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GENOTYPE-DEPENDENT VIRUS DISTRIBUTION
AND COMPETITION OF VIRUS STRAINS

NIKOLAI BESSONOV, GENNADY A. BOCHAROV,
CRISTINA LEON, VLADIMIR POPOV AND VITALY VOLPERT

Virus density distribution as a function of genotype considered as a continu-
ous variable and of time is studied with a nonlocal reaction-diffusion equation
taking into account virus competition for the host cells and its elimination by
the immune response and by the genotype-dependent mortality. The existence
of virus strains, that is, of positive stable stationary solutions decaying at infin-
ity, is determined by the admissible intervals in the genotype space where the
genotype-dependent mortality is less than the virus reproduction rate, and by the
immune response under some appropriate assumptions on the immune response
function characterizing virus elimination by immune cells. The competition of
virus strains is studied, first, without immune response and then with the immune
response. In the absence of immune response, the strain dynamics is different
in a short time scale where they converge to some intermediate slowly evolving
solutions depending on the initial conditions, and in a long time scale where their
distribution converges to a stationary solution. Immune response can essentially
influence the strain dynamics either stabilizing them or eliminating one of the
strains. An antiviral treatment can also influence the competition of virus strains,
and it can lead to the emergence of resistant strains, which were absent before
the treatment because of the competition with susceptible strains.

1. Introduction

A fundamental feature of many RNA virus infections of major public concern (e.g.,
human immunodeficiency virus type I (HIV) and hepatitis C virus (HCV)) is an
error-prone replication [Domingo and Perales 2018]. The high genetic variability
of HIV and HCV and selection of the most adapted mutants determine the ability
of the virus population to escape the immune response and develop resistance to
the antiviral therapy [Coffin and Swanstrom 2013; Gaudieri et al. 2009]. The
variability of the viruses is considered to be one of the key factors in the patho-
genesis of the respective infectious disease. Variation of the genetic structure of
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the viral population is the result of the interaction of the replication, mutation,
recombination, immune-mediated elimination, and drug-dependent suppression of
the virus replication. An important step towards a mechanistic understanding of
the evolution of the heterogeneous virus populations is provided by the models
which consider explicitly the infection of target cells, interaction with the immune
system, and drug-dependent blockade of the virus replication.

To describe and analyze the dynamics of genetic heterogeneity of evolving virus
populations, the concept of quasispecies provides a general framework to deal with
an ensemble of genomes [Eigen 1971; Biebricher and Eigen 2006]. A more formal
approach to studying the evolution of quasispecies is based on considering the
mutation-selection processes acting on the virus strains according to their fitness
values. The respective deterministic models are formulated using systems of ODEs.
The standard form of the quasispecies model in mathematical virology is the set
of ODE equations [Nowak and May 2000]

dv

dt
=Wv− d(v)v, W =


a1 Q11 a2 Q21 · · · an Qn1

a1 Q12 a2 Q22 · · · an Qn2
...

...
. . .

...

a1 Q1n a2 Q2n · · · an Qnn

 , d(v)=
∑n

i=1 aivi∑n
i=1 vi

.

(1-1)

Here, the vector v characterizes the abundance of genomes composing the pop-
ulation, v = {v1, v1, . . . , vn}, ai stand for the replication rates of i-th genome
(quasispecies), i = 1, . . . , n, and Q = (Qi j ) is the mutation matrix. The last
term describes the competition of the genomes for survival. The model considers
the balance of production and elimination of the quasispecies and as such bears no
specific link to real processes underpinning the collective dynamics of the genomes.
Another framework is provided by stochastic models taking the form of genetic
algorithms [Bocharov et al. 2005; Vijay et al. 2008]. The distributed parameter ap-
proach with respect to the mutant frequency as a continuous variable was proposed
in [Rouzine et al. 2001] using the forward Kolmogorov equation.

Some general regularities underlying the evolution of viral quasispecies (equiva-
lently, the ensembles of virus strains) have been elucidated empirically. The viruses
can escape immune control by generating mutations within the peptide epitopes,
and the epitope inducing the strongest T cell response is subject to the strongest se-
lective pressure [McMichael and Carrington 2019]. The dynamics of drug-resistant
mutants depends on a number of virus replication parameters, such as the avail-
ability and the spectrum of target cells, the epistatic interactions between specific
mutations, etc. [Martínez et al. 2011]. However, a deeper insight into the impact of
virus population properties and its sensitivity to drugs and the immune responses
requires the development of mathematical models with an explicit description of
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the interplay between the above processes in producing the survival advantages of
specific virus strains, characterized in general as the fitness values.

The fitness value can be estimated in vitro under certain special conditions
[Martínez et al. 2011]. However, its quantification for real infections remains a
challenge [Ganusov et al. 2011] as it results from a complex system of factors,
such as virus production in target cells, host-dependent immune responses, and
drug efficacy. We have recently developed a novel mathematical framework for
predicting and quantifying the virus diversity evolution during infection of a host
organism [Bessonov et al. 2020].

In this study we examine the properties of the formulated mathematical model
to shed new light on the collective behavior of virus genome ensembles (strains)
in relation to the parameters of mutation, replication, interaction with the immune
system, and the susceptibility to the antiviral drugs. We consider the equation

∂u
∂t
= D

∂2u
∂x2 + au(1− bI (u))− u f (u)− σ(x)u, (1-2)

describing the evolution of virus density depending on the genotype x considered
as a continuous variable and on time t . The first term in the right-hand side of
this equation characterizes virus mutation and the second term its reproduction;
the next term specifies virus elimination by immune response, and the last term its
death. We now describe each of these terms in more detail.

• Assuming there is a sequence of reversible mutations with consecutive geno-
types xi , we can write the equation for the density ui of virus with genotype xi :

dui

dt
= µ(ui−1− ui )+µ(ui+1− ui ), (1-3)

where µ is the frequency of mutations. This equation represents a discretiza-
tion of the diffusion equation with the diffusion coefficient proportional to µ.
Virus mutation described by the diffusion operator was previously considered
in [Kimura 1964; Sasaki 1994]. In a more general case, one should take into
account a more complex mutation pattern (see, e.g., [Martínez et al. 2011]).

• The virus multiplication term is proportional to the virus density u and to
the quantity of uninfected host cells (1− bI (u)). Here 1 is a dimensionless
total number of cells, and bI (u) is the number of infected cells, which is
proportional to the total virus quantity I (u)=

∫
∞

−∞
u(x, t) dx (see Section 4

for more detail).

