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ON A STOCHASTIC APPROACH TO MODEL THE DOUBLE
PHOSPHORYLATION/DEPHOSPHORYLATION CYCLE

ALBERTO MARIA BERSANI, ALESSANDRO BORRI,
FRANCESCO CARRAVETTA, GABRIELLA MAVELLI AND PASQUALE PALUMBO

Because of the unavoidable intrinsic noise affecting biochemical processes, a
stochastic approach is usually preferred whenever a deterministic model gives
too rough information or, worse, may lead to erroneous qualitative behaviors
and/or quantitatively wrong results. In this work we focus on the chemical
master equation (CME)-based method which provides an accurate stochastic
description of complex biochemical reaction networks in terms of the probability
distribution of the underlying chemical populations. Indeed, deterministic mod-
els can be dealt with as first-order approximations of the average-value dynamics
coming from the stochastic CME approach. Here we investigate the double phos-
phorylation/dephosphorylation cycle, a well-studied enzymatic reaction network
where the inherent double time scale requires one to exploit quasisteady state
approximation (QSSA) approaches to infer qualitative and quantitative informa-
tion. Within the deterministic realm, several researchers have deeply investi-
gated the use of the proper QSSA, agreeing to highlight that only one type of
QSSA (the total QSSA) is able to faithfully replicate the qualitative behavior
of bistability occurrences, as well as the correct assessment of the equilibrium
points, accordingly to the not approximated (full) model. Based on recent results
providing CME solutions that do not resort to Monte Carlo simulations, the pro-
posed stochastic approach shows some counterintuitive facts arising when trying
to straightforwardly transfer bistability deterministic results into the stochastic
realm, and suggests how to handle such cases according to both theoretical and
numerical results.

1. Introduction

One of the main contributions of mathematicians to the biological field is one of the
best-known models of enzyme kinetics put forth during the beginning of the twen-
tieth century by Henri [1901a; 1901b; 1902], and Michaelis and Menten [1913],

Communicated by Victor A. Eremeyev.
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and later continued by Briggs and Haldane [1925]. This formulation considers a
reaction where a substrate S binds an enzyme E reversibly to form a complex C .
The complex can then decay irreversibly to a product P and the enzyme, which is
then free to bind another molecule of the substrate. These reactions are summarized
in the scheme

E + S
k1
−−→
←−−
k−1

C
k2
−→ E + P, (1)

where k1, k−1, and k2 are kinetic parameters associated with the reaction rates (i.e.,
rate constants).

A very common approximation in the deterministic setting consists of assuming
that, after a transient phase, the complex concentration can be considered approxi-
mately constant with respect to the substrate dynamics: standard quasisteady state
approximation (sQSSA) [Lin and Segel 1988]. The sQSSA utilizes timescale sep-
aration to project models of biochemical networks onto lower-dimensional slow
manifolds; thus, rapidly fluctuating species are not simulated explicitly (see, among
others, [Segel 1988; Segel and Slemrod 1989], and the review paper [Bersani et al.
2015]). In recent decades, many researchers highlighted limits and malfunctioning
of the sQSSA, thereby introducing and exploring a new approximation, called total
quasisteady state approximation (tQSSA). Under suitable and biologically consis-
tent hypotheses, the tQSSA-based methods were revealed to be very effective in
handling the full system of equations, considerably unburdening the computational
effort and providing a good approximation at the same time (see, among others,
[Laidler 1955; Borghans et al. 1996; Tzafriri 2003; Dell’Acqua and Bersani 2012;
Bersani and Dell’Acqua 2012; Bersani et al. 2015]). In the case of reactions that
involve only a small number of key regulatory molecules, intrinsic noise is not neg-
ligible [Blake et al. 2003; Fedoroff and Fontana 2002], and the enzymatic reaction
scheme is more appropriately modeled in a stochastic discrete framework by means
of CMEs [van Kampen 2007]. CME-based modeling is a promising approach in
systems biology due to its capability of well-fitting experimental data in single-cell
experiments, also describing diffusion effects derived from fluctuations and chemi-
cal fluxes capable of driving switching from one equilibrium to another. In more de-
tail, the CME provides an accurate stochastic description of complex biochemical
networks in terms of the probability distribution of the underlying chemical popula-
tions, in contrast to deterministic methods which handle biochemical processes in
terms of evolution of the average concentrations for each involved species. Indeed,
deterministic models can be dealt with as first-order approximations of the average-
value dynamics coming from the stochastic CME approach [van Kampen 2007].
Within the framework of enzymatic reaction networks, many authors investigated
the QSSAs via the CME approach, with the aim of providing a good approximation
of the full model also in this setting [Cao and Petzold 2005; Gillespie 2001; 2009a;
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2009b; Cao et al. 2005; Mastny et al. 2007; Rao and Arkin 2003; Székely and Bur-
rage 2014; Thomas et al. 2011]. In [Barik et al. 2008; MacNamara et al. 2008] the
authors studied independently the application of the tQSSA to some well-known
biochemical mechanisms providing bistability according to deterministic models.

The work proposed here investigates a CME-based stochastic model of the
double phosphorylation/dephosphorylation (PDP) mechanism. This kind of activa-
tion/deactivation reaction might be the key to explaining the interactions occurring
among the intracellular enzyme networks and several intercellular and macroscopic
phenomena, as could be the case highlighted in [George et al. 2019], in the frame-
work of mechanobiology and bone remodeling [Bednarczyk and Lekszycki 2016;
Giorgio et al. 2016; 2019; George et al. 2018].

The double PDP cycle is a paradigmatic case of how the application of the
sQSSA may provide qualitatively wrong results. With regards to the deterministic
approach, several authors (see for example [Ortega et al. 2006; Chickarmane et al.
2007; Kholodenko 2000; Bersani et al. 2011]) studied the appearance of bistable
states in the double PDP mechanism, for both the full system and the QSSA settings.
In [Dell’Acqua and Bersani 2013; 2011], it is shown that the tQSSA reproduces the
behavior of the solutions of the full system for a very wide range of parameters and
different initial conditions. On the contrary, the sQSSA can provide misleading
results, mainly in the asymptotic concentration values, predicting bistability for
large value ranges, whereas the full system (and the tQSSA) shows monostability.

Bistability of several biochemical mechanisms usually in the stochastic frame-
work results in a bimodal stationary probability distribution with randomness allow-
ing for fluctuation around both modes of the distribution, preventing the evolution
to stick around just one of the two equilibrium points [Hwang and Velázquez 2013a;
2013b; Bruna et al. 2014; Bazzani et al. 2012; Samoilov et al. 2005]. Within this
framework, QSSA still plays an important role to unburden the computational load,
though sQSSA may often lead to large errors (both quantitative in matching the
wrong modes, and qualitative in failing to catch the bimodal fashion) even when
timescale separation holds (see [Kim et al. 2014; 2015] where the stochastic tQSSA
is shown to be more accurate than the sQSSA).

Let us underline that references [Kim et al. 2014; 2015] provide very interesting
insights into the investigation of stochastic QSS approximations. The common
denominator with our work is the way of associating propensities to CME from
an ODE initial framework. In more detail, they investigated how different QSS
approximations (especially in [Kim et al. 2014], where they consider standard
QSSA, total QSSA, and prefactor QSSA) may provide similar results in the de-
terministic field, but completely different results in the stochastic field. Indeed, the
authors showed that, according to a specific setting of the model parameters under
investigation, deterministic tQSSA and pQSSA provided the same ODE system
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(therefore leading to the same results), while stochastic tQSSA and pQSSA pro-
vided a completely different stochastic approximation. In other words, [Kim et al.
2014] provided some caveat concerning different QSSAs and provided a criterion
to understand in a specific framework whether a stochastic QSSA is reliable or
not. Unfortunately these results are not straightforwardly applicable to our case:
in [Kim et al. 2015] a unique double time scale enzymatic reaction is considered,
while in our manuscript we consider four double time scale enzymatic reactions.

Our study investigates the applicability of both standard and total QSSA to a
CME-based stochastic model of the double PDP cycle, showing the preeminent role
of the tQSSA. The methodology exploited is the one proposed in [Borri et al. 2013;
2016; Bersani et al. 2014] managing to cope with the computational burden, which
usually arises for CMEs, by means of a proper organization of the probabilities in
the CME entries. This enables us to characterize the CME dynamics according to
a recursive block-tridiagonal structure. In this way, explicit solutions of the CME
are achieved for both standard and total QSSA, according to a smart application
of the Gauss elimination method [Borri et al. 2016]. This allows us not to resort
to Monte Carlo simulation, which may be computationally demanding as well as
lead to misleading results unless allowing for enough stochastic realizations (whose
number is not known a priori).

Preliminary results have been presented in [Bersani et al. 2014], by introduc-
ing the CME-based stochastic model for the double PDP cycle. In the present
work we get in deeper details, proposing solutions to the CME according to a
wider set that goes beyond the toy-setting of [Bersani et al. 2014], facing real
numerical problems arising when dealing with the double time scale. Besides the
larger variety of cases here reported, we aim at answering the questions arisen in
[Bersani et al. 2014] and to conciliate some counterintuitive behaviors occurring
when trying to straightforwardly apply deterministic results to stochastic models.
To this end, some new theoretical results on the CME-based stochastic model have
been assessed, showing the uniqueness of the stationary probability distribution.

The result of the work is twofold. On the one hand, it shows the preeminent
role of the tQSSA, also in the stochastic CME-based model of the double PDP
cycle. Its ability to faithfully replicate in the stochastic framework the qualitative
behavior of bistability occurrences is shown, as well as the correct assessment of
the equilibrium points, in conformity with the nonapproximated model. On the
other hand, according to a given setting in the parameter space, and to chosen
initial conditions, bistability provided by the deterministic model may be lost in a
unimodal distribution when dealing with the stochastic CME. Such a mode coin-
cides with one of the two deterministic equilibria. This counterintuitive result is
obtained by means of Monte Carlo simulation for the full system, and is confirmed
by the exact CME solution provided by the tQSSA.
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The paper is organized as follows. In Section 2 we briefly recall the most
important background concerning the sQSSA and the tQSSA for enzymatic re-
actions. Section 3 proposes the double PDP reactions in detail, dealing with the
CME-based stochastic model. Section 4 reports the standard and total QSSA of
the double PDP cycle CME-based stochastic model, by first providing them in
the deterministic framework. A novel result on the uniqueness of the stationary
probability distribution is also provided in this section. In Section 5 we discuss the
appearance (or the absence) of stationary bimodality in comparison to bistability
arising in deterministic models. Section 6 contains the concluding remarks and
perspectives.

