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ANGELO LUONGO AND FRANCESCO D’ANNIBALE

A metamodel of linear viscoelastic continuum is formulated. Internal variables,
of arbitrary number, are introduced to describe the viscous part of the strain, and
a wide class of constitutive laws, suggested by rheological models, is considered.
The spectral properties of the system are discussed. Based on the separation of
the eigenvalues occurring when the viscous moduli are small, the system is re-
duced to its infinite-dimensional central subspace, on which the steady dynamics
takes place. Both the center manifold method and the multiple scales method
are used to build the reduced model, which is formulated in terms of the only
observable variables. Examples relevant to one-, two-, and three-dimensional
continua are worked out to illustrate the theory, in conjunction with the standard
three-parameter model and the five-parameter model.

1. Introduction

Linear viscoelasticity, both in statics and dynamics, has often been considered a
“simple” matter, since it’s somewhat “similar” to linear elasticity. In fact, a well
known elastic-viscoelastic correspondence principle [Flügge 1975] states that the
two problems are formally equal when they are both transformed in the Laplace or
Fourier domains. Thus, transformation is believed to be the best way to study vis-
coelastic problems, although often nontrivial antitransformations are needed when
one desires to build the response time history [Narayanan and Beskos 1982].

There exist, of course, studies in which the system dynamics is analyzed in the
time domain, for discrete or discretized systems, via finite or boundary elements
methods (see, e.g., [Golla and Hughes 1985; Sim and Kwak 1988; McTavish and
Hughes 1993; Schanz 1999; 2001; Hatada et al. 2000; Lewandowski et al. 2012;
Syngellakis 2003; Baroudi et al. 2019]). An example of analysis which makes use
of an the internal variable formulation is given in [Lewandowski et al. 2012]. All
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these studies, however, seem to not completely exploit the spectral characteristics
of viscoelastic systems when damping, as usual, is small. In this case, indeed, the
dynamics is made of a fast transient phase, and a successive steady-state phase,
which takes place in a space of reduced dimensions, equal to those of the elastic
system. This property was instead used by the authors in a recent paper [Luongo
and D’Annibale 2017a], where a reduction method was proposed to contract the
dimension of the discrete system to that of the associated elastic system. The
procedure was based on the center manifold method, which is a common tool
used in bifurcation analysis, designed to tackle nonlinear systems, and adapted in
[Luongo and D’Annibale 2017a] to linear systems (similarly to what was done in
[Shaw and Pierre 1991] in dealing with nonlinear normal modes).

The method discussed in [Luongo and D’Annibale 2017a] sheds light on an-
other form of the correspondence principle which does not seem to have been
explored yet, i.e., on a similarity holding not only in the transformed domains
(where it exactly holds), but also in the time domain, although in the context of
an asymptotic (and, therefore, approximate) theory. However, the procedure of
[Luongo and D’Annibale 2017a] was limited to discrete systems, and did not seem,
at first glance, to be straightforwardly extendible to infinite-dimensional systems.
As a matter of fact, the center manifold theorem has only been proved for finite-
dimensional central subspaces (i.e., for a finite number of eigenvalues lying on the
imaginary axis, or close to it). However, a favorable circumstance exists in the
viscoelastic case, namely that the whole space of displacement and velocities is
of interest. In other words, we do not have to worry about describing an infinite-
dimensional subspace in which a subset of displacements and velocities appear
(as, for example, would be the case for a system undergoing an infinite number of
buckling modes), but we have to take all the displacements and velocities which
are admissible for the model. In this paper, we will prove (by a heuristic approach)
that this circumstance still allows the use of the center manifold theorem.

The paper is organized as follows. In Section 2 a continuous viscoelastic meta-
model using internal variables is formulated. In Section 3 both the center manifold
and the multiple scales methods are applied to build a reduced system. In Sections
4, 5, and 6 sample systems, of increasing complexity, are worked out, and their
reduced counterparts are derived. In Section 7 some conclusions are presented.
Finally, in the Appendix an illustrative numerical example, concerning a homoge-
nized microstructured viscoelastic one-dimensional continuum, is detailed.

2. Continuous viscoelastic metamodel

A dynamic linear metamodel of viscoelastic continuum is formulated. To this
end a matrix notation is adopted, by denoting algebraic matrices by bold roman
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Figure 1. Rheological solid models: standard three-parameter
(left) and five-parameter (right).

characters and formal matrices, made of linear differential operators, by bold cal-
ligraphic characters.

Kinematics and equilibrium of the system are governed by

Du = e,

Da s = f (x, t)−Mü,
(1)

which are constrained by geometrical and mechanical boundary conditions. Here,
u(x, t), e(x, t), s(x, t) are column matrices collecting displacements, strains, and
stress fields, respectively, and depending on position x and time t ; D, and its
adjoint Da , are the kinematic and equilibrium operators, collecting derivatives with
respect to the coordinates x; f (x, t) is the column matrix of the active forces; M is
the inertia matrix; and the dot denotes differentiation with respect to the time t .

A class of viscoelastic constitutive laws is considered, which can be derived
through kinematics and equilibrium and constitutive equations of rheological mod-
els. These latter are multiparameter solid models, made of Kelvin–Voigt (in-parallel
spring/dashpot) elements, which are assembled in series to a spring device. Accord-
ingly, the constitutive law reads

s = Ce(e− ev),

ev =�κ,

κ̇ =3ee−3Rκ .

(2)

Here, ev is the viscous part of the strain, so that e−ev is the elastic part; stresses are
assumed to be proportional to these latter parts by way of the squared elastic matrix
Ce = CT

e . The viscous strains, however, are linearly dependent on a generally
larger number of internal variables κ [Moreau 1970; Maugin and Muschik 1990;
Lemaitre and Chaboche 1990], to which they are connected via the rectangular
matrix �, accounting for the topology of the underlying rheological model. For
example, if reference is made to the standard three-parameter model (Figure 1,
left), then ev and κ coincide, being equal to the elongation εKV of the Kelvin–
Voigt submodel; if, instead, the five-parameter model is adopted (Figure 1, right),
ev = κ1+ κ2, with κi (i = 1, 2) the elongation of the i-th Kelvin–Voigt submodel.
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Equation (2)1 is the state law, while (2)3 is the flow law, governing the evolution
of the internal variables, here taken as linear; in it, 3e,3R are matrices of material
constants, having dimension of the inverse of time, here referred to as relaxation
matrices.

