∂D, we immediately obtain, using the notations introduced above,

[βi j, j ]D = [βi j n j ]∂D+ (γi )∂D. (43)

With the same notation, an equation of the form∫
∂D
τi j n jUi da =

∫
D
τi j, jUi dv+

∫
D
τi jUi, j dv,

when applied to the field (41), leads to the wrench equation

[τi j n j ]∂D = {[τi j, j ]D+ (εki jτk j )D} = 0. (44)

We have, therefore,

[8i j, j ]D = [8i j n j ]∂D, [Ci j, j ]D = [Ci j n j ]D− (ci )D, (45)

where we have set
ck =−εki j Ci j . (46)

The vector ci is the couple vector associated with the skew-symmetric tensor Ci j .
Combining (42), (43), and (45), we can formulate the following:
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Proposition 3. For every part D of S, we have the following wrench equation:

[τi j, j ]D−{[τi j n j ]∂D+ (γi )∂D+ (ci )D} = 0. (47)

Recall that T̂i = τi j n j .
Furthermore, when applied to a twist such as (41), since P(i) vanishes, P(d)

and P(c) being given by (15) and (34), respectively, the statement of the principle
of virtual power leads to the wrench equation

[ fi ]D+ (ci )D+ [T̂i ]∂D+ [T ′i ]∂D+ (M̃i )∂D+ [Ri ]0 = 0. (48)

Let us add (47) and (48), and let us take (36) into account to obtain

(γi )∂D = [T ′i ]∂D+ (M̃i )∂D+ [Ri ]0. (49)

The right-hand side must be, just as the left-hand side, a couple, which implies in
particular that the resultant of the wrench that it defines vanishes, namely,∫

∂D
T ′i da+

∫
0

Ri ds = 0.

Taking (49) into account, we can write (48) in the form

[ fi ]D+ (ci )D+ [T̂i ]∂D+ (γi )∂D = 0. (50)

The first two terms of the left-hand side represent the wrench of the actions at a dis-
tance exerted on D — the double forces 8i j must be considered as defining a zero
wrench, since their virtual power vanishes in every rigidifying motion. It follows
that the last two terms represent the wrench of the contact actions. Consequently,
we obtain the following:

Proposition 4. On every part D of S the contact actions determine a wrench that
can be defined by a surface force T̂i and a surface couple γi which are linear
functions of the unit normal vector n. We have indeed

T̂i = τi j n j , γi = µi j n j . (51)

This representation of the contact forces is in appearance simpler than that given
in Section 5.2; but this is no more than a globally valid representation. For this
reason, in the absence of supplementary details, this representation is in effect
insufficient for the study of media endowed with stress couples, such as those that
fall under the scope of the second-gradient theory. Let us, moreover, recall that
by means of a statement such as that of the classical fundamental law appearing
in equality (50) it is not possible to take into account the external double forces.
Finally, we should note that, adding (44) and (47), we obtain

(εki jτk j )D+ (γi )∂D+ (ci )D = 0,
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and using equality (51), transforming the surface integral into a volume integral,
and considering (46), we find in the end, since D is an arbitrary part of S, the
equation

τ[i j] =−
1
2εi pjµpq,q −Ci j ,

expressing the equality of the skew-symmetric parts of the two sides of (35).

5.5. The representation adopted for the second-gradient (26) and (27) allows us
to deal immediately with the case where Ki jk does not participate in the virtual
power. Indeed, it suffices to set µi jk = 0 in the previous formulas. For example, if
we consider (38) and (39), we notice that N = 0 and that, more precisely, we have

Ti = τi j, j + T ′i = T̂i + T ′i , T ′i =−
1
2εi pj D j (n pµnn),

M̃i = µiqnq − niµnn = (µ̃iqnq)= γ̃i ,

Ri =
1
2µnnτi .

∗

The notations of (51) have been used. Naturally, we have

τi j = (σi j −8i j )+
( 1

2εi j pµpq,q −Ci j
)
.

On the right-hand side, the first term in parentheses is the even part of τi j — which
reduces to σi j if we neglect the volumetric double forces — while the second term
in brackets is the odd part.

The boundary conditions associated naturally to this model are still given by (40),
on condition that the equation N = n be omitted, since it is superfluous here. It is
precisely these conditions that can suggest the boundary conditions to take into
consideration to formulate problems with regular boundaries. We leave to the
reader the effort of particularizing the results given in Sections 6 and 7 for this
simplified case.

5.6. A final remark. We have not treated here either the dynamical case or the
case of equations with discontinuities. We intend to revisit this topic in a forthcom-
ing article in which we will specify in advance the relations between the second-
gradient theory and the theory of media endowed with microstructure. The physical
meaning of the first will then be more easily brought to light.

6. Constitutive behavior of a medium under the umbrella
of the second-gradient theory within the framework of small perturbations.

The case of elastic media

To study the response of a system S under the action of external agents, it is neces-
sary to supplement the general equations obtained above by means of constitutive
equations. In this section, we intend to briefly examine how this can be achieved
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within the framework of problems that can be treated under the hypothesis of small
strains.

Under these conditions, indeed, there is no need to distinguish between the La-
grangian and Eulerian representations. The motion of the medium is defined by
the displacement field X i (x1, x2, x3, t) defined over a well determined domain S,
which plays the role of a reference configuration. The strains for a second-gradient
theory can then be fully characterized by the tensors

εi j =
1
2(X i, j + X j,i ), (52)

ηi j =−
1
2εi pq X p,q j (ηi i = 0), (53)

ηi jk =
1
3(X i, jk + X j,ki + Xk,i j ), (54)

since, under the hypothesis of small perturbations, the material derivative being
identical in this case to the partial derivative with respect to time, the strain-rate
tensors of the second-gradient theory are obtained by simple differentiation. We
have, therefore (see (26), (27)):

Di j = ε̇i j , Ki j = η̇i j , Ki jk = η̇i jk . (55)

6.1. The strain energy. Let us suppose now that the medium is elastic, and the
evolution is isothermal. The existence of the free-energy density implies that of
a volumetric strain energy having the usual convexity properties. More precisely,
we will state, in view of the small-perturbation hypothesis, the following:

Definition 1. There exists a volumetric strain energy w(εi j , ηi j , ηi jk), depending
on the variables εi j , ηi j , ηi jk , which is a nonnegative quadratic form, invariant
under any permutation of the two indices of the variable εi j , under any permutation
of the three indices of ηi jk , and under the addition of the same constant to the three
variables η11, η22, η33, which vanishes if , and only if ,

εi j = 0, ηi jk = 0, ηi j = cδi j .

Moreover, for every motion, the derivative with respect to time of w is equal to the
volumetric energy p of the internal forces.

