
NISSUNA UMANA INVESTIGAZIONE SI PUO DIMANDARE VERA SCIENZIA
S’ESSA NON PASSA PER LE MATEMATICHE DIMOSTRAZIONI

LEONARDO DAVINCI

Mathematics and Mechanics
of

Complex Systems

msp

vol. 8 no. 2 2020

PAUL GERMAIN

THE METHOD OF VIRTUAL POWER
IN THE MECHANICS OF CONTINUOUS MEDIA

I: SECOND-GRADIENT THEORY





MATHEMATICS AND MECHANICS OF COMPLEX SYSTEMS
Vol. 8, No. 2, 2020

dx.doi.org/10.2140/memocs.2020.8.153
MM ∩

THE METHOD OF VIRTUAL POWER
IN THE MECHANICS OF CONTINUOUS MEDIA

I: SECOND-GRADIENT THEORY
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Translated by Marcelo Epstein and Ronald E. Smelser

The systematic application of the definition of internal forces, by means of the
virtual power produced in a class of virtual motions, leads to a consistent math-
ematical representation of stresses and strains in any given mechanical model.
It is thus possible to write the statical and dynamical equations and to state
well posed boundary value problems. The second-gradient theory, presented
here by way of example, can be developed without any ambiguity. An essential
distinction is drawn between intrinsic and classical stresses so as to avoid certain
issues of interpretation. It is shown that all the results of classical linear elasticity
can be immediately extended to the case of second-gradient elastic media. The
constitutive equations of nonlinear elasticity are also formulated.

Main notation

(1) Kinematic quantities

velocity Ui (x, t)
strain-rate tensor Di j =

1
2 (Ui, j +U j,i )

rotation-rate tensor �i j =
1
2 (Ui, j −U j,i ){rotation-rate vector ωi =−
1
2εi pq�pq , �i j =−εi jkωk

tangential component ω̃i

rotation-gradient tensor Ki j = ωi, j =−
1
2εi pq�pq, j =−

1
2εi pqUp,q j

symmetric part of the tensor of
second gradient of the velocities Ki jk =

1
3 (Ui, jk +U j,ki +Uk,i j )
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permission. Translators’ footnotes are identified with the symbols TN.
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analysis of Paul Germain’s ‘The method of virtual power in the mechanics of continuous media, I:
Second-gradient theory’ ”, Math. Mech. Complex Systems, 8:1 (2020), pp. 191–199.

153

http://msp.org/memocs
http://dx.doi.org/10.2140/memocs.2020.8-2
http://dx.doi.org/10.2140/memocs.2020.8.153
http://memocs.univaq.it/
https://doi.org/10.2140/memocs.2020.8.191


154 PAUL GERMAIN

(2) Internal and external forces

volumetric force fi

volumetric couple Ci j (=−C j i )

volumetric symmetric double force 8i j (=8 j i )

surface traction (stress vector) Ti

surface double traction (couple stress vector) M̃i

doubly normal stress (surface density) N
edge stress (line density) Ri

surface force on ∂S ti
tangential surface couple m̃i

doubly normal force n
edge force (line density) ri

intrinsic stress tensor (1st order) σi j (= σ j i )

intrinsic stress tensors (2nd order)
{µi j (µi i = 0)
µi jk (completely symmetric)

(3) Derivative operators on a surface (with unit vector ni )

normal gradient
scalar function ϕ Dϕ = nlϕ,l

vector function Vi DVi = nl Vi,l

tangential gradient
scalar function ϕ Diϕ = ϕ,i − ni Dϕ
vector function Vi D j Vi = Vi, j − n j DVi

(4) Small strains

displacement X i (x, t)
strain tensor εi j =

1
2 (X i, j + X j,i )

rotation tensor ϕi j =
1
2 (X i, j − X j,i ){rotation vector ϕi =−

1
2εi pqϕpq

tangential component ϕ̃i

rotation-gradient tensor ηi j =−
1
2εi pq X p,q j

symmetric part of the tensor of
second gradient of the displacements ηi jk =

1
3 (X i, jk + X j,ki + Xk,i j )

(5) Finite strains

gradient matrix Fiα =
∂xi

∂aα
Green–Lagrange strain tensor Lαβ = 1

2 (FiαFiβ − δαβ)

intrinsic Piola–Kirchhoff stress tensor (1st order) sαβ

intrinsic stress tensors (2nd order)
{5αβ (5αα = 0)
5αβγ (completely symmetric)



SECOND-GRADIENT THEORY 155

1. Introduction

It has long been recognized that in mechanics there are two ways to represent math-
ematically the forces exerted at a given time t upon a system S. The first, age-old,
way consists in representing a force by means of a vector, a mathematical entity that
has an origin, a direction, and a magnitude. The completely natural generalization
of this idea when attempting to represent the forces exerted on a continuous system
leads to a description in terms of a field of vectors associated with a measure, and
it is in this way that one speaks of “volumetric forces”, “surface forces”, “forces
per unit mass”, etc. While forces are thus represented, it is desirable to utilize as
a basic statement of dynamics the fundamental law stipulating that “there exists
at least one reference (frame and time), said to be absolute, in which at each time
and for each system, the wrench produced by the masses times the accelerations is
equal to the wrench of the exterior forces exerted on the system”.

But there exists also, at least since d’Alembert, a second possible avenue, namely,
the method of virtual power (or virtual work). Contrary to what is sometimes
believed, this second way is as absolutely natural as the first, since it is nothing but
the expression of a very common physical experience. If one wants to know if a
suitcase is heavy, one tries to lift it slightly; to estimate the tension in a transmission
belt, one displaces it a little bit from its stable position; and it is while trying to push
a car that one becomes aware of the presence of the internal and external friction
forces opposing the motion. From the mathematical point of view, the situation can
be described as follows: at a given time t , one considers on S a vector field V that
defines at that instant a virtual movement of S — the vectors of the field represent-
ing the velocities or the elementary (infinitesimal) displacements during an elemen-
tary (infinitesimal) time δt — ; the forces that produce this virtual movement V are
known if their “virtual power” P (a real number associated with V ) is known. More
precisely, we consider a set V of virtual motions V , where V is a normed vector
space, and we say that we know the forces exerted on S by the space V if there
exists a continuous linear form L(V ), defined on V, whose value for each field V is
equal to the virtual power of these forces during the virtual motion defined by V .

The essential idea of this second avenue is that of “duality”. Moreover, this
avenue is not only very close to everyday experience, as we have already remarked,
but it is also very versatile; according to the choice of a vector space more, or less,
“vast”, we will have a description of forces more, or less, fine. Thus, we can con-
sider only those expressions that describe the forces that we need by conveniently
choosing the space V. Once V has been fixed, the set of forces recognized by V

form themselves a vector space, namely, the dual V∗ of V.

We must acknowledge that the notion of a linear map over a vector space is
more abstract than that of a vector field, and it is for this reason that the “virtual
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power approach” has always — at least up until now — appeared to be more diffi-
cult. Above all, one has to acknowledge that at the time when the notion of virtual
motion was introduced in mechanics the mathematical idea of duality had not yet
been sufficiently elaborated so as to completely translate this new notion, which
in a certain sense can be considered as the precursor of the notions of measure or
of distribution. It is only when the space V is of finite dimension that no special
difficulty arises, and this is why, very early on, we have witnessed the development
of the analytical mechanics of systems of a finite number of degrees of freedom,
which utilizes in fact, with the notion of “generalized forces”, a description of
forces by means of the concept of virtual power.

The situation today is different. Functional analysis has been considerably de-
veloped and its applications to mechanics, and most particularly to the mechanics
of continuous media, are already numerous and of great importance, as it is demon-
strated, for example, by the recent work of Duvaut and Lions [1]. The concept of
duality is imparted very early on in university curricula. Moreover, the time seems
to have arrived to attempt a rather systematic application of the notion of virtual
power to continuum mechanics. Such is the objective of this article and of those
that will follow under the same general heading.

When utilizing a description of forces by means of virtual power, the most suit-
able fundamental statement of the laws of dynamics is the principle of virtual
power. We will limit ourselves in this first article to the case of statics, a case
where this principle can be stated as follows:

“In an absolute reference, at each time t and for every system, the virtual
power of all the forces, internal as well as external, applied to the system
vanishes, whatever the virtual motion considered.”

As is well known, the statement valid for the dynamic case is obtained by adding
to the external forces the absolute forces of inertia.

Our procedure is thus very simple and elementary. We want to show that a
mechanical theory — and in particular a theory of the mechanics of continuous
media — is completely determined once we provide the space V of virtual motions
that we intend to consider and that establishes in some sense the degree of fineness
of the theory. The corresponding representation of the forces is deduced by duality,
and the collection of all the equations of statics (and more generally, of dynamics)
is obtained by application of the principle of virtual power. By way of example,
we will start in Section 2 with a short review of the cases of a material point and
of a rigid body, classical cases where V is of finite dimension. After some general
remarks about the application of the method to continuous media (Section 3), we
will satisfy ourselves in Section 4 with an examination of the so-called first-gradient
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theory — which is in fact nothing but a slight generalization of the classical the-
ory — and in Section 5 we will present the second-gradient theory. To avoid any
error of interpretation, let us note at the outset that our terminology differs from
that employed by other authors; the second gradient under consideration here is
that of the field of velocities, so that the theory thus named must be compared with
the theory of first gradient of the strain (for instance, that developed by Mindlin
and Eshel [2]). The results obtained lay the groundwork for the formulation of
the thermodynamic properties of the media considered and, consequently, the for-
mulation of the constitutive laws, at least if we resort to the method of local state
(see, for example, Germain [3]). By way of illustration we indicate in Section 6
the general features of linear elasticity within the second-gradient theory, and in
Section 7, some remarks about nonlinear elasticity that lead in a simple way to the
formulation of constitutive laws.

It is not our intention in this article to provide many new results; a large part
of the results established below can be found in the literature, in a more or less
equivalent form, particularly in the articles listed in the bibliography, at least for
the case of elastic media. But, to the best of this author’s knowledge, the use of
the method of virtual power to define a mechanical model within a given frame-
work of representation has not been the object of a systematic exposition. The
second-gradient theory, offered here by way of illustration, permits us to reveal the
advantages of this approach. On the one hand, the results remain valid if one wants
to take into consideration nonelastic effects. On the other hand, a certain number
of difficulties of interpretation that are often present in previous presentations are
here automatically removed.

We will not insist here on the strictly mechanical interest of the second-gradient
theory, and we refer the reader in this regard to the articles of Mindlin and Eshel [2]
and of Toupin [6] and, above all, to the contributions of Casal [13; 14; 15], who has
clearly exposed the points of contact between this theory and that of the phenomena
of capillarity, thus bringing to light a very interesting physical interpretation, which
has not yet received the attention that it deserves.