2. Introductory notions on sQSSA and tQSSA

The Michaelis–Menten (MM) kinetics give a very good description of (1), in terms
of ordinary differential equations (ODEs). For notational convenience we will use
the same symbol to denote both a chemical species and its concentration (i.e., the
variables of the ODEs), omitting its dependence on time. We can mathematically
describe reaction (1) using the mass action principle — where the growth rates of
each reactant are proportional to the instantaneous concentrations of the reactants
themselves — and conservation laws. This approach leads to the (full) system{ d S

dt =−k1(ET −C)S+ k−1C,

dC
dt = k1(ET −C)S− (k−1+ k2)C,

(2)

with the initial conditions

S(0)= ST , C(0)= 0, E(0)= ET (3)

and the conservation laws

E +C = ET , S+C + P = ST , (4)

where ET and ST are the total enzyme and substrate concentrations, respectively.
The MM reaction is characterized by two phases: a short transient phase of rapid

increase of the complex C and a second, slower, phase, called the quasisteady state
phase, where the complex is considered substantially in equilibrium.

The hypothesis of quasisteady state simplifies the reaction, leading to an ODE
for the substrate, with initial condition S(0)= ST , while the complex is assumed to
be in a quasisteady state, i.e., dC

dt ≈ 0. The standard QSSA (sQSSA) of system (2)
is thus achieved: 

C ≈ ET · S/(KM + S),
d S
dt ≈−k2C ≈−VmaxS/(KM + S),

S(0)= ST ,

(5)
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where KM = (k2 + k−1)/k1 is called the MM constant or affinity constant, and
Vmax = k2 ET .

Let us consider again the classical MM kinetics (2). Introducing the total sub-
strate at generic time instant t , S(t)= S(t)+C(t), (2) then becomes

d S
dt =−k2C,

dC
dt = k1[C2

− (ET + S+ KM)C + ET S],

S(0)= ST , C(0)= 0,

(6)

with conservation laws

E +C = ET , S+ P = ST . (7)

Assuming that the complex is in a quasisteady state
(dC

dt ≈ 0
)

yields the total QSSA
(tQSSA) [Borghans et al. 1996], which is valid for a broader range of parameters,
with respect to sQSSA, covering both high and low enzyme concentrations:

d S
dt
≈−k2C−(S), S(0)= ST , (8)

where

C−(S)=
(ET + KM + S)−

√
(ET + KM + S)2− 4ET S

2
(9)

is the only biologically allowed solution of dC
dt = 0 in the second equation of (6).

3. CME-based stochastic model of the double PDP cycle

The double PDP cycle is one of the most important biochemical mechanisms in
intracellular reaction networks. The scheme here investigated is a generalization
of the enzymatic reaction network (1) and refers to [Ortega et al. 2006], where
both phosphorylation and dephosphorylation are supposed to happen in only one
step. Reactions are reported in (10), where M , Mp, and Mpp represent the inactive,
the mono-phosphorylated, and the double-phosphorylated substrate, respectively,
K and P are the kinase (the phosphorylating enzyme) and the phosphatase (the
dephosphorylating enzyme), respectively, and Ci are the intermediate complexes:

M + K
k11
−−→
←−−
k−11

C1
k12
−→ Mp + K , Mp + K

k21
−−→
←−−
k−21

C2
k22
−→ Mpp + K ,

Mpp + P
k31
−−→
←−−
k−31

C3
k32
−→ Mp + P, Mp + P

k41
−−→
←−−
k−41

C4
k42
−→ M + P.

(10)

Before building the stochastic model, we write the deterministic full system by
exploiting the mass conservation law to reduce the system complexity. Indeed, the
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conservation law involves the total substrate MT ,

M +Mp +Mpp +C1+C2+C3+C4 = MT , (11)

and the total enzymes KT and PT ,

K +C1+C2 = KT , P +C3+C4 = PT , (12)

so that it is possible to reduce the number of deterministic variables (species concen-
trations) to six independent ones. By taking, for example, {M, Mpp, C1, C2, C3, C4}

as the set of the independent variables, using the law of mass action, the full system
of equations governing the dynamics of the system is therefore

d M
dt
=−k11 M K + k−11C1+ k42C4,

d Mpp

dt
=−k31 Mpp P + k−31C3+ k22C2,

dC1

dt
= k11 M K − (k−11+ k12)C1,

dC2

dt
= k21 Mp K − (k−21+ k22)C2,

dC3

dt
= k31 Mpp P − (k−31+ k32)C3,

dC4

dt
= k41 Mp P − (k−41+ k42)C4,

(13)

with initial conditions

M(0)= MT , Mpp(0)= 0, Ci (0)= 0, (14)

where i = 1, . . . , 4. Let us observe that, for the sake of brevity, we left in (13) the
terms Mp, K , and P , which are related to the six independent variables by (11)
and (12):

Mp = MT − (Mpp +C1+C2+C3+C4+M),

K = KT − (C1+C2), P = PT − (C3+C4).

According to a large variety of literature that manages to reformulate the dy-
namics of a system from an ODE into a CME (chemical master equation) frame-
work (see, e.g., [Bazzani et al. 2012] or [Bersani et al. 2014]), we treat the state
variables as discrete copy numbers. In this context, we reinterpret the determin-
istic reaction rates as probabilities per unit time (or propensities) of a properly
defined continuous-time Markov chain (CTMC), i.e., a stochastic process whose
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event reset propensity

M , K binding x1 7→ x1− 1 k11x1(KT − x3− x4)

x3 7→ x3+ 1

M , K unbinding x1 7→ x1+ 1 k−11x3

x3 7→ x3− 1

Mp release x3 7→ x3− 1 k12x3

Mp, K binding x4 7→ x4+ 1 k21(MT −
∑6

i=1 xi )(KT − x3− x4)

Mp, K unbinding x4 7→ x4− 1 k−21x4

Mpp release x2 7→ x2+ 1 k22x4

x4 7→ x4− 1

Mpp, P binding x2 7→ x2− 1 k31x2(PT − x5− x6)

x5 7→ x5+ 1

Mpp, P unbinding x2 7→ x2+ 1 k−31x5

x5 7→ x5− 1

Mp release x5 7→ x5− 1 k32x5

Mp, P binding x6 7→ x6+ 1 k41(MT −
∑6

i=1 xi )(PT − x5− x6)

Mp, P unbinding x6 7→ x6− 1 k−41x6

M release x1 7→ x1+ 1 k42x6

x6 7→ x6− 1

Table 1. Chemical reactions, full system.

trajectories evolve on an n-dimensional lattice, and whose dynamics (in terms of
probability of being in a specific state of the CTMC) is described by the CME.

Renaming the independent state variables in the CME-based stochasting setting
as x1 = M , x2 = Mpp, x3 = C1, x4 = C2, x5 = C3, and x6 = C4, the reset map
associated with the chemical reaction network in (10) is reported in Table 1.

The CME dynamics is Ṗ = GP, where G is called the infinitesimal generator
(or transition matrix) of the CTMC, which is built according to the propensities in
Table 1 (see [Borri et al. 2016] for further details), and P is the vector collecting
the time-varying probabilities of all the states of the process. When the dimension
of G is large enough to make computationally too demanding the exact solution
of the equilibrium equation, GP= 0, one can still employ the Gillespie stochastic
simulation algorithm (SSA) [Gillespie 1977; 2001; 2009a; 2009b; Cao et al. 2005],
returning one or more statistically correct trajectories of the process, which can be
used in a Monte Carlo simulation or in an ergodic setting to obtain a sampled
(approximate) equilibrium distribution of the process.
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4. QSSA of the double PDP cycle stochastic model

Similarly to the deterministic approach, where the complexes behave as fast vari-
ables, while the substrates are the slow variables, the double time scale affects as
well the CMEs associated with the reset map detailed in Table 1, slowing down the
computational efficiency. Therefore, a need exists to introduce a QSSA also for the
stochastic case. Differently from other reactions, as for example the so-called auxil-
iary (or coupled) reactions [Eilertsen and Schnell 2018], where multiple timescales
are present, the four reactions involved in the PDP cycle are characterized by a dou-
ble timescale. In [Bersani et al. 2014] a way to obtain both standard and total QSSA
for the double PDP cycle was shown. In both cases, we start from the ODE version
of the QSSA and stochastify it by introducing suitably defined one-step processes.
Note that, as already described at the end of Section 3, the stochastic approach
considered in [Bersani et al. 2014] and here does not consist of perturbing the
ODE setting by means of noise terms, which is typical of the stochastic differential
equation (SDE)/Langevin approach, but of reinterpreting the deterministic reaction
rates as probabilities per unit time (or propensities) of a properly defined CTMC.

With respect to the ODE systems reported below, the continuous state variables
actually represent a first-order approximation of the expected value of the copy
numbers, which are indeed stochastic variables [van Kampen 2007]. Section 4.1
treats the QSSAs of the ODE system, whereas Section 4.2 concerns the CME-based
stochastic version of the QSSAs. Finally, in Section 4.3 a sufficient condition for
the uniqueness of the stationary solution for the CME has been provided.

4.1. QSSA of the deterministic model of the double PDP cycle. With regard to
the sQSSA, its ODE version is written by setting the complex dynamics at steady
state. In this way complexes are related to substrate and enzyme concentrations by
means of algebraic constraints and, after computations (see [Bersani et al. 2011]
and references therein for the details), the M and Mpp dynamics become

d M
dt
=−

k12

K1
M K +

k42

K4
Mp P,

d Mpp

dt
=

k22

K2
Mp K −

k32

K3
Mpp P,

(15)

where Ki = (k−i1+ ki2)/ki1, i = 1, . . . , 4, with

K =
KT

1+M/K1+Mp/K2
, P =

PT

1+Mpp/K3+Mp/K4
. (16)

Concerning Mp, the sQSSA constrains it to other substrates according to

Mp = MT −M −Mpp, (17)

thus neglecting the complexes’ contribution to the mass conservation law.
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Remark. The comparison of the mass conservation law of the full system (11) with
(17) leads to the so-called complex depletion paradox [Dell’Acqua and Bersani
2013]: the application of the sQSSA implies that, even if the complexes are related
to the substrates by their algebraic equations, they are implicitly set equal to zero,
because of (17). The consequences are that the sQSSA predicts asymptotic values
for the different substrate species which are higher than those predicted by the full
system.