It follows from this definition that the function w satisfies the equation

∂w
∂η11
+
∂w
∂η22
+
∂w
∂η33
= 0, (56)

and that, if the strain tensors are defined in terms of a displacement field by the
formulas (52), (53), and (54), w vanishes if, and only if, the field X i is given by a
twist, that is, a geometric infinitesimal rigid-body displacement.
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Furthermore, in a given state εi j , ηi j , ηi jk , it is possible to assign to the strain-
rate tensors (55) arbitrary values subject to the single restriction

η̇i i = 0. (57)

According to the definition, if λ denotes a Lagrange multiplier, we have identi-
cally that

ẇ= σi j ε̇i j +µi j η̇i j +µi jk η̇i jk + λη̇i i (58)

and, therefore, necessarily that

σi j =
∂w
∂εi j

, µi j =
∂w
∂ηi j

, µi jk =
∂w
∂ηi jk

, (59)

since, by virtue of (56) and of the relation µi i = 0, the Lagrange multiplier λ is
necessarily zero.

Equations (59) are the constitutive laws of the elastic medium.
In order to simplify the notation, we will denote by c the collection of the tensors

εi j , ηi j (ηi i = 0), ηi jk , and by σ the collection of the tensors σi j , µi j (µi i = 0), µi jk .
We will write the strain energy in the form w(c) and the constitutive laws (59) as

σ =
∂w(c)
∂c
= E(c). (60)

With these notations, Euler’s identity for w attains the form

2w= σ · c. (61)

The general form of w involves 300 coefficients. But this number is reduced to
seven in the case of isotropic media. (See, for example, Mindlin [5], Mindlin and
Eshel [2].)

All the results of the classical theory of linear elasticity (see, for example, Ger-
main [7]) are easily extended to the case of the present theory. To this end we
introduce the following notations:

• bilinear form w associated to w(c):

w(c+ c∗)= w(c)+ 2w(c, c∗)+w(c∗), (62)

• strain energy of the system S and associated bilinear form:

W (C)=
∫

S
w(c) dv, W(C,C∗)=

∫
S
w(c, c∗) dv. (63)

Here, C denotes a strain tensor field c defined over S.



SECOND-GRADIENT THEORY 177

• Dual notions:

w∗(σ )= sup
c
{σ · c−w(c)},

w∗(σ + σ ∗)= w∗(σ )+ 2w∗(σ, σ ∗)+w∗(σ ∗), (64)

W ∗(6)=
∫

S
w(σ ) dv, W∗(6,6∗)=

∫
L
w(σ, σ ∗) dv0. (65)

Obviously, w∗(σ ) is a quadratic form of σ having invariance properties analo-
gous to those of w(c); 6 denotes a field of stress tensors σ defined on S.

The constitutive equations can be written as

c =
∂w∗(σ )
∂σ

= E−1(σ ), (66)

where E−1 denotes the inverse function of E(c), given in (60).
It should be noted that

w∗(σ )= w(c) if σ = E(c). (67)

6.2. The energy theorems. Let 6 be a field of intrinsic stresses σ(σi j , µi j , µi jk),
in equilibrium with given external forces F( fi ,Ci j ,8i j , ti , m̃i , n, ri ) defined as in
Section 5 (see (15), (34), and (40)). If C∗ denotes the virtual motion defined by the
twice continuously differentiable field X∗i and the corresponding strain-rate tensors,
ε∗i j , η

∗

i j , η
∗

i jk according to the formulas (52), (53), (54), as well as the rotation rates

ϕ∗i j =
1
2(X

∗

i, j − X∗j,i ), ϕ∗i =−
1
2εi jkϕ

∗

jk,

the virtual power of the forces F in the virtual motion C∗ can be written as

<<F,C∗>> =
∫

S
( fi X∗i +Ci jϕ

∗

i j +8i jε
∗

i j ) dv

+

∫
∂D
(ti X∗i + m̃i ϕ̃

∗

i + nε∗nn)da+
∫
0

ri X∗i ds. (68)

We can, therefore, state:

Proposition 5. If the elastic medium S is in equilibrium under the action of external
forces F, the equation expressing the principle of virtual power can be written as

<<F,C∗>> = 2W(C,C∗), (69)

where C is the field of strains c of the medium S in elastic equilibrium.

Indeed, if σ = E(c), then 2w(c, c∗)= σ · c∗. Analogously:

Proposition 6. If a stress field 6̃ is in equilibrium with external forces F̃, and if
C(C),6 denote, respectively, a field of displacements, rotations, and strains, and
a field of stresses of an elastic equilibrium state, then

<< F̃,C>> = 2W∗(6, 6̃). (70)
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These two propositions furnish an interesting interpretation of the functions W

and W∗.
It is not necessary to dwell on showing how the work and reciprocity theorems

are derived. We leave their formulation as an exercise to the reader. It is a straight-
forward matter also to obtain the uniqueness theorem for regular problems.

To avoid a complicated notation and following the current usage, we will exam-
ine a problem of the following type (type III). Let 61 and 62 be two disjoint parts
of the boundary ∂S of S. The problem data are

(a) fi ,Ci j ,8i j in S,

(b) on 61, X i = X i , ϕ̃i = ϕ̃i , εnn = εnn ,

(c) on 62, ti = t i , m̃i = m̃i , n = n, and ri = r i on 0 ∩62.

In other words, we are given in S and on 62 the external forces and on 61 the
displacements, the tangential rotation, and the unitary elongation in the normal
direction. We then have (Mindlin and Eshel [2]):

Theorem 3. The problem thus posed has at most one nontrivial solution.

Indeed, applying (68) to the homogeneous problem associated with C∗ = C,
we have, by virtue of the data of this homogeneous problem, <<F,C>> = 0 and,
therefore, W (C)= 0, which implies that, at every point of S, w(c)= 0, since w(c)
is nonnegative and continuous. Consequently, the displacement field is a twist, and
the strain and stress fields vanish identically. These properties are precisely what
characterizes a trivial solution. We can also give a variational formulation of the
regular problems. We will so do in the case of the problem formulated above. To
this end, let us propose the following definitions.

Definition 2. A field C′, determined by the field X ′i (x1, x2, x3), assumed to be
defined and twice differentiable in the closure of S, is said to be kinematically
admissible for the problem under consideration if it satisfies the kinematic bound-
ary conditions on 61 (condition (b)).∗ We will denote by C ′ the strain field defined
by C.

Definition 3. A field 6′ determined by the tensor fields σ ′i j , µ
′

i j (µ
′

i i = 0), µ′i jk
defined and twice differentiable in the closure of S is said to be statically admissible
for the problem under consideration if it satisfies the equilibrium equations (35)
and (36) in the interior of S and the boundary conditions (38) and (40) on 62 and
on 0 ∩62.

