The paper starts with a careful analysis of the kinematics of two-scale continua. The
subsequent developments are based on a single additional concept, the concept of
energy. Two basic axioms are formulated in energetic terms, and the stress tensors,
the constitutive equations, and all other elements required for the formulation of the
initial/boundary-value problem are regarded as derived quantities. A comparison
with the theory of gradient plasticity shows the innovative aspects of the proposed
theory.