• Virus elimination by immune cells is proportional to the virus density and to
the quantity of immune cells c. The latter is supposed to be a function of virus
density. The function f (u) is sufficiently smooth with f (u) > 0 for u > 0.
It grows for sufficiently small u, since the immune response is stimulated by
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antigens, and it can be down-regulated for sufficiently large u, since the high
viral load infection can suppress immune response (via exhaustion mecha-
nisms). This term can contain time delay taking into account clonal expansion
of immune cells [Bocharov et al. 2018], but we do not consider it in this work.

• The last term in the right-hand side of (1-2) describes virus natural death and
its elimination by some antiviral treatment. Let us note that the death rate can
depend on virus genotype x .

We consider virus strain as density distribution concentrated around some geno-
type value. Mathematically speaking, it is a positive solution of (1-2) decaying at
infinity. We will determine conditions of the existence of such solutions to delineate
the rules characterizing the competition of different strains and their response to
treatment. In particular, we will see how the elimination of some strains by treat-
ment can lead to the emergence of the strains resistant to treatment. We will begin
the analysis of the existence and competition of virus strains due to the genotype-
dependent mortality in the absence of immune response (Section 2), and we will
continue with the investigation of the influence of immune response (Section 3).
We discuss the modeling approach and the results in Section 4. Some technical
calculations and proofs are placed in Appendices A, B, and C in order to simplify
the reading of the paper.

2. Localized solutions in the absence of immune response

We begin the analysis of (1-2) in the case without immune response, f (u) ≡ 0.
We will present conditions on the death function σ(x) providing the existence of
localized positive solutions describing virus strains. After that, we will study the
competition of two strains.

2A. Existence of stationary solutions.

Model problem. Consider the equation

Du′′+ u(1− I (u))− σ(x)u = 0 (2-1)

on the whole axis, where I (u) =
∫
∞

−∞
u(x) dx , σ(x) = σ0 > 1 for |x | ≥ x0, and

σ(x)= 0 for |x |< x0, for x0 some positive number. We look for a positive bounded
solution of this equation. Clearly, it can exist only if I (u) < 1. Set

1− I (u)= k2. (2-2)

Then (2-1) can be written as

Du′′+ k2u = 0, |x |< x0, Du′′+ k2u− σ0u = 0, |x | ≥ x0. (2-3)
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Therefore,

u(x)= c1 cos(µx), |x |< x0, u(x)= c2e±λx , |x | ≥ x0,

where c1 and c2 are some positive constants, µ= k/
√

D, and λ=
√
σ0− k2/

√
D

(k2 < σ0). From the continuity of the solution and of its first derivative at x =±x0

we obtain the equalities

c1 cos(µx0)= c2e−λx0, c1µ sin(µx0)= c2λe−λx0 . (2-4)

Dividing the second equation by the first, we get the equation with respect to k:√
σ0− k2 = k tan(kx0/

√
D). (2-5)

We can now determine the integral I (u):

I (u)=
∫
∞

−∞

u(x) dx =
2c1

µ
sin(µx0)+

2c2

λ
e−λx0 .

Taking into account the first relation in (2-4), we have

I (u)= 2c1

(
1
µ

sin(µx0)+
1
λ

cos(µx0)

)
.

The coefficient c1 can be determined from (2-2):

c1 = (1− k2)/(2h(k)), h(k)=
1
µ

sin(µx0)+
1
λ

cos(µx0),

and c2 = c1eλx0 cos(µx0).

Let us recall that we are looking for a solution k < 1 of (2-5). Such solution
exists if x0/

√
D is greater than the critical value

ξ∗ =
1
k

arctan
√
σ0

k2 − 1, (2-6)

and it does not exist if x0/
√

D < ξ∗. For x0 large enough, there are multiple
solutions satisfying this condition. We can now formulate the following result.

Theorem 2.1. Let σ(x)= σ0 > 1 for |x | ≥ x0, and σ(x)= 0 for |x |< x0, where x0

is some positive number. Then (2-1) has a positive solution decaying at infinity for
x0/
√

D > ξ∗, and such solution does not exist for x0/
√

D ≤ ξ∗. Here ξ∗ is given
by expression (2-6).

Generalization of the existence result. The previous theorem is based on the ex-
plicit construction of a solution for a piecewise-constant function σ(x). The exis-
tence result can be generalized for some class of functions using a more sophisti-
cated mathematical method based on the topological degree and a priori estimates
of solutions (Leray–Schauder method).
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Figure 1. Solution u(x, t) of (1-2) in numerical simulations. Left:
projection of solution on the (t, u)-plane for t = 60. Right: 3D
solution for t = 105. The values of parameters are L = 1, a= b= 1,
D = 0.001, σ(x)= 0 for 0.2< x < 0.3 and 0.7< x < 0.8 and = 1
otherwise, and initial condition = 0.1 for 0.5< x < 0.52.

Theorem 2.2. Suppose that σ(x) is a sufficiently smooth bounded function such
that σ(x) = 0 for |x | ≤ x0 and σ(x) ≥ σ0 ≥ 1 for |x | ≥ x1, where x1 > x0 > π/2.
Then (2-1) has a positive solution decaying at infinity.

The proof of this theorem is given in Appendix C.

2B. Two admissible intervals. We showed in the previous subsection that a local-
ized positive solution of (2-1) exists for a sufficiently large admissible interval or for
a small mutation rate (diffusion coefficient). This localized solution corresponds
to a virus strain. In order to study the competition of two strains for the host cells,
we will now consider the death rate function σ(x) with two admissible intervals,
σ(x)= 0 for x1 ≤ |x | ≤ x2 and σ = σ0 > 0 otherwise. Here x2 > x1 > 0.

The analytical solution of (1-2) with such function σ(x) is quite complex, and it
is presented in Appendix A. It is shown that existence and multiplicity of solutions
can be formulated in terms of the parameter h = (x2− x1)/

√
D characterizing the

length of the admissible interval normalized by the diffusion coefficient. There
exists a positive solution decaying at infinity if h > hc for some critical value hc,
and such solution does not exist if h < hc. Moreover, it is shown that there are two
branches of solutions; one of them is a symmetric (even) function, while another
one is asymmetric. In order to study the stability of these solutions, we carry
out numerical simulations of the initial boundary value problem for (1-2) on a
bounded interval 0< x < L with periodic boundary conditions. We set f (u)≡ 0,
and I (u)=

∫ L
0 u(x, t) dx .