2. Elementary remarks on the material point and the rigid body

The case of the material point is reviewed here only for reference: at a given time,
a virtual motion of the point M is determined by giving the virtual velocity VM

of M ; the space V is, therefore, a Euclidean vector space (of dimension 3). A linear
form on V can be written as an inner product; thus, it determines an element FM

of the dual space, and one can write the virtual power as

P= L(VM)= FM · VM .
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In this way, we recover the representation of the forces exerted on a point by the
force vector FM , such as provided by the first kind of description of forces recalled
at the beginning of the introduction.

Analogously, the case of the rigid body leads to a classical result, although its
meaning does not always emerge quite as clearly. Let us consider at a fixed time t a
system S, which we will refer to an orthonormal frame — with x1, x2, x3 indicating
the coordinates of a point of S, which we will simply denote by x . It is known that,
if S is a rigid body, the velocity field Ui (x) of the points of S satisfies an identity
of the form

Ui (x)=Ui (o)+�i j x j , (1)

where �i j is a skew-symmetric matrix, independent of x , called the rotation-rate
matrix, representing, in this frame, the skew-symmetric second-order rotation-rate
tensor (or spin tensor). A field that satisfies the identity (1) for every x in S is said
to be defined by means of a twist (or a distributor). A twist is thus defined by the
six scalars �i j = −� j i and Ui (o), which are called its elements of reduction at
the origin. It is also equally well defined by its elements of reduction at any other
point of S.

At some fixed time t , let us take as the space of virtual motions V the (6-dimen-
sional) vector space C of the twists, a twist being denoted by {C}. We say that
these virtual motions “preserve the rigidity of S” if S is a rigid body or, if S is a
deformable medium, that these are “virtual motions that rigidify S”. The virtual
power of the forces applied on S is a linear form over C, namely,

P= L({C}). (2)

We say that this form defines the screw or wrench of the forces, which we denote
by [T]. Such a screw is an element of the dual space T of the space C. If we
represent {C} by its elements of reduction at the origin, we can write P in the form

P= Ti (o)Ui (o)+Mi j (o)�i j . (3)

The real numbers Ti (o) and Mi j (o) are the elements of reduction of [T] at the origin.
It is clear that, since �i j is a skew-symmetric matrix, we can assume without loss
of generality that Mi j is also skew-symmetric. It is also clear that, since Ui and �i j

are, respectively, components of a vector and of a second-order skew-symmetric
tensor, the same is true for Ti and Mi j , respectively.∗ Naturally, we could also have
expressed the linear form (2) while representing {C} by its elements of reduction
at another point x arbitrarily chosen, and we could have written

P= Ti (x)Ui (x)+Mi j (x)�i j . (4)

∗In other words, these are also components of a vector and of a tensor, respectively. — (TN)
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Subtracting (3) from (4), and invoking (1), we obtain

(Ti (x)− Ti (o))Ui (o)+ (Mi j (x)−Mi j (o)+ Ti (x)x j )�i j = 0.

This equation holds true for arbitrary values of Ui (o) and of �i j = −� j i . This
implies that the coefficient of Ui (o) must vanish identically and that the coefficient
of �i j must be symmetric in i and j . The vector T , called the vector or resultant
of the wrench [T], is therefore independent of x , and the skew-symmetric second-
order tensor field defined by the matrices Mi j is an affine linear function of the
coordinates and satisfies the identity

Mi j (x)= Mi j (o)+ x[i T j], (5)

where A[i j] denotes the skew-symmetric part of Ai j .∗

The preceding treatment is valid regardless of the (finite) dimension of the
Euclidean space in which the system S is found. The velocity field (1) and the
moment field (5), associated, respectively, to the twist and the wrench, are entities
of different mathematical nature. Indeed, the velocity is a vector field while the
moment is a second-order skew-symmetric tensor field. It is only in the case of a
3-dimensional space that certain correspondences between these two entities can
be made. Let us introduce in this space the alternating tensor with components εi jk ,
and let us define

ωk =−
1
2εki j�i j , mk =−εki j Mi j . (6)

Equations (1) and (5) can then be rewritten in the classical form

UM = U0+ω∧ O M; mM = m0+M O ∧ T , (7)

while P can be expressed as

P= T ·UM +ω ·mM = [T] · {C}. (8)

The vector ω is the rate of rotation (or angular velocity) vector of the twist {C}.
The vector field mM is the moment field of the wrench [T].

Let us underscore once again the significance of the results just obtained: in the
mechanics of rigid bodies, it is futile or superfluous to represent the forces acting
on the rigid body other than by means of the wrench that they determine; any other
finer representation is redundant.

∗Note, as a matter of detail, that on taking the skew-symmetric part of the tensor product x⊗ T ,
a factor of 1

2 is introduced, thus explaining the lack of it later in the second equation (6). — (TN)
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3. General remarks on the application of the virtual power method
in continuum mechanics

From the outset, let us note the essential role played by the following axiom of the
virtual power of the internal forces:

The virtual power of the internal forces of a system S vanishes for any
rigidifying virtual motion of S at the time t being considered.

Let us recall that it is thanks to this axiom that the statement of the principle of
virtual power entails the fundamental classical law of mechanics. If, at an arbitrary
time t , we consider a rigidifying virtual motion of S, defined by a twist {C}, the
virtual power of all the applied forces is reduced to that of the external forces alone,
and since S is assumed to be in equilibrium, the virtual power, written as [T] · {C},
where [T] is the wrench of the external forces, must vanish for arbitrary {C}. We
immediately deduce that [T] = 0, which is precisely the statement of the funda-
mental law of statics.

The remarks that follow do not have the compulsory and general character of
the axiom just formulated; rather, they constitute working hypotheses that could
be called into question in theories other than those presented below by way of
illustration of the general method.

(a) The systems S to be considered will always be 3-dimensional. We will assume
that S is a connected and bounded open domain of the Euclidean space and
that its boundary ∂S is piecewise twice continuously differentiable, namely
that, except on certain lines which are the edges of ∂S, the surface ∂S has
at each of its points a well defined exterior unit normal vector, say n, and a
curvature tensor which is continuous in a neighborhood of each P belonging
to ∂S.

(b) We will apply the principle of virtual power, be it to S or to any subsystem D

of S, for which we will make the same regularity assumptions as for S.

(c) The functions chosen to describe the virtual motion of D, that is, those func-
tions that define an arbitrary element of the normed vector space V, will be
assumed to be continuously differentiable over the closure D+ ∂D of D, as
many times as necessary (for example, infinitely differentiable).

(d) The natural language suited to such a theory is that of the theory of distri-
butions. Nevertheless, in order to simplify the exposition and so as to re-
cover directly the classical formulas, we will not make use of it here. This
is tantamount to admitting that the distributions that represent the forces are
sufficiently regular to be defined in terms of densities, that is, (continuously
differentiable) functions defined over certain manifolds. This simplification
is more often than not a legitimate one, since we are dealing with notions
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pertaining to continuous media, themselves a depiction of an essentially dis-
continuous reality. The linear forms that will define the virtual power can,
therefore, be written by means of volume, surface, or line integrals.

In fact, the results obtained under this working hypothesis remain valid in
the general case as long as we interpret the various quantities appearing there
in the sense of distributions.

(e) The virtual power of the internal forces in the subsystem D will be denoted
as P(i)(D). We will always assume that it can be expressed in the form of a
volume integral over the open set D.

(f) The external forces exerted on the subsystem D, interior to S, will be assumed
to be of two types. The first consists of these forces exerted on D by the
systems external to S; these are the actions at a distance, which, moreover,
will be considered in general as given. We will denote their virtual power
by P(d), and we will assume that it is expressed in the form of a volume
integral over the open set D. The second kind of external forces consists of
those forces exerted on D by the parts of S exterior to D. We will assume here
that, as is customary in the mechanics of continuous media, these are contact
forces — thus implying that the actions at a distance originating within S are
negligible. The virtual power of the contact forces will be denoted by P(c),
which will be expressible by means of a surface integral1 over ∂D.

Analogously, we will assume that the external forces exerted on S also
comprise actions at a distance and contact forces on ∂S.

(g) Since we limit ourselves to the case of statics, the principle of virtual power
is expressed by the equation

P(d)+P(c)+P(i) = 0, (9)

which must be satisfied for any subdomain D and any virtual motion consid-
ered in V. The relations that express the necessary and sufficient conditions
for this to be true constitute the set of equations of statics for the system under
consideration.

The meaning of these remarks will become clearer through the two examples
that we will presently consider.

4. First-gradient theory

The first-gradient theory is, in fact, a rather simple generalization of the classical
formulation of the theory of continuous media. The name given to this first-gradient

1As we will see in Section 5, in certain cases it may be appropriate to include an additional term
expressed in the form of a line integral (over the edges of ∂D).
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theory arises from the fact that for a given subsystem D the space of virtual motions
V is that of continuous and at least once continuously differentiable velocities over
the closure D+ ∂D of D, where the norm of V is that of the uniform convergence
for the velocities and their first derivatives with respect to the coordinates xi . We
will denote by Ui the velocity components and by Ui, j their first derivatives. We
will, moreover, introduce the canonical decomposition of the velocity gradient into
a symmetric part and a skew-symmetric part, namely,

Ui, j = Di j +�i j ; Di j = D j i , �i j =−� j i . (10)

We know that Di j is the matrix that represents the strain-rate tensor and that �i j is
the matrix representing the rotation-rate tensor. The continuous linear forms on this
space V are, in all generality, distributions of order 1, that is, measure derivatives.
But we have already explained in the preceding section that we will not resort here
to this generality and that we will assume that the virtual power can be expressed
by means of integrals.

4.1. We shall always commence by formulating the virtual power of the internal
forces. This will be done for two reasons. In the first place, this is the essentially
new notion brought about by continuum mechanics. In the second place, we have
at our disposal the axiom stated above, which permits us to simplify its expression.
Moreover, we will find that, in writing the virtual work of the external forces, we
will be guided by the results already gained for the expression of the virtual power
of the internal forces.

We know that P(i) is a volume integral over D (in accordance with remark (e)
above). We will write, therefore,

P(i) =−

∫
D

p dv. (11)

Except for the sign, p is the virtual power of the internal forces per unit volume,
or the energy of the internal forces per unit volume. Furthermore, by hypothesis,
p must be a linear form in the arguments Ui , Di j , and �i j . But, by virtue of the
axiom, we can state:

Proposition 1. The density p can be written in the form

p = σi j Di j , (12)

where σi j is a symmetric matrix representing a symmetric second-order tensor
called the intrinsic stress tensor (of order 1), which is an objective quantity.