By combining (1) and (2) the following equations of motion, in state form, are
derived: u̇

v̇

κ̇

=
 0 I 0
−M−1Ke 0 M−1Da Ce�

3eD 0 −3R

u
v

κ

+
 0

M−1 f (x, t)
0

 (3)

where Ke :=Da CeD is the elastic stiffness operator. They are a set of equations
in N scalar displacement fields u, N scalar velocities v, and M internal variables κ .
System (3) must be integrated with boundary conditions and the initial conditions
(assuming the system is initially at rest)

u(0)= 0, v(0)= 0, κ(0)= 0. (4)

3. Subspace reduction

The main hypothesis that all the viscous moduli of the structure are small is in-
troduced so that the system is weakly damped. This smallness is accounted for
by letting O(|3ϑ |)= ε

−1, with ε a small perturbation parameter (ϑ = e, R). The
existence of this parameter in the flow law makes the equations of motion singularly
perturbed (since a small parameter affects the highest derivative [Fusco and Hale
1989; Nayfeh 2000]). It is easy to check, for example via a perturbation method
[Luongo and D’Annibale 2017a], that such systems admit a well separated set
of eigenvalues: (a) strongly damped real eigenvalues, on the order of ε−1, and
(b) weakly damped complex conjugate eigenvalues, whose negative real part is of
order ε. The real eigenvalues are responsible for fast decaying motions and the
complex eigenvalues for weakly decaying oscillatory motions. When ε decreases
towards zero, the real eigenvalues move to the left side of the complex plane, mak-
ing the decaying motion faster; the complex eigenvalues instead approach the imag-
inary axis, rendering the oscillatory motion more weakly decaying. The contrary,
of course, occurs, when ε increases from zero.1

It is important to underline the fact that such a well separated spectrum can be
recognized in viscoelastic structures when the order of magnitude of the relaxation
time of the viscoelastic material is smaller than the natural periods of the structure.

1Note that this occurrence is completely different from the classical static phenomena of creep and
relaxation tests, performed, e.g., on concrete and steel specimens. In those cases, indeed, damping
is so strong that the real eigenvalues are closer to the imaginary axis than the complex eigenvalues,
so that oscillations are fast damped, and the evolution is slow and quasistatic, driven by the real
eigenvalues.



MODELING THE LINEAR DYNAMICS OF CONTINUOUS VISCOELASTIC SYSTEMS 131

This requirement cannot be met by most structural materials, since the behavior of
a viscoelastic material with such a small relaxation time is close to that of a fluid.
This demand could instead be satisfied, e.g., (i) in multilayered composites, (ii) in
structures equipped with viscoelastic suspensions, or with fluid dampers (see, e.g.,
[Muscolino and Palmeri 2007]), or (iii) in homogenized microstructured viscoelas-
tic systems and metamaterials, where specifically damping properties are designed
(see, e.g., [Lekszycki et al. 1992; Manimala and Sun 2014; Del Vescovo and Gior-
gio 2014; Altenbach and Eremeyev 2015; Frazier and Hussein 2015; Giorgio et al.
2017; Lewińska et al. 2017; Barchiesi et al. 2019; Eugster et al. 2019]). In the
Appendix, a one-dimensional example, i.e., a homogenized microstructured con-
tinuum, whose periodic microstructure is composed by standard three-parameter
oscillators, sheds light on these aspects and permits discussing them numerically.
All the sample systems, for which the subspace reduction will be carried out in the
next sections, should be thought of as belonging to the categories mentioned above.

Coming back to slightly damped systems, it can be noticed that, if the transient
dynamics related to the decaying eigenvalues is ignored, motions occur in a sub-
space spanned by the eigenvectors associated with the complex eigenvalues. This
space, indeed, is much smaller than the original state space, so it is convenient
to derive a reduced order model able to describe these dynamics. To construct
the model, the space must be contracted without, of course, evaluating all the
eigenvectors of the subspace; this is, indeed, possible, as will be illustrated soon.

Two alternative methods are worked out to achieve the goal, both of them bor-
rowed from bifurcation theory, where they are commonly used to deal with nonlin-
ear systems, namely (a) the center manifold method, and (b) the multiple scales
method. The first one is a direct (but not trivial) generalization of the algorithm
developed in [Luongo and D’Annibale 2017a] for discrete systems.

Center manifold method. According to the center manifold method, the eigenval-
ues are separated in the set of the stable eigenvalues (leftmost) and in the set of
the central eigenvalues (close to the left side of imaginary axis). The associated
eigenvectors span the stable and the central subspaces. The center manifold theo-
rem [Guckenheimer and Holmes 1983; Wiggins 2003; Troger and Steindl 1991]
assures that there exists an invariant manifold of the same dimensions as the central
subspace π that contains the origin, is tangent to the subspace π , and is attractive
for the dynamics. Of course, since the system under study is linear, the manifold
coincides with the subspace itself. However, differently from the hypotheses of the
theorem, the center subspace is infinite-dimensional; in spite of this, the method is
heuristically applied.

The Cartesian equations of the unknown subspace π are

κ =Pu+Qv (5)
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where P and Q are unknown differential operators. If these operators are known,
the first two equations of motion (3)1,2 can be rewritten as(

u̇
v̇

)
=

[
0 I

−M−1(Ke−Da Ce�P) M−1Da Ce�Q
](

u
v

)
+

(
0

M−1 f

)
(6)

or

Mü+Br u̇+Kr u = f (7)

where
Br := −Da Ce�Q,
Kr :=Ke−Da Ce�P .