An example of numerical simulations is shown in Figures 1 and 2. Behavior
of solutions is characterized by a fast convergence to an intermediate solution and
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Figure 2. Solution u(x, t) of (1-2) in numerical simulations. The
intermediate stationary solution (projection on the (x, u)-plane) is
shown for different initial conditions equal to 0.1 for 0.48< x < 52
(left), 0.49 < x < 0.52 (middle), and 0.50 < x < 0.52 (right). A
small peak at the center of the interval shows the initial condition.
The values of parameters are L = 1, a = b = 1, D = 0.001, and
σ(x)= 0 for 0.2< x < 0.3 and 0.7< x < 0.8 and = 1 otherwise.

then by a slow convergence to a stationary solution (Figure 1). The intermediate
solution resembles two pulses with the maxima located at the centers of the ad-
missible intervals. Since the initial condition is not symmetric with respect to the
center of the interval, this solution is not symmetric either, and the ratio between
the pulses’ maxima depends on the initial condition (Figure 2). The characteristic
time T1 of the convergence to this solution is on the order of 10 (dimensionless
units). After reaching their intermediate values, in this time scale they remain
constant. The intermediate solution converges to the stationary solution in a longer
time scale determined by the value of the diffusion coefficient (Figure 1, right). For
D = 0.001 considered in this example, it is of the order 105, that is, four orders
of magnitude larger. The stationary solution resembles two pulses symmetric with
respect to the center of the interval. Thus, in terms of dynamical systems, we have
a fast manifold with convergence to the intermediate solution and a slow manifold
with convergence to the stationary solution. Though the stationary solution is glob-
ally asymptotically stable, dynamics of solutions in the realistic time scale can be
determined by the intermediate solution.

The convergence time exponentially grows with the decrease of D and becomes
so large for D< 0.001 that the stationary solution may not be reached (Appendix A,
Figure 9). In this case, the dynamics of the solution is determined by the interme-
diate solution, which depends on the initial condition and on the parameters.

Thus, we have an unusual and counterintuitive situation where instead of a
unique (for given parameters) globally stable stationary solution, we should con-
sider a continuous family of intermediate solutions. We will discuss below biolog-
ical implications of this result.
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3. The influence of immune response

3A. Virus reproduction and the effect of antiviral immune response. In order
to study the influence of immune response on virus distribution in the space of
genotypes, we begin with the case without natural genotype-dependent virus death,
σ(x)≡ 0. In this case, the equation for the virus density distribution is

∂u
∂t
= D

∂2u
∂x2 + au(1− bI (u))− u f (u). (3-1)

The immune response function is increasing for u sufficiently small and decreasing
for u sufficiently large. We begin with some model examples.

Constant immune response. Set f (u) ≡ c, where c is a positive constant. Inte-
grating (3-1), we get the equation with respect to integral I (u)(t) considered as a
function of time:

d I
dt
= aI (1− c/a− bI ). (3-2)

If c ≥ a, then I (t)→ 0 as t →∞. If c < a, then I (t)→ (1− c/a)/b. In both
cases, supx u(x)→ 0 as t→∞. Let us discuss this convergence in the case where
c < a. The stationary solution u = 0 of (3-1) is unstable in this case. Indeed,
the corresponding spectral problem has a part of the spectrum in the right half-
plane. However, we affirm that the solution of this equation converges to zero in
the uniform norm. This result seems counterintuitive, and it should be proved.

Proposition 3.1. Let u0(x) be a bounded integrable function. The solution of (3-1)
on the whole axis with the initial condition u(x, 0) = u0(x) uniformly converges
to 0 as t→∞.

Proof. Without loss of generality we can set a = b = 1 and c = 0. It follows from
(3-2) that |1− I (t)| ≤ k1e−t , where k1 is a positive constant. Therefore, solution
u(x, t) of (3-1) can be estimated from above by the solution u1(x, t) of the equation

∂u
∂t
= D

∂2u
∂x2 + k1e−t u. (3-3)

We will show that the solution of this equation with a bounded initial condition
decaying at infinity uniformly converges to 0. If the initial condition u(x, 0) does
not depend on x and it equals some constant k2, then its solution does not depend
on x either, and it satisfies the equation

dv
dt
= k1e−tv, v(0)= k2. (3-4)

We find v(t)= k2ek1e−k1e−t
. Hence,

|v(t)| ≤ k2, t ≥ 0, (3-5)

and a similar estimate holds for the solution u1(x, t) of (3-3).
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Consider a solution u2(x, t) of (3-3) with a bounded even positive integrable
initial condition decaying at infinity. Then the solution is also an even positive
function with a maximum at x = 0. It is bounded by virtue of estimate (3-5).

We will prove that u2(0, t) converges to 0 as t→∞. Suppose that this is not
the case. Then there exists ε > 0 such that

u2(0, t)≥ ε (3-6)

for all t sufficiently large. Indeed, if this is not true, then u2(0, t) converges to 0
along a sequence t = tn . By virtue of the semigroup property of the solution and
estimate (3-5), we conclude that u2(0, t) converges to 0 for all t → ∞. This
contradiction proves (3-6). Next, since the last term in the right-hand side of (3-3)
converges to 0 as t→∞, then u2(x, t)≥ ε/2 for |x | ≤ N (t), where N (t)→∞ as
t→∞. Hence, J (t)=

∫
∞

−∞
u2(x, t) dx→∞ as t→∞.

Integrating (3-3) with respect to x from −∞ to ∞, we obtain the equation
for J (t):

d J
dt
= k1e−t J.

As above, we verify that its solution remains bounded. This contradiction proves
the convergence u2(0, t)→ 0. Since the maximum of this solution is reached at
x = 0, then u2(x, t) uniformly converges to 0 as t→∞.

It remains to note that any positive bounded integrable initial condition for (3-3)
can be estimated from above by an even function satisfying the conditions above.
Therefore, the solution with this initial condition uniformly converges to 0. �

It follows from this proposition that the solution of (3-1) with a constant immune
response uniformly converges to 0. If c ≥ a, then I (u) also vanishes for large time,
while for c< a, it converges to a positive constant. This means that in the first case
infection is completely eliminated, while in the second case, the total virus quantity
remains constant. Furthermore, they do not form a localized solution in the space
of genotypes corresponding to a virus strain but they diffuse in the genotype space
covering a growing genotype range.

Increasing immune response. Clonal expansion of immune cells is stimulated by
the antigen. Therefore, function f (u) is increasing, at least for not very large values
of u for which excess of the virus can lead to the exhaustion of immune response.
If b = 0, then (3-1) is a conventional reaction-diffusion equation in the monostable
case, and its solutions are described by reaction-diffusion waves.