The proof is straightforward. It is clear that, without loss of generality, we
can assume that σi j is symmetric with respect to the indices i and j .∗ Since Di j

∗Assuming, of course, that we’re in the case where (12) is valid. — (TN)
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represents a tensor, the same must be true for σi j , as can be concluded by a change
of frame at the time under consideration. Moreover, by virtue of the axiom, P(i) and
p preserve their values under a change of reference, since evidently the difference
of the velocity fields of one and the same virtual motion as observed in two different
references is the velocity field of some twist. We still need to show that p can
depend neither on Ui nor on �i j . If, for instance, there were in (12) a term in Ui

having a coefficient not identically zero in the neighborhood of a point M of S, one
could find a subsystem 1 of S, containing M , and a virtual motion of translation
defined on 1, for which p would not vanish identically, contrary to the stipulation
of the axiom. The impossibility of having a nonvanishing term in �i j in (12) can
be established by a similar reasoning. The proposition is thus proven.

We assume (remark (d)) that the components σi j are continuously differentiable
in xi . The divergence theorem permits us to derive, having duly noted that σi j Di j =

σi jUi, j , the following useful expression for the virtual power of the internal forces:

P(i) =

∫
D
σi j, jUi dv−

∫
∂D
σi j n jUi da. (13)

If we take Ui as the velocity field of a twist,∗ the left-hand side of (13) vanishes,†

so that, incidentally, we obtain the following:

Proposition 2. The wrench defined by the volumetric density σi j, j in D is equal to
that defined by the surface density σi j n j on ∂D.

This result is usually conveyed in more compact notation‡ as

[σi j, j ]D = [σi j n j ]∂D. (14)

4.2. We will presently formulate the power of the external forces exerted on D,
while adhering to the working hypotheses stated in the preceding section. We will
proceed systematically by writing general linear forms over V and postponing until
the end of this section a brief discussion of the physical meaning of the quantities
used. As far as P(d) is concerned, we will write

P(d) =

∫
D
( fiUi +Ci j�i j +8i j Di j ) dv. (15)

This definition implies that the external actions at a distance can be represented by

• a field of volumetric forces defined by the density fi ,

• a field of volumetric couples defined by the density Ci j , representing a skew-
symmetric tensor, namely, Ci j =−C j i ,

∗That is, a rigidifying motion. — (TN)
†According to the axiom. — (TN)
‡That is, using screw (or torsor) “notation” as in Equation (8) of [16]. — (TN)
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• a field of volumetric “symmetric double forces” defined by the density 8i j ,
representing a symmetric tensor, namely, 8i j =8 j i .

It is convenient to transform the equality (15) following the procedure used
above. Noting the identities

Ci j�i j = Ci jUi, j = (Ci jUi ), j −Ci j, jUi ,

8i j Di j =8i jUi, j = (8i jUi ), j −8i j, jUi ,

and applying the divergence theorem, we obtain

P(d) =

∫
D
( fi −Ci j, j −8i j, j )Ui dv+

∫
∂D
(Ci j +8i j )n jUi da. (16)

All that remains is to deal with the external contact forces. Their virtual power
is defined by a scalar surface density which is, a priori, a linear function of Ui and
of the first derivatives of Ui . But, anticipating the formulation of the principle of
virtual power, we become aware that these last terms vanish identically, since they
could not be possibly balanced by any analogous term in the expressions (13) and
(16) of the virtual power of the internal forces and the actions at a distance. More-
over, we can obtain this result in an absolutely explicit fashion from the expression
(34), given farther below. We will, therefore, simply write

P(c) =

∫
∂D

TiUi da, (17)

where, by definition, Ti represents the stress vector at a point of ∂D acting perpen-
dicularly to ∂D; this is a surface density of contact forces.

4.3. It remains to apply the principle of virtual power, that is, (9). Taking (13),
(16), and (17) into consideration, we obtain

0 =
∫

D
( fi+σi j, j−Ci j, j−8i j, j )Ui dv+

∫
∂D
(Ti−(σi j−Ci j−8i j )n j )Ui da. (18)

We are thus led to define

τi j = σi j −Ci j −8i j . (19)

By definition, τi j represents the stress tensor.
Let us apply first the identity (18) taking as Ui an arbitrary field that vanishes

outside a compact set contained in D. In that case, we are just left with the volume
integral, and since Ui is otherwise arbitrary, we obtain at each point of this compact
set, that is, at each interior point of D, the equation

fi + τi j, j = 0. (20)

Consequently, the volume integral in (18) vanishes identically. Introducing now
in (18) a field Ui that vanishes outside a compact set with an arbitrarily chosen
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nonempty intersection 6 with ∂D, we obtain∫
6
(Ti − τi j n j )Ui da = 0.

Since Ui itself can be chosen arbitrarily in the interior of 6, we conclude that at
each point of ∂D we must have necessarily that

Ti = τi j n j . (21)

Equation (21) is the usual relation providing the stress vector in terms of the
direction n of the exterior normal. Equation (20) is nothing but the classical equilib-
rium equation. Splitting in (19) symmetric and skew-symmetric parts, we can write

τ[i j]+Ci j = 0, (22)

τi j +8i j = σi j . (23)

Up to this point we have always assumed that D is interior to S. For the sake of
completeness, we should apply the principle of virtual power to S itself. To this
end, we will assume that the forces external to S comprise, beyond the actions at a
distance already mentioned, contact forces (whether known or unknown) defined
by surface forces of density ti . Reasoning just as before to obtain (21), we find the
boundary condition that must be satisfied at each point of ∂S, namely,

ti = Ti = τi j n j . (24)

In this equation, ni denotes the exterior unit normal at a point of ∂S, and Ti denotes
the stress vector for the direction n obtained by a passage to the limit, the point
of ∂S being an accumulation point of a set of nearby points interior to S. The collec-
tion of the results obtained thus far can be summarized in the following statement.

Theorem 1. The necessary and sufficient conditions ensuring that the system S is
in equilibrium establish that the stress tensor satisfies Equations (20) and (22) at
each interior point of S and Equation (24) at each point of the boundary ∂S. More-
over, the intrinsic stress tensor and the volumetric energy of the internal forces are
given, respectively, by (23) and (12).

Equations (20), (22), and (24) are those provided by the application of the fun-
damental law of conservation of linear momentum (Germain [3]); in addition, in
that case, it is necessary to assume from the start that, at each point of ∂D, Ti is
a function of n j , an assumption which we did not need to invoke in the present
treatment. On the other hand, this fundamental law cannot give us any information
about the influence of the symmetric double forces that participate in the determi-
nation of the volumetric energy of the internal forces. Thus, even in the simple
case of the first-gradient theory, it is not without interest to construct the general
equations supplying the mechanical description of the system starting from the
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notion of virtual power. In the classical formulation of continuum mechanics, this
advantage disappears, since in that case

8i j = Ci j = 0,

so that

τi j = σi j .

The intrinsic stress tensor, therefore, coincides in this case with the stress tensor
proper.

Remark. As we have already stated, we wanted to present the first-gradient theory
in a systematic fashion. One can legitimately ask if, except for the classical case,
this theory presents any physical interest. This point raises the question as to the
physical meaning of the volumetric double forces, that is, the couples Ci j and
the symmetric double forces 8i j . These forces can be properly interpreted if we
assume that each material point of S is equipped with a microstructure, and it is, in
fact, very instructive to draw a correlation between the present theory and the theory
of media endowed with microstructure, which we intend to do in a forthcoming
article. At first sight, it may seem strange that the microstructure might participate
at the level of the modeling of the external actions at a distance or that it might
play any role in the modeling of the internal forces. It appears, however (see,
for example, Lobdell [4]), that the first-gradient theory may be useful to describe
certain electromechanical phenomena in solids.

Be that as it may, it is clear that this first-gradient theory is nothing but a slight
extension of the classical theory, an extension that manifests itself in a nutshell in
the formula (19). We only developed this theory here so as to show how to apply
the virtual power method in a simple context in order to build a mechanical model
of continuous media.

5. Second-gradient theory

The theory we are about to construct will be finer than the preceding one. We will
consider as the space V of virtual motions the space of continuous and at least
twice differentiable velocity fields defined on the closure D+ ∂D of D, the norm
in V being that of the uniform convergence for the velocities and their derivatives
up to order 2 with respect to xi . Our calculations will be analogous to those that
can be found in [2] (see also [5; 6]), but the interpretation given here is different
and more comprehensive, and since our notation is not exactly the same as in those
works, we believe that it is a good idea to repeat it here, at least in the Appendix, for
the sake of assisting in the reading process. It is appropriate to choose a canonical
representation of the (third-order) tensor of the second derivatives of Ui . Mindlin
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and Eshel [2] propose three different ones. We will content ourselves here with
choosing the third one. Defining in the first place the rate of rotation vector ωi as

ωi =−
1
2εi pq�pq , �i j =−εi jkωk, (25)

we introduce the gradient tensor of the rate of rotation

Ki j = ωi, j =−
1
2εi pq�pq, j =−

1
2εi pqUp,q j . (26)

This tensor Ki j is actually a deviator; that is, its trace Ki i vanishes. It has, therefore,
eight independent components. In the second place, we consider the completely
symmetric part of the second gradient of the velocities

Ki jk =
1
3(Ui, jk +U j,ki +Uk,i j ). (27)

The value of Ki jk remains invariant under every permutation of the indices i, j, k.
This tensor, therefore, has ten different components. The collection of the Ki j and
the Ki jk determines completely the eighteen second derivatives Ui, jk (and vice
versa):

Ui, jk = Ki jk −
2
3εi jl Klk −

2
3εikl Kl j . (28)

This relation can be easily established noting beforehand that, according to (26),
we have

εlmi Ki j =
1
2(Ul,mj −Um,l j ).