(8)

Equation (7) governs the linear dynamics of the system, reduced to the central
subspace.

The task, therefore, is to determine P and Q. This is accomplished by substitut-
ing (5) in the flow law (3)3, with the help of (3)1,2, and requiring it to be satisfied
separately for independent u, v. It follows that

(−QM−1Ke+QM−1Da Ce�P −3eD+3RP)u = 0,

(P +QM−1Da Ce�Q+3RQ)v = 0.
(9)

In order to solve these nonlinear equations, a perturbation method is developed
here. The viscous moduli are rescaled at the ε−1-order, so that 3ϑ → ε−13ϑ
(ϑ = e, R) and, by multiplying the equations by ε,

[3RP −3eD− εQM−1(Ke−Da Ce�P)]u = 0,

[3RQ+ ε(P +QM−1Da Ce�Q)]v = 0.
(10)

An inspection of these latter equations reveals that P(−ε)=P(ε), while Q(−ε)=
−Q(ε). Thus, the unknown matrices are expanded in series of even or odd powers
of ε, respectively:

P =P0+ ε
2P2+ · · · ,

Q= εQ1+ ε
3Q3+ · · · ,

(11)

where Pk =
1
k!

dkP
dεk

∣∣
ε=0, with k = 0, 2, . . . , and Qk =

1
k!

dkQ
dεk

∣∣
ε=0, with k = 1, 3, . . . .

The following linear perturbation equations are then obtained:

ε0
: (3RP0−3eD)u = 0,

ε1
: (3RQ1+P0)v = 0,

ε2
: (3RP2−Q1 M−1(Ke−Da Ce�P0))u = 0.

(12)
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By solving them in cascade, it is found that

P0 =3
−1
R 3eD,

Q1 =−3
−2
R 3eD,

P2 =−3
−3
R 3eDM−1(Ke−Da Ce�3

−1
R 3eD).

(13)

Finally, by reabsorbing the perturbation parameter, it follows that

P =3−1
R 3eD−3−3

R 3eDM−1(Ke−Da Ce�3
−1
R 3eD)+ · · · ,

Q=−3−2
R 3eD+ · · · .

(14)

Equations (14) are explicit relations that, once substituted in (8), permit us to
build the reduced system (7). By truncating the analysis at the first nonzero term,

Br :=Da Ce�3
−2
R 3eD,

Kr :=Ke−Da Ce�3
−1
R 3eD.

(15)

If, instead, an additional term is kept in the expansion of P , an increment of stiff-
ness must be added, so that KII

r :=Kr +1Kr , with

1Kr =Da Ce�3
−3
R 3eDM−1Kr . (16)

The first-order expressions (15) suggest two considerations. First, the damping
matrix is a linear combination of the same differential operators which form the
elastic (as well as the reduced) stiffness operator. However, due to the structure of
the relaxation matrices, the coefficients of the linear combinations are different for
the two matrices. Only under special circumstances does it occur that Br and Kr

are proportional; in general, the Rayleigh model of damping is not recovered.
As a second remark, the stiffness Kr has an important physical meaning. Indeed,

if reference is made to a relaxation test, at the time t =∞, it is κ̇∞ = 0; therefore,
from the flow law (3)3, it follows that 3Rκ∞ =3eDu. Hence, from (15)2,

Kr u =Da CeDu−Da Ce�3
−1
R 3eDu =Da Ce(e−�κ∞)=Da s∞ (17)

where the elastic law (2)1 is used. By defining an elastic matrix at the equilibrium
Ce∞, such that Ce∞e= s∞, it is concluded that

Kr =Da Ce∞D =:Ke∞, (18)

i.e., at the first order of the asymptotic expansion, the stiffness operator of the
reduced system coincides with the elastic matrix, but with the elastic constants
replaced by the equilibrium values of the relaxation moduli. This result is not
surprising, since a weakly damped system is under consideration, for which the
relaxation time is short and of the same order as the transient dynamics. Thus,
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when steady-state dynamics takes place on the central subspace, the relaxation
moduli have attained their equilibrium values.

Multiple scales method. Now an alternative approach, based on the multiple scales
method [Nayfeh 2000; Nayfeh and Mook 1979; Luongo and Zulli 2012a; 2012b;
2014; Luongo and D’Annibale 2013; 2017b; Luongo et al. 2016], is discussed.
The flow law (3)3 is rewritten with damping rescaled:

εκ̇ =3eDu−3Rκ . (19)

This is a singularly perturbed differential equation in which u (the active variable)
is taken as known, and κ (the passive variable) as unknown. Although this equation
is linear, with constant coefficients, the multiple scales method is applied to solve
it, in order to get an asymptotic solution, useful to the reduction process.

First, several time scales tk := εk t with k = 0, 1, 2, . . . are introduced and it
assumed that u(x, t)= u(x, t0, t1, . . . ) and κ(x, t)=κ(x, t0, t1, . . . ); consequently,
d
dt = ∂t0 + ε∂t1 + · · · . Second, the unknown is expanded as

κ = κ0+ εκ1+ ε
2κ2+ · · · (20)

where κk =
1
k!

dkκk
dεk

∣∣
ε=0, with k = 0, 1, 2, . . . . The following perturbation equations

are derived:
ε0
: 3Rκ0 =3eDu,

ε1
: 3Rκ1 =−∂t0κ0,

ε2
: 3Rκ2 =−∂t0κ1− ∂t1κ0.

(21)

The singular nature of the problem is encompassed by the fact that the generating,
lower-order equation is not a differential equation in time. By solving the equations
in cascade, it follows that

κ0 =3
−1
R 3eDu,

κ1 =−3
−2
R 3eD∂t0 u,

κ2 =3
−3
R 3eD∂2

t0 u−3−2
R 3eD∂t1 u.