Proposition 3.2. Suppose that f (u) is a smooth growing function, f (u) > 0 for
u > 0. Then (3-1) does not have a positive stationary solution with the zero limits
at infinity.
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Proof. Suppose that (3-1) has a positive stationary solution w(x) with the zero
limits at infinity. Then it satisfies the problem

w′′+w(1− I (w)− f (w))= 0, w(±∞)= 0, (3-7)

where we set, without loss of generality, D = a = b = 1. Then it has a maximum
at some point x = xm , wm = w(xm). Let us verify that

I (w)+ f (wm) < 1. (3-8)

Indeed, if I (w)+ f (wm) > 1, then we obtain a contradiction in signs in (3-7)
at x = xm . If I (w)+ f (wm) = 1, then by virtue of the uniqueness of solution,
w(x)≡ wm , and the conditions at infinity cannot be satisfied.

Since f (w) is an increasing function, it follows from (3-8) that the inequality
I (w)+ f (w(x))<1 holds for all x ∈R. Consider the equationw′′+w(k− f (w))=0,
where k=1− I (w)>0. Since k− f (0)>0, then the equationw′′+w(k− f (0))=0,
linearized about w = 0, does not have positive solutions vanishing at infinity. This
contradiction proves the proposition. �

This proposition affirms that (3-1) does not have a positive stationary solution.
Similar to Proposition 3.1, we can expect that the solution of the Cauchy problem
uniformly converges to zero. This statement is not yet proved, and it represents an
open question for future analysis.

Decreasing immune response. Since virus can kill immune cells and downregulate
immune response (e.g., HIV), we consider here a decreasing function f (u). In the
case of a bounded interval 0< x < L and the integral I (u)=

∫ L
0 u(x, t) dx , (3-1)

has a constant stationary solution. It can lose its stability, resulting in the emergence
of pulses (Figure 3). The bifurcation of pulses can be studied by the conventional
stability and bifurcation analysis. This analysis is not applicable in the case of the
whole axis.

Thus, the case of decreasing immune response is principally different in compar-
ison with a constant or an increasing immune response. Depending on parameters,
there can exist localized positive solutions corresponding to a virus strain.

We consider a model example where the existence of solutions can be proved.

Proposition 3.3. Let f (u)= p−u. Then there exist positive values p1, p2, p1< p2,
such that (3-1) has a positive stationary solution decaying at infinity for p1< p< p2,
and it does not have positive a solution for 0< p < p1 and p > p2.

Proof. We look for a positive solution of problem (3-7). Set k = 1− I (w). Since
0< I (w) < 1, then 0< k < 1. Then problem (3-7) can be written as

w′′+w(k− f (w))= 0, w(±∞)= 0. (3-9)
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Figure 3. Convergence to the stationary solutions of (1-2) for
f (u) = k2e−k3u and different values of the diffusion coefficient:
D = 0.0015 (left) and D = 0.0001 (right). The values of other
parameters are L = 1, a = b = 1, k2 = 0.2, and k3 = 1.

Existence of solution of this problem can be studied analytically. Suppose that such
solution exists, and denote it by wk(x), where the subscript k shows its dependence
on the parameter k. Then we obtain the following equation with respect to k:

1−
∫
∞

−∞

wk(x) dx = k. (3-10)

Existence of its solution determines the existence of solution of problem (3-7). For
f (w)= b−w, (3-9) becomes

w′′− pw+w2
= 0,

where p = b− k. Set w(x)= pv(
√

px). Then v(y) satisfies the equation

v′′− v+ v2
= 0.

It has a positive solution v0(y) such that v0(±∞)= 0. Hence, wk(x)= pv0(
√

px),
and from (3-10) we obtain

I0
√

b− k = 1− k, (3-11)

where I0 =
∫
∞

−∞
v0(y) dy. Assertion of the proposition follows from the analysis

of this equation. �

The method of solutions presented here can be generalized for the functions
f (u)= b− un , n > 1.

3B. Interaction of genotype-dependent virus mortality and immune response.
We can now study the interaction of immune response with the genotype-dependent
virus mortality. If the function σ(x) has two admissible intervals, then we showed
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Figure 4. Numerical simulations of (1-2). In the case of symmet-
ric initial condition, there is a bimodal virus density distribution
with equal peaks (left). A small asymmetry in the initial condition
leads to the disappearance of one peak and to the increase of the
other one (right). The values of parameters are L = 1, a = b = 1,
D = 0.001, σ(x)= 0 for 0.2< x < 0.3 and 0.7< x < 0.8 and = 1
otherwise, initial condition = 0.1 for 0.48 < x < 0.52 (left) and
0.481< x < 0.52 (right), f (u)= k2e−k3u , k2 = 0.2, and k3 = 1.

in Section 2B that two strains coexist. Their dynamics is described by intermedi-
ate solutions slowly convergent to the symmetric bimodal distribution. Immune
response influences these dynamics, and this influence depends on the immune
response function f (u).

Increasing immune response. We begin the analysis of the influence of immune
response on competing virus strains with the case of an increasing function f (u).
We consider for certainty a linear function, f (u) = k1u. In this case, even if the
initial condition is not symmetric, the solution rapidly converges to a symmetric
distribution with equal peaks in the admissible intervals. The intermediate solutions
observed before are not detected here.

Decreasing immune response. In the case of a decreasing function, f (u)= k2e−k3u ,
the bimodal solution is symmetric in the case of a symmetric initial condition.
However, a small asymmetry of the initial condition leads to the disappearance
of one strain and to the increase of another one (Figure 4). Thus, the symmetric
solution exists but is unstable.

Bell-shaped immune response. Consider the immune response function f (u) =
k1ue−k3u growing for small u and decaying for large u. In the case of two admissi-
ble intervals, the solution can converge to a unimodal or to a bimodal distribution
depending on the values of parameters (Figure 5). If k3 is sufficiently small, then
the growing branch of this function determines the behavior of solutions, and there
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Figure 5. Numerical simulations of (1-2) in the case of bell-
shaped function f (u) and two admissible intervals of the function
σ(x). Depending on the values of parameters, there are two per-
sistent strains, or one of them vanishes. The values of parameters
are L = 1, a= b= 1, σ(x)= 0 for 0.2< x < 0.3 and 0.7< x < 0.8
and = 1 otherwise, initial condition = 0.9 for 0.481 < x < 0.52,
f (u)= k1ue−k3u , and k1 = 1. Two examples of the simulations at
the right are carried out with D = 0.001, k3 = 1, and k3 = 1.2.

are two persistent strains. If k3 is large enough, then the decaying branch becomes
dominating, and only one strain survives.