5.1. We will start once again by formulating the virtual power of the internal forces,
adopting evidently the working hypotheses stated in Section 3. Recalling the con-
siderations developed in Section 4.1, and particularly formula (11), we see that, by
virtue of the axiom, we can write the volumetric energy of the internal forces in
the form

p = σi j Di j +µi j Ki j +µi jk Ki jk . (29)

The coefficients µi j are components of a second-order tensor, which is, incidentally,
a deviator (µi i = 0); the µi jk are components of a totally symmetric third-order
tensor (µi jk remains invariant under every permutation of the indices). These two
tensors constitute a (canonical) representation of the intrinsic stresses of order 2.
All that is left now is to write P(i) in the appropriate canonical form necessary to
be able to apply the principle of virtual power. This is achieved proceeding, as in
the preceding section, to carry out integrations by parts on the expression

P(i) =−

∫
D
(σi j Di j +µi j Ki j +µi jk Ki jk) dv. (30)

For the first term, the integration by parts needs to be performed once; the result
is the one obtained on the right-hand side of formula (13). For the remaining two
terms, the calculation is slightly more complicated, since it is necessary to integrate
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twice; this is shown in the Appendix, and the results are those of formulas (A-11)
and (A-9), respectively. We see, therefore, that we can write P(i) in the form

P(i) =

∫
D

FiUi dv+
∫
∂D
(TiUi + M̃ω̃i +NDnn) da+

∫
0x

RiUi ds, (31)
where we have put

Fi = σi j, j −
1
2εi pjµpq,q j −µi jk, jk,

Ti =−
(
σi j −

1
2εi pjµpq,q −µi jk,k

)
n j +

1
2εi pj D j (µnnn p)

+ (D j − n j (Dpn p))(µi jknk +µ jlkni nlnk),

M̃i = 2εikqµk jpn j n pnq − (µiqnq − niµnn),

N=−µi jkni n j nk,

Ri =−
[[1

2δimµnn + ε jmqnknq(µi jk +µpjkni n p)
]]
τm .

(32)

The meaning of the symbols used in the formulas (32) is better given in the Ap-
pendix; ω̃i is the part of the rate of rotation vector ωi tangential to ∂D; Dnn and
µnn are real numbers representing the doubly normal component of the tensors Di j

and µi j .∗ The symbol Di is an operator of derivation tangential to the surface ∂D,
whose explicit expression is given in (A-2) (and, incidentally, Dpn p is nothing
other than twice the mean curvature); 0 denotes the edges of the boundary sur-
face ∂D along which the tangent plane (or the normal vector n) is discontinuous;
τi is the unit vector tangent to 0, whose orientation can be chosen arbitrarily, but
consistently; finally, the symbol [[ ]] denotes the jump of the bracketed quantity
across 0. It is worthwhile noting that the sense across 0 on which the jump takes
place, and the sense of 0 must be related, in agreement with the usual Stokes’
formula.

It should be noted that the vector M̃i is tangential to the surface ∂D, since we
have that Ri M̃i = 0. It is precisely this fact that the tilde is supposed to indicate.

5.2. We must presently formulate the expression of the virtual power of the exter-
nal forces. If we want to proceed systematically, we must write the power of the
actions at a distance, taking into consideration the remarks made in Section 3, in
the form

P(d) =

∫
D
( fiUi +Ci j�i j +8i j Di j +4i j Ki j +4i jk Ki jk) dv. (33)

On comparing (33) with (15), we perceive that there appear here additional
forces, namely, the volumetric triple forces defined by 4i j — which is a deviator —
and those defined by 4i jk , which is a completely symmetric third-order tensor. In
fact, we will assume, for the sake of simplicity, that these triple forces vanish;

∗As indicated later, an underlined subscript nullifies the summation convention with respect to
that subscript. — (TN)
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it should not be difficult to indicate how the expressions given below are to be
modified if we want to take these forces into account. We will, therefore, accept
that P(d) is still given by (15) or, better, by (16), which is more suitable for the
application of the principle of virtual power.

As far as the virtual power of the contact forces acting on the boundary surface
∂D is concerned, we are guided, as we were in the preceding section, to write the
most suitable expression, by anticipating the application of the principle and taking
into consideration the formula (31) already found for P(i). We are thus led to write

P(c) =

∫
∂D
(TiUi + M̃i ω̃i + N Dnn) da+

∫
0x

RiUi ds. (34)

As before, Ti denotes the stress vector; M̃i , a vector tangent to ∂D, is a surface
density of a tangential couple; N is a scalar surface density of a doubly normal
double force; Ri is a vector that defines a line density of a force applied along the
edges of 0.

5.3. It remains only to apply the principle of virtual power, that is, equality (9). We
will substitute in it the expressions given in (16), (31), and (34); we thus obtain an
equation that must be satisfied for every field Ui twice continuously differentiable
in the closure D+ ∂D of D.

Let us consider first fields Ui that vanish outside a compact set interior to D.
The only survivor is the volume integral that can be written as∫

D
( fi + τi j, j )Ui dv = 0,

if we set

τi j = σi j −
1
2εi pjµpq,q −µi jk,k −Ci j −8i j . (35)

It follows that at each interior point of D we necessarily have

fi + τi j, j = 0. (36)

In the equation expressing the principle of virtual power, therefore, the only remain-
ing terms in the general case are the surface integral over ∂D and the line integral
over the edges 0. Let us consider a fixed arbitrary closed connected area 6 which
is a subset of ∂D not having any point in common with an edge, and let us denote
by C2(6) the collection of twice continuously differentiable scalar-valued func-
tions defined over 6 and vanishing outside a compact set interior to 6. We state:

Lemma. Given seven functions in C2(6)— V1(P), V2(P), V3(P), �̃1(P), �̃2(P),
�̃3(P), D(P)— constrained by the single relation ni�̃i = 0, it is possible to con-
struct a twice continuously differentiable field Ui on the closure D+ ∂D attaining
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on the boundary ∂D the following values:

at each point of 6, Ui = Vi , ω̃i = �̃i , Dnn = D,

at all other points of ∂D, Ui = �̃i = Dnn = 0.

(37)

The proof is straightforward. The velocity field that we are trying to construct
has, according to equalitites (37), known values on 6 and a gradient that also has
known values on 6 (the tangential derivatives are determined by those of Vi , the
normal derivatives of the tangential components are next determined by �̃i , and
the normal derivative of the normal component by D). Let us consider the subset
1 of D made up of the points M such that M P = ζn, with 0≤ ζ ≤ ζ0(P), where
ζ0(P) is a function defined over 6 and infinitely differentiable on 6 vanishing on
the boundary and attaining at each point of 6 sufficiently small values so that at
each point of 1 there is a unique normal to 6. It is clear that we can construct
in 1 a field Ui (M)=Ui (P, ζ ) such that it and its first derivatives attain the values
prescribed on 6 and also such that it and its derivatives up to order 2 vanish over
the part of ∂1−6 of the boundary of 1. Thus, in a trivial fashion, we complete
the definition of Ui by assigning to it zero values on the set D+ ∂D−1, and this
field satisfies perfectly the conditions of the lemma.

Applying the equation of virtual power to such a field Ui yields∫
6

{
(Ti +Ti +Ci j n j +8i j n j )Vi + (M̃i + M̃i )�̃i + (N +N)D

}
da = 0,

for arbitrary functions Vi , �̃i , D, constrained by the single relation ni�̃i = 0. Fur-
thermore, since the vector M̃i + M̃i is a vector tangent to the surface 6, the quan-
tities within the parentheses ( ) under the integral sign must vanish individually at
each point of 6 and, consequently, taking into account the latitude with which 6
can be chosen, also at each point of the boundary ∂D not belonging to an edge. In
accordance with (32), we can write

Ti = τi j n j + T ′i = T̂i + T ′i ,

T ′i = (n j (Dpn p)− D j )(µi jknk +µl jkni nlnk)−
1
2εi pj D j (n pµnn),

M̃i = µiqnq − niµnn − 2εikqµk jpn j n pnq ,

N = µi jkni n j nk .

(38)

Let us note that the last term appearing in the expression of T ′i also can be written
as in (A-12), that is,

−
1
2εi pj D j (n pµnn)=−

1
2εi pj n pµnn, j .

These equations show how the stress vector Ti , the surface tangential couple M̃i ,
and the (surface) normal double force N are expressed in terms of the intrinsic
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stress tensors of orders 1 and 2. We can still call τi j the stress tensor, given that the
equilibrium equation has the usual form, but it must be noted that in the present case
this tensor is no longer sufficient to define the stress vector Ti . Finally, taking into
consideration the results already obtained, the equality of virtual powers reduces to∫

0
(Ri +Ri )Ui ds = 0,

and therefore, taking (32) into account, we have

Ri =
[[ 1

2δmiµnn + ε jmqnknq(µi jk +µpjkni n p)
]]
τm, (39)

an equation that allows us to express the line force along the edges as a function
of the intrinsic stress tensors.

In addition, it remains to apply the principle to S itself in order to find the
boundary conditions. To this end, we are led to admit that the external forces
exerted on S comprise, beyond the volume actions at a distance already considered,
surface effects defined by surface forces of density ti , couples tangential to S of
surface density m̃i , and doubly normal double forces of surface density n. We can
easily show that we must have{

Ti = ti , M̃i = mi , N = n on ∂S,
Ri = ri on 0.

(40)

We have thus exhausted the consequences that can be extracted from the principle
of virtual power, and we can consequently establish the following:

Theorem 2. The necessary and sufficient conditions ensuring that the system S
is in equilibrium, for the case in which the external triple volume forces are ne-
glected, are expressed by the relations (35) and (36), that must be satisfied at each
interior point of S, and the relations (40), that must be satisfied at each point of
the boundary ∂S. Moreover, in the interior of S, the surface contact forces are
defined by (38) and the line forces by (39). When the external triple volume forces
are taken into consideration, the fundamental equations of statics of the second-
gradient theory are obtained by replacing in the previous equations µi j and µi jk

by µi j −4i j and µi jk −4i jk , respectively.

5.4. It is instructive to interpret the preceding results in terms of the classical fun-
damental law. In so doing, we will discover the extra information and precision
contributed by the formulation herein advocated, which turns out to be better suited
when we are dealing with a medium for which the modeling must be finer than in
the classical case.

Let us recall a remark already made above: the statements purveying the funda-
mental law can be obtained from the equations expressing the principle of virtual
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power by considering only the rigidifying virtual motions of D, for which the ve-
locity field is determined by a twist, that is, a velocity field of the form

Ui = Vi + εik jωk x j , (41)

where ωi and Vi are the elements of reduction of the twist at the origin.
Here is a first application. Let us take up again the expression of the virtual

power of the internal forces given by (30), and instead of proceeding to carry out
two integrations by parts to end up with (31), let us retain the intermediate result
obtained after a single integration. Setting

βi j = σi j −
1
2εi pjµpq,q −µi jk,k,

that is, according to (35),

τi j = βi j −Ci j −8i j , (42)

we can write

0=
∫

D
βi j, jUi dv−

∫
∂D
βi j n jUi da+

∫
∂D

( 1
2εi j pµpqnqUi, j −µi jknkUi, j

)
da.