(22)

By coming back to the series for κ , reabsorbing the perturbation parameter, and
applying the “reconstitution principle” [Nayfeh 2000; Nayfeh and Mook 1979;
Luongo and Paolone 1999], it is

κ =3−1
R 3eDu−3−2

R 3eDu̇+3−3
R 3eDü+ · · · , (23)

having taken into account that u̇ = ∂t0 u + ε∂t1 u + · · · and ü = ∂2
t0 u + · · · and,

consistently, having truncated the expansions.
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By substituting this latter expression in the equations of motion (3)1,2 the re-
duced model is finally obtained as

(M−Da Ce�3
−3
R 3eD)ü+(Da Ce�3

−2
R 3eD)u̇+(Ke−Da Ce�3

−1
R 3eD)u= f .

(24)
In this equation, the stiffness and the damping operators are identical to those
derived by the center manifold approach (see (15)). Moreover, a reduced mass (dif-
ferential) operator appears, which was absent in the previous derivation. However,
if the lower-order approximation (rendered homogeneous) is taken for ü, namely
ü =−M−1Kr u, it is found that this extra term is consistent with the increment of
stiffness (16). Therefore, the two approach are asymptotically equivalent.

The algorithm illustrated here better underlines the sequence of approximations,
which is able to shed light on the physics of the systems. First, the internal variables
are linked to the observable variables as ėv = 0, this approximation being sufficient
to determine the reduced stiffness with the equilibrium relaxation moduli. Second,
the resultant expression for ev supplies the strain rate ėv , from which the damping
is evaluated. Third, a better approximation for ėv is computed that modifies the
mass or, equivalently, the stiffness.

Throughout the following working examples, the second-order approximation
is neglected.

4. Viscoelastic Euler–Bernoulli beam on Winkler viscoelastic soil

Model. The transverse motion of a shear-undeformable planar beam resting on
viscoelastic soil is considered (Figure 2). Kinematics is described by

χ = u′′, ε = u (25)

where u(s, t) is the deflection of the beam, χ(s, t) its curvature, and ε(s, t) the elon-
gation of soil, with s the abscissa, t the time, and a prime denoting s-differentiation.

b

Figure 2. Planar viscoelastic beam on viscoelastic soil.
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Equilibrium entails

M ′′ =−r(s, t)−mü+ f (s, t) (26)

where M(s, t) is the bending moment, r(s, t) the linear density of the soil reaction,
m the mass per unit length of the beam, and f (s, t) the linear density of the external
active forces.

The constitutive behavior of the beam and of the soil obeys the viscoelastic stan-
dard three-parameter model (Figure 1, left). The constitutive law for the beam is

M = E0 I (χ −χv),

χ̇v =
E0

η
(χ −χv)−

Ev
η
χv

(27)

where E0, Ev, η are material constants, χv is an internal variable having the mean-
ing of viscous curvature, and I is the cross-section inertia moment. The constitutive
law for the soil is

r = c0(ε− εv),

ε̇v =
c0

b
(ε− εv)−

cv
b
εv

(28)

where c0, cv, b are soil constants and εv is an internal variable describing the vis-
cous deformation of the soil. When all these equations are collected, and put in
the state form, the viscoelastic problem reads

u̇ = v,

mv̇+ E0 I (u′′′′−χ ′′v )+ c0(u− εv)= f (s, t),

χ̇v =3ebχ −3Rbχv,

ε̇v =3esε−3Rsεv

(29)

with v the velocity, and the relaxation coefficients of beam and soil defined as

3eb :=
E0

η
, 3Rb :=

E0+ Ev
η

, 3es :=
c0

b
, 3Rs :=

c0+ cv
b

. (30)

It is easy to check that (29) are of the type (3) with the identifications

u := [u], v := [v], e=
[
χ

ε

]
, κ =

[
χv

εv

]
,

D =
[
∂2

s
1

]
, Da

=
[
∂2

s 1
]
, M := [m], Ce =

[
E0 I 0

0 c0

]
,

Ke = [E0 I∂4
s + c0], 3e =

[
3eb 0

0 3es

]
, 3R =

[
3Rb 0

0 3Rs

]
, �=

[
1 0
0 1

] (31)

where ∂k
s :=

∂k

∂sk .
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Equations (29) must be constrained by boundary conditions. For example, if the
beam is simply supported at the ends A,B, boundary conditions read

u H = 0, E0 I (u′′H −χvH )= 0, H = A,B. (32)

Reduced system. The reduction process requires linearly linking the internal vari-
ables to the observable variables via unknown differential operators Pϑ and Qϑ

(ϑ = b, s) (remember (5)):(
χv

εv

)
=

[
Pb

Ps

]
u+

[
Qb

Qs

]
v =Pu+Qv. (33)

By using (14) and the definitions (31), truncated at the first term, it is found that

P =
[
(3eb/3Rb)∂

2
s

3es/3Rs

]
, Q=−

[
(3eb/3

2
Rb)∂

2
s

3es/3
2
Rs

]
(34)

so that the operators are mixed, differential-algebraic. With these, from (8), or (15),
the stiffness and damping of the reduced system are found, namely

Br =

[
E0 I

3eb

32
Rb
∂4

s + c0
3es

32
Rs

]
,

Kr =

[
E0 I

(
1−

3eb

3Rb

)
∂4

s + c0

(
1−

3es

3Rs

)]
.

(35)

Finally, the reduced equation of motion (7), in terms of only observable variables,
reads

mü+α I u̇′′′′+ b?u̇+ E∞ I u′′′′+ c∞u = f (36)

where, by accounting for the definitions (30), the following viscoelastic coefficients
have been introduced:

α := η

(
E0

E0+Ev

)2

, b? := b
(

c0

c0+cv

)2

, E∞ :=
E0 Ev

E0+Ev
, c∞ :=

c0cv
c0+cv

. (37)

Note that this model describes an internally and externally damped beam on a
Winkler elastic soil; in particular, α is the internal damping coefficient, depending
on the elastic and viscous properties of the beam; b? is the external damping coeffi-
cient, which depends on the elastic and viscous properties of the soil; and E∞, c∞
are the relaxation moduli at the equilibrium. It is worth noticing that, in this model,
damping is not proportional to the stiffness.

