A metamodel of linear viscoelastic continuum is formulated. Internal variables, of
arbitrary number, are introduced to describe the viscous part of the strain, and a
wide class of constitutive laws, suggested by rheological models, is considered. The
spectral properties of the system are discussed. Based on the separation of
the eigenvalues occurring when the viscous moduli are small, the system is
reduced to its infinite-dimensional central subspace, on which the steady
dynamics takes place. Both the center manifold method and the multiple
scales method are used to build the reduced model, which is formulated in
terms of the only observable variables. Examples relevant to one-, two-,
and three-dimensional continua are worked out to illustrate the theory, in
conjunction with the standard three-parameter model and the five-parameter
model.
Keywords
continuous viscoelastic metamodel, internal variables,
linear dynamics, center manifold, multiple scales method,
viscoelastic beam on viscoelastic Winkler soil,
viscoelastic plate, viscoelastic Cauchy continuum
Dipartimento di Ingegneria Civile,
Edile-Architettura e Ambientale
Il Centro Internazionale di Ricerca per la Matematica e
Meccanica dei Sistemi Complessi
Università degli Studi dell’Aquila
L’Aquila
Italy
Dipartimento di Ingegneria Civile,
Edile-Architettura e Ambientale
Il Centro Internazionale di Ricerca per la Matematica e
Meccanica dei Sistemi Complessi
Università degli Studi dell’Aquila
L’Aquila
Italy