Let us apply this equation using the field (41); the term in µi jk does not con-
tribute at all, by virtue of the symmetry with respect to the first two indices. If we
set

γi = µi j n j , (γi )∂D =

∫
∂D
γi da,

where (γi )∂D denotes the couple defined by the surface density of the couples γi

on ∂D, we immediately obtain, using the notations introduced above,

[βi j, j ]D = [βi j n j ]∂D+ (γi )∂D. (43)

With the same notation, an equation of the form∫
∂D
τi j n jUi da =

∫
D
τi j, jUi dv+

∫
D
τi jUi, j dv,

when applied to the field (41), leads to the wrench equation

[τi j n j ]∂D = {[τi j, j ]D+ (εki jτk j )D} = 0. (44)

We have, therefore,

[8i j, j ]D = [8i j n j ]∂D, [Ci j, j ]D = [Ci j n j ]D− (ci )D, (45)

where we have set
ck =−εki j Ci j . (46)

The vector ci is the couple vector associated with the skew-symmetric tensor Ci j .
Combining (42), (43), and (45), we can formulate the following:
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Proposition 3. For every part D of S, we have the following wrench equation:

[τi j, j ]D−{[τi j n j ]∂D+ (γi )∂D+ (ci )D} = 0. (47)

Recall that T̂i = τi j n j .
Furthermore, when applied to a twist such as (41), since P(i) vanishes, P(d)

and P(c) being given by (15) and (34), respectively, the statement of the principle
of virtual power leads to the wrench equation

[ fi ]D+ (ci )D+ [T̂i ]∂D+ [T ′i ]∂D+ (M̃i )∂D+ [Ri ]0 = 0. (48)

Let us add (47) and (48), and let us take (36) into account to obtain

(γi )∂D = [T ′i ]∂D+ (M̃i )∂D+ [Ri ]0. (49)

The right-hand side must be, just as the left-hand side, a couple, which implies in
particular that the resultant of the wrench that it defines vanishes, namely,∫

∂D
T ′i da+

∫
0

Ri ds = 0.

Taking (49) into account, we can write (48) in the form

[ fi ]D+ (ci )D+ [T̂i ]∂D+ (γi )∂D = 0. (50)

The first two terms of the left-hand side represent the wrench of the actions at a dis-
tance exerted on D — the double forces 8i j must be considered as defining a zero
wrench, since their virtual power vanishes in every rigidifying motion. It follows
that the last two terms represent the wrench of the contact actions. Consequently,
we obtain the following:

Proposition 4. On every part D of S the contact actions determine a wrench that
can be defined by a surface force T̂i and a surface couple γi which are linear
functions of the unit normal vector n. We have indeed

T̂i = τi j n j , γi = µi j n j . (51)

This representation of the contact forces is in appearance simpler than that given
in Section 5.2; but this is no more than a globally valid representation. For this
reason, in the absence of supplementary details, this representation is in effect
insufficient for the study of media endowed with stress couples, such as those that
fall under the scope of the second-gradient theory. Let us, moreover, recall that
by means of a statement such as that of the classical fundamental law appearing
in equality (50) it is not possible to take into account the external double forces.
Finally, we should note that, adding (44) and (47), we obtain

(εki jτk j )D+ (γi )∂D+ (ci )D = 0,
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and using equality (51), transforming the surface integral into a volume integral,
and considering (46), we find in the end, since D is an arbitrary part of S, the
equation

τ[i j] =−
1
2εi pjµpq,q −Ci j ,

expressing the equality of the skew-symmetric parts of the two sides of (35).

5.5. The representation adopted for the second-gradient (26) and (27) allows us
to deal immediately with the case where Ki jk does not participate in the virtual
power. Indeed, it suffices to set µi jk = 0 in the previous formulas. For example, if
we consider (38) and (39), we notice that N = 0 and that, more precisely, we have

Ti = τi j, j + T ′i = T̂i + T ′i , T ′i =−
1
2εi pj D j (n pµnn),

M̃i = µiqnq − niµnn = (µ̃iqnq)= γ̃i ,

Ri =
1
2µnnτi .

∗

The notations of (51) have been used. Naturally, we have

τi j = (σi j −8i j )+
( 1

2εi j pµpq,q −Ci j
)
.

On the right-hand side, the first term in parentheses is the even part of τi j — which
reduces to σi j if we neglect the volumetric double forces — while the second term
in brackets is the odd part.

The boundary conditions associated naturally to this model are still given by (40),
on condition that the equation N = n be omitted, since it is superfluous here. It is
precisely these conditions that can suggest the boundary conditions to take into
consideration to formulate problems with regular boundaries. We leave to the
reader the effort of particularizing the results given in Sections 6 and 7 for this
simplified case.

5.6. A final remark. We have not treated here either the dynamical case or the
case of equations with discontinuities. We intend to revisit this topic in a forthcom-
ing article in which we will specify in advance the relations between the second-
gradient theory and the theory of media endowed with microstructure. The physical
meaning of the first will then be more easily brought to light.

6. Constitutive behavior of a medium under the umbrella
of the second-gradient theory within the framework of small perturbations.

The case of elastic media

To study the response of a system S under the action of external agents, it is neces-
sary to supplement the general equations obtained above by means of constitutive
equations. In this section, we intend to briefly examine how this can be achieved
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within the framework of problems that can be treated under the hypothesis of small
strains.

Under these conditions, indeed, there is no need to distinguish between the La-
grangian and Eulerian representations. The motion of the medium is defined by
the displacement field X i (x1, x2, x3, t) defined over a well determined domain S,
which plays the role of a reference configuration. The strains for a second-gradient
theory can then be fully characterized by the tensors

εi j =
1
2(X i, j + X j,i ), (52)

ηi j =−
1
2εi pq X p,q j (ηi i = 0), (53)

ηi jk =
1
3(X i, jk + X j,ki + Xk,i j ), (54)

since, under the hypothesis of small perturbations, the material derivative being
identical in this case to the partial derivative with respect to time, the strain-rate
tensors of the second-gradient theory are obtained by simple differentiation. We
have, therefore (see (26), (27)):

Di j = ε̇i j , Ki j = η̇i j , Ki jk = η̇i jk . (55)

6.1. The strain energy. Let us suppose now that the medium is elastic, and the
evolution is isothermal. The existence of the free-energy density implies that of
a volumetric strain energy having the usual convexity properties. More precisely,
we will state, in view of the small-perturbation hypothesis, the following:

Definition 1. There exists a volumetric strain energy w(εi j , ηi j , ηi jk), depending
on the variables εi j , ηi j , ηi jk , which is a nonnegative quadratic form, invariant
under any permutation of the two indices of the variable εi j , under any permutation
of the three indices of ηi jk , and under the addition of the same constant to the three
variables η11, η22, η33, which vanishes if , and only if ,

εi j = 0, ηi jk = 0, ηi j = cδi j .

Moreover, for every motion, the derivative with respect to time of w is equal to the
volumetric energy p of the internal forces.

It follows from this definition that the function w satisfies the equation

∂w
∂η11
+
∂w
∂η22
+
∂w
∂η33
= 0, (56)

and that, if the strain tensors are defined in terms of a displacement field by the
formulas (52), (53), and (54), w vanishes if, and only if, the field X i is given by a
twist, that is, a geometric infinitesimal rigid-body displacement.
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Furthermore, in a given state εi j , ηi j , ηi jk , it is possible to assign to the strain-
rate tensors (55) arbitrary values subject to the single restriction

η̇i i = 0. (57)

According to the definition, if λ denotes a Lagrange multiplier, we have identi-
cally that

ẇ= σi j ε̇i j +µi j η̇i j +µi jk η̇i jk + λη̇i i (58)

and, therefore, necessarily that

σi j =
∂w
∂εi j

, µi j =
∂w
∂ηi j

, µi jk =
∂w
∂ηi jk

, (59)

since, by virtue of (56) and of the relation µi i = 0, the Lagrange multiplier λ is
necessarily zero.

Equations (59) are the constitutive laws of the elastic medium.
In order to simplify the notation, we will denote by c the collection of the tensors

εi j , ηi j (ηi i = 0), ηi jk , and by σ the collection of the tensors σi j , µi j (µi i = 0), µi jk .
We will write the strain energy in the form w(c) and the constitutive laws (59) as

σ =
∂w(c)
∂c
= E(c). (60)

With these notations, Euler’s identity for w attains the form

2w= σ · c. (61)

The general form of w involves 300 coefficients. But this number is reduced to
seven in the case of isotropic media. (See, for example, Mindlin [5], Mindlin and
Eshel [2].)

All the results of the classical theory of linear elasticity (see, for example, Ger-
main [7]) are easily extended to the case of the present theory. To this end we
introduce the following notations:

• bilinear form w associated to w(c):

w(c+ c∗)= w(c)+ 2w(c, c∗)+w(c∗), (62)

• strain energy of the system S and associated bilinear form:

W (C)=
∫

S
w(c) dv, W(C,C∗)=

∫
S
w(c, c∗) dv. (63)

Here, C denotes a strain tensor field c defined over S.
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• Dual notions:

w∗(σ )= sup
c
{σ · c−w(c)},

w∗(σ + σ ∗)= w∗(σ )+ 2w∗(σ, σ ∗)+w∗(σ ∗), (64)

W ∗(6)=
∫

S
w(σ ) dv, W∗(6,6∗)=

∫
L
w(σ, σ ∗) dv0. (65)

Obviously, w∗(σ ) is a quadratic form of σ having invariance properties analo-
gous to those of w(c); 6 denotes a field of stress tensors σ defined on S.

The constitutive equations can be written as

c =
∂w∗(σ )
∂σ

= E−1(σ ), (66)

where E−1 denotes the inverse function of E(c), given in (60).
It should be noted that

w∗(σ )= w(c) if σ = E(c). (67)

6.2. The energy theorems. Let 6 be a field of intrinsic stresses σ(σi j , µi j , µi jk),
in equilibrium with given external forces F( fi ,Ci j ,8i j , ti , m̃i , n, ri ) defined as in
Section 5 (see (15), (34), and (40)). If C∗ denotes the virtual motion defined by the
twice continuously differentiable field X∗i and the corresponding strain-rate tensors,
ε∗i j , η

∗

i j , η
∗

i jk according to the formulas (52), (53), (54), as well as the rotation rates

ϕ∗i j =
1
2(X

∗

i, j − X∗j,i ), ϕ∗i =−
1
2εi jkϕ

∗

jk,

the virtual power of the forces F in the virtual motion C∗ can be written as

<<F,C∗>> =
∫

S
( fi X∗i +Ci jϕ

∗

i j +8i jε
∗

i j ) dv

+

∫
∂D
(ti X∗i + m̃i ϕ̃

∗

i + nε∗nn)da+
∫
0

ri X∗i ds. (68)

We can, therefore, state:

Proposition 5. If the elastic medium S is in equilibrium under the action of external
forces F, the equation expressing the principle of virtual power can be written as

<<F,C∗>> = 2W(C,C∗), (69)

where C is the field of strains c of the medium S in elastic equilibrium.