3C. The influence of treatment. In the case of two admissible intervals of the
genotype-dependent mortality function σ(x), there are two persistent strains rapidly
converging to intermediate asymptotics depending on initial condition (Section 2B).
Immune response can either preserve both strains or eliminate one (Section 3B).

We will now analyze how the competition of virus strains is influenced by a
genotype-dependent virus treatment. We suppose that the function σ depends on
time,

σ(x, t)=
{
σ0(x), 0≤ t ≤ t0,
σ1(x), t > t0.

Here σ0(x) is the original mortality rate, t0 is the moment of time when treatment
is applied, and σ1(x) is the mortality rate for which the effect of treatment is taken
into account. In particular, treatment can eliminate one of the admissible intervals
and influence the corresponding strain.

Let us illustrate the influence of treatment on the dynamics of virus strains by a
simple case without immune response, f (u)≡ 0. Consider two admissible inter-
vals, I1 = [0.2, 0.3] and I2 = [0.7, 0.8], where σ0(x)= 0, and σ0(x)= 1 outside of
these two intervals. The emergence of virus strains depends on the initial condition.
If it is localized at the center of the interval (0.49< x < 0.51), then two equal strains
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Figure 6. Numerical simulations of (1-2) without immune re-
sponse and with a time-dependent mortality rate σ . In the case of
two equal strains, treatment eliminates one of them and reinforces
another one (left). In the case of a single strain, treatment elim-
inates it leading to the emergence of another strain (right). The
values of parameters are L = 1, a = b = 1, D = 0.0001, σ(x)= 0
for 0.2 < x < 0.3 and 0.7 < x < 0.8 and = 1 otherwise, initial
condition = 0.1 for 0.49 < x < 0.51 (left) and 0.24 < x < 0.26
(right), and f (u)≡ 0.

emerge in the corresponding admissible intervals (Figure 6, left). At some moment
of time t = t0 we change the mortality rate to the function σ1(x) such that it equals 0
only in the first admissible interval, and it equals 1 in the second interval. Then the
second strain rapidly disappears while the first strain grows. The total viral load
(the integral of solution) does not change.

In the second case, the support of the initial condition is localized inside the first
admissible interval, 0.24≤ x ≤ 0.26. Only one strain emerges while another one
is absent (cf. Section 2B). Applying treatment, we eliminate the first virus strain.
After some time, the second strain appears (Figure 6, right). It could not appear
before treatment because of the competition between the strains. Thus, an antiviral
treatment can lead to the emergence of new strains. Moreover, the new strain is
resistant to treatment since treatment acts on the first admissible interval but not
on the second one.

4. Discussion

Virus mutation represents a big challenge for biomedical research and clinical
medicine. There are hundreds of HIV mutants which can replace each other in the
process of treatment. Resistant strains can emerge due to their natural evolution
or due to antiviral treatment. On the other hand, virus evolution is an interesting
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object of theoretical studies. It has some features in common with the evolution of
biological species, but it is faster and explicit in the sense that the virus itself is a
relatively simple object, and its environment is also reduced to the host organism.
Immune response of the host organism is very complex, but in the first approxi-
mation its consideration can be reduced to the multiplication of immune cells as a
reaction to the antigen and to the elimination of the antigen.

Model. There are two main approaches to model virus mutations, discrete and
continuous. In the discrete approach, there is a finite number of strains interacting
with each other due to mutations (fluxes) and, possibly, due to the competition for
host cells [Nowak and May 2000]. The corresponding ODE models resemble the
models of competition of species in population dynamics. The advantage of such
models is that they can be biologically realistic since virus strains and mutation
characteristics can be taken from biological data. Furthermore, such models are
relatively simple and easy to study in the case of two or three strains. However,
they become very cumbersome for a large number of strains (equations), and their
detailed analysis is literally impossible.

In continuous models, virus density distribution is considered as a function of
genotype interpreted as a continuous variable [Kimura 1964; Sasaki 1994]. Though
it is more difficult in this approach to describe a complex graph of virus strain con-
nections by mutations, it is more appropriate to the investigation of the dynamics of
this distribution. In this work we further develop this approach taking into account
virus competition for host cells, immune response, and genotype-dependent mor-
tality either natural or due to the antiviral treatment. This model is represented by
the nonlocal reaction-diffusion equation (1-2), where the nonlocal term determines
the virus multiplication rate. Indeed, the rate of cell infection is proportional to the
virus density u with the logistic limitation term (1− bI (u)) depending on the total
virus quantity. It is similar to carrying capacity in population dynamics, and it
determines the limitation on the total infection supported by the organism. Hence,
the concentration of infected cells Ci is described by the equation

dCi

dt
= ku(1− bI (u))− γCi ,

where the last term on the right-hand side characterizes death of infected cells. In
the quasistationary approximation where the rates of cell infection and death are
sufficiently high, we get Ci = k/γ u(1− bI (u)). Thus, the virus multiplication
term, which is proportional to the concentration of infected cells Ci , can be written
as au(1− I (u)) (see (1-2)).

Let us note that there are two possible time delays in the model, one of them
in the virus multiplication term and another one in the immune response term due
to the clonal expansion of immune cells. Time delay in the immune response
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is taken into account in the reaction-diffusion models with time delay [Bessonov
et al. 2020; Bocharov et al. 2016; Trofimchuk and Volpert 2018]. In this work we
consider either stationary solutions of the corresponding equations or their long-
time dynamics. Moreover, the characteristic diffusion time related to mutations is
much longer than the characteristic time of virus multiplication or cell proliferation.
In this case, the influence of time delay can be neglected.

Virus strains. From the modeling point of view, a virus strain can be represented by
a density distribution concentrated around some genotype x0 and rapidly decaying
as the genotype x goes away from x0. A persistent virus strain corresponds to a
positive stable stationary solution u0(x) with a maximum at some x = x0. Existence
of such solutions is not a priori known, and one of the objectives of our modeling
study is to establish the conditions of the existence and stability of such solutions.