For what concerns the tQSSA, as in [Bersani et al. 2011; Dell’Acqua and Bersani
2013; 2011], we set the total substrates at a generic time instant t :

M = M +C1, M p = Mp +C2+C4, M pp = Mpp +C3. (18)

In terms of these new variables, the dynamics of the total substrates are given by

d M
dt
= k42C4− k12C1,

d M pp

dt
=−k32C3+ k22C2,

(19)

with conservation law
M +M p +M pp = MT . (20)

Moreover, by properly accounting for the QSSA, i.e., complexes’ dynamics at
steady state, we have the constraints

(M −C1)(KT −C1−C2)− K1C1 = 0,

(M p −C2−C4)(KT −C1−C2)− K2C2 = 0,

(M pp −C3)(PT −C3−C4)− K3C3 = 0,

(M p −C2−C4)(PT −C3−C4)− K4C4 = 0.

(21)

Remark. It is worth noting that the complex depletion paradox emerging for the
sQSSA is not present for the total, since no violation of the mass conservation law
occurs. Thus, the tQSSA yields the same asymptotic values for all the reactants
(complexes included) as the full system.

4.2. QSSA of the CME-based stochastic model of the PDP cycle. In agreement
with [Bazzani et al. 2012] or [Bersani et al. 2014], we treat the state variables in
(15) and (19) as discrete copy numbers that increase by one or decrease by one
(according to a one-step process approach [van Kampen 2007]), with propensity
provided by the sum of the production or clearance rates of the ODE dynamics
for the one-step increase or decrease reaction, respectively. In this way, the reset
maps associated with the standard and total QSSA are reported in Tables 2 and 3,



STOCHASTIC MODELS FOR DOUBLE PHOSPHO/DEPHOSPHO CYCLE 271

event reset propensity

M production M 7→ M + 1 w
(s)
1

M clearance M 7→ M − 1 w
(s)
2

Mpp production Mpp 7→ Mpp + 1 w
(s)
3

Mpp clearance Mpp 7→ Mpp − 1 w
(s)
4

Table 2. Chemical reactions, sQSSA.

event reset propensity

M production M 7→ M + 1 w
(t)
1

M clearance M 7→ M − 1 w
(t)
2

M pp production M pp 7→ M pp + 1 w
(t)
3

M pp clearance M pp 7→ M pp − 1 w
(t)
4

Table 3. Chemical reactions, tQSSA.

respectively. Regarding the propensities, the ones of the sQSSA, achieved from
(15), by exploiting constraints (16) and (17), are

w
(s)
j (x1, x2)=



k42 PT K3(MT − x1− x2)

K3K4+ K4x2+ (MT − x1− x2)K3
, j = 1,

k12KT K2x1

K1K2+ K2x1+ K1(MT − x1− x2)
, j = 2,

k22KT K1(MT − x1− x2)

K1K2+ K2x1+ K1(MT − x1− x2)
, j = 3,

k32 PT K4x2

K3K4+ K4x2+ K3(MT − x1− x2)
, j = 4.

(22)

With regards to the tQSSA, one needs to solve the system of equations (21) with
respect to the complexes C1, . . . , C4 (see, e.g., [Pedersen et al. 2008]), which are
functions of the state, and then define

w
(t)
j (x1, x2)=


k42C4(x1, x2), j = 1,

k12C1(x1, x2), j = 2,

k22C2(x1, x2), j = 3,

k32C3(x1, x2), j = 4.

(23)

4.3. Uniqueness of the stationary distribution. An important feature to be inves-
tigated when dealing with stochastic models coming from CME is whether the
stationary distribution is unique, whatever the CME initial conditions. Besides
the qualitative behavior properties, the uniqueness of the stationary distribution is
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invoked also when dealing with Monte Carlo numerical issues, since it implies the
process is ergodic, thus allowing one to resort to a unique very long run of the
stochastic sampling algorithm (SSA), by inferring the statistical distribution from
the computation of the average recurrence time in each state of the process. With
respect to the PDP cycle investigated in this paper, such an issue is of paramount
importance: in case of bistability, what one is expected to find from the CME
stochastic approach is to have a bimodal stationary distribution, with the modes
close to the ODE stable stationary equilibria. However, supposing that bimodality
actually occurs, it may happen that any single stochastic realization is able to ex-
hibit only one of the two modes, according to the chosen initial conditions. This
is because the model parameters are such that too much time would be required in
order to completely explore the space of the admissible states. To know a priori
whether the stationary distribution is unique or not allows one to understand if
different stochastic realizations provide different stationary distributions because
of different initial conditions or just because of the too long time required to obtain
a stochastically exhaustive trajectory. To properly address the issue concerning the
uniqueness of the stationary distribution, we consider the graph associated with the
CTMC of the CME under investigation.

Theorem 1. The graph associated with the full system is strongly connected.

Proof. The graph associated with the full system consists of as many nodes as fea-
sible 6-tuples provided by the copy numbers of the independent species M, Mpp,

C1, C2, C3, C4, with node A connected to node B if there exists a reaction that
updates the species’ copy numbers from A to B. Differently from a one-step
process, here we have reactions that simultaneously vary couples of state variables,
namely M, K binding and unbinding, Mpp release, Mpp, P binding and unbinding,
and M release (see Table 1). The proof consists of showing that, starting from any
6-tuple, there exists a combination of feasible reactions providing any possible one-
step update. This fact allows the system to inherit the strong connectivity property
associated with one-step processes. The one-step updates we consider, clearly,
disregard the ones already provided by the chemical reaction network. Below, for
any such one-step update we report the sequence of reactions required to obtain it:

• M 7→ M + 1: provided by the combination of Mp, P binding and M release.

• M 7→ M − 1: provided by the combination of M, K binding and Mp release.

• Mpp 7→ Mpp + 1: provided by the combination of Mp, K binding and Mpp

release.

• Mpp 7→ Mpp − 1: provided by the combination of Mpp, P binding and Mp

release.
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• C1 7→ C1+ 1: provided by the combination of M, K binding, Mp, P binding,
and M release.

• C3 7→C3+1: provided by the combination of Mp, K binding, Mpp, P binding,
and Mpp release. �

Theorem 1 proves that the graph associated with the CME here considered is
strongly connected, i.e., for any two nodes of the graph there exists a path that
connects one node to the other, and vice versa. This is sufficient to prove that
there exists a unique terminal strongly connected component associated with any
of the three graphs (the graph itself, actually), and this proves the uniqueness of
the stationary solution for the CME [Bang-Jensen and Gutin 2009].

Remark. To prove the strong connectivity of both the QSSAs is trivial. Indeed,
they are built as one-step processes; therefore, the graph associated with them is
a complete 2D lattice where any point is reachable from any other by means of
one-step independent movement. Therefore, results provided in Section 3 for the
full system, dealing with the uniqueness of the stationary probability distribution,
hold true also for both standard and total QSSA.

5. ODE bistability versus CME bimodality: a word of caution

This section is devoted to investigating and discussing whether bistability behav-
ior arising from deterministic models of the double PDP cycle transforms into
a bimodal distribution of the stationary probability distribution coming from the
CME-based stochastic model. To this end, Monte Carlo simulations are carried
out when dealing with the original full system, while numerical tools providing
the CME analytical solution are exploited for both standard and total QSSAs.

In the following four illustrated cases, the values of the chosen parameters in (10)
are k11 = 0.02, k−11 = 1, k12 = 0.01; k21 = 0.032, k−21 = 1, k22 = 15; k31 = 0.045,
k−31 = 1, k32 = 0.092; and k41 = 0.01, k−41 = 1, k42 = 0.5.

We set MT = 500 and four different pairs of mass-balance constraints for the
kinase and phosphatase:

(a) KT = 200, PT = 200,

(b) KT = 600, PT = 400,

(c) KT = 292, PT = 300,

(d) KT = 293, PT = 300,

with initial condition M(0)= MT in the deterministic case. Following [Dell’Acqua
and Bersani 2011] (see Figures 3 and 4 therein), when we plot the initial value of the
kinase MAPKK, i.e., KT (on the horizontal axis) and the corresponding asymptotic
value of Mpp (on the vertical axis), we obtain:
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(a) The deterministic full system is bistable, with equilibrium points for Mpp equal to

M1
pp = 4.30, M2

pp = 290.97;

the deterministic sQSSA and tQSSA are able to recover the bistable behavior, but
with completely different levels of accuracy. In fact, the equilibria are

M s,1
pp = 2.52, M s,2

pp = 494.35

for the sQSSA, and

M t,1
pp = 4.31, M t,2

pp = 290.86

for the tQSSA. This implies that also in this case the tQSSA is much more reli-
able than the sQSSA, which in fact suffers from the so-called complex depletion
paradox, as discussed in [Dell’Acqua and Bersani 2011].

(b) The deterministic full system is monostable, with equilibrium point for Mpp

equal to

Mpp = 118.89;

the deterministic tQSSA is able to reproduce this feature:

M t
pp = 118.17.

As discussed in [Dell’Acqua and Bersani 2013; 2011], the sQSSA always gives
bistability in a larger set of values of KT than the full system and the tQSSA; in
fact, in this case the sQSSA has two stable states

M s,1
pp = 9.08, M s,2

pp = 496.94,

which are very far from the real equilibrium.

(c) The full system is bistable, with equilibrium points for Mpp equal to

M1
pp = 5.70, M2

pp = 185;

the deterministic sQSSA and tQSSA are able to reproduce the bistable behavior,
but with completely different levels of accuracy. In fact, the equilibria are

M s,1
pp = 2.30, M s,2

pp = 494

for the sQSSA, and

M t,1
pp = 5.70, M t,2

pp = 185

for the tQSSA. This case also confirms the superiority of the tQSSA with respect
to the sQSSA.
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(d) This case presents the same features as case (c), but even if it slightly differs
in the amount of the mass-balance constraint KT for the kinase, it is of interest be-
cause of the peculiar phenomenon shown by its stochastic counterpart, as described
below.

We now compare the behavior of the stochastic representations of full system as
well as the sQSSA and tQSSA. With regards to the full system, the state evolves
on a 6-dimensional lattice (copy numbers refer to M, Mpp and the 4 complexes),
formally bounded by the substrate upper bound (MT = 500) and the complexes’
upper bounds provided by min{KT , MT } for C1, C2 and min{PT , MT } for C3, C4.
For instance, concerning case (a), the lattice is inside a 6-dimensional box lattice
including 5002

× 2004
' 400 trillion states. Clearly, not all such states are admis-

sible (e.g., because they can violate the mass conservation laws) but, in any case,
there still remain too many states (billions) that prevent any reliable numerical
approach to straightforwardly solve the underlining CME. For this reason, the full
system is simulated by means of statistical methods, such as the Gillespie stochastic
simulation algorithm (SSA) [Gillespie 1977; 2001; 2009a; 2009b; Cao et al. 2005],
where Theorem 1 ensures the uniqueness of the stationary probability distribution
and the ergodicity of the CTMC associated with the CME.