Indeed, if σ = E(c), then 2w(c, c∗)= σ · c∗. Analogously:

Proposition 6. If a stress field 6̃ is in equilibrium with external forces F̃, and if
C(C),6 denote, respectively, a field of displacements, rotations, and strains, and
a field of stresses of an elastic equilibrium state, then

<< F̃,C>> = 2W∗(6, 6̃). (70)
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These two propositions furnish an interesting interpretation of the functions W

and W∗.
It is not necessary to dwell on showing how the work and reciprocity theorems

are derived. We leave their formulation as an exercise to the reader. It is a straight-
forward matter also to obtain the uniqueness theorem for regular problems.

To avoid a complicated notation and following the current usage, we will exam-
ine a problem of the following type (type III). Let 61 and 62 be two disjoint parts
of the boundary ∂S of S. The problem data are

(a) fi ,Ci j ,8i j in S,

(b) on 61, X i = X i , ϕ̃i = ϕ̃i , εnn = εnn ,

(c) on 62, ti = t i , m̃i = m̃i , n = n, and ri = r i on 0 ∩62.

In other words, we are given in S and on 62 the external forces and on 61 the
displacements, the tangential rotation, and the unitary elongation in the normal
direction. We then have (Mindlin and Eshel [2]):

Theorem 3. The problem thus posed has at most one nontrivial solution.

Indeed, applying (68) to the homogeneous problem associated with C∗ = C,
we have, by virtue of the data of this homogeneous problem, <<F,C>> = 0 and,
therefore, W (C)= 0, which implies that, at every point of S, w(c)= 0, since w(c)
is nonnegative and continuous. Consequently, the displacement field is a twist, and
the strain and stress fields vanish identically. These properties are precisely what
characterizes a trivial solution. We can also give a variational formulation of the
regular problems. We will so do in the case of the problem formulated above. To
this end, let us propose the following definitions.

Definition 2. A field C′, determined by the field X ′i (x1, x2, x3), assumed to be
defined and twice differentiable in the closure of S, is said to be kinematically
admissible for the problem under consideration if it satisfies the kinematic bound-
ary conditions on 61 (condition (b)).∗ We will denote by C ′ the strain field defined
by C.

Definition 3. A field 6′ determined by the tensor fields σ ′i j , µ
′

i j (µ
′

i i = 0), µ′i jk
defined and twice differentiable in the closure of S is said to be statically admissible
for the problem under consideration if it satisfies the equilibrium equations (35)
and (36) in the interior of S and the boundary conditions (38) and (40) on 62 and
on 0 ∩62.

Let us remark that if we denote by F the data of external forces defined in S
and on 62, by C the kinematic data on 61, and by F′ the system of external forces

∗The original has 62 instead of 61. — (TN)
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in equilibrium with 6′, we can write

<<F′,C′>> = {F,C′}+ (F′,C), (71)

where { } collects in (68) the integrals taken on S and on 62, while ( ) collects the
integrals on 61.

We can still formulate the following definitions.

Definition 4. We call the potential energy of a kinematically admissible field for
the problem under consideration the function

V (C ′)=W (C ′)−{F,C ′}, (72)

and the potential energy of a statically admissible field for the problem under con-
sideration the function

V ∗(6′)=−W (6′)+ (F′,C). (73)

We can then prove the following:

Theorem 4. Suppose that the problem under consideration admits a solution. If
C and 6 denote the strain and stress fields defining this solution, we have that for
every field of admissible C′ and σ ′

V ∗(6′)≤ V ∗(6)= V (C)≤ V (C ′). (74)

Moreover, it is not possible to have the equality V (C ′)= V (C) except if C and C ′

define the same strain tensor fields, and it is not possible to have V ∗(6′)= V (6)
except if 6′ and 6 define the same intrinsic stress fields.

The proof is easy and classic. Let us set C′ = C+C∗. Then, C ′ = C +C∗ and,
with obvious notation,

V (C ′)− V (C)=W (C +C∗)=W (C)−{F,C∗}. (75)

By virtue of (62) and (63),

W (C +C∗)−W (C)= 2W(C,C∗)+W (C∗).

On the other hand, according to (71), for every F′, and in particular for F corre-
sponding to the solution,

<<F′,C∗>> = <<F′,C′>> − <<F′,C>> = {F,C∗} = <<F,C∗>> ;

and finally, according to (69), C and F being associated with the solution,

<<F,C∗>> = 2W(C,C∗).
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Plugging these results into (75) yields

V (C ′)− V (C)=W (C∗). (76)

The right-hand side of (76) is always nonnegative, and it doesn’t vanish except
when the strain tensors defined by C and C ′ are identical. Let us set 6′ =6+ 6̃
and, accordingly, F′ = F+ F̃. Then

V ∗(6′)− V ∗(6)=W ∗(6+ 6̃)−W ∗(6)− (F̃,C). (77)
But

W ∗(6+ 6̃)−W ∗(6)= 2W∗(6, 6̃)+W ∗(6̃).

Moreover, according to (71), for every admissible C′ and in particular for the solu-
tion C,

<< F̃∗,C′>> = <<F′,C′>> − <<F,C′>> = (F̃, C̃)= <<F,C>> ;

and finally, according to (70)

<< F̃,C>> = 2W∗(6, 6̃).

It follows then that
V ∗(6)− V ∗(6′)=W (6̃),

which establishes the first inequality (74).
Finally, quite evidently by virtue of (69) or of (70) or, more directly, by the work

theorem, we have for the solution C, 6

V (C)= V ∗(6).

This completes the proof of the energy theorem.

6.3. Hints on the existence theorems. It is not difficult to extend most of the the-
orems of existence established in the classical theory (Duvaut–Lions [1], Ch. 3) to
the problems of linear elasticity formulated within the framework of the second-
gradient theory. We will content ourselves here with the formulation of one of these
theorems, always in the case of the problem of type III considered above, assuming,
moreover, for the sake of simplicity, on the one hand, that the boundary ∂S of S is
a twice continuously differentiable manifold (which, in fact, eliminates the edges)
and, on the other hand, that the part 61 contains at least three noncollinear points.
We need then to specify the functional framework within which the problem must
be formulated.

(1) The displacements X i are assumed2 to belong to H 2(S). It follows that on ∂S
the displacements X i belong to H 3/2(∂S) and that the tangential rotation ϕ̃i

2The notation used for the Sobolev spaces is the classical one. See, for example, Lions–Magenes
[8] or Duvaut–Lions [1].
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and the doubly normal unitary elongation εnn belong to H 1/2(∂S). This de-
fines the functional space in which the data C on 61 must be taken.

(2) The given external volume forces fi ,Ci j ,8i j will be taken in L2(S). The
external forces given on 62 will be, as far as Ti is concerned, in the restriction
to 62 of H−3/2(∂S), and as far as m̃i and n are concerned, in the restriction
to 62 of H−1/2(∂S).

(3) It will be assumed that the coefficients of the quadratic form w(c) belong
to L∞(S), that is, that they are essentially bounded.

Under these conditions, we can state:

Theorem 5. If the data C and F belong to the functional spaces introduced above,
there exists a unique displacement field that minimizes the potential energy V (C ′)
among all the kinematically admissible fields (defined by X ′i ∈ (H

2(S)) and satis-
fying the boundary conditions C on 61).

The proof, which we will not carry out here, has been developed3 by Duvaut
[12]. It relies on a generalized Korn inequality that can be deduced very simply
from the classical inequality according to which the norm defined in (H 2(�))3 by
the inner product

((C(1)i ,C(2)i ))=

∫
S
(X (1)

i X (2)
i + ε

(1)
i j ε

(2)
i j + η

(1)
i j η

(2)
i j + η

(1)
i jkη

(2)
i jk) dv

is equivalent to the classical norm on (H 2(�))3, and moreover, from the fact that
if C= 0, there exists a constant M such that w(C)≥ M((C,C)).

6.4. Possible generalizations. When extending the methods described in [3] to
construct in the classical case the constitutive laws of viscoelastic or elastic-perfectly
plastic media, it is not difficult to formulate, in the framework of the small per-
turbation hypothesis, theories of viscoelasticity or plasticity for a description of a
continuous medium by means of a second-order theory. It will suffice, for example,
to add to the function w(c) a conveniently chosen dissipation function. We will
content ourselves here with this simple remark.

7. Constitutive laws of a hyperelastic medium in a second-gradient theory

In the preceding section, we have shown how the construction of the proposed
second-gradient theory leads quite naturally to the formulation of constitutive laws
in the case where the medium sustained only small perturbations. It remains for
us to show how to proceed in the case of finite strains. We will content ourselves
with considering the elastic case.

3Only the case of isotropic media is considered in [12]. But by means of appropriate conditions,
the extension to the general case is straightforward.
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As is well known in the classical theory, the essential point is to obtain a rep-
resentation of the stresses after convected transport from the configuration under
study to the reference configuration. For the sake of simplicity, we will assume this
configuration to be defined by the coordinates aα (α = 1, 2, 3) in the orthonormal
Cartesian frame used to describe the system S. We will denote by Fiα the elements
of the gradient matrix and by a superposed dot the material derivative. If Ui denotes
the velocity vector, we can write

Ui,α =Ui, j F jα = Ḟiα,

where a Greek index such as α placed after a comma indicates a derivative with
respect to aα, while the function being differentiated is expressed in terms of the
Lagrangian variables a1, a2, a3, t .

If we denote by Lαβ the Green–Lagrange strain tensor

2Lαβ = FiαFiβ − δαβ, (78)

we easily obtain the classical formula

L̇αβ = Di j FiαF jβ, (79)

whose interpretation would become clearer when using curvilinear coordinates,
since it would make manifest that the material derivative of the Green–Lagrange
tensor is nothing but the result of the convected transport of the rate of strain tensor
to the reference configuration.

We deduce from (79) that

L̇αβ,γ = Di j (FiαF jβ),γ + Di j,k FiαF jβFkγ ,

which shows that the derivatives Di j,k (or, what amounts to the same, the Ui, jk) can
be calculated by means of the gradient of L̇αβ . To utilize the representation of the
second gradient that we have chosen, it is convenient to introduce the quantities

3αβγ =
1
3(Lαβ,γ + Lβγ,α + Lγα,β), 3αβ =−2εαρσ Lβρ,σ . (80)

It should be noted that 3αβγ is invariant under any permutation of the indices
α, β, γ , and that 3αα = 0. Indeed,

2εαρσ Lβρ,σ = εαρσ (FiβFiρ),σ = εαρσ Fiβ,σ Fiρ,
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since Fiρ,σ =
∂2xi

∂aρ ∂aσ
is symmetric in ρ and σ . For the same reason, εαρσ Lαρ,σ = 0.