Let us remark that if we denote by F the data of external forces defined in S
and on 62, by C the kinematic data on 61, and by F′ the system of external forces

∗The original has 62 instead of 61. — (TN)
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in equilibrium with 6′, we can write

<<F′,C′>> = {F,C′}+ (F′,C), (71)

where { } collects in (68) the integrals taken on S and on 62, while ( ) collects the
integrals on 61.

We can still formulate the following definitions.

Definition 4. We call the potential energy of a kinematically admissible field for
the problem under consideration the function

V (C ′)=W (C ′)−{F,C ′}, (72)

and the potential energy of a statically admissible field for the problem under con-
sideration the function

V ∗(6′)=−W (6′)+ (F′,C). (73)

We can then prove the following:

Theorem 4. Suppose that the problem under consideration admits a solution. If
C and 6 denote the strain and stress fields defining this solution, we have that for
every field of admissible C′ and σ ′

V ∗(6′)≤ V ∗(6)= V (C)≤ V (C ′). (74)

Moreover, it is not possible to have the equality V (C ′)= V (C) except if C and C ′

define the same strain tensor fields, and it is not possible to have V ∗(6′)= V (6)
except if 6′ and 6 define the same intrinsic stress fields.

The proof is easy and classic. Let us set C′ = C+C∗. Then, C ′ = C +C∗ and,
with obvious notation,

V (C ′)− V (C)=W (C +C∗)=W (C)−{F,C∗}. (75)

By virtue of (62) and (63),

W (C +C∗)−W (C)= 2W(C,C∗)+W (C∗).

On the other hand, according to (71), for every F′, and in particular for F corre-
sponding to the solution,

<<F′,C∗>> = <<F′,C′>> − <<F′,C>> = {F,C∗} = <<F,C∗>> ;

and finally, according to (69), C and F being associated with the solution,

<<F,C∗>> = 2W(C,C∗).
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Plugging these results into (75) yields

V (C ′)− V (C)=W (C∗). (76)

The right-hand side of (76) is always nonnegative, and it doesn’t vanish except
when the strain tensors defined by C and C ′ are identical. Let us set 6′ =6+ 6̃
and, accordingly, F′ = F+ F̃. Then

V ∗(6′)− V ∗(6)=W ∗(6+ 6̃)−W ∗(6)− (F̃,C). (77)
But

W ∗(6+ 6̃)−W ∗(6)= 2W∗(6, 6̃)+W ∗(6̃).

Moreover, according to (71), for every admissible C′ and in particular for the solu-
tion C,

<< F̃∗,C′>> = <<F′,C′>> − <<F,C′>> = (F̃, C̃)= <<F,C>> ;

and finally, according to (70)

<< F̃,C>> = 2W∗(6, 6̃).

It follows then that
V ∗(6)− V ∗(6′)=W (6̃),

which establishes the first inequality (74).
Finally, quite evidently by virtue of (69) or of (70) or, more directly, by the work

theorem, we have for the solution C, 6

V (C)= V ∗(6).

This completes the proof of the energy theorem.

6.3. Hints on the existence theorems. It is not difficult to extend most of the the-
orems of existence established in the classical theory (Duvaut–Lions [1], Ch. 3) to
the problems of linear elasticity formulated within the framework of the second-
gradient theory. We will content ourselves here with the formulation of one of these
theorems, always in the case of the problem of type III considered above, assuming,
moreover, for the sake of simplicity, on the one hand, that the boundary ∂S of S is
a twice continuously differentiable manifold (which, in fact, eliminates the edges)
and, on the other hand, that the part 61 contains at least three noncollinear points.
We need then to specify the functional framework within which the problem must
be formulated.

(1) The displacements X i are assumed2 to belong to H 2(S). It follows that on ∂S
the displacements X i belong to H 3/2(∂S) and that the tangential rotation ϕ̃i

2The notation used for the Sobolev spaces is the classical one. See, for example, Lions–Magenes
[8] or Duvaut–Lions [1].



SECOND-GRADIENT THEORY 181

and the doubly normal unitary elongation εnn belong to H 1/2(∂S). This de-
fines the functional space in which the data C on 61 must be taken.

(2) The given external volume forces fi ,Ci j ,8i j will be taken in L2(S). The
external forces given on 62 will be, as far as Ti is concerned, in the restriction
to 62 of H−3/2(∂S), and as far as m̃i and n are concerned, in the restriction
to 62 of H−1/2(∂S).

(3) It will be assumed that the coefficients of the quadratic form w(c) belong
to L∞(S), that is, that they are essentially bounded.

Under these conditions, we can state:

Theorem 5. If the data C and F belong to the functional spaces introduced above,
there exists a unique displacement field that minimizes the potential energy V (C ′)
among all the kinematically admissible fields (defined by X ′i ∈ (H

2(S)) and satis-
fying the boundary conditions C on 61).

The proof, which we will not carry out here, has been developed3 by Duvaut
[12]. It relies on a generalized Korn inequality that can be deduced very simply
from the classical inequality according to which the norm defined in (H 2(�))3 by
the inner product

((C(1)i ,C(2)i ))=

∫
S
(X (1)

i X (2)
i + ε

(1)
i j ε

(2)
i j + η

(1)
i j η

(2)
i j + η

(1)
i jkη

(2)
i jk) dv

is equivalent to the classical norm on (H 2(�))3, and moreover, from the fact that
if C= 0, there exists a constant M such that w(C)≥ M((C,C)).

6.4. Possible generalizations. When extending the methods described in [3] to
construct in the classical case the constitutive laws of viscoelastic or elastic-perfectly
plastic media, it is not difficult to formulate, in the framework of the small per-
turbation hypothesis, theories of viscoelasticity or plasticity for a description of a
continuous medium by means of a second-order theory. It will suffice, for example,
to add to the function w(c) a conveniently chosen dissipation function. We will
content ourselves here with this simple remark.

7. Constitutive laws of a hyperelastic medium in a second-gradient theory

In the preceding section, we have shown how the construction of the proposed
second-gradient theory leads quite naturally to the formulation of constitutive laws
in the case where the medium sustained only small perturbations. It remains for
us to show how to proceed in the case of finite strains. We will content ourselves
with considering the elastic case.

3Only the case of isotropic media is considered in [12]. But by means of appropriate conditions,
the extension to the general case is straightforward.
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As is well known in the classical theory, the essential point is to obtain a rep-
resentation of the stresses after convected transport from the configuration under
study to the reference configuration. For the sake of simplicity, we will assume this
configuration to be defined by the coordinates aα (α = 1, 2, 3) in the orthonormal
Cartesian frame used to describe the system S. We will denote by Fiα the elements
of the gradient matrix and by a superposed dot the material derivative. If Ui denotes
the velocity vector, we can write

Ui,α =Ui, j F jα = Ḟiα,

where a Greek index such as α placed after a comma indicates a derivative with
respect to aα, while the function being differentiated is expressed in terms of the
Lagrangian variables a1, a2, a3, t .