On the other hand, both the standard and total QSSA evolve on a (lower) 2-
dimensional lattice (copy numbers refer to substrates M, Mpp or total substrates
M, M pp, respectively), formally bounded by the 2-dimensional box lattice includ-
ing 500× 500= 250 000 states, that reduce to about 125 000 when accounting for
mass conservation laws. These numbers allow one to compute explicitly, and in
a computationally very efficient way, the exact theoretical distribution by apply-
ing Gaussian elimination, or block-based efficient solvers [Borri et al. 2016], to
the CME equilibrium problem. The numerical simulations were performed in the
Matlab suite on an Apple MacBook Pro laptop with 2.5 GHz Intel Core i5 CPU
and 16 GB RAM. The computation time of the equilibrium distribution is just 3
seconds for the sQSSA and for the tQSSA.

Figure 1 shows the plot of the steady-state marginal distribution of species Mpp

for case (a). It is apparent that both the standard and total QSSA resemble the full
system, although the stochastic modes are not able to catch both equilibrium points
coming from the deterministic approach, since apparent unimodal distributions
come out. Indeed, the modes of the three distributions substantially reproduce
the lower equilibrium point, with the full system and the total QSSA providing a
slightly better match than the standard QSSA.

Figure 2 reports the steady-state marginal distribution of species Mpp for case (b).
Again, we have a very good match between full system and tQSSA, both providing
a unimodal distribution, with the mode resembling the unique equilibrium point of
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Figure 1. Stochastic setting of the case (a). Steady-state marginal
distribution of species Mpp. The blue solid line represents the
steady-state distribution computed by means of the Gillespie al-
gorithm for the full model of reactions, while the black and red
solid lines represent the sQSSA and tQSSA distributions, respec-
tively. The deterministic equilibria are reported in dashed lines.
The plot shows that the second modes, which are present in the
deterministic counterpart, are not detected. The system appears to
be monostable.

the deterministic model; the stochastic sQSSA also exhibits one mode, correspond-
ing to the higher equilibrium of its deterministic counterpart and is hence very far
from the modes of full system and tQSSA.

Finally, Figures 3 and 4 show the steady-state marginal distribution of species
Mpp for cases (c) and (d). Again it is apparent that the Monte Carlo simulation of
the full system confirms that only the tQSSA provides a very good approximation.
Case (c), for instance, shows that the tQSSA (as well as the full system) provides
a bimodal distribution, with the modes corresponding to the equilibrium points
of the deterministic model, while the sQSSA provides a unimodal distribution.
Moreover, by slightly varying the parameter setting of just 1 copy number, case (d)
shows a completely different qualitative behavior, with full and tQSSA providing
a unimodal distribution (with the mode resembling the highest of the 2 equilib-
rium points of the deterministic model), while the sQSSA provides a unimodal
distribution completely different from the one coming from the full system.
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Figure 2. Stochastic setting of the case (b). Steady-state marginal
distribution of species Mpp. The blue solid line represents the
steady-state distribution computed by means of the Gillespie al-
gorithm for the full system of reactions, while the black and red
solid lines represent the sQSSA and tQSSA distributions, respec-
tively. The deterministic equilibria are reported in dashed lines.
Differently from sQSSA, the tQSSA reproduces with very good
approximation the mode of the full system.

One important consideration that comes out from these results is that the stochas-
tic tQSSA seems to be a promising tool for the approximation of the distribution
of the full system, when the computation of the exact equilibrium distribution of
this system is intractable. Note also that the dimensions of resulting CME matrices
are exactly the same in sQSSA and tQSSA, so there is no loss in computational
performance in exploiting the latter, which is far more accurate than sQSSA in
capturing the position of the modes. Indeed, results from Theorem 1 allow one to
trust the stationary distribution as coming from different initial conditions as the
unique one, and the correctness of the full system stationary distribution allows one
to trust the tQSSA (instead of the sQSSA) as the golden standard to approximate
(at least) the steady-state behavior. This result somehow mimics what is already
known from the deterministic viewpoint.

Another important consideration concerns the topic of mono/bistability. It is
thus important to note that a bistable behavior in the deterministic approach (i.e., in
the ODEs) is not (necessarily) associated with a bimodal behavior in the stochastic
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Figure 3. Stochastic setting of the case (c). Steady-state marginal
distribution of species Mpp. The blue and red solid lines represent
the sQSSA and tQSSA distributions, respectively. The determinis-
tic equilibria are reported in dashed lines. The tQSSA reproduces
with very good approximation the bistable behavior of the full sys-
tem, whereas the sQSSA shows a monostable behavior, contrary
to what happens in the deterministic setting.

approach (i.e., in the CMEs). Indeed, among the analyzed cases, in cases (a) and
(d) numerical simulations show that the stochastic setting presents just one mode,
matching one of the two deterministic equilibria. A possible explanation for this
phenomenon is that when we consider a deterministic system, we can study its
basins of attraction, from which the trajectories flow necessarily towards the same
equilibrium point. On the other hand, in the stochastic framework, a trajectory
(realization) can always go from any state to any other one during the evolution
of the system, in that the graph of reactions is connected and the Markov model
is positively recurrent (see [Borri et al. 2016] for further details). So, it is rea-
sonable that, depending on the propensity values, one of the two deterministic
equilibrium points can be visited much more often than the other one and that the
trajectories (almost) never leave a neighborhood of the dominating point, which is
stochastically a kind of black hole. As a consequence, the other equilibrium point
disappears from the plots of the probability distribution and the stochastic system
behavior is qualitatively monomodal. Indeed, there is still a way to recover (at least
numerically) the bimodal behavior which is not present at a stochastic macroscopic
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Figure 4. Stochastic setting of the case (d). Steady-state marginal
distribution of species Mpp. The blue and red solid lines represent
the sQSSA and tQSSA distributions, respectively. The determin-
istic equilibria are reported in dashed lines. Differently from the
deterministic setting, both the stochastic QSSAs present only one
mode, but while the tQSSA exactly reproduces the second mode
of the full system, the sQSSA wrongly reproduces the mode.

level. For the case (a), a plot of the discrete derivative of the steady-state marginal
distribution of the species Mpp, for sQSSA and tQSSA, is shown in Figure 5, and
it shows that both sQSSA and tQSSA exhibit some zero crossings of the derivative
corresponding to the second deterministic equilibrium point (around Mpp = 495 in
sQSSA and Mpp = 290 in tQSSA), which are necessary conditions for the existence
of second modes. Anyway, such modes are not detected in Figure 1.

In conclusion, the simulations show the deeper insight of the stochastic ap-
proach into the understanding of the qualitative behavior of reaction networks; in
particular, stochastic simulations are able to provide information about the actual
probability of reaching different equilibrium conditions. This information is lost
in the deterministic approach which constitutes just a first-order approximation of
the mean value of the CME [van Kampen 2007]. Based on this statement, we can
assert that a mode of the stochastic approach always has an equilibrium point as
its deterministic counterpart, but that the converse is not always true. Furthermore,
in both settings, the superiority of the tQSSA approach compared to the sQSSA
is confirmed, in that the former shows a much greater numerical accuracy than
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Figure 5. Discrete derivative of the steady-state marginal distribu-
tion of species Mpp (stochastic case), in case (a), for the sQSSA
(top) and tQSSA (bottom) distributions, respectively. The plots
show the existence of the second mode (zero crossing of the dis-
crete derivative) in the zone of the second deterministic equilib-
rium point (reported in dashed line), both in sQSSA and in tQSSA.

the latter in matching the equilibrium points/modes. In the stochastic approach, in
addition, the better performance of tQSSA is obtained at the same computational
cost as in sQSSA, since the obtained CME dynamical matrices have the same
dimension in the two cases.

6. Conclusions

In this work we investigated a stochastic approach for modeling the biochemical
reaction cycle of double phosphorylation/dephosphorylation (PDP), which is one
of the most important biochemical mechanisms in intracellular reaction networks.
The goal of the work is twofold. On the one hand, we aimed to understand whether
the QSSA approach could be transferred to the investigation of the qualitative be-
havior of the double PDP cycle also in the stochastic scheme, usually assessed as
the best approach whenever dealing with biochemical processes which are intrin-
sically noisy and for which the average copy number dynamics is the only (and
little informative) result available from a deterministic approach. Our results have
somehow extended to the stochastic realm results already established from the
deterministic approach: the tQSSA is a superior tool (with respect to sQSSA) to
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deal with affordable approximations, since it is able to faithfully replicate the full
system results also in those cases where sQSSA fails. On the other hand, proposed
results show how deterministic models could produce misleading results if not
properly accounted for in the wider setting of the stochastic approach, according to
which ODE models can be thought of as a first-order approximation of the average
dynamics. Indeed, what emerges is that, in some cases, deterministic bistability
does not provide a stationary bimodal distribution.

It is reasonable to state that the apparently paradoxical phenomenon described
above may be explained by the following considerations. Continuous-time Markov
chains (CTMCs) describe the probabilities for the state of a discrete-event system
to stay in a specific point on the state space. According to a given reaction, the
dynamics of these probabilities are described by the CME, with reaction rates
providing the propensities for the state to jump from one point of the space to
another one. We therefore conjecture that the disappearance of one mode in the
stationary bimodal distribution could occur when the probability of leaving one
basin of attraction is so low that it would require a (quite) infinite time to occur. In
this case, we can expect a switching phenomenon from one state to the other one
after a very long time, in contrast with what occurs in the deterministic case, as ob-
served, in a different context, in [Székely and Burrage 2014]. Under the hypothesis
that the ergodicity property of CTMC holds, it is well-known that the stationary
probability distribution is unique whatever the initial condition, and that statistical
properties can be deduced from a single, sufficiently long realization (stochastic
realization) of the stochastic process. The fact that this feature of Markov chains
obviously cannot be captured by the deterministic approach could be the reason
for the discrepancy between the two different approaches. Waiting for one single
(long enough) Gillespie stochastic simulation, instead of running a (large enough)
number of them, could be a way to capture the second stable state of a bistable
system. The aim of our future work will be to give further explanations of this
phenomenon which is still a subject of our studies.