We have, therefore, in the first place

33̇αβγ = L̇αβ,γ + L̇βγ,α + L̇γα,β

= Di j [(FiαF jβ),γ + (FiβF jγ ),α + (Fiγ F jα),β]

+ Di j,k[FiαF jβFkγ + FiβF jγ Fkα + Fiγ F jαFkβ],

or
3̇αβγ = Pαβγ i j Di j + Ki jk FiαF jβFkγ . (81)

Here, Ki jk denotes the completely skew-symmetric part of Ui, jk , defined in (27),
and Pαβγ i j are coefficients which remain invariant under permutations of the in-
dices α, β, γ , on the one hand, and the indices i, j , on the other. In fact, we may
state

Pαβγ i j =
1
6{(FiαF jβ + F jαFiβ),γ + (FiβF jγ + F jβFiγ ),α+ (Fiγ F jα+ FiαF jγ ),β}.

(82)
Accordingly, we calculate

3̇αβ =−2εαρσ L̇βρ,σ

=−2[εαρσ Di j (FiβF jρ),σ + εαρσ Di j,k FiβF jρFkσ ]. (83)

It proves convenient to introduce the coefficients

Qαβi j =−εαρσ [(FiβF jρ),σ + (F jβFiρ),σ ] = −εαρσ [Fiβ,σ F jρ + F jβ,σ Fiρ]. (84)

The last equality is a result of the symmetry of F jρ,σ with respect to the indices ρ
and σ . It should be noted, moreover, that

εαρσ [Di j,k F jρFkσ + Dik, j F jρFkσ ] = εαρσ [F jρFkσ ][Di j,k + Dik, j ] = 0,

so that in (83) we can replace Di j,k by

1
2(Di j,k − Dik, j )=

1
2� jk,i =−

1
2ε jkpωp,i =−

1
2εpjk K pi ,

where the last equalities stem from (25) and (26).
Thus, (83) can be written as

3̇αβ = Qαβi j Di j + εpjkεαρσ FiβF jρFkσ K pi . (85)

It should be noted that the right-hand side of (85) is actually a deviator. Indeed,
Qααi j = 0, since εαρσ Fiα,σ F jρ = 0 by virtue of the symmetry of Fiα,σ in α and σ .
Furthermore, if we denote, according to common usage,

J = det(Fiα), (86)
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we obtain

εpjkεαρσ FiαF jρFkσ K pi = Jεpjkεi jk K pi = 2J Ki i = 0,

since Ki j is a deviator.
These preliminary computations having been carried out, if we denote by ρ0 the

mass per unit volume in the reference state and by ρ the mass per unit volume in
the present state, it is clear that the energy per unit mass of the internal forces will
be linear with respect to Lαβ,3αβ, Dαβγ . We thus write

1
ρ
(σi j Di j +µi j Ki j +µi jk Ki jk)=

1
ρ0
(sαβ L̇αβ +5αβ3̇αβ +5αβγ 3̇αβγ ). (87)

In this equation, we can assume, without loss of generality, that sαβ is symmetric,
that 5αβ is a deviator, and that 5αβγ is completely skew-symmetric in α, β, γ .
The tensors sαβ,5αβ,5αβγ provide a representation of the intrinsic stresses in
the reference configuration for a medium described in a second-gradient theory.
Naturally, sαβ is the classical symmetric Piola–Kirchhoff tensor.

Using (79), (81), (85), (86), we can write (87) in the form

Di j [Jσi j − FiαF jβsαβ − Qαβi j5αβ − Pαβγ i j5αβγ ]

+ Ki j (Jµi j − εi pqεαρσ F jβFpρFqσ5αβ)

+ Ki jk(Jµi jk − FiαF jβFkγ5αβγ )= 0. (88)

Since, by hypothesis, we are assuming that the medium is not subjected to any in-
ternal constraints, Di j , Ki j , and Ki jk can take arbitrary values. Moreover, the coef-
ficient of Di j is symmetric in i, j ; the coefficient of Ki j represents the components
of a deviator (since εαρσ εβρσ5αβ = 0); and the coefficient of Ki jk is completely
skew-symmetric in i, j, k. We obtain, therefore, that

Jσi j = FiαF jβsαβ + Qαβi j5αβ + Pαβγ i j5αβγ ,

Jµi j = εi pqεαρσ F jβFpρFqσ5αβ,

Jµi jk = FiαF jβFkγ5αβγ ,

(89)

identically. These equations express the intrinsic stress tensors in the present con-
figuration as functions of the intrinsic stress tensors in the reference configuration.
It is easy, moreover, to solve them in terms of 5αβγ ,5αβ, sαβ .

Let us assume that the medium is elastic and, more precisely, hyperelastic. The
classical theory can be easily generalized (see, for example, Germain [3]) suppos-
ing that the specific free energy 9 is a function of the absolute temperature and
of the variables Lαβ,3αβ,3αβγ , it being understood that Lαβ and 3αβγ make
their contributions symmetrically and that 9 is invariant under the transformation
3αβ→3αβ +Cδαβ for arbitrary values of the constant C . The differential of 9,
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while the temperature is kept constant, namely,

ρ−1
0 (sαβd Lαβ +5αβd3αβ +5αβγ d3αβγ ),

is identical to minus the infinitesimal work of the internal forces, so that we can
write

sαβ = ρ0
∂9

∂Lαβ
, 5αβ = ρ0

∂9

∂3αβ
, 5αβγ = ρ0

∂9

∂3αβγ
, (90)

which provides a simple first way to write the constitutive laws. Equations (89)
lead directly to the expression of the stresses in the present configuration as

σi j = ρ

[
∂9

∂Lαβ
FiαF jβ +

∂9

∂3αβ
Qαβi j +

∂9

∂3αβγ
Pαβγ i j

]
,

µi j = ρεi pqεαρσ F jβFpρFqσ
∂9

∂3αβ
,

µi jk = ρ
∂9

∂3αβγ
FiαF jβFkγ .

(91)

Recall that the coefficients Pαβγ i j and Qαβi j are expressed directly in terms of the
gradient matrix and its derivatives according to (82) and (84).

It is to be noted that, under the hypothesis of small strains, we may use in (91)
w = ρ09 = ρ9,

Lαβ = εαβ, 3αβ = ηαβ, 3αβγ = ηαβγ ,

Fiα = δiα, Pαβγ i j = 0, Qαβi j = 0,

(92)

so that we still recover (59).
We have obtained, as we intended, the constitutive laws of a hyperelastic medium

under finite strains in the framework of the second-gradient theory.

Conclusion

The aim of this first article — which develops a part of the results announced in a
recent note [9] — has been to show how the method of virtual power provides a
means at the same time powerful and natural to construct a theory of continuous
media. The main results that emerge are the following:

(a) Construction of a first-gradient theory that offers itself as a very simple gener-
alization of the classical theory and that exposes the distinction between the
classical stress tensor and the intrinsic stress tensor (Theorem 1).

(b) Construction of a second-gradient-theory that generalizes the preceding one
(Theorem 2). The fundamental formulas, which were already known in the
case of elastic media, have a general scope. This appears to be a new result.
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(c) Statement of the main results of the second-gradient theory in the case of
elastic media for infinitesimal strains. These results, without being essentially
new, are collected in a systematic presentation.

Incidentally, a new introduction is put forward of the notion of screw (torsor)
that perhaps better highlights its mechanical meaning. It was introduced by the
author in an unpublished course [11]. See also [3] and [10].

Finally, we would like to remark that, in addition to the advantage of introducing
an exact representation of the internal forces suited to the adopted description, this
method allows us to obtain as naturally as possible and without new computations
the notions of strain energy and the variational formulations that derive from it
in the case where the medium is elastic. This notion is, more generally, perfectly
adapted to the application of the principles of the thermodynamics of continuous
media to obtain the constitutive laws of nonelastic media. We can also say that,
without any new effort, this method permits to extend the results obtained in elas-
ticity to the most general media by means of any formulation that takes as its point
of departure a variational or Hamiltonian formulation.

Appendix

A.1. Preliminary formulas. It will be useful to introduce at each point of the sur-
face ∂D, the boundary of a connected domain D, the operators of normal and
tangential differentiation. Let ϕ(x1, x2, x3) be a continuous and continuously dif-
ferentiable scalar-valued function defined on the closure D+ ∂D of D. Its normal
derivative (toward the exterior) is a scalar denoted by Dϕ and its tangential deriv-
ative on the surface is the vector D jϕ given by

Dϕ = nlϕ,l, ϕ, j = D jϕ+ n j Dϕ. (A-1)

We proceed in the same way with a vector-valued function qi (x1, x2, x3). The
normal derivative is the vector Dqi and the tangential derivative is the tensor D j qi

given by the following expressions:

Dqi = nlqi,l, qi, j = D j qi + n j Dqi . (A-2)

Recall the statement of the divergence theorem on a surface. Let 6 be a closed
area, with continuous tangent plane and curvature, traced over the surface ∂D, and
let τi be the unit vector tangent to the boundary ∂6 oriented in the direct sense
around the normal ni to 6. Finally, let νi denote the exterior unit normal to ∂6
lying on the tangent plane to 6, so that

ν j = ε jmlτmnl . (A-3)
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We can write ∫
6

D j q j da =
∫
6

n j q j (Dlnl) da+
∫
∂6x

ν j q j ds. (A-4)

Note that Dlnl is twice the mean curvature. We can verify this formula by noticing,
for example,4 that

D j q j = (Dlnl)n j q j + εsrmεml j ns(nlq j ),r .

The last term is then n · rot(n∧ q), and the identity results from Stokes’ formula.
Suppose now that the boundary ∂D is a closed surface with piecewise continuous

tangent and curvature, and denote by 0 the “edges” of ∂D, along which there is a
discontinuity of the tangent plane. We can write, according to (A-4),∫

∂D
D j q j da =

∫
∂D
(Dpn p)n j q j da+

∫
0x
[[ν j q j ]] ds, (A-5)

where [[ ]] denotes the jump of the enclosed quantity. Another form is obtained by
applying (A-3):∫

∂D
D j q j da =

∫
∂D
(Dpn p)n j q j da+

∫
0x
ε jmpτm[[n pq j ]] ds. (A-6)

We will need, furthermore, a canonical decomposition of the velocity gradient
tensor different from that given by (A-2) and involving tangential derivatives of
the velocities, the tangential components of the rate of rotation vector, and the
doubly normal (to ∂D) component5 Dnn of the rate of strain tensor. To this end it
is sufficient to express the normal derivative of the velocity vector. But

DUk = n p(Dkp +�kp)

= n p�kp +
1
2 n pUk,p +

1
2 n pUp,k = n p�kp +

1
2 DUk +

1
2 n pUp,k .