If we denote by Lαβ the Green–Lagrange strain tensor

2Lαβ = FiαFiβ − δαβ, (78)

we easily obtain the classical formula

L̇αβ = Di j FiαF jβ, (79)

whose interpretation would become clearer when using curvilinear coordinates,
since it would make manifest that the material derivative of the Green–Lagrange
tensor is nothing but the result of the convected transport of the rate of strain tensor
to the reference configuration.

We deduce from (79) that

L̇αβ,γ = Di j (FiαF jβ),γ + Di j,k FiαF jβFkγ ,

which shows that the derivatives Di j,k (or, what amounts to the same, the Ui, jk) can
be calculated by means of the gradient of L̇αβ . To utilize the representation of the
second gradient that we have chosen, it is convenient to introduce the quantities

3αβγ =
1
3(Lαβ,γ + Lβγ,α + Lγα,β), 3αβ =−2εαρσ Lβρ,σ . (80)

It should be noted that 3αβγ is invariant under any permutation of the indices
α, β, γ , and that 3αα = 0. Indeed,

2εαρσ Lβρ,σ = εαρσ (FiβFiρ),σ = εαρσ Fiβ,σ Fiρ,
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since Fiρ,σ =
∂2xi

∂aρ ∂aσ
is symmetric in ρ and σ . For the same reason, εαρσ Lαρ,σ = 0.

We have, therefore, in the first place

33̇αβγ = L̇αβ,γ + L̇βγ,α + L̇γα,β

= Di j [(FiαF jβ),γ + (FiβF jγ ),α + (Fiγ F jα),β]

+ Di j,k[FiαF jβFkγ + FiβF jγ Fkα + Fiγ F jαFkβ],

or
3̇αβγ = Pαβγ i j Di j + Ki jk FiαF jβFkγ . (81)

Here, Ki jk denotes the completely skew-symmetric part of Ui, jk , defined in (27),
and Pαβγ i j are coefficients which remain invariant under permutations of the in-
dices α, β, γ , on the one hand, and the indices i, j , on the other. In fact, we may
state

Pαβγ i j =
1
6{(FiαF jβ + F jαFiβ),γ + (FiβF jγ + F jβFiγ ),α+ (Fiγ F jα+ FiαF jγ ),β}.

(82)
Accordingly, we calculate

3̇αβ =−2εαρσ L̇βρ,σ

=−2[εαρσ Di j (FiβF jρ),σ + εαρσ Di j,k FiβF jρFkσ ]. (83)

It proves convenient to introduce the coefficients

Qαβi j =−εαρσ [(FiβF jρ),σ + (F jβFiρ),σ ] = −εαρσ [Fiβ,σ F jρ + F jβ,σ Fiρ]. (84)

The last equality is a result of the symmetry of F jρ,σ with respect to the indices ρ
and σ . It should be noted, moreover, that

εαρσ [Di j,k F jρFkσ + Dik, j F jρFkσ ] = εαρσ [F jρFkσ ][Di j,k + Dik, j ] = 0,

so that in (83) we can replace Di j,k by

1
2(Di j,k − Dik, j )=

1
2� jk,i =−

1
2ε jkpωp,i =−

1
2εpjk K pi ,

where the last equalities stem from (25) and (26).
Thus, (83) can be written as

3̇αβ = Qαβi j Di j + εpjkεαρσ FiβF jρFkσ K pi . (85)

It should be noted that the right-hand side of (85) is actually a deviator. Indeed,
Qααi j = 0, since εαρσ Fiα,σ F jρ = 0 by virtue of the symmetry of Fiα,σ in α and σ .
Furthermore, if we denote, according to common usage,

J = det(Fiα), (86)



184 PAUL GERMAIN

we obtain

εpjkεαρσ FiαF jρFkσ K pi = Jεpjkεi jk K pi = 2J Ki i = 0,

since Ki j is a deviator.
These preliminary computations having been carried out, if we denote by ρ0 the

mass per unit volume in the reference state and by ρ the mass per unit volume in
the present state, it is clear that the energy per unit mass of the internal forces will
be linear with respect to Lαβ,3αβ, Dαβγ . We thus write

1
ρ
(σi j Di j +µi j Ki j +µi jk Ki jk)=

1
ρ0
(sαβ L̇αβ +5αβ3̇αβ +5αβγ 3̇αβγ ). (87)

In this equation, we can assume, without loss of generality, that sαβ is symmetric,
that 5αβ is a deviator, and that 5αβγ is completely skew-symmetric in α, β, γ .
The tensors sαβ,5αβ,5αβγ provide a representation of the intrinsic stresses in
the reference configuration for a medium described in a second-gradient theory.
Naturally, sαβ is the classical symmetric Piola–Kirchhoff tensor.

Using (79), (81), (85), (86), we can write (87) in the form

Di j [Jσi j − FiαF jβsαβ − Qαβi j5αβ − Pαβγ i j5αβγ ]

+ Ki j (Jµi j − εi pqεαρσ F jβFpρFqσ5αβ)

+ Ki jk(Jµi jk − FiαF jβFkγ5αβγ )= 0. (88)

Since, by hypothesis, we are assuming that the medium is not subjected to any in-
ternal constraints, Di j , Ki j , and Ki jk can take arbitrary values. Moreover, the coef-
ficient of Di j is symmetric in i, j ; the coefficient of Ki j represents the components
of a deviator (since εαρσ εβρσ5αβ = 0); and the coefficient of Ki jk is completely
skew-symmetric in i, j, k. We obtain, therefore, that

Jσi j = FiαF jβsαβ + Qαβi j5αβ + Pαβγ i j5αβγ ,

Jµi j = εi pqεαρσ F jβFpρFqσ5αβ,

Jµi jk = FiαF jβFkγ5αβγ ,

(89)

identically. These equations express the intrinsic stress tensors in the present con-
figuration as functions of the intrinsic stress tensors in the reference configuration.
It is easy, moreover, to solve them in terms of 5αβγ ,5αβ, sαβ .