Finally, as already observed in the introduction, in [Kim et al. 2014] it was
investigated how different QSS approximations (standard QSSA, total QSSA, and
prefactor QSSA) may provide similar results in the deterministic field, while pro-
viding completely different results in the stochastic field. In other words, [Kim et al.
2014] provided some caveat concerning different QSSAs and provided a criterion
to understand in a specific framework whether a stochastic QSSA is reliable or
not. Unfortunately these results are not straightforwardly applicable to our case:
in [Kim et al. 2015] a unique double time scale enzymatic reaction is considered,
while in our manuscript we consider four double time scale enzymatic reactions.
However, we plan to extend such results to our more general framework in the
continuation of our research.
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Most of the last century, bone remodeling models have been proposed based on
the observation that bone density is dependent on the intensity of the applied me-
chanical loads. Most of these cortical or trabecular bone remodeling models are
related to the osteocyte mechanosensitivity, and they all have a direct correlation
between the bone mineral density and the mechanical strain energy. However, ex-
periments on human athletes show that high-intensity sport activity tends not to in-
crease bone mineral density but rather has a negative impact. Therefore, it appears
that the optimum bone mineral density would develop for “medium”-intensity
activity (or medium mechanical loads) and not for the highest-intensity one.

In this work, we propose a new continuum approach based on bone cell activ-
ity being either positive or negative as a function of the intensity of the applied
mechanical load. At standard earth gravity without exercise, bone homeostasis is
observed with cell activity being at equilibrium. When “medium loads” such as
“low-intensity” or “optimized” sport activity are applied, cells are activated and
an increase of bone density occurs. On the other hand, “high-intensity loads” such
as over-training lead to bone density decrease or bone degradation. Our results
are in agreement with the literature and enable us to foresee applications such as
optimal sport training for best physical conditions.

1. Introduction

The last hundred years or so have seen many bone remodeling models being devel-
oped under the hypothesis that the mechanical energy is the main driving parameter
of this complex phenomenon. According to the first law of bone remodeling de-
fined in [Wolff 1986] and reprinted many times, bone mineral density is directly
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dependent on the intensity of the applied mechanical loads. Many strain-related
models for bone remodeling have followed since. To name a few, see for exam-
ple [Carter 1984], [Frost 1987] and its “mechanostat” proposal, [Cowin 1986],
[Beaupré et al. 1990], [Turner 1998], or more recently [Lekszycki 2002] where
the highly heterogeneous bone microstructure is seen as an optimum structural
response to given external mechanical boundary conditions. Many theoretical
frameworks of bone remodeling were proposed for cortical [Pivonka et al. 2008]
and trabecular [Ruimerman et al. 2005] bone accounting for different bone cells
at the origin of this remodeling [Pivonka and Komarova 2010; Klein-Nulend et al.
2013]. More recently, further theoretical models were proposed [Madeo et al. 2011;
2012; Lekszycki and dell’Isola 2012; Scala et al. 2017], some of them also taking
into account the complex viscous mechanical behavior of the bone [Andreaus et al.
2014b; Giorgio et al. 2016; 2017].

Nowadays, it is generally accepted that without considering the specific effects
of the bone cells, whatever the theoretical model, the prediction of bone remodeling
remains at best phenomenologically driven. Although at the continuous level (scale
of the bone) the continuum mechanics is “manageable”, the integration of contin-
uum biology is highly risky since, for the time being, there are no experimental
measurements available in the literature able to link the local cell phenomena to
the bone continuum. The full understanding of the bone mechanobiology is still
unknown, but some literature exists on its basic principles (see for example [Burr
and Allen 2014, pp. 85–86]). It is therefore possible to start developing more
precise mechanobiological models, but at the local scale (scale of the cells), and
to try understanding what the main biological parameters driving this evolution
are [Lemaire et al. 2011]. Nonetheless, bridging the local and the global scales
through multiscale or homogenization models remains a challenging task [Lemaire
et al. 2005; 2010; 2015]. Multiscale theories on biological materials have been
developed recently (see, e.g., [Rémond et al. 2016; George et al. 2017; Spingarn
et al. 2017]), but the uncertainties remain about the multiscale models themselves
[Sansalone et al. 2015], the scale growth response [Louna et al. 2016], or even the
influence of the microstructure on the overall behavior [Sheidaei et al. 2019].

The obvious next step in bone remodeling is to try integrating more biological
actions that are at the origin of the bone tissue evolution such as the capillary
growth [Bednarczyk and Lekszycki 2016], the nutrient supply [Lu and Lekszycki
2016], or the cell migration [Allena and Maini 2014; Schmitt et al. 2015; Frame
et al. 2019; 2018]. However, the homogenization of such local effects at more
macroscopic scales [George et al. 2018a; 2018b; 2019] is complex to transpose
and interpret. This is even without accounting for thermodynamically consistent
models [Martin et al. 2017] or the influence of the bone microstructure distribution
over its macroscopic behavior [Bagherian et al. 2019].
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At this stage, it is clear that bone mechanobiology is a highly complex phenom-
enon and, even with the major progress made in the past fifty years, we still know
very little to properly describe the bone remodeling scenario. In this work, we
want to address the bone remodeling phenomenon at a macroscopic scale based on
the direct relationship between the mechanical strain and the bone cell responses
(see, e.g., [Ehrlich and Lanyon 2002]). Our approach is evidently dependent on the
activation of osteoblasts for the bone creation and of the osteoclasts for the bone
resorption triggered by specific signals that are transmitted by the osteocytes, as
proposed in [Ignatius et al. 2005; Andreaus et al. 2014a; Rochefort et al. 2010]. In
agreement with the experimental literature [Herman et al. 2010; Hao et al. 2017],
we find that bone mineral density does not continually increase with the developed
mechanical strain, contrarily to the proposed “mechanostat” model by Frost [1987],
and that reverse effects can be observed.

2. Model development

2.1. Model construction. We propose a strain energy density (SED) based ap-
proach accounting for external mechanical loads driving the cell activity and lead-
ing to a macroscopic bone mineral density change at the continuous scale.

It has been observed that practicing a regular physical activity is healthy not
only for the heart, but also to reinforce bone structure and stiffness. However, it
was also acknowledged that over-training could lead to a worse health condition
than the moderate training scenario [Forwood and Parker 1989; Grimston et al.
1991; Herman et al. 2010; Hao et al. 2017]. Thus, for “medium” mechanical
loads (i.e., intermittent sport activity under a certain threshold), the bone mineral
density increases, whereas for “high” mechanical loads (i.e., critical above the
given threshold), the bone mineral density decreases.

We want to keep a simplified approach in order to be able to identify the model’s
parameters and to validate it. Our main assumption is that the cell activity is directly
proportional to the intensity of the mechanical load, but with a predefined scenario.
We define such a cell activity as the quantity of bone formation/resorption (or bone
mineral density change) as a function of time and mechanical energy. Hence, for
a given mechanical energy level, the cell activity will change the bone mineral
density in a given time. The cell activity increases with the mechanical load up
to a certain value that is proportional to the amount of available space within
the structure (related to the porosity and defined in Figure 1 by the maximum
osteoblast activity per unit volume). The cell activity cannot exceed this value and
a maximum cellular density exists. The maximum cellular activity (of osteoblasts
or osteoclasts) is dependent on the cell density at a given location and at a given
time. It is assumed that this activity linearly increases (with the mechanical load)
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Figure 1. Schematic of the mechanoregulatory model of cellu-
lar activity as a function of the developed mechanical energy W
within the structure. Blue dashed line: osteoblast activity Aob.
Green dashed line: osteoclast activity Aoc. Red line: bone density
ρbone obtained by the combined blue and green cellular activities.

up to the maximum value (defined by the porosity). Finally, as we are working at
the continuous macroscopic scale, we define a continuous representative volume
element (RVE) that is large enough so that both osteoblasts and osteoclasts can be
active within it at the same time (as a function of the given bone microstructure
distribution and the given mechanical strain field) depending on the signals trans-
mitted by the osteocytes. It is therefore assumed that the total bone mineral density
change is the sum of the positive (through osteoblasts) and the negative (through
osteoclasts) effects within this given RVE. Therefore, bone mineral density is di-
rectly proportional to the cell activity and defined by the corresponding units (i.e.,
the cellular activity is given in kg ·m−3

· unit time−1 of fabricated (or degraded)
bone per cell density).

A schematic of the cell activities as a function of the intensity of the developed
mechanical energy W within the structure is presented in Figure 1. The homeosta-
sis condition (W0) corresponds to the equilibrium state where it is acknowledged
that bone remodeling and cellular activity are nonzero, but they are not integrated
within the model. The modeled variations (i.e., bone density change) are dependent
on cell activity differences away from the equilibrium state.
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The osteoblast activity is shown as positive whereas the osteoclast activity is
shown as negative. Both activities increase linearly up to a maximum level as the
mechanical energy increases. Two conditions are required here:

(1) for a bone density increase for “medium low” mechanical energy (W0 < W <

W2), the osteoblast activity must be higher than the osteoclast one, and

(2) for a bone density decrease with “higher” mechanical energy (W > W2), the
osteoclast activity must be higher than the osteoblast one.

On the graph in Figure 1, the initial osteoblast activity is triggered by osteoclasts
(osteoblasts will start being active only after osteoclasts have “cleaned up” the bone
surface so bone remodeling can initiate). At W0, we are at homeostasis state where
neither bone formation nor resorption occurs at a constant living load condition.
Only continuous bone remodeling of living is present. This means that Figure 1 is
correct at a given time t and corresponds to an equilibrium state once bone forma-
tion or degradation has finished. In the current work, this condition corresponds
to the start of the analysis (initial zero condition). From W0 to W1, both osteoblast
and osteoclast activity increase at the same time leading to an increase of the bone
mineral density since the sum of both cell activities is positive. When reaching
the maximum osteoblast activity, i.e., W ≥W1, the bone mineral density increase
is impacted by the osteoclast activity taking over the osteoblast one. Above a
given energy threshold, from W2 to W3, the bone mineral density decreases as the
combined cell effect is negative. For a mechanical energy between W0 and W2, we
have a bone density increase, while for a mechanical energy above W2, we have a
bone density decrease. W2 corresponds to the energy threshold not to overtake to
keep a good bone health. The following equations interpret the scheme in Figure 1:

if W0<W <W1, then Aob=k1 ·W+ρini
bone and Aoc=−k2 ·W+ρini

bone,

if W1<W <W2, then Aob= A1+ρ
ini
bone and Aoc=−k2 ·W+ρini

bone,

if W2<W <W3, then Aob= A1+ρ
ini
bone and Aoc=−k2 ·W+ρini

bone,

if W >W3, then Aob= A1+ρ
ini
bone and Aoc=−A2+ρ

ini
bone,

(1)

where k1 and k2 are the coefficients of osteoblast and osteoclast activity increase,
A1 and A2 are their corresponding maximum values, and ρini

bone is the initial bone
density, constant over time, in kg ·m−3

·unit time−1. Thus, we obtain a model with
only four parameters (k1, k2, A1, and A2) defined as

Aob=k1·W+ρini
bone for W <W1, Aoc=−k2·W+ρini

bone for W <W3,

Amax
ob = A1+ρ

ini
bone for W >W1, Amax

oc =−A2+ρ
ini
bone for W >W3.