In our previous work [Bessonov et al. 2020], we showed that there are two
mechanisms leading to the existence of stable stationary solutions of (1-2). One of
them is determined by the admissible intervals where the virus mortality rate is low.
Another one is related to the immune response. It is important to note here that
the immune response function should have a decreasing branch. Otherwise, virus
strains considered as positive stationary solutions of (1-2) decaying at infinity do
not exist. For the existence of strains, admissible intervals should be sufficiently
large and the virus mutation rate (diffusion coefficient) sufficiently small.

Competition of strains. The main goal of this work is to study the competition of
virus strains emerging in two different admissible intervals. In the case without
immune response, the behavior of strains should be considered in two time scales,
fast and slow. In the fast time scale, they rapidly converge to some intermediate
stationary solutions. The characteristic convergence time is on the order of 10
dimensionless time units. In the time scale of 102–103 units, they do not practically
change. The relative abundance of the two strains depends on the initial viral load
(initial condition). Thus, there is a continuous family of intermediate stationary
solutions determined by the initial condition.

In a slow time scale on the order of 105 units, both strains become equal to
each other. It should be noted that the characteristic fast and slow scales strongly
depend on the diffusion coefficient. The values presented in our study are obtained
for D = 10−3. The order of magnitude of the slow time scale rapidly grows with
the decrease of the diffusion coefficient, and for D = 10−4 the limitation on the
computational time does not allow us to reach it.

From the biomedical point of view, the existence of a family of intermediate
solutions can bear important implications. In a short time scale, one needs to treat
the strains determined by the initial viral load and not by their asymptotics for large
time.
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We have shown that the mode of immune response strongly influences the be-
havior of solutions. A growing response function f (u) eliminates the long scale
dynamics, and the passage to the equal strains becomes fast. A decreasing response
function eliminates one of the two competing strains. Finally, a bell-shaped func-
tion can have both effects depending on which of its two branches is dominating.

Limitations and perspectives. Equation (1-2) is derived under the assumption of
consecutive mutations (see (1-3)). It can be considered as a small selection approx-
imation of a more general model [Saakian et al. 2008] with a symmetric fitness
function. The model considered in this work does not take into account complex
intracellular regulation of virus reproduction and of immune response, the participa-
tion of different cells in the immune response, and some other aspects of virus-host
interaction. On the other hand, this simplification allows us to reveal some general
qualitative properties of virus evolution which might be impossible to predict in a
more detailed model.

Overall, the presented modeling approach opens up interesting perspectives
and allows various developments including time delay, other nonlocal terms, two-
dimensional problems, and so on.

Appendix A: Stationary solution for two admissible intervals

Consider the equation

Du′′+ u(1− I (u))− σ(x)u = 0 (A-1)

on the whole axis, where σ(x) = 0 for x1 ≤ |x | ≤ x2 and σ(x) = σ0 for |x | < x1

and |x | > x2. Here σ0, x1, and x2 are some positive numbers, x1 < x2. We will
search for a nonzero bounded solution of this equation with zero limits at infinity.

Set
1− I (u)= k2. (A-2)

If I (u)≥ 1, then u = 0 is the only bounded solution of (A-1). Hence, 0< I (u) < 1,
and k2 < 1. Then (A-1) can be written as

Du′′+ (k2
− σ0)u = 0, |x |< x1, |x |> x2, (A-3)

Du′′+ k2u = 0, x1 ≤ |x | ≤ x2. (A-4)

Assuming that k2 < σ0, we will look for its solution in the form

u(x)=


c1eλx , x <−x2,

c2 cos(µx)+ c3 sin(µx), −x2 ≤ x ≤−x1,

c4eλx
+ c5e−λx , −x1 < x < x1,

c6 cos(µx)+ c7 sin(µx), x1 ≤ x ≤ x2,

c8e−λx , x > x2,
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where
λ=

√
σ0− k2/

√
D, µ= k/

√
D.

From the continuity of the solution and of its first derivative,

u(±xi − 0)= u(±xi + 0), u′(±xi − 0)= u′(±xi + 0), i = 1, 2,

we get the equations

c1e−λx2 = c2 cos(µx2)− c3 sin(µx2), (A-5)

c1λe−λx2 = c2µ sin(µx2)+ c3µ cos(µx2), (A-6)

c4e−λx1 + c5eλx1 = c2 cos(µx1)− c3 sin(µx1), (A-7)

c4λe−λx1 − c5λeλx1 = c2µ sin(µx1)+ c3µ cos(µx1), (A-8)

c4eλx1 + c5e−λx1 = c6 cos(µx1)+ c7 sin(µx1), (A-9)

c4λeλx1 − c5λe−λx1 =−c6µ sin(µx1)+ c7µ cos(µx1), (A-10)

c8e−λx2 = c6 cos(µx2)+ c7 sin(µx2), (A-11)

−c8λe−λx2 =−c6µ sin(µx2)+ c7µ cos(µx2). (A-12)

Since we are looking for a nonzero solution, then the determinant of this system
should be equal zero. This condition gives an equation with respect to k. The
additional condition (A-2) will allow us to determine the coefficients ci and the
solution. From (A-5) and (A-6), we get

c2 = f2(λ, µ)c1, c3 = f3(λ, µ)c1, (A-13)

where
f2(λ, µ)= e−λx2(µ cos(µx2)+ λ sin(µx2))/µ,

f3(λ, µ)= e−λx2(−µ sin(µx2)+ λ cos(µx2))/µ.

From (A-7) and (A-8),

c4 = f4(λ, µ)c1, c5 = f5(λ, µ)c1, (A-14)

where

f4(λ,µ)=((λcos(µx1)+µsin(µx1)) f2+(−λsin(µx1)+µcos(µx1)) f3)eλx1/(2λ)

=(2λµcos(µ(x2−x1))+(λ
2
−µ2)sin(µ(x2−x1)))eλ(x1−x2)/(2λµ),

f5(λ,µ)=((λcos(µx1)−µsin(µx1)) f2−(λsin(µx1)+µcos(µx1)) f3)e−λx1/(2λ)

=(λ2
+µ2)sin(µ(x2−x1))e−λ(x1+x2)/(2λµ).

From (A-9) and (A-10), we get

c6 = f6(λ, µ)c1, c7 = f7(λ, µ)c1, (A-15)
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where

f6(λ, µ)= (( f4eλx1 + f5e−λx1)µ cos(µx1)− ( f4eλx1 − f5e−λx1)λ sin(µx1))/µ

= f4(µ cos(µx1)− λ sin(µx1))eλx1/µ+ f5(µ cos(µx1)+ λ sin(µx1))e−λx1/µ,

f7(λ, µ)= (( f4eλx1 + f5e−λx1)µ sin(µx1)+ ( f4eλx1 − f5e−λx1)λ cos(µx1))/µ

= f4(µ sin(µx1)+ λ cos(µx1))eλx1/µ+ f5(µ sin(µx1)− λ cos(µx1))e−λx1/µ.