Let us assume that the medium is elastic and, more precisely, hyperelastic. The
classical theory can be easily generalized (see, for example, Germain [3]) suppos-
ing that the specific free energy 9 is a function of the absolute temperature and
of the variables Lαβ,3αβ,3αβγ , it being understood that Lαβ and 3αβγ make
their contributions symmetrically and that 9 is invariant under the transformation
3αβ→3αβ +Cδαβ for arbitrary values of the constant C . The differential of 9,
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while the temperature is kept constant, namely,

ρ−1
0 (sαβd Lαβ +5αβd3αβ +5αβγ d3αβγ ),

is identical to minus the infinitesimal work of the internal forces, so that we can
write

sαβ = ρ0
∂9

∂Lαβ
, 5αβ = ρ0

∂9

∂3αβ
, 5αβγ = ρ0

∂9

∂3αβγ
, (90)

which provides a simple first way to write the constitutive laws. Equations (89)
lead directly to the expression of the stresses in the present configuration as

σi j = ρ

[
∂9

∂Lαβ
FiαF jβ +

∂9

∂3αβ
Qαβi j +

∂9

∂3αβγ
Pαβγ i j

]
,

µi j = ρεi pqεαρσ F jβFpρFqσ
∂9

∂3αβ
,

µi jk = ρ
∂9

∂3αβγ
FiαF jβFkγ .

(91)

Recall that the coefficients Pαβγ i j and Qαβi j are expressed directly in terms of the
gradient matrix and its derivatives according to (82) and (84).

It is to be noted that, under the hypothesis of small strains, we may use in (91)
w = ρ09 = ρ9,

Lαβ = εαβ, 3αβ = ηαβ, 3αβγ = ηαβγ ,

Fiα = δiα, Pαβγ i j = 0, Qαβi j = 0,

(92)

so that we still recover (59).
We have obtained, as we intended, the constitutive laws of a hyperelastic medium

under finite strains in the framework of the second-gradient theory.

Conclusion

The aim of this first article — which develops a part of the results announced in a
recent note [9] — has been to show how the method of virtual power provides a
means at the same time powerful and natural to construct a theory of continuous
media. The main results that emerge are the following:

(a) Construction of a first-gradient theory that offers itself as a very simple gener-
alization of the classical theory and that exposes the distinction between the
classical stress tensor and the intrinsic stress tensor (Theorem 1).

(b) Construction of a second-gradient-theory that generalizes the preceding one
(Theorem 2). The fundamental formulas, which were already known in the
case of elastic media, have a general scope. This appears to be a new result.
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(c) Statement of the main results of the second-gradient theory in the case of
elastic media for infinitesimal strains. These results, without being essentially
new, are collected in a systematic presentation.

Incidentally, a new introduction is put forward of the notion of screw (torsor)
that perhaps better highlights its mechanical meaning. It was introduced by the
author in an unpublished course [11]. See also [3] and [10].

Finally, we would like to remark that, in addition to the advantage of introducing
an exact representation of the internal forces suited to the adopted description, this
method allows us to obtain as naturally as possible and without new computations
the notions of strain energy and the variational formulations that derive from it
in the case where the medium is elastic. This notion is, more generally, perfectly
adapted to the application of the principles of the thermodynamics of continuous
media to obtain the constitutive laws of nonelastic media. We can also say that,
without any new effort, this method permits to extend the results obtained in elas-
ticity to the most general media by means of any formulation that takes as its point
of departure a variational or Hamiltonian formulation.

Appendix

A.1. Preliminary formulas. It will be useful to introduce at each point of the sur-
face ∂D, the boundary of a connected domain D, the operators of normal and
tangential differentiation. Let ϕ(x1, x2, x3) be a continuous and continuously dif-
ferentiable scalar-valued function defined on the closure D+ ∂D of D. Its normal
derivative (toward the exterior) is a scalar denoted by Dϕ and its tangential deriv-
ative on the surface is the vector D jϕ given by

Dϕ = nlϕ,l, ϕ, j = D jϕ+ n j Dϕ. (A-1)

We proceed in the same way with a vector-valued function qi (x1, x2, x3). The
normal derivative is the vector Dqi and the tangential derivative is the tensor D j qi

given by the following expressions:

Dqi = nlqi,l, qi, j = D j qi + n j Dqi . (A-2)

Recall the statement of the divergence theorem on a surface. Let 6 be a closed
area, with continuous tangent plane and curvature, traced over the surface ∂D, and
let τi be the unit vector tangent to the boundary ∂6 oriented in the direct sense
around the normal ni to 6. Finally, let νi denote the exterior unit normal to ∂6
lying on the tangent plane to 6, so that

ν j = ε jmlτmnl . (A-3)
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We can write ∫
6

D j q j da =
∫
6

n j q j (Dlnl) da+
∫
∂6x

ν j q j ds. (A-4)

Note that Dlnl is twice the mean curvature. We can verify this formula by noticing,
for example,4 that

D j q j = (Dlnl)n j q j + εsrmεml j ns(nlq j ),r .

The last term is then n · rot(n∧ q), and the identity results from Stokes’ formula.
Suppose now that the boundary ∂D is a closed surface with piecewise continuous

tangent and curvature, and denote by 0 the “edges” of ∂D, along which there is a
discontinuity of the tangent plane. We can write, according to (A-4),∫

∂D
D j q j da =

∫
∂D
(Dpn p)n j q j da+

∫
0x
[[ν j q j ]] ds, (A-5)

where [[ ]] denotes the jump of the enclosed quantity. Another form is obtained by
applying (A-3):∫

∂D
D j q j da =

∫
∂D
(Dpn p)n j q j da+

∫
0x
ε jmpτm[[n pq j ]] ds. (A-6)

We will need, furthermore, a canonical decomposition of the velocity gradient
tensor different from that given by (A-2) and involving tangential derivatives of
the velocities, the tangential components of the rate of rotation vector, and the
doubly normal (to ∂D) component5 Dnn of the rate of strain tensor. To this end it
is sufficient to express the normal derivative of the velocity vector. But

DUk = n p(Dkp +�kp)

= n p�kp +
1
2 n pUk,p +

1
2 n pUp,k = n p�kp +

1
2 DUk +

1
2 n pUp,k .

We have, therefore,

DUk = 2n p�kp + n pUp,k = 2n p�kp + n p(DkUp + nk DUp)

= 2n p�kp + n p DkUp + nkn pnqUp,q ,

and since �pqn pnq = 0, we obtain

DUk = 2n p�kp + n p DkUp + nk Dnn.

Applying (A-2), we obtain the desired formula as

Ui, j = D jUi + n j n p DiUp + 2n j n p�i p + ni n j Dnn. (A-7)

4We extend the definition of n to a neighborhood of ∂D by parallel transport along the normal.
5A repeated underlined index implies no summation. Here Dnn = Dpq n pnq .
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The vector n p�i p is obviously situated on the tangent plane to ∂D; moreover,

n p�i p =−εi pkωkn p =−εi pkω̃kn p,

where ω̃k denotes the tangential component of the vector ωk . We can also write
(A-7) in the form

Ui, j = D jUi + n j n p DiUp − 2n jεi pkω̃kn p + ni n j Dnn. (A-8)

A.2. Transformation of Equation (30). Let us start with the term arising from the
triply contracted product of two tensors of order 3. We have, taking into consider-
ation the symmetry of µi jk ,

µi jk Ki jk = µi jkUi, jk = (µi jkUi, j ),k −µi jk,kUi, j

= (µi jkUi, j ),k − (µi jk,kUi ), j +µi jk, jkUi ,

and a subsequent integration and application of the divergence theorem yield∫
D
µi jk Ki jk dv =

∫
D
µi jk, jkUi dv−

∫
∂D
µi jk,kn jUi da+

∫
∂D
µi jkUi, j nk da.