(2)

The units of these four parameters are given in kg ·m−3
·unit time−1 for A1 and A2,

and in kg ·mJ−1
·m−3

·unit time−1 for k1 and k2. Such parameters can be quantified
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Figure 2. Schematic of the mechanoregulatory model or cellular
activity as a function of time t for different levels of applied me-
chanical load (energy) within the structure. Blue dashed line: os-
teoblast activity Aob. Green dashed line: osteoclasts activity Aoc.
Red line: bone density ρbone.

experimentally by histochemistry through the measurement of the different cell
density activities as a function of the applied mechanical load at any given time
and point of the structure. For instance, osteocyte viability and osteoclast activity
can be determined through the ratio between empty (i.e., without cell) and full
(i.e., with cell) lacunae. More specifically, osteocyte viability can be determined
by cell apoptosis through cleaved caspase-3 activation [Lavrik 2005; Nicholson
et al. 1995; Maurel et al. 2013], and osteoclast activity through the measure of the
resorption area surrounding the cells (TRAP activity) [Kodama et al. 2009].

Once the cell activity has been defined and quantified as a function of the me-
chanical energy W , we can describe it as a function of time for different levels of
mechanical loads (as presented in Figure 2).
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Four different cases are considered:

(1) When forces correspond to everyday life conditions, we are at equilibrium
state (Whomeostasis) where the bone density is in the homeostasis condition. In
this case, the “average” osteoblastic and osteoclastic cell activities are equal
and opposite. Their sum is equal to zero (corresponding to homeostatic state)
and bone mineral density remains constant over time.

(2) When forces increase (Wintermediate), corresponding to a “sport training”-like
activity at a moderate level, osteoblastic cells become predominant and the
sum of these effects is positive leading to an increase in the bone mineral
density.

(3) If the “exercise” level increases (over-training-like) leading to an increase of
the averaged developed mechanical energy, the energy level reaches a thresh-
old (Wmax = W2) corresponding to the maximum energy under which bone
density evolution remains at best positive or null. Here again, and similarly
to the homeostasis case, but not for the same reason, the combined effect of
osteoblasts and osteoclasts provides equilibrium. However, contrary to the
homeostasis case, this equilibrium is unstable, depending on the biology that
is patient-dependent.

(4) Finally, when the average mechanical energy goes beyond the threshold (W =
W2), bone density decreases due to an over-expression of the osteoclastic cells
reacting to a solicitation that needs to be biologically quantified.

In essence, an average person’s life is the result of the combined effect of all
these different cases (being dependent on both the mechanical energy level and
time) and bone mineral density evolves accordingly in space and time.

An interpretation of the schematic bone mineral density evolution in time of
Figure 2 is given by the four energy intervals

if W0 < W < W1, then
∂ρbone

∂t
> 0 and ρbone > 0,

if W1 < W < W2, then
∂ρbone

∂t
< 0 and ρbone > 0,

if W2 < W < W3, then
∂ρbone

∂t
< 0 and ρbone < 0,

if W > W3, then
∂ρbone

∂t
< 0 and ρbone < 0,

(3)

where ρbone is the bone density.
When combining the two schemes of Figures 1 and 2 on the same graph, we

obtain the corresponding Figure 3 where the bone mineral density is a function
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Figure 3. Global schematic of the mechanoregulatory model or
cell activity as a function of time and energy. Blue dashed line:
osteoblast activity Aob. Green dashed line: osteoclast activity Aoc.
Red line: bone density ρbone.

of time t and the elastic strain energy W (when we suppose that the mechanical
behavior of bone is linear elastic).

As the cell activity is defined as an amount of fabricated (or degraded) bone as
a function of its density, the amount of mechanical energy developed, and the time,
the variation of bone mineral density can be computed directly. It remains only to
calculate the corresponding Young’s modulus (as a function of the bone density),
given by the relation E = E0 · ρ

2
bone [Rho et al. 1995], that is classically accepted

in the literature, where E0 is the cortical bone Young’s modulus.

2.2. Model application. A numerical application of the above proposed model is
made on a simplified geometry accounting for simple load conditions. We consider
a femur diaphysis loaded under compression (i.e., body weight) as presented in
Figure 4, left. Since we assume a constant distribution of the stresses through the
thickness of the femur diaphysis, we propose to study a simplified 2D rectangular
beam of length L= 50 mm and height H= 20 mm (Figure 4, right).

Of course, it is acknowledged that the exact quantification of the model param-
eters will depend on the given geometry and structure of the exact experimental
model to represent. In this case, we will quantify them only for validation purposes.
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Figure 4. Geometry for the numerical application. Left: real ge-
ometry of a femoral diaphysis under simple tension. Right: sim-
plified geometry of a rectangular beam under simple tension.

The other material parameters are defined by the Young’s modulus of the cortical
bone E0 = 20.3 GPa and Poisson ratio ν = 0.3 [Bernard et al. 2013]. The applied
mechanical load is equivalent to a human body weight F = 400 N on one leg and
an initial normalized bone density ρini

bone = 0.5 is taken for validation purposes. We
suppose a closed system with no external input.

The model parameters were identified without a priori knowledge of the corre-
sponding biological quantifications of the in vivo conditions and serve here only
for validation. The homeostatic energy W0 = 1× 10−5 mJ was determined based
on an average femur cross-sectional area and its corresponding bone density and
body weight load conditions. The other two energies W1 = 1.456× 10−5 mJ and
W3 = 3× 10−5 mJ were defined based on identification of the four parameters of
the model by k1=1×105 kg·mJ−1

·m−3
·unit time−1, k2=0.7×105 kg·mJ−1

·m−3
·

unit time−1, A1=1.456 kg·m−3
·unit time−1, and A2=2 kg·mJ−1

·m−3
·unit time−1,

where k1 > k2 and A2 > A1. The intermediate energy W2 is the linear interpolation
between W1 and W3. The model was implemented within the software COMSOL
Multiphysics, and the results are presented in the following section.

3. Results and discussion

3.1. Validation. The model was subjected to a constant force F = 400 N, corre-
sponding to the body weight, for an arbitrary length of time, leading to a constant
energy distribution throughout the structure and hence a bone density evolution as
defined by Figure 3. An initial numerical validation of the model was made by
testing three simplified cases: (i) osteoblasts and osteoclasts have the same activity
(i.e., the models parameters are equal and opposite: k1 = −k2 and A1 = −A2),
(ii) only osteoblasts are active (i.e., k2 = A2 = 0), and (iii) only osteoclasts are
active (i.e., k1 = A1 = 0). The results are presented in Figure 5.

As expected, an equal intensity of osteoblast and osteoclast activity (Figure 5,
left) leads to a constant bone density as a function of time. This is similar to home-
ostasis conditions when homogenized to long periods of time (everyday life activ-
ity). In Figure 5, center, when only osteoblasts are considered (i.e., k2 = A2 = 0),
there is no osteoclast activity; therefore, if the energy level is high enough to trigger
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Figure 5. Evolution of the model parameters, bone density, and
mechanical energy as a function of time for the three simplified
cases.

Figure 6. Mechanical energy W variation as function of time for
different values of the applied force F .

osteoblasts, bone density increases and since the bone stiffness increases corre-
spondingly, then the developed mechanical energy (for a constant applied force)
decreases, and so does the osteoblast activity. Finally, when only osteoclasts are
considered (i.e., k1= A1= 0, in Figure 5, right), there is no osteoblast activity, bone
density decreases and so does its stiffness, and hence the developed mechanical
energy increases (for a constant applied force) together with the osteoclast activity.

3.2. Results and sensitivity study for different load cases. Different intensities of
F were applied from 360 N to 480 N. The results are presented in Figures 6, 7,
and 8. For constant-load cases below 478 N, we observe a convergence towards an
increase of bone density (Figure 7) and a corresponding decrease of mechanical
energy (Figure 6). For load cases above 478 N, the opposite occurs with a decrease
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Figure 7. Bone mineral density ρbone variation as function of time
for different values of the applied force F .

of bone density and an increase of energy. Here, the energy threshold W2 shows
up around 478.1 N with the given values of the model parameters.

The threshold (i.e., the switch from positive to negative bone density) is very
sensitive to the intensity of the applied force and it is located within a very thin force
range around 478 N, deregulating the system very quickly. It is not possible at this
stage to know if this is a limitation of the proposed model (due to the simplified as-
sumptions made or the lack of more detailed information on the existing couplings
at the mechanobiological level) or if this is really occurring in reality. Such an
aspect needs to be investigated further experimentally at a later stage. For the case
of the control force (400 N), the mechanical energy W and the bone density ρbone

reach final values of 9.019× 10−6 mJ and 0.64.
Cell activities are presented in Figure 8. For the control case, their final values

are equal to 9.019 × 10−1 kg · m−3
· unit time−1 and −6.313 × 10−1 kg · m−3

·

unit time−1 for Aob and Aoc, respectively. Thus, we can conclude that for this
specific case, a fast stabilization is observed to reach the mechanobiological equi-
librium. Since we observed a fast switch in the variable trends around 478 N, we
decided to perform more simulations around this threshold in order to highlight
such a transition.

Similarly to the developed mechanical energy and bone mineral density varia-
tions, when the applied mechanical force increases above 478 N, osteoblast activity
reaches its maximum value, and we observe an inversion of the osteoclast activity
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Figure 8. Osteoblast activity Aob and osteoclast activity Aoc vari-
ations as functions of time for different values of the applied
force F . Osteoblast activity is shown positive in continuous lines
up to a force of 478.15 N above which it remains maximal at
1.46 kg ·m−3

·unit time−1. Osteoclast activity is shown negative in
dashed lines up to a force of 480 N showing the transient behavior
through 478 N towards bone degradation.

(decreasing to increasing). As the osteoblast activity is at its maximum of 1.46 kg ·
m−3
· unit time−1, when increasing the applied force, the osteoclast activity will

pass from “ineffective” (below the osteoblast activity of −1.5 kg ·m−3
·unit-time−1)

to “effective” as it reaches a final value of −2 kg ·m−3
· unit time−1. Once the new

equilibrium reached, where both osteoblast and osteoclast activities have reached
their maximum value, a fast bone degradation is observed (Figure 7). A return
to normal physical conditions depends upon a decrease of the applied mechanical
force and a new stabilization of the system under study.