From (A-11) and (A-12),

c6λ cos(µx2)+ c7λ sin(µx2)= c6µ sin(µx2)− c7µ cos(µx2).

Taking into account (A-15), we obtain

f4(2λµ cos(µ(x2− x1))+ (λ
2
−µ2) sin(µ(x2− x1)))eλx1

= f5(λ
2
+µ2) sin(µ(x2− x1))e−λx1 .

Substituting the expressions for f4, f5, we obtain f 2
4 = f 2

5 , or

2λµ cos(µ(x2−x1))+(λ
2
−µ2) sin(µ(x2−x1))=±(λ

2
+µ2) sin(µ(x2−x1))e−2λx1 .

Hence,

tan(µ(x2− x1))=
2λµ

µ2− λ2± (µ2+ λ2)e−2λx1
. (A-16)

This equality can be considered an equation with respect to k:

tan(k(x2− x1)/
√

D)=
2k
√
σ0− k2

2k2− σ0± σ0e−2
√
σ0−k2x1/

√
D
. (A-17)

Let us note that the sign + in this equation corresponds to the symmetric solution
and − to an asymmetric solution (see Figure 7). For x1 = 0 we obtain the same
equation as for the single admissible interval.

In order to describe the behavior of solutions of this equation under the variation
of parameters, let us denote h = (x2− x1)/

√
D. We will consider h as an indepen-

dent parameter and will vary it for the other parameters σ0 and x1/
√

D fixed. If h
is small enough, then (A-17) does not have solutions with |k|< 1. If h is greater
than some critical value h1

c , then there is a solution |k| < 1 of the equation with
sign +. In the interval k1

c < k < k2
c for some other critical value k2

c , there is only
one solution. The second solution, corresponding to the equation with − appears
for k > k2

c (Figure 8). The branch of solutions of the equation with − disappears
for some k3

c because the right-hand side of this equation becomes infinite. On the
other hand, another branch of tangent in the left-hand side of this equation provides
a solution with a negative k. Next, the first branch of solutions for the equation
with + disappears for some k4

c > k3
c , and it also reappears for k < 0.
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Figure 7. Graphical solution of (A-17) for the values of parame-
ters σ = 1.2, x1/

√
D = 1, (x2− x1)/

√
D = 1.2 (left), and = 2.8

(right). The function on the left-hand side of this equation is shown
by a solid line, and the right-hand side with + is shown by a dotted
line and with − by a dashed line.

Figure 8. Schematic representation of the bifurcation diagram.
The solid line corresponds to the solution of (A-17) with + and
the dashed line to the solution of the equation with sign −.

Thus, this equation can have zero, one, or two solutions depending on h. Further
increase of h brings other branches of tangent and the number of solutions grows.
However, we are interested only in positive and stable solutions. We expect that
the branch of solutions of the equation with + is stable for small h, and with − for
large h. There can exist an interval of bistability for h3

c < h < h4
c .

We can now find the integral I (u). In the symmetric case,

I (u)= 2
∫ 0

−∞

u(x) dx

= 2
[

c1

λ
e−λx2 +

1
µ
(c2 sin(µx)− c3 cos(µx))x1

−x2
+

c4

λ
(eλx
− e−λx)0

−x1

]
.
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Figure 9. The maximal value of the stationary solution (solid
line) and characteristic convergence time to the stationary solution
(dashed line). The values of parameters are L = 1, a = b = 1,
D = 0.001, σ(x)= 0 for 0.2< x < 0.3 and 0.7< x < 0.8 and = 1
otherwise, and initial condition = 0.1 for 0.49< x < 0.52.

From expressions (A-13), (A-14), and (A-15) and equality (A-2), we find c1. There-
fore, we can determine the coefficients c2, c3, c4 and the solution u(x). It can be
done similarly in the nonsymmetric case.

Figure 9 shows the dependence of the stationary solution on the diffusion coef-
ficient and of the convergence time to the stationary solution. We determine the
convergence time Tc as the time when the difference |u1

m − u2
m | of the two maxima

u1
m and u2

m of the pulses becomes less than 0.01. The convergence time rapidly
increases as the diffusion coefficient decreases, and the simulation time becomes
too large for D < 0.001.

Appendix B: Numerical implementation

In numerical simulations we consider the equation

∂u
∂t
= D

∂2u
∂x2 + au(1− bI (u))− u f (u)− σ(x)u

on a bounded interval 0< x < L with two different realizations:

• Periodic boundary conditions, and the integral is given by the formula

I (u)=
1

2N

∫ x+N

x−N
u(x, t) dx .

If the limits of the integral go beyond the interval [0, L], then the function
u(x, t) is continued by periodicity.
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• Neumann boundary conditions, and the integral is given by the formula

I (u)=
∫ L

0
u(x, t) dx .

The numerical results presented in the work have been obtained with the first
method. We have verified that the second method gives similar results.

Appendix C: Proof of Theorem 2.2

Consider the equation

u′′+ u(1− I (u))− σ(x)u = 0 (C-1)

on the whole axis, where I (u)=
∫
∞

−∞
u(x) dx and σ(x) is a bounded nonnegative

sufficiently smooth function. We look for positive solutions of this equations with
zero limits at infinity. We will apply here the topological degree method. We begin
with a priori estimates of solutions.

Lemma C.1. Let u(x) be a positive solution of (C-1), u(±∞)= 0. Then I (u) < 1.

The proof of the lemma follows directly from the maximum principle. Indeed, if
I (u)≥ 1, then u(x) is a solution of the equation u′′+q(x)u = 0 with q(x)≤ 0 and
q(x) 6≡ 0. Therefore, u(x) cannot have positive maximum or negative minimum.
Hence, u(x)≡ 0.

Lemma C.2. Suppose that σ(x)= σ0 > 1 for |x | ≥ x1 with some positive σ0 and x1.
Then u(x1) <

√
σ 0/2.

Proof. For x ≥ x1, (C-1) gives u′′−au = 0, where a = σ0− (1− I (u)) < σ0, a > 0.
Then

u(x)= u(x1)e−
√

a(x−x1),

∫
∞

x1

u(x) dx =
u(x1)
√

a
>

u(x1)
√
σ 0
.