It remains to transform the last integral. To this end, we write the integrand, using
(A-8), as

µi jkUi, j nk = D jUi (µi jknk+µ j pkni n pnk)−2εikqµ jkpn j n pnq ω̃i+µi jkni n j nk Dnn.

We now integrate by noting that the first term is of the form D j q j and applying
(A-6). Finally, we obtain∫

D
µi jk Ki jk dv =

∫
D
µi jk, jkUi dv

−

∫
∂D
{µi jk,kn j+(D j−n j (Dpn p))(µi jknk+µ jlkni nlnk)}Ui da

+

∫
∂D
(µi jkni n j nk Dnn−2εikqµk jpn j n pnq ω̃i ) da

+

∫
0x
ε jmqτm[[µi jknknq+µ j pkni n pnqnk]]Ui ds. (A-9)

We proceed in a similar fashion with the term arising from the doubly contracted
product of the tensors µi j and Ki j :

µi j Ki j =−
1
2εi pqUp,q jµi j =−

1
2(εi pqµi jUp,q), j +

1
2εi pqµi j, jUp,q

=−
1
2(εi pqµi jUp,q), j +

1
2(εi pqµi j, jUp),q −

1
2εi pqµi j, jqUp.

Integrating, we obtain∫
D
µi j Ki j dv

=
1
2εi pq

{∫
D
µpj, jqUi dv−

∫
∂D
µpj, j nqUi da−

∫
∂D
µi j n jUp,q da

}
. (A-10)
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It is convenient to write the last integral in a more suitable form. Let us set

Ai = µi j n j , Ãi = Ai − ni Aknk,

so that Ãi denotes the tangential component of Ai and that we can write the inte-
grand as

−
1
2εi pqUp,q Ai = ωi Ai = ω̃i Ãi + n j nkω j Ak .

Moreover,

Ãi = (δik − ni nk)Ak = µiqnq − niµkqnknq = µiqnq − niµnn,

where µnn denotes the doubly normal component of µi j . Furthermore,

n j nkω j Ak =−
1
2εi pqUp,q Aknkni =−

1
2εi pq Aknkni DqUp

=−
1
2 Dq(εi pq AknkniUp)+

1
2 Dq(εi pq Aknkni )Up

=−
1
2 D j (εi pj niµnnUp)+

1
2 D j (εi pj niµnn)Up.

Invoking (A-5), we can write∫
∂D

n j nkω j Ak da = 1
2

∫
D

D j (εi pj niµnn)Up da− 1
2

∫
0x
[[ν jεpi jµnnn p]]Ui ds

=
1
2

∫
∂D

D j (εpi j n pµnn)Ui da+ 1
2

∫
0x
[[µnn]]τiUi ds.

Finally, collecting the various partial results, we obtain∫
D
µi j Ki j dv = 1

2

∫
D
εi pqµpj, jqUi dv

+
1
2

∫
∂D
{εpi j D j (µnnn p)− εi pqµpj, j nq}Ui da

+

∫
∂D
(µiqnq − niµnn)ω̃i da+ 1

2

∫
0x
[[µnn]]τiUi ds. (A-11)

Note that we can write

εpi j D j (µnnn p)= εpi j n pµnn, j (A-12)

since D j n p = Dpn j . This permits us to give a different form to the surface integral
that appears on the right-hand side of (A-11).
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AN APPRECIATION AND DISCUSSION OF PAUL GERMAIN’S
“THE METHOD OF VIRTUAL POWER

IN THE MECHANICS OF CONTINUOUS MEDIA
I: SECOND-GRADIENT THEORY”

MARCELO EPSTEIN AND RONALD E. SMELSER

Paul Germain’s 1973 article on the method of virtual power in continuum me-
chanics has had an enormous impact on the modern development of the disci-
pline. In this article we examine the historical context of the ideas it contains
and discuss their continuing importance. Our English translation of the French
original appears elsewhere in this volume (MEMOCS 8:2 (2020), 153–190).

Introduction

Among the many contributions of Paul Germain (1920–2009) to mechanics, this
classical 1973 article [1973a] on the method of virtual power in continuum mechan-
ics stands out for its enormous impact on the modern development of the discipline,
as evidenced by hundreds of citations and by its direct or indirect influence in
establishing a paradigm of thought for succeeding generations. In this article we
examine the historical antecedents of the ideas contained in the article and discuss
their continuing relevance.

The article was published in French in the Journal de Mécanique. It was soon
followed by a sequel [Germain 1973b], written in English and dealing with media
possessing microstructure. To the best of our knowledge, the original paper had
not previously been translated into English, a gap we have sought to remedy by
providing our own translation in this issue [Germain 2020].

This note is organized around three of the key ideas found in Germain’s article:
torsors, the rigidification axiom, and duality. We conclude with a brief discussion
of the language in the paper and some of our terminological choices made in its
translation.

Communicated by Pierre Seppecher.
MSC2010: primary 74A05, 74A10, 74A30; secondary 74B20.
Keywords: virtual power, gradient elasticity, duality, screws, functional analysis.
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Screws or torsors

It may be hard to believe these days, when a standard first-year course in engineer-
ing statics counts couples along with forces as fundamental pillars of the discipline,
that the very notion of a couple was not introduced formally or otherwise until the
year 1803. It was the genius of Louis Poinsot (1777–1859) that conceived, bap-
tized, and formalized this idea at a young age in his Éleméns de Statique [Poinsot
1803] and extended it further to kinematical and dynamical theories in later works.1

Among Poinsot’s important statements, we may mention the proof that every sys-
tem of forces and couples in space can be reduced to a statically equivalent system
consisting of a single resultant force through any given point and a single resultant
couple. Moreover, a judicious choice of a particular line reduces the system to a
force along it and a couple about it (that is, the couple can be represented as a
pair of forces on a plane perpendicular to this line). In the English terminology,
this contraption is known as a “wrench”. Earlier, the Italian mathematician Giulio
Giuseppe Mozzi (1730–1813) had proved [1763] that every rigid-body motion can
be represented as a “twist”, that is, a combination of a translation along a line and
a rotation about this line, a result often attributed to Michel Chasles (1793–1880).