The proposed model only relies on a few parameters: ρini
bone, A1, A2, k1, k2,

W0, W1, and W3. A sensitivity study was performed in order to evaluate their
influence on the overall results. We vary one parameter at a time in the range
±10% and we recorded the obtained results for the energy W , the osteoblast (Aob)
and osteoclast (Aoc) activities, and the bone density ρbone. The obtained results
show that ρini

bone, A1, A2, W0, W1, and W3, within the 10% range variation, have
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k1 9×104 9.5×104 10×104 10.5×104 11×104

(kg·mJ−1
·m−3
·ut−1) (−10%) (−5%) (control) (+5%) (+10%)

W (mJ) +11.76% +5.39% 9.019×10−6
−4.63% −8.67%

ρbone (×100%) −5.42% −2.58% 0.6352 +2.41% +4.64%
Aob (kg·m−3

·ut−1) +0.61% +0.12% 0.9019 +0.13% +0.47%
Aoc (kg·m−3

·ut−1) −11.80% −5.39% −0.6313 +4.63% +8.66%

k2 6.3×104 6.65×104 7×104 7.35×104 7.7×104

(kg·mJ−1
·m−3
·ut−1) (−10%) (−5%) (control) (+5%) (+10%)

W (mJ) −6.31% −3.32% 9.019×10−6
+3.68% +7.82%

ρbone (×100%) +3.32% +1.7% 0.6352 −1.78% −3.68%
Aob (kg·m−3

·ut−1) −6.31% −3.32% 0.9019 +3.68% +7.82%
Aoc (kg·m−3

·ut−1) +15.68% +8.14% −0.6313 −8.87% −18.60%

Table 1. Results of the sensitivity study performed for k1 and k2,
where “ut” stands for “unit time”.

little effect. The initial bone mineral density value has no effect since we apply a
constant force on the structure, so whatever the initial state equilibrium, it will lead
to the same final results with a different kinematic evolution. Since most of the
evolution occurs during the osteoblast (Aob) and osteoclast (Aoc) activities through
k1 and k2 parameters, the other parameters do not impact either of the obtained
results in this study.

However, it appeared that k1 and k2 have a higher impact on the final results as
reported in Table 1. As k1 decreases, ρbone decreases too (−11.8%), whereas as
k2 decreases, ρbone increases (+15.68%). For W and Aob, inverse trends can be
noticed when varying k1 and k2. For k1, W and Aob fluctuate between +11.76%
and −8.67% and between −5.42% and +4.64%, respectively. For k2, W and
Aob fluctuate between −6.31% and +7.82% and between +3.32% and −3.68%,
respectively. Finally, Aoc varies between +0.61% and +0.47% for k1 and between
+6.31% and +7.82% for k2.

Most of the bone mineral density variation occurs within the k1 and k2 phases.
Hence, modifying only one parameter (k1 or k2) at a time has a direct impact on
the final results. This effect would be compensated for if both parameters would
change oppositely in the same proportions, which would lead to the same final
results.

After identification and validation of the mechanobiological phenomena at play
in this model (developed mechanical energy, osteoblast and osteoclast activities,
and bone mineral density variations) as a function of time for given intensities
of mechanical forces, the results were plotted not as a function of time, but as a
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Figure 9. Numerical results (in comparison to the initial model
hypotheses of Figure 1).

function of the intensity of mechanical energy for all the simulations. The results
are presented in Figure 9.

Figure 9 shows the results obtained with the newly proposed mechanoregulatory
model. These results should be compared with Figure 1 showing the theoretical
hypotheses defined initially. An observation is made that a very strong correlation
is obtained between the proposed model and the obtained numerical results. We
have an initial increase of the osteoblast and osteoclast activities up to their max-
imum values that remain constant afterwards. The only difference is that in the
numerical model, the initial osteoblast activity being triggered by the osteoclasts
was not included, which explains why it is not visible in Figure 9, but starts directly
increasing at the origin. We also observe that the bone mineral density evolution
follows the sum of both cell activities (function of the applied mechanical force)
being positive initially for lower mechanical energy and negative later on for higher
energy from an original normalized bone density of 0.5. The maximum osteoblast
activity is reached first (energy level W1) followed by the maximum of the osteo-
clast activity (energy level W3). We note that the equilibrium between osteoblast
and osteoclast activity does not correspond to the bone mineral density variation
equaling zero (i.e., a return to the initial bone density of 0.5) as there appears to be
a time delay of the structure response to the mechanical load. The passage of the
bone mineral density from positive to negative variation occurs later. Thereafter,
there is a continuing decrease of the bone mineral density with stabilization later
on, dependent on the intensity of the applied force.

3.3. Application to variable load conditions. The numerical results were validated
on constant load and showed good correlation with the proposed model hypotheses.



BONE REMODELING UNDER MEDIUM AND HIGH MECHANICAL LOAD 301

Figure 10. Bone mineral density, cell activity, and energy varia-
tions when applying a variable force below and above the degra-
dation threshold (overload threshold).

Hence, to extract bone density variations in a more “real application”-like environ-
ment, variable mechanical forces were considered. A constant force is applied
on the model until equilibrium is reached (constant bone density that occurs in
normal living conditions after several weeks). Then the intensity of the applied
force is changed to reach a new equilibrium. This is done for two intensities of
the mechanical force, one below and one above the overload degradation threshold.
Results are presented in Figure 10.

At initial mechanical load (300 N), bone density quickly reaches equilibrium
(≈ 0.55) with decreasing cellular activity. Next, the force is increased above the
threshold (520 N). The cell activity is changed to reach its maximum with imme-
diate response from osteoblasts and delayed response from osteoclasts. This is
dependent on the evolution of the elastic strain energy within the model that takes
time to develop as a function of the bone density that is present at a given point of
the structure and at a given time. Once the energy has developed above the thresh-
old, bone density starts to decrease to reach a new equilibrium that is lower than the
previous one. When cycling this effect by applying in turn these two mechanical
forces, we observe the corresponding bone density variations and new equilibrium
being formed. Decreasing the overloading force will lead to a reincrease of the
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bone density coming back to its “normal” healthy working conditions. However, it
is anticipated that keeping an overload condition on the bone will probably lead to
a complete degradation of the structure. This was not modeled here as it certainly
requires accounting for extra mechanobiological actions that were not integrated
within this simplified mechanoregulatory model.

4. Conclusion

A new comprehensive approach based on cell activity to describe bone remod-
eling is proposed to assess the possible bone degradation kinetics when under
high-intensity mechanical loads. Despite the complexity of the mechanobiological
process, only four experimentally measurable parameters are required to tune this
model for specific cases. These are the variations of the bone density kinetics with
the intensity of the applied mechanical loads up to their maximum value, and the
two maximum values for osteoblasts and osteoclasts activities. The results show
the respective contributions of each process on the bone mineral density evolution
and are in agreement with the experimental data provided in the literature. In fact,
the model is able to depict both the harmful and the favorable effects of high and
medium mechanical loads, respectively. With this approach, when experimentally
measuring the four model parameters for different load scenario (force intensity,
test specimen, aging, diseased, etc.), potential differences are expected between
the cases and possible foreseen applications for the optimization process for sport
activities.
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WOLFGANG H. MÜLLER AND NIKOLAY M. BESSONOV

Recent experiments by Macha et al. (Front. Bioeng. Biotech. 7 (2019), art. id. 37)
on the release of gentamicin embedded in a polylactic acid matrix film immersed
in a body fluid solution have shown, first, a sudden burst phenomenon after sev-
eral weeks and, second, a premature end to the release, such that a considerable
amount of gentamicin is kept in the matrix. It is shown that such phenomena
cannot be described adequately by assuming diffusion of the Fickian kind. In
order to improve the modeling, extensions to Fickian diffusion are proposed
as follows. The first one is of a phenomenological nature. A production term
in the diffusion equation with intrinsic parameters is introduced, all of which
can be interpreted intuitively and related to experimental data. The model al-
lows one to capture the aforementioned departure from the timewise parabolic
Fickian release characteristic eventually leading to complete release. Second, a
micromodel is presented that provides a physical explanation for the proposed
production: the drug is released from a carrier particle into the matrix, which
eventually comes to an end due to the diminishing particle surface, and the drug
adheres to a core due to surface tension. The material parameters of both models
are determined by inverse analysis of experimental data.

1. Introduction

Polylactic acid (PLA) is one of the most common polymers used as a microcarrier
of drugs [Jalil and Nixon 1990; Wischke and Schwendeman 2008; Conti et al.
1991]. Low toxicity, excellent biocompatibility, and the absence of inflammation
in contact with living organisms, as well as good mechanical properties, make
PLA attractive for the pharmaceutical industry, including for the creation of drug-
retarding systems [Conti et al. 1991].

It is important to predict drug release rates and to understand the primary pro-
cesses that manage the release. Drug release from biodegradable polymeric car-
riers, such as a PLA matrix, mostly depends on loading efficiency of the drug,
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solubility, biodegradability, diffusion, and the size of the carrier. Mathematical
models are an important tool for the development of pharmaceutical compositions,
the evaluation of drug release processes, and, in general, the optimal design of new
systems [Peppas and Narasimhan 2014].

Significant work has been done on the mathematical modeling of release profiles.
See, e.g., [Bruschi 2015, Chapter 5], according to which the most common math-
ematical models describing drug release are the zero-order model, the first-order
model, the Higuchi model, the Hixson and Crowell model, and the Korsmeyer-
Peppas model.

In the zero-order model the release kinetics of the drug dissolution is only a
function of time and the process takes place at a constant rate independent of the
active substance concentration. This model holds true only in the case of very slow
drug release.

The first-order model is based on the assumption that the change in concentra-
tion of drug in the drug carrier with respect to change in time depends only on
its concentration and on the phenomenon of dissolution of a solid particle in a
liquid with constant rate. The first-order model can be used to describe the drug
dissolution in pharmaceutical dosage forms such as those containing soluble active
substances incorporated in a porous matrix. For this system the amount of drug
released is proportional to the amount of remaining drug in the matrix. Thus, the
amount of active release tends to decrease as a function of time.

The Higuchi model [1963] was the first refined mathematical model that de-
scribed the release of a drug from an insoluble matrix as a square-root-of-time-
dependent process based on Fickian diffusion. The model was initially derived
for planar systems. However, since then it has been modified for use with differ-
ent geometries and porous systems. This model is based on several assumptions:
(i) the drug concentration in the matrix is initially much higher than the solubility
of the drug, (ii) edge effects are negligible, so diffusion is unidirectional, (iii) the
thickness of the dosage form is much larger than the size of the drug molecules,
(iv) the swelling and dissolution of the matrix is negligible, (v) the diffusivity of
the drug is constant, and (vi) perfect sink conditions are attained in the release
environment.