The internal damping of the beam. When the beam is in the air (i.e., not resting
on soil, so c0 = cv = 0) the reduced model (36), in the absence of external forces,
becomes

mü+ η
(

E0

E0+ Ev

)2

I u̇′′′′+ E∞ I u′′′′ = 0. (38)
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Let φ j (s) be the j-th natural mode of the elastic beam, of frequency ω j , satisfying

E∞ Iφ′′′′j −mω2
jφ j = 0 (39)

with the relevant boundary conditions. Since damping is now of proportional
type, φ j is also an eigenvector for the viscoelastic beam. Thus, by substituting
u(s, t)= x j (t)φ j (s) in the equation of motion, and accounting for (39), an ordinary
differential equation for the modal amplitude x j (t) is obtained, namely

ẍ j + ηω
2
j
E∞
E2
v

ẋ j +ω
2
j x j = 0. (40)

With the usual definition of damping factor, and by using (37)3 and (30)2, it is
found that

ξ j =
1
2
η

E∞
E2
v

ω j ≡
1
2

E0

Ev

ω j

3R
(41)

where 3R ≡ 3Rb and which, consistently with the Rayleigh model of damping
(proportional to the stiffness), is proportional to the undamped natural frequency.
This last expression is believed to be useful in damping modeling and design of
beams.

5. Viscoelastic Kirchhoff plate

Model. The transverse vibrations of a thin viscoelastic plate, modeled according
to Kirchhoff’s theory, are considered (see Figure 3).

Kinematics is described by χx

χy

χxy

=
 ∂2

xx
∂2

yy
2∂2

xy

 (u) (42)

where u(x, t) is the transverse deflection, with x= xax+ yay the position; χx(x, t),
χy(x, t) are flexural curvatures and χxy(x, t) the torsional curvature; and finally

h

Figure 3. Viscoelastic Kirchhoff plate.
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∂k
ϑ1···ϑk

(ϑi = x, y) denotes the partial derivative of order k with respect the homony-
mous variables.

Equilibrium is ruled by

[∂2
xx , ∂

2
yy, 2∂2

xy]

 Mx

My

Mxy

= f − ρü (43)

where Mx ,My are bending moments and Mxy the torsional moment; moreover,
f (x, t) is the surface load density, and ρ the surface mass density.

The constitutive law of the plate is assumed to be governed by the five-parameter
model, which is made of one spring E0, placed in series with two Kelvin–Voigt
systems of constants Evi , ηi (i = 1, 2) (Figure 1, right). Moreover, it is also ad-
mitted that all the stress components could evolve by the same law with strain
components (thus entailing that the deviatoric and spherical stresses of the under-
lying three-dimensional model have the same viscoelastic evolution). Under these
assumptions, the elastic law is Mx

My

Mxy

= D0

1 ν 0
ν 1 0
0 0 (1− ν)/2

 χx − κx1− κx2

χy − κy1− κy2

χxy − κxy1− κxy2

 (44)

where κϑi (ϑ = x, y, xy and i = 1, 2) are the viscous curvatures, relevant to the
i-th subcomponent of the rheological model, and D0 :=

1
12 h3 E0/(1− ν2) is the

bending stiffness, with E0, ν the Young modulus and the Poisson ratio, and h the
plate thickness.

The flow laws, governing the evolution of the internal variables κϑi , are(
κ̇ϑ1

κ̇ϑ2

)
=

[
E0/η1

E0/η2

]
(χϑ)−

[
(E0+ Ev1)/η1 E0/η1

E0/η2 (E0+ Ev2)/η2

](
κϑ1

κϑ2

)
,

ϑ = x, y, xy. (45)

All these equations are in the form (1)–(2) and, therefore, implicitly define (i) the
differential operators D, Da in (42)–(43), (ii) the topological matrix �, linking the
internal variables, i.e., the viscous curvatures κϑi , to the viscous strains (remember
(2)2), and (iii) the elastic matrix Ce. They read

D :=
 ∂2

xx
∂2

yy
2∂2

xy

 , Da
:= [∂2

xx , ∂
2
yy, 2∂2

xy],

� :=

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 , Ce := D0

1 ν 0
ν 1 0
0 0 (1− ν)/2

 .
(46)
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Moreover, from (45) the definition of 3e, 3R follows, namely

3e :=



E0/η1 0 0
E0/η2 0 0

0 E0/η1 0
0 E0/η2 0
0 0 E0/η1

0 0 E0/η2


,

3R :=



F1 E0/η1 0 0 0 0
E0/η2 F2 0 0 0 0

0 0 F1 E0/η1 0 0
0 0 E0/η2 F2 0 0
0 0 0 0 F1 E0/η1

0 0 0 0 E0/η2 F2



(47)

where F j = (E0+ Ev j )/η j ( j = 1, 2). The equations of motion, when rearranged
in the state form (3), are

ẇ =Aw+ f (48)

where the definitions

w :=
(
u v κx1 κx2 κy1 κy2 κxy1 κxy2

)T
,

f :=
(
0 f/ρ 0 0 0 0 0 0

)T
,

A :=
 0 I 0
−(1/ρ)Ke 0 (1/ρ)Da Ce�

3eD 0 −3R

 (49)

hold and in which

Ke := D0∇
4,

Da Ce�= D0
[
∂2

xx+ν∂
2
yy ∂

2
xx+ν∂

2
yy ∂

2
yy+ν∂

2
xx ∂

2
yy+ν∂

2
xx (1−ν)∂

2
xy (1−ν)∂

2
xy
]
,

3eD :=



(E0/η1)∂
2
xx

(E0/η2)∂
2
xx

(E0/η1)∂
2
yy

(E0/η2)∂
2
yy

2(E0/η1)∂
2
xy

2(E0/η2)∂
2
xy


.