Although controversial at first, Poinsot’s ideas slowly gained acceptance and
were supported, expanded, and promulgated by figures such as Alfred Ferdinand
Möbius (1790–1868), Julius Plücker (1801–1868), Felix Klein (1849–1925), Ed-
ward John Routh (1831–1907), Robert Stawell Ball (1840–1913), Eduard Study
(1862–1930), and Richard von Mises (1883–1953), all of whom helped to gener-
alize the original concept in various physical and mathematical directions. It may
have been Plücker who first proposed to consider a single hybrid entity encompass-
ing forces and moments, an entity which he called “dyname”, a six-dimensional
vector whose first three components represent the force, while the last three rep-
resent the couple.2 With the structure of R3 in the background, certain additional
peculiar operations can be defined, inspired clearly by the original idea in statics.
This concept entered the English language as “screw”, a term used by Ball in the
title of his original treatise [1900] dedicated exclusively to this topic.3 In his monu-
mental five-volume treatise on rational mechanics, Paul Émile Appell (1855–1930),

1A delightful historical account of Poinsot and his times is given in [Grattan-Guinness 2014].
2Plücker introduced early on the concept of six coordinates (only four of which are independent)

to describe the collection of lines in space. See, e.g., [Plücker 1846]. His mature views on analytic
geometry are collected in a later treatise, which has been translated into English [Plücker 1868]. The
introductory chapter makes reference to the dyname as an example of his geometric system, although
a dyname requires two extra parameters to convey the magnitudes of the force and the moment. An
English summary by Plücker himself on his approach can be found in [Plücker 1865; 1866].

3Published earlier as [Ball 1876]. In extending the ideas of Plücker, von Mises created his Motor-
rechnung or “motor calculus”. A screw is a motor represented by two collinear vectors.
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following Ball, translates it into French as “torseur” [Appell 1902]. The English
term “torsor” is reserved for a more abstract concept in algebraic geometry.

Definition. Let E3 denote the Cartesian affine space of R3. A screw (or torsor, or
motor) is a vector field v over E3 such that there exists a fixed skew-symmetric
matrix W ∈ R3

×R3 with the property

vq = vp +W(q − p) for all p, q ∈ E3. (1)

Given a screw, its core matrix W is unique, as can be easily proved by assuming the
contrary and using the definition. In R3 with the standard orientation every skew-
symmetric matrix W can be equivalently represented by a vector, say w, such that
for all vectors u the identity

W u = w∧ u (2)

is satisfied, where, following the French engineering tradition, a wedge denotes the
usual cross product of vectors.4 Thus, Equation (1) can be replaced by

vq = vp +w∧ (q − p). (3)

The relation between the components Wi j of W and the components wk of the core
vector w is

wk =−
1
2εki j Wi j , (4)

where εki j are the components of the Levi-Civita alternating symbol.

Equiprojectivity.As a vector field, a screw satisfies the property of equiprojectivity.
Its name derives from the fact that, due to the skew-symmetry of W, (1) implies that

(vq − vp) · (q − p)= 0, (5)

where a dot is used for the ordinary Cartesian inner product. It follows that any two
vectors vp and vq have the same projection on the line determined by their points
of application, namely, vq · (q − p)= vp · (q − p). The converse of this statement
is known as the theorem of Delassus.5 It states that every equiprojective vector
field is a screw. From the viewpoint of equiprojectivity, it is a straightforward
matter to formulate a theory of screws in infinite-dimensional Hilbert spaces, a
generalization that so far does not seem to have a direct bearing on continuum
mechanics.

4In R3 there is a definite relation between the cross product of vectors and the Grassmann or
wedge product of multivectors.

5Named after Étienne Delassus (1868–1926), a French mathematician who made important con-
tributions to the theory of partial differential equations. The “theorem” appears in the first few pages
of his book [Delassus 1913]. Delassus uses the terminology of fields of moments for screws and spe-
cial fields for equiprojective fields, and then proves their equivalence. The book contains interesting
contributions to the theory and applications of nonholonomic constraints.
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The elements of reduction of a screw at a point. It follows from the definition
that to completely describe a screw it is sufficient to specify its core vector w

and its value vp at an arbitrary point p. Put differently, a screw is completely
defined by the pair (w, vp), denoted also by {W}p, whose entries are the elements of
reduction of the screw v at the point p. This observation should suffice to convince
ourselves that the collection W of all possible screws constitutes a six-dimensional
real vector space, where vector addition and multiplication by a scalar are defined
in the obvious way. As such, we can define its dual space W∗ consisting of all
the scalar-valued linear operators (or forms) on W. An element of reduction in the
dual space will be denoted with square (rather than curly) brackets, such as [T]p.

The two fundamental examples. The first fundamental example of a screw space
(or torsor space) in mechanics is the space of twists (or kinematic torsors, or dis-
tributors), namely, the space C of rigid-body velocity fields. Indeed, choosing any
point p ∈ E3 such a field is represented by

vx = vp +ω∧ (x − p) for all x ∈ E3, (6)

where ω is the angular velocity vector, which, incidentally, is the core vector of
the twist.

The second fundamental example of relevance to mechanics is the space T of
wrenches (or static torsors), each of whose elements is a field of moments of any
system of forces and couples. We know, since Poinsot’s pioneering work, that this
field can be represented as

mx = mp + f ∧ (x − p), (7)

where f is the force resultant of the system, which turns out to be the core of the
wrench.

Duality and inner product. In a Lagrangian mechanics framework, generalized
forces at a configuration are elements of the dual of the tangent space of the con-
figuration manifold at the point representing the configuration. The evaluation of a
force (a covector) on a tangent vector (“virtual velocity”) is interpreted as a virtual
power. According to this mental paradigm, therefore, the space of wrenches should
be regarded as the dual space of the space of twists. If the space of twists were to
be endowed with an inner product, each covector (a wrench) would be naturally
identified with a vector (a twist), and the action of the former on the latter would
consist of their inner product.