Hence,

1> I (u) > 2
∫
∞

x1

u(x) dx >
2u(x1)
√
σ 0

.

This inequality proves the lemma. �

Lemma C.3. Suppose that σ(x) is a continuous function and supx σ(x)≤M. Then
a positive solution u(x) admits an estimate which depends only on M.

Proof. The solution u(x) of (C-1) satisfies the boundary problem

v′′+ b(x)v = 0, v(±x1)= u(±x1),

on the interval −x1≤ x ≤ x1. Here b(x)= 1− I (u)−σ(x) is a bounded continuous
function, |b(x)| ≤ M + 1 ≡ m. According to the previous lemma, the boundary
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values of the solution are bounded. Therefore, it is sufficient to estimate a maxi-
mum of the solution inside the interval. Suppose that the function v(x) has a global
maximum at some point x0 ∈ [−x1, x1]. Then

|v′(x)| =
∣∣∣∣∫ x

x0

v′′(y) dy
∣∣∣∣≤ mv(x0)|x − x0|.

Hence,

v(x)= v(x0)+

∫ x

x0

v′(y) dx ≥ v(x0)−
1
2 mv(x0)(x − x0)

2
= v(x0)g(x),

where g(x) = 1
2 −m(x − x0)

2. Denote by � the interval in [−x1, x1] where this
function is positive. Then

∫
�

g(x) dx ≥ κ > 0, where the constant depends only
on M and possibly on x1. Hence, 1 > I (v) > κv(x0). This estimate proves the
lemma. �

We will use the topological degree theory to prove the existence of solutions
[Volpert 2014]. Lemma C.3 above provides a priori estimates of solutions. Con-
sider the operator

Aθ (u)= u′′+ u(1− I (u))− σθ (x)u,

acting from the Hölder space C2+α(R) into the space Cα(R). Here 0< α < 1 and
θ ∈ [0, 1] is a parameter. We will suppose for simplicity that σθ (x) is an infinitely
differentiable function with respect to x and θ . Other conditions will be specified
later.

Denote by Lθ the operator obtained by linearization of the operator Aθ (u) about
u = 0:

Lθv = v′′+ v− σθ (x)v.

Lemma C.4. Suppose that the principal eigenvalue of the operator Lθ is positive
for θ0 ≤ θ ≤ θ1 and for some θ0, θ1. Then there exists ε > 0 such that um =

supx u(x)≥ ε for any positive solution of the equation Aθ (u)= 0, θ0 ≤ θ ≤ θ1.

Proof. Suppose that the assertion of the lemma does not hold and there is a sequence
of solutions uk(x) for θ = θk such that umk → 0. Without loss of generality we can
assume that θk→ θ∗ for some θ∗ ∈ [θ0, θ1]. Then

0= Aθk (uk)= Aθk (0)+ Lθk uk + o(‖uk‖)= Lθk uk + o(‖uk‖).

Set vk = uk/‖uk‖. Then Lθkvk = o(1). Since Lθk is proper with respect to v and θ ,
the sequence vk is compact and we can choose a convergent subsequence vk→ v0.
Hence, Lθ∗v0 = 0. Since the functions uk(x) are positive, then v0(x) > 0 for all x .
Therefore, the operator Lθ∗ has a zero eigenvalue with a positive eigenfunction.
However, the only positive eigenfunction corresponds to the principal eigenvalue.
We obtain a contradiction with the assumption that the principal eigenvalue of the
operator Lθ∗ is positive. �
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Theorem C.5. Suppose σ(x)= σ0 > 1 for |x | ≥ x1 with some positive σ0 and x1,
and the principal eigenvalue of the problem

u′′+ u− σ(x)u = λu (C-2)

is positive. Then (C-1) has a positive solution converging to 0 at infinity.

Proof. Set σθ (x) = (1− θ)σ (x)+ θσ0. Since σ0 > 1, then the operator L1 has
the spectrum in the left half-plane. Let us note that the essential spectrum Se(Lθ )
of the operator Lθ does not depend on θ , and Re Se(Lθ ) ≤ −δ < 0 for some
positive δ. Denote the principal eigenvalue of this operator, that is, the eigenvalue
with the maximal real part, by λ0(θ). According to the assumption of the theorem
λ0(0) > 0. It is a monotonically decreasing function of θ ∈ [0, 1], and there exists
such θ0 ∈ [0, 1] that

λ0(θ0)= 0, λ0(θ) > 0 for 0< θ ≤ θ0, λ0(θ) < 0 for θ0 < θ ≤ θ1.

Here θ1 is some value in the interval (θ0, 1]. Since the eigenvalue can approach the
essential spectrum, we cannot guarantee its existence for all θ ∈ [0, 1].

Let us consider the equation Aθ (u) = 0 in a small vicinity of the bifurcation
point θ = θ0. For this value of parameter, the trivial solution u = 0 loses its
stability, leading to the appearance of another solution uθ (x). This solution is
positive since the principal eigenfunction v0(x) is positive [Volpert and Volpert
2000]. Furthermore, the index of this solution, that is, the value of the degree
with respect to a small ball containing this solution, equals 1. Indeed, from the
homotopy invariance of the degree, it follows that

ind(0)+ ind(uθ )+ ind(ũθ )= 1

for all θ > θ0 and sufficiently close to θ0. Here ũθ (x) is a negative solution bifurcat-
ing from the trivial solution and approaching −v0(x). Since ind(0)=−1 because
it equals (−1)ν , where ν = 1 is the number of positive eigenvalues of the linearized
operator, then ind(uθ )= ind(ũθ )= 1.

It follows from Lemma C.3 that ‖u‖C2+α(R) < M0 for some positive constant M0

and for any positive solution u of the equation Aθ (u)= 0. Next, from Lemma C.4
we conclude that ‖u‖C2+α(R) > δ(θ) for some positive δ(θ), θ < θ0. Consider the
domain

�= {u ∈ C2+α(R) | u(x) > 0, x ∈ R, δ0 < ‖u‖C2+α(R) < M0}

for some δ0> 0 sufficiently small. Choose θ2<θ0 such that δ(θ)> δ0 for 0≤ θ ≤ θ2.
Since Aθ (u) 6= 0 for u ∈ ∂�, 0 ≤ θ ≤ θ2, then the value of the degree γ (Aθ , �)
does not depend on θ ∈ [0, θ2]. Hence, γ (A0, �)= γ (Aθ2, �)= ind(uθ2)= 1, and
equation A0(u)= 0 has a solution in �. �
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