(50)

The dynamics is, therefore, governed by a system of partial differential equations
in two observable variables (displacement and velocity) and six internal variables
(two viscous components for each of the three curvatures).
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Reduced system. Aimed at reducing the system to the sole observable variables,
the internal variables are linked to them via unknown differential operators P,Q,
i.e., 

κx1

κx2

κy1

κy2

κxy1

κxy2


=



Px1

Px2

Py1

Py2

Pxy1

Pxy2


u+



Qx1

Qx2

Q y1

Q y2

Qxy1

Qxy2


v =Pu+Qv. (51)

With the definitions (50) and by using the first-term approximation in (14),

P = E0

E0 Ev1+Ev1 Ev2+E0 Ev2



Ev2∂
2
xx

Ev1∂
2
xx

Ev2∂
2
yy

Ev1∂
2
yy

2Ev2∂
2
xy

2Ev1∂
2
xy


,

Q= E0

(E0 Ev1+Ev1 Ev2+E0 Ev2)2



−(E0 Ev2η1+E2
v2η1−E0 Ev1η2)∂

2
xx

(E0 Ev2η1−E2
v1η2−E0 Ev1η2)∂

2
xx

−(E0 Ev2η1+E2
v2η1−E0 Ev1η2)∂

2
yy

(E0 Ev2η1−E2
v1η2−E0 Ev1η2)∂

2
yy

−2(E0 Ev2η1+E2
v2η1−E0 Ev1η2)∂

2
xy

2(E0 Ev2η1−E2
v1η2−E0 Ev1η2)∂

2
xy



(52)

so that the operators (8) of the reduced system are

Br := α∇
4, Kr := D∞∇4 (53)

where the definitions

α := D0
E0(E2

v2η1+ E2
v1η2)

(E0 Ev1+ Ev1 Ev2+ E0 Ev2)2
, D∞ :=

h3

12
E∞

1− ν2 (54)

hold, D∞ being the stiffness of the plate at t =∞ with

E∞ :=
E0 Ev1 Ev2

E0 Ev1+ Ev1 Ev2+ E0 Ev2
(55)

the stiffness of the three in-series springs of the five-parameter model.
By summarizing, the reduced model is governed by

D∞∇4u+α∇4u̇+ ρü = f. (56)

In this case the damping, governed by the coefficient α, is found to be of propor-
tional type, due to the hypotheses made on the constitutive law.
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6. The Cauchy viscoelastic continuum

Model. An isotropic Cauchy continuum is considered. The vector of displace-
ments, at point x and time t , is denoted by u(x, t), the infinitesimal strain tensor
by E(x, t), and the stress tensor by T (x, t). Then the tensors are decomposed in
their spherical and deviatoric parts, namely E = 1

3δ I+ E? and T = θ I+T ?, where
δ := tr E is the volumetric strain, θ = tr T is the hydrostatic stress, I is the identity
tensor, and a star denotes the deviatoric part.

Kinematics states that

δ =∇ · u, E?
=

1
2 [∇u+ (∇u)T ] − 1

3(I∇ · u). (57)

Equilibrium calls for
∇ · (θ I + T ?)− ρ ü+ b= 0 (58)

where ρ is the mass density and b the bulk forces.
It is assumed that the body is linear viscoelastic in the deviatoric part, while it is

elastic in the spherical part. By adopting the standard three-parameter model, the
constitutive law is written as

T ?
= 2µ(E?

− E?
v),

Ė?
v =3e E?

−3R E?
v,

θ = K δ

(59)

where E?
v is the viscous part and E?

− E?
v the elastic part of the deviatoric strain

tensor; µ and K := λ+ 2
3µ are elastic constants, namely the Lamé constants λ,µ

and the bulk modulus K ; and finally, 3e,3R are relaxation constants.
By arranging the previous equations in the state form (accounting for ∇ ·∇u =
∇

2u, ∇ · (∇u)T =∇(∇ · u), and ∇ · (I∇ · u)=∇(∇ · u)), it is

u̇ = v,

µ∇2u+ (µ+ λ)∇(∇ · u)− 2µ∇ · E?
v − ρv̇+ b= 0,

Ė?
v =3e

[1
2∇u+ 1

2(∇u)T − 1
3 I∇ · u

]
−3R E?

v .

(60)

These equations are of the general form (3), although here a different notation is
used (vector form, instead of matrix form). When E?

v ≡ 0 and the flow law is sup-
pressed, they reduce to the well known Navier equations for the elastic continuum.

Reduced system. To reduce the system to the central subspace, the procedure il-
lustrated for a general system is repeated, by using the vector notation. First, the
internal variables are expressed as a linear combination of the displacement and
velocity:

E?
v =Pu+Qv (61)
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where P,Q are unknown linear differential operators. By differentiating this latter
equation with respect to time, using (60)1,2 (rendered homogeneous) to eliminate
u̇, v̇, and similarly using (61) to eliminate E?

v , (60)3 reads

Pv+ 1
ρ
Q[µ∇2u+ (µ+ λ)∇(∇ · u)− 2µ∇ · (Pu+Qv)]

=3e
[ 1

2∇u+ 1
2(∇u)T − 1

3 I∇ · u
]
−3R(Pu+Qv). (62)

By requiring it holds for any u, v, it follows that

1
ρ
Q[µ∇2u+(µ+λ)∇(∇·u)−2µ∇·(Pu)]−3e

[ 1
2∇u+ 1

2(∇u)T− 1
3 I∇·u

]
+3R(Pu)= 0,

Pv− 2µ
ρ

Q[∇ · (Qv)] +3RQv = 0.