In the case of a rigid body, however, we know exactly what the natural inner
product should be. Indeed, the virtual power P of a system of forces (defined, say,



AN APPRECIATION OF PAUL GERMAIN’S “SECOND-GRADIENT THEORY” 195

by [T]p) on a field of rigid-body virtual velocities (defined by {C}p) is given by

P= [T]p · {C}p = f · vp +mp ·ω. (8)

On the right-hand side of this equation, we are using the ordinary dot product of R3,
while the middle part of the equation introduces the desired inner product in the six-
dimensional space of twists. We remark that this definition is consistent in the sense
that, as can be easily verified, the result is independent of the point of reduction p
chosen. Note that the core of one screw acts on the field element of the other,
and vice versa. This operation was formalized by von Mises, who call it a scalar
product. He also introduced a generalized cross product, called the motor product,
and discussed the physical meaning of both operations [von Mises 1924a].6

The rigidification axiom

Another important concept found in Germain’s work is the axiom of rigidification,
which, just as the concept of a wrench, echoes back to older traditions. Its earliest
manifestation is the principle of solidification usually attributed to the Flemish sci-
entist Simon Stevin (circa 1548–1620). In general terms, this principle establishes
that the state of equilibrium of a (deformable) body is not altered if any part of it is
replaced by a rigid body of the same geometry. Without providing an explicit state-
ment of the principle, Stevin used it in his work on the equilibrium of fluids at rest
[1586].7 Clairaut, Euler, Poinsot, and other important scientists made use of this
principle in their treatment of equilibrium of continuous media [Truesdell 1968].8

Within the framework of the principle of virtual power, a crucial role is played
by the axiom of rigidification in the following form. The virtual power of the in-
ternal forces vanishes for all rigid-body virtual velocity fields. When this axiom is
attached to the principle of virtual power, the equations of equilibrium (or motion)
of a continuum, including the balance of angular momentum, are obtained directly.
An interesting parallel can be drawn between this axiom and Walter Noll’s axiom of
objectivity [1963] or the equivalent derivation of the laws of continuum mechanics
from the invariance of an energy equation under superposed rigid-body motions
[Green and Rivlin 1964].

Since the principle of virtual power postulates an identity, valid for all possi-
ble virtual velocity fields,9 all conclusions obtained from the application of this

6A follow-up paper appeared in the same volume, and has been translated into English [von Mises
1924b].

7For a thorough historical treatment, see [Casey 1992].
8A historical account in connection with virtual power can be found in [Capecchi 2012].
9The admissible virtual velocity fields in a particular theory are, naturally, restricted to a given

functional space. Nevertheless, it is always assumed that this space contains the space of twists C.
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principle are legitimate for the system under consideration.10 Consider, for exam-
ple, the wrench [Tint] of the internal forces integrated over any subbody. Since, by
the axiom of rigidification, the virtual power of this wrench must vanish identically
for all twists, we conclude that [Tint] must vanish identically, whether the body be
deformable or not. This fact is usually interpreted as a manifestation of Newton’s
third law (of action and reaction). The condition of equilibrium is obtained, there-
fore, as the vanishing of the wrench [Text] of the external forces.

Duality

The mystical, religious, and philosophical appeal of the notion of duality is as old as
recorded history and need not be considered here. It is, however, interesting to note
that Isaac Newton (1642–1727) himself devoted much of his creative energies to
hermetic writings, including a translation of the so-called Emerald Tablet in which
Newton finds that, “That which is below is like that which is above and that which
is above is like that which is below to do the miracles of one only thing.”11 In short,
the idea that there is some kind of automatic correspondence of concepts at two
complementary levels of discourse entered more or less explicitly into a scientific
(and prescientific) description of the universe. Already Archimedes (circa 287–212
BCE) envisioned the law of the lever as some kind of compensating effect between
forces and virtual displacements to produce the vanishing of the “one only thing”,
which is virtual work.

In mathematical terms, a finite-dimensional vector space U automatically im-
plies the existence of a dual space U∗ of the same dimension, consisting of all
the scalar-valued linear functions on U . Moreover, there exists a canonical iso-
morphism between the dual (U∗)∗ of U∗ and the original U , as can be shown
without difficulty. We have, in fact, already considered above the example of the
duality between the six-dimensional vector spaces of wrenches and twists mutually
involved in the production of virtual power.

In the Lagrangian conception of classical mechanics, the configuration space
of a system with a finite number of degrees of freedom is a finite-dimensional
differentiable manifold Q. At each point q ∈ Q, namely at every configuration
of the system, the tangent space TqQ is a vector space, interpreted physically as
the carrier of all possible virtual velocities vq away from this configuration. A
force at q is, therefore, an element fq of the dual space T ∗q Q, that is, a real-valued

10See, for example, [Salençon 2016].
11Newton’s manuscript, in his always refreshingly legible handwriting, is housed in King’s Col-

lege Library of Cambridge University and cataloged under the identifier Keynes MS. 28. It is also
digitally available [Newton 2010]. Considering that the date of publication of the first edition of the
Principia is 1687, it is rather interesting to remark that this and other alchemy-related manuscripts
by Newton have been dated approximately to the decade of the 1680s.
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linear function on TqQ. The evaluation fq(vq) is, therefore, interpreted as the
virtual power produced by the force on the velocity. The crux of Germain’s article
consists of the extension of these ideas to the infinite dimensional realm.

Following Segev [1986], if a continuous medium B is regarded as a differen-
tiable manifold with boundary, its configuration space Q can be regarded as the set
of all C p embeddings in the physical space (for some p ≥ 1). This set is known
to sustain the structure of an infinite-dimensional Banach manifold. Its tangent
space at a configuration q ∈ Q is a Banach space TqQ representing the collection
of all virtual velocity fields at q. Its dual space can, therefore, be interpreted as a
generalized force in continuum mechanics, a concept that embraces both external
forces and stresses in their full generality. To make his point crystal clear, however,
Germain restricts the configuration manifold Q by effectively identifying it with a
Hilbert space V, a Banach space whose norm is induced by an inner product. As
explained by Germain, this assumption affords a description of forces and stresses
completely analogous to the finite-dimensional counterpart, avoiding the important
technicalities of measures and distributions.

Some terminological remarks

Quite apart from the ordinary stylistic difficulties involved in literary or scientific
translation, Germain’s paper offers an additional challenge even for those familiar
with the French language. It arises from the theoretical framework within which
the discipline of mechanics is taught in France and other European countries, a
framework that involves not only terminological but also conceptual differences
with the prevailing tradition in English-speaking countries. These and other matters
of general interest pertinent to the background and its history were the motivation
for this short article.

We turn now to some specific vocabulary choices:

• The mechanics literature in French (and other romance languages) uses the term
effort to designate quite generally any mechanical interaction. Thus, an effort
may be an external force or an internal stress. There is no such simple equiva-
lent in English. In Germain’s English abstract of the paper under consideration,
the term “effort” was rendered as “strength”. In his second paper, however, writ-
ten this time in English, Germain occasionally uses the term “force”, placing
it between quotation marks. He never uses the term “strength”. Our policy has
been to use the word “force” for all occurrences of effort, since both the context
and the presence of an adjective are sufficient to make the meaning clear.

• We have rendered “produit scalaire” as “inner product”, to avoid any possible
ambiguity.



198 MARCELO EPSTEIN AND RONALD E. SMELSER

• The French term “déformation” is translated as “strain” and must not be con-
fused with the English “deformation”.

• The expression “lois de comportement” is rendered as “constitutive laws”.

• Germain often uses the terms “energy” and “power” interchangeably. We have
respected this slight inaccuracy.
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