We have, therefore,

DUk = 2n p�kp + n pUp,k = 2n p�kp + n p(DkUp + nk DUp)

= 2n p�kp + n p DkUp + nkn pnqUp,q ,

and since �pqn pnq = 0, we obtain

DUk = 2n p�kp + n p DkUp + nk Dnn.

Applying (A-2), we obtain the desired formula as

Ui, j = D jUi + n j n p DiUp + 2n j n p�i p + ni n j Dnn. (A-7)

4We extend the definition of n to a neighborhood of ∂D by parallel transport along the normal.
5A repeated underlined index implies no summation. Here Dnn = Dpq n pnq .
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The vector n p�i p is obviously situated on the tangent plane to ∂D; moreover,

n p�i p =−εi pkωkn p =−εi pkω̃kn p,

where ω̃k denotes the tangential component of the vector ωk . We can also write
(A-7) in the form

Ui, j = D jUi + n j n p DiUp − 2n jεi pkω̃kn p + ni n j Dnn. (A-8)

A.2. Transformation of Equation (30). Let us start with the term arising from the
triply contracted product of two tensors of order 3. We have, taking into consider-
ation the symmetry of µi jk ,

µi jk Ki jk = µi jkUi, jk = (µi jkUi, j ),k −µi jk,kUi, j

= (µi jkUi, j ),k − (µi jk,kUi ), j +µi jk, jkUi ,

and a subsequent integration and application of the divergence theorem yield∫
D
µi jk Ki jk dv =

∫
D
µi jk, jkUi dv−

∫
∂D
µi jk,kn jUi da+

∫
∂D
µi jkUi, j nk da.

It remains to transform the last integral. To this end, we write the integrand, using
(A-8), as

µi jkUi, j nk = D jUi (µi jknk+µ j pkni n pnk)−2εikqµ jkpn j n pnq ω̃i+µi jkni n j nk Dnn.

We now integrate by noting that the first term is of the form D j q j and applying
(A-6). Finally, we obtain∫

D
µi jk Ki jk dv =

∫
D
µi jk, jkUi dv

−

∫
∂D
{µi jk,kn j+(D j−n j (Dpn p))(µi jknk+µ jlkni nlnk)}Ui da

+

∫
∂D
(µi jkni n j nk Dnn−2εikqµk jpn j n pnq ω̃i ) da

+

∫
0x
ε jmqτm[[µi jknknq+µ j pkni n pnqnk]]Ui ds. (A-9)

We proceed in a similar fashion with the term arising from the doubly contracted
product of the tensors µi j and Ki j :

µi j Ki j =−
1
2εi pqUp,q jµi j =−

1
2(εi pqµi jUp,q), j +

1
2εi pqµi j, jUp,q

=−
1
2(εi pqµi jUp,q), j +

1
2(εi pqµi j, jUp),q −

1
2εi pqµi j, jqUp.

Integrating, we obtain∫
D
µi j Ki j dv

=
1
2εi pq

{∫
D
µpj, jqUi dv−

∫
∂D
µpj, j nqUi da−

∫
∂D
µi j n jUp,q da

}
. (A-10)
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It is convenient to write the last integral in a more suitable form. Let us set

Ai = µi j n j , Ãi = Ai − ni Aknk,

so that Ãi denotes the tangential component of Ai and that we can write the inte-
grand as

−
1
2εi pqUp,q Ai = ωi Ai = ω̃i Ãi + n j nkω j Ak .

Moreover,

Ãi = (δik − ni nk)Ak = µiqnq − niµkqnknq = µiqnq − niµnn,

where µnn denotes the doubly normal component of µi j . Furthermore,

n j nkω j Ak =−
1
2εi pqUp,q Aknkni =−

1
2εi pq Aknkni DqUp

=−
1
2 Dq(εi pq AknkniUp)+

1
2 Dq(εi pq Aknkni )Up

=−
1
2 D j (εi pj niµnnUp)+

1
2 D j (εi pj niµnn)Up.

Invoking (A-5), we can write∫
∂D

n j nkω j Ak da = 1
2

∫
D

D j (εi pj niµnn)Up da− 1
2

∫
0x
[[ν jεpi jµnnn p]]Ui ds

=
1
2

∫
∂D

D j (εpi j n pµnn)Ui da+ 1
2

∫
0x
[[µnn]]τiUi ds.

Finally, collecting the various partial results, we obtain∫
D
µi j Ki j dv = 1

2

∫
D
εi pqµpj, jqUi dv

+
1
2

∫
∂D
{εpi j D j (µnnn p)− εi pqµpj, j nq}Ui da

+

∫
∂D
(µiqnq − niµnn)ω̃i da+ 1

2

∫
0x
[[µnn]]τiUi ds. (A-11)

Note that we can write

εpi j D j (µnnn p)= εpi j n pµnn, j (A-12)

since D j n p = Dpn j . This permits us to give a different form to the surface integral
that appears on the right-hand side of (A-11).
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TEODOR ATANACKOVIĆ University of Novi Sad, Serbia
VICTOR BERDICHEVSKY Wayne State University, USA

GUY BOUCHITTÉ Université du Sud Toulon-Var, France
ANDREA BRAIDES Università di Roma Tor Vergata, Italia

ROBERTO CAMASSA University of North Carolina at Chapel Hill, USA
MAURO CARFORE Università di Pavia, Italia

ERIC DARVE Stanford University, USA
FELIX DARVE Institut Polytechnique de Grenoble, France

ANNA DE MASI Università dell’Aquila, Italia
GIANPIETRO DEL PIERO Università di Ferrara and International Research Center MEMOCS, Italia

EMMANUELE DI BENEDETTO Vanderbilt University, USA
VICTOR A. EREMEYEV Gdansk University of Technology, Poland

BERNOLD FIEDLER Freie Universität Berlin, Germany
IRENE M. GAMBA University of Texas at Austin, USA

DAVID Y. GAO Federation University and Australian National University, Australia
SERGEY GAVRILYUK Université Aix-Marseille, France
TIMOTHY J. HEALEY Cornell University, USA
DOMINIQUE JEULIN École des Mines, France
ROGER E. KHAYAT University of Western Ontario, Canada

CORRADO LATTANZIO Università dell’Aquila, Italy
ROBERT P. LIPTON Louisiana State University, USA
ANGELO LUONGO Università dell’Aquila, Italia
ANGELA MADEO Université de Lyon–INSA (Institut National des Sciences Appliquées), France

JUAN J. MANFREDI University of Pittsburgh, USA
CARLO MARCHIORO Università di Roma “La Sapienza”, Italia

ANIL MISRA University of Kansas, USA
ROBERTO NATALINI Istituto per le Applicazioni del Calcolo “M. Picone”, Italy

PATRIZIO NEFF Universität Duisburg-Essen, Germany
THOMAS J. PENCE Michigan State University, USA

ANDREY PIATNITSKI Narvik University College, Norway, Russia
ERRICO PRESUTTI Università di Roma Tor Vergata, Italy

MARIO PULVIRENTI Università di Roma “La Sapienza”, Italia
LUCIO RUSSO Università di Roma “Tor Vergata”, Italia

MIGUEL A. F. SANJUAN Universidad Rey Juan Carlos, Madrid, Spain
PATRICK SELVADURAI McGill University, Canada

MIROSLAV ŠILHAVÝ Academy of Sciences of the Czech Republic
GUIDO SWEERS Universität zu Köln, Germany

ANTOINETTE TORDESILLAS University of Melbourne, Australia
LEV TRUSKINOVSKY École Polytechnique, France

JUAN J. L. VELÁZQUEZ Bonn University, Germany
VINCENZO VESPRI Università di Firenze, Italia
ANGELO VULPIANI Università di Roma La Sapienza, Italia

MEMOCS (ISSN 2325-3444 electronic, 2326-7186 printed) is a journal of the International Research Center for
the Mathematics and Mechanics of Complex Systems at the Università dell’Aquila, Italy.

Cover image: “Tangle” by © John Horigan; produced using the Context Free program (contextfreeart.org).

PUBLISHED BY
mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/

© 2020 Mathematical Sciences Publishers

http://msp.org/memocs/
www.contextfreeart.org
http://msp.org/
http://msp.org/


Mathematics and Mechanics of Complex Systems

vol. 8 no. 2 2020

101Genotype-dependent virus distribution and competition of
virus strains

Nikolai Bessonov, Gennady A. Bocharov, Cristina
Leon, Vladimir Popov and Vitaly Volpert

127Modeling the linear dynamics of continuous viscoelastic
systems on their infinite-dimensional central subspace

Angelo Luongo and Francesco D’Annibale
153The method of virtual power in the mechanics of

continuous media, I: Second-gradient theory
Paul Germain

191An appreciation and discussion of Paul Germain’s “The
method of virtual power in the mechanics of continuous
media, I: Second-gradient theory”

Marcelo Epstein and Ronald E. Smelser

MEMOCS is a journal of the International Research Center for
the Mathematics and Mechanics of Complex Systems
at the Università dell’Aquila, Italy.

MM ∩

2326-7186(2020)8:2;1-A

M
A

T
H

E
M

A
T

IC
S

A
N

D
M

E
C

H
A

N
IC

S
O

F
C

O
M

P
L

E
X

SY
ST

E
M

S
vol.

8
no.

2
2

0
2

0


	Main notation
	1. Introduction
	2. Elementary remarks on the material point and the rigid body
	3. General remarks on the application of the virtual power method in continuum mechanics
	4. First-gradient theory
	4.1. 
	4.2. 
	4.3. 

	5. Second-gradient theory
	5.1. 
	5.2. 
	5.3. 
	5.4. 
	5.5. 
	5.6. A final remark

	6. Constitutive behavior of a medium under the umbrella of the second-gradient theory within the framework of small perturbations. The case of elastic media
	6.1. The strain energy
	6.2. The energy theorems
	6.3. Hints on the existence theorems
	6.4. Possible generalizations

	7. Constitutive laws of a hyperelastic medium in a second-gradient theory
	Conclusion
	Appendix
	A.1. Preliminary formulas
	A.2. Transformation of Equation eqthze

	References
	
	