(63)

Then, by rescaling 3ϑ → ε−13ϑ (ϑ = e, R) and expanding the operators as P =
P0+O(ε) and Q= εQ1+O(ε2), the leading perturbation equations

−3e
[ 1

2∇u+ 1
2(∇u)T − 1

3 I∇ · u
]
+3R(P0u)= 0,

P0v+3RQ1v = 0
(64)

are obtained, whose solution is

P0u =
1
2
3e

3R
[∇u+ (∇u)T ] −

1
3
3e

3R
I∇ · u,

Q1v =−
1
2
3e

32
R
[∇v+ (∇v)T ] +

1
3
3e

32
R

I∇ · v.
(65)

Therefore, from (61), at the leading order, it is found that

E?
v =

1
2
3e

3R
[∇u+(∇u)T ]−

1
3
3e

3R
I∇ ·u−

1
2
3e

32
R
(∇v+∇T v)+

1
3
3e

32
R

I∇ ·v, (66)

which permits us to write the balance equations (60)1,2 in terms of displacements
only:

µ∞∇
2u+

[
µ∞(3e− 33R)

3(3e−3R)
+ λ

]
∇(∇ · u)−

µ∞3e

3R(3e−3R)

(
∇

2u̇+ 1
3∇(∇ · u̇)

)
− ρ ü+ b= 0 (67)

where µ∞ := µ(1−3e/3R) is the Lamé constant at t =∞.
It is worth noticing that, differently from the plate model, now viscosity changes

the stiffness in a nonproportional way, since the body is considered viscously vol-
umetrically incompressible; for the same reason, damping is of nonproportional
type.
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7. Conclusions

A linear metamodel of viscoelastic continuum has been formulated. It is expressed
in terms of internal variables, having the meaning of the viscous elongations of
the (arbitrary in number) dashpots of the underlying rheological model. It was
observed that, due to the smallness of damping, the eigenvalue spectrum is well
separated, so it entails that the dynamics is rapidly attracted by the space spanned
by the (finite-dimensional) central eigenvectors. Two alternative algorithms, based
on the center manifold method and the multiple scales method, have been worked
out to derive the reduced system. Both methods avoid the evaluation of the central
eigenvectors, as instead needed in bifurcation theory. The reduction allows elimi-
nating the (passive) internal variables, while accounting for them as slaves of the
(active) observable variables.

Three sample continua of increasing spatial dimensions have been considered
for illustrative purposes, namely (a) the transverse vibrations of an Euler–Bernoulli
beam resting on a Winkler-type soil, the viscoelastic properties of both being de-
scribed by the standard three-parameter viscoelastic model, (b) the transverse vibra-
tions of a Kirchhoff plate, obeying to the five-parameter viscoelastic solid model,
and (c) a three-dimensional Cauchy continuum, whose volumetric strains are elas-
tic and deviatoric strains viscoelastic. The following conclusions can be drawn.

(1) The lowest-order approximation of the center subspaces supplies a reduced
stiffness operator which coincides with the elastic one, but with elastic moduli
replaced by the equilibrium values (at infinite time) of the relaxation moduli.
This is due to the fact that low damping entails short relaxation times, on the
order of the transient duration, so that the steady dynamics occurs when the
moduli reach their asymptotic values.

(2) The reduced damping operator is made of a linear combination, with relax-
ation moduli, of the derivatives which form the stiffness operator. In general,
however, damping and stiffness are not proportional, so the Rayleigh simplis-
tic model of damping is not recovered.

(3) The beam on viscoelastic soil can be reduced to an internally and externally
damped beam on elastic Winkler soil. Reduction provides the equivalent
characteristics. Since viscosity in the two substructures acts independently,
the resulting damping is nonproportional. However, if the beam is in air (no
soil), damping is of proportional type. A formula has been given for practical
design of damping.

(4) The viscoelastic five-parameter plate shows the power of the model, which
permits elimination of six internal variables (two for each of the three curva-
tures), and a strong lowering of dimensions. Due to the fact that the same
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constitutive law has been adopted for all the components of stress, a damping
operator proportional to the stiffness has been found.

(5) The three-dimensional Cauchy continuum, in which viscous incompressibility
has been adopted, can also be reduced to an internally damped continuum,
expressed in terms of displacements and velocities only. The elastic part of
the equation consists of the classical Navier equation, in which, however, the
Lamé constants are modified as their value at infinite time, in a nonpropor-
tional way, due to the different behavior of the deviatoric and spherical parts.
Damping is found to be of nonproportional type.

Appendix: A microstructured homogenized one-dimensional continuum

The chain of oscillators displayed in Figure 4, top, made of n cells of length h, is
considered. Each cell is a standard three-parameter viscoelastic oscillator, carrying
a mass M , whose constitutive parameters c0, cv , and b are constant along the chain.
A homogenization procedure is here developed to obtain an equivalent continuum,
representative of the behavior of the chain.

The free dynamics of the continuum is then analyzed under the assumption of
small viscous modulus, by making use of asymptotic solutions. It will be shown
that a suitable design of the microstructure could lead to spectral properties of the
continuum somewhat analogous to those discussed in Section 3.

The considered target continuum is a viscoelastic one-dimensional model, i.e.,
a bar of length ` = nh and mass per unit length m = M/h (Figure 4, bottom).
In what follows the chain is referred to as the fine model and the homogeneous
continuum as the coarse model.

The constitutive law of the periodic structure. The i-th cell (Figure 5, left) is
taken as the representative volume of the periodic structure. Its constitutive law can

h
b

MM/2 M

b b

MM1 2

b

Mi n M/2

Figure 4. Viscoelastic one-dimensional systems: fine discrete pe-
riodic model (top) and homogeneous bar (bottom).
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h
b

M/2 M/2
i

h
b

i

h
b

i

Figure 5. Fine model: cell (left), kinematics (center), and statics (right).

be written by rearranging kinematics (Figure 5, center) and equilibrium (Figure 5,
right) equations of the rheological model [Luongo and D’Annibale 2017a]. It reads

Ni = c0(1i − κi ),

κ̇i =
c0

b
1i −

c0+ cv
b

κi
(68)

where Ni is the axial force and 1i and κi are the total and viscous displacements,
respectively.

The viscoelastic one-dimensional continuum model. The axial motion of a vis-
coelastic one-dimensional bar is then considered (Figure 4, bottom). Kinematics
and equilibrium are described by

u′ = ε,

−N ′ = f −mü
(69)

where u(s, t), ε(s, t), N (s, t), and f (s, t) are the axial displacement, the unit exten-
sion, the cross-section normal force, and the horizontal external load, respectively,
which are functions of the abscissa s and time t . Moreover, the prime and the dot
denote spatial and time differentiation, respectively. It is worth noticing that (69)
are in the same form as (1).

According to the standard three-parameter model, the constitutive law reads

N = E0 A(ε− εv),

ε̇v =
E0

η
ε−

E0+ Ev
η

εv
(70)

where E0, Ev, η are material constants, εv is an internal variable having the mean-
ing of viscous extensional strain, and A is the area of the cross-section. It is
important to remark that (70) are in the same form as (2) of the metamodel.

The constitutive coefficients of the coarse model are determined in the frame-
work of the homogenization procedure. In particular, this is carried out by exploit-
ing the periodicity of the fine model and following the next steps: (i) the constitutive
law for one of its cells (68) is written in terms of strains of the coarse model, thus
entailing 1i = εh and κi = εvh and (ii) the constitutive law of the cell is attributed
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to a slice of the equivalent bar of the same length. The following identification of
the coefficients of the equivalent bar holds:

E0 A := hc0,
E0

η
:=

c0

b
,

Ev
η
:=

cv
b
. (71)

By combining (69) and (70) in the state space form (u̇= v), the equations of motion
of the bar read u̇

v̇

ε̇v

=
 0 1 0
(E0 A/m)∂2

s 0 −(E0 A/m)∂1
s

(E0/η)∂
1
s 0 −(E0+ Ev)/η

 u
v

εv

+
 0

f/m
0

 . (72)

These equation are in the form of (3). They must be integrated with initial con-
ditions (assuming the system is initially at rest). Moreover, it is assumed that
geometric boundary conditions at the ends prescribe null horizontal displacement,
i.e., uA = uB = 0.

Free dynamics. The solution of (72), which (exactly) satisfies the spatial eigen-
value problem, is in the form(

u
v

)
=

(
û(t)
v̂(t)

)
sin
(

kπs
`

)
, εv = ε̂v(t) cos

(
kπs
`

)
(73)

where û(t), v̂(t), and ε̂v(t) are (time-dependent) amplitudes and k denotes the
wave number. Therefore, the associated characteristic equation of the (unforced)
system (72) reads

ηλ3
+ (E0+ Ev)λ2

+
ηE0 A

m

(
kπ
`

)2

λ+
E0 EvA

m

(
kπ
`

)2

= 0. (74)

Approximated roots of (74) in the case η is small can be determined through a
perturbation method (details not reported here). It is found that

λ1 =−
E0+Ev
η
+O(1) =: −

1
trel
,

λ2,3 =−
ηE2

0 A
2m(E0+Ev)2

(
kπ
`

)2

±i

√
E0 EvA

m(E0+Ev)

(
kπ
`

)2

+O(ε2)=: −ξω±iω
(75)

where trel is the relaxation time of the standard three-parameter model. In particular,
accordingly to the discussion of Section 3, it can be seen that one eigenvalue λ1

is real, of order ε−1, and its magnitude is inversely proportional to trel, while the
other two eigenvalues λ2 and λ3 are complex-conjugate with order-ε negative real
part. Moreover, the following positions hold:

ω2
:=

E∞A
m

(
kπ
`

)2

, ξ :=
ηE2

0 A
2mω(E0+ Ev)2

(
kπ
`

)2

, (76)
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M [kg] h [m] c0 [N/m] cv [N/m] b [Ns/m]
1 0.2 800 800 50

Table 1. Numerical values of the parameters of the microstructure.

E∞ := E0 Ev/(E0+ Ev) being the elastic modulus at infinite time. As shown in
[Luongo and D’Annibale 2017a], definitions (76) represent the (undamped) fre-
quency and damping ratio of a reduced oscillator, which is able to recover the
oscillatory dynamics of the bar after the exponential transient motion decays, and
whose motion is governed by the equation

ü+ 2ξωu̇+ω2u =
f

m
. (77)

Discussion about the validity of the perturbation solution. The ratio between the
moduli of the real parts of eigenvalues (75) can be written as

r :=
|Re λ2,3|

|Re λ1|
=

E0ω
2

2Ev
t2
rel. (78)

In particular, by considering Ev and E0 of the same order of magnitude, e.g., Ev =
E0/2,

r = ω2t2
rel ' 40

(
trel

T

)2

, trel =
2
3
η

E0
, (79)

T := 2π/ω being the (undamped) period of the structure. By requiring the spectrum
of eigenvalues to be well separated, i.e., r = O(ε2)= 10−2, it is found that

trel

T
'

1
65
. (80)

It means that, if the period of the structure is on the order of the second, as occurs in
civil structures, η must be small, i.e., η ' 0.02E0. However, the relaxation time of
a structural material, as, e.g., identified by a relaxation test, is found of some order
of magnitude greater with respect to the structural period. For example for rubber
trel ∼ 100 s, thus entailing η large (η' 150E0). It is concluded that a well separated
spectrum is representative of those viscoelastic structures, in which the relaxation
time of the underlying viscoelastic constitutive model is sufficiently smaller than
their fundamental period.

The ratio (80) can be easily achieved in the microstructured continuum, by de-
signing its microstructure. As an example, by taking the numerical values reported
in Table 1, and n = 20, the coefficients of Table 2 follow for the equivalent bar. It is
found that the first (undamped) period of the structure is T = 2 s, and its relaxation
time trel =

1
32 s, thus corresponding to trel/T = 1

64 . Finally, in Figure 6 the very
good agreement between the complex-conjugate exact eigenvalues (gray circles)
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m [kg/m] ` [m] E0 A [N] E0/η [s−1
] Ev/η [s−1

]

5 4 160 16 16

Table 2. Numerical values of the parameters of the equivalent bar.

-�� -�� -�� -�� -�� -�

-�

-�

-�

�

�

�

Figure 6. Eigenvalues of the exact (gray circles) and reduced
(black dots) systems.

and the asymptotic ones (black dots), obtained by the (unforced) (77), is shown
when k = 1. The exact real eigenvalue is filtered by the reduction procedure.
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