The Hixson and Crowell model [1931] is used to describe the dissolution process
of such dosage forms in which the dissolution surface decreases over time and the
geometric shape itself remains the same. For example, this model can be used to
describe the dissolution of a specimen consisting of identical spherical particles.
This model is based on the assertion that the dissolution rate is proportional to the
cube root of weight of the drug particles. When the Hixson and Crowell model is
used, it is assumed that the drug release is limited by dissolution velocity and not
by diffusion, which can occur through the polymeric matrix.
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The power law model developed in [Korsmeyer et al. 1983; Ritger and Peppas
1987] is a semiempirical equation describing drug release from polymeric systems.
This law is useful when the release mechanism is not known or when more than
one type of drug release phenomenon is involved. Depending on the value of the
exponent of release that best matches the release profile of an active substance in
a matrix system, it is possible to establish a classification according to the type
of observed behavior: Fickian or non-Fickian models. In the Fickian model the
drug release is governed by diffusion. In non-Fickian models the mechanisms
driving the drug release are related to the relaxation of polymer chains, diffusion
and swelling, or extreme forms of transport. The latter is characterized by tension
and breaking of the polymer (solvent crazing).

All of these models can de used to describe the drug release of gentamicin (GM)
in PLA carrier [Trang et al. 2019]. However, sudden burst phenomena are observed
after several weeks on graphs of GM release from PLA microspheres, which the
above models do not take into account. This kind of behavior was also observed
in [Macha et al. 2019] during the initial release of GM from a PLA matrix, as well
as a premature stop to the release.

Obviously different mathematical models are required to model such observa-
tions. To this end we will, in a first step, introduce a phenomenological production
term in the classical Fickian diffusion equation, which contains two constitutive
parameters for modeling the speed and extend of saturation in the two stages. In
a second step, this production term will be introduced and interpreted based on
microphysical considerations: the drug is embedded and needs to be delivered to
the carrier first. However, the solubility of the embedded drug is limited. The
effects resulting from the degradation of the polymer carrier will not be described
here but studied in future work instead.

The two developed mathematical models will be tested on the experiment de-
scribed by Macha et al. [2019], which we briefly summarize in the following pas-
sages. It should be noted that they also attempted to fit the data based on simple
Fickian diffusion laws. Note that the models presented in this paper go considerably
beyond this traditional approach.

In recent experiments by Macha et al. [2019] the dissolution behavior of dif-
ferent drugs in various carriers was investigated. One of the investigated systems
concerned the release of GM in a PLA matrix as follows. As a release medium
mimicking the body fluid, phosphate-buffered saline solution was used. This solu-
tion had a pH of 7.4 and was kept at a “body temperature” of 37± 0.1 ◦C. The GM
was stored in a nanoporous matrix made of PLA. A scanning electron micrograph
(SEM) of the situation is shown in Figure 1. The PLA matrix is shown in gray color
whereas GM blisters embedded within the matrix are in white. The distribution of
the drug is fairly random.
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Figure 1. SEM of the GM containing PLA film.

Figure 2. Film matrix specimens before and after curling.

In the experiment the drug-loaded PLA matrix sheet curled up and formed a
cylindrical tube. After insertion into a tube filled with solution it slowly started
to disintegrate. During this process more and more pore spaces for drug release
within the PLA matrix opened up. The film matrix specimens before and after
curling are shown in Figure 2.

The initial amount of drug in the matrix was md = 7.5 mg, and the solution
volume was Vs = 15 ml. Therefore, the maximum expected drug release concen-
tration is cmax = 0.5 mg/ml. This information was used to calculate the fraction of
the drug released at time t ,

F(t)=
cs(t)
cmax

, 0≤ F(t)≤ 1, (1)

where cs(t)= m(t)/Vs is the average concentration of the drug in the solution at
time t .
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Figure 3. Fractional cumulative release for GM in PLA.

The dependence of the experimentally determined fractional cumulative release
on time is indicated by the black circles in Figure 3.

The curve of Figure 3 has several characteristic features. We can clearly distin-
guish two stages, before and after the fifth week. Moreover, between weeks 1 and 3
the curve runs initially in a parabolic fashion, which indicates Fickian diffusion
behavior. However, between weeks 3 and 5 it levels off as if supply of drug is
lacking. After that between weeks 5 and 7 we observe another steep boost, which
if considered as Fickian would result in a parabolic growth law in time leading to
a 100% dissolution of drug in the body fluid. However, in reality this is not so and
again some saturation can be observed. Indeed, the connecting black lines during
weeks 5 to 15 clearly indicate a nonparabolic, i.e., non-Fickian behavior.

To demonstrate this quantitatively, an inverse analysis was performed based on
a purely Fickian model (similar as in [Macha et al. 2019] or [Rickert et al. 2019],
where also more details regarding the computational methods can be found). From
the experiment it is known that the matrix curls into a tube. Therefore, we consider
a hollow cylinder � of internal and outer radii ri = 3.2 mm and ro = 3.4 mm,
respectively, with a height of H = 20 mm; see Figure 4. Since the thickness d =
ro−ri = 0.2 mm of the cylinder is very small, it is assumed that the drug is released
only through the inner and outer side surfaces 0 and not through the rims at the
top into the body fluid solution. The distribution in the z direction is assumed to
be uniform. In addition it is assumed that compared to the matrix the diffusion
of the drug in the body fluid is much faster and a homogeneous distribution is
instantaneously assumed. No differential equations need to be used to analyze that
process. We assume that all that is released from the matrix into the body fluid
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Figure 4. Cylindrical geometry.

is immediately homogeneously distributed in there and contributes to F(t), which
can then be calculated by simple algebra. Our goal is to describe the diffusion
process within the matrix domain and the mass transfer across the boundary, as
well as to determine the diffusion coefficient of the dissolved drug in the matrix,
which is one of the key parameters characterizing the kinetics of release. To this
end one may think simplistically of using the mass balance together with Fick’s
first law,

∂c(r, t)
∂t

=−∇ · J, J =−D∇c(r, t), (2)

in order to obtain the classical diffusion equation, which describes the diffusion
process in the matrix m,

∂cm(r, t)
∂t

= D1cm(r, t)≡
(
∂2

∂r2 +
1
r
∂

∂r

)
cm(r, t) for all r ∈�, (3)

cm being the concentration of drug in the matrix, which depends on both time
and position, and an equation (or boundary/transfer condition) describing the mass
transfer across the boundary into the solution s,

Vs
∂cs(t)
∂t
= 2πH D

(
r
∂cm(r, t)
∂r

)∣∣∣∣
0

, (4)

where Vs denotes the volume of the solution of body fluid and cs(t) is the time-
dependent concentration in the solution.

As initial conditions, a uniform distribution of the drug in the matrix and the
absence of the drug in the solution are assumed: cm(r, t = 0) = c0 for all r ∈ �
and cs(t = 0)= 0, where c0 is the initial concentration of drug in the matrix,

c0 =
md

Hπ(r2
o − r2

i )
≈ 90.4 mg/ml. (5)
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The equations of the model were solved numerically by using the finite volume
method [Macha et al. 2019; Rickert et al. 2019]. In order to account for the two
stages, two corresponding diffusion coefficients were introduced.

The diffusion coefficients for two different stages were determined by minimiz-
ing the target function E = (1/N )

∑N
i=0|(Fexp(ti ) − Fnum(ti ))/Fnum(ti )|, where

Fexp refers to the experimentally determined data known at discrete times ti with
i ∈ [0, 10]. Moreover, Fnum = cs(t)/cmax is the numerically predicted function.

The mass release is depicted in Figure 3 by the red curve. The resulting values of
the diffusion coefficients for the two stages, (I) t ∈ [0, 5] weeks and (II) t ∈ [5, 15]
weeks, are

DI = 1.461× 10−9 mm2/s, DII = 5.183× 10−10 mm2/s. (6)

Note that the values differ only slightly from those shown in [Rickert et al. 2019,
(12.47)] from a finite element discretization. The following remarks are in order:
(i) In stage I the prediction first underestimates the observed release and then begins
to take off. There is no leveling off or saturation. (ii) The release prediction in
stage II first overshoots a little and then begins to take off. Again it does not allow
for a saturation below 100% of release. It would continue to increase and finally get
close to 100% of cumulative release. (iii) The predicted diffusion coefficient during
stage II is less than that of stage I. This is contrary to intuition, because we believe
the matrix will start to deteriorate with ongoing time, which creates fissures and,
therefore, phenomenologically speaking, the diffusion coefficient should increase.
In summary, it is fair to say that this approach is more or less a brute-force fit
ignoring possible physical effects based on the simplest type of diffusion equations
available. We proceed to improve the situation.

2. Advanced modeling process

2.1. Model 1: a phenomenological production term mimicking a locking effect.
The main feature of this model is that it allows only a limited precipitation of the
drug in the carrier matrix to the solution. It is achieved by adding a phenomeno-
logically introduced sink (or negative production) term −χ(r, t). Its purpose is to
mimic a locking effect in the matrix so that after a certain time t∗ it will stop the
release of the drug. Consequently, we write

∂cm(r, t)
∂t

= D1cm(r, t)−χ(r, t) for all r ∈�, (7)

while (4), describing the mass transfer across the boundary and the initial condi-
tions, remains unchanged.
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Figure 5. Matrix concentration (9) and production term (11) as a
function of time. Time t∗ is indicated by a red line.

In order to find an explicit expression for χ(r, t) we first consider (7) without
the flux term, i.e.,

∂cm(r, t)
∂t

=−χ(r, t). (8)

A suitable form of the production is then found by means of a phenomenological
argument: we want the concentration of the drug at every point in the matrix to
change around a certain point in time, t∗ = 7 weeks, from the level c̃∗m, and then
finally assumes a constant level c̃∞m , where the symbol “∞” refers to long times,
namely 15 weeks. This behavior can be described by using the function

cm(r, t)=
c̃∗m− c̃∞m
π

arctan
(
−

t − t∗
εt∗

)
+

c̃∗m+ c̃∞m
2

, (9)

where ε is a dimensionless parameter allowing us to control the slope of the curve.
We can estimate all parameters from the experimental release profile at t∗ = 7 and
t∞ =∞≈ 15 weeks, i.e., the beginning and the saturation of the second stage:

c̃∗m = 1× c0, c̃∞m = 0.844× c0. (10)

Moreover, in order to guarantee the observed transition sharpness, we choose
ε = 0.05. The concentration-time function is shown on the left of Figure 5. The
transition into saturation is clearly visible.

Then by substituting this function into (8), we obtain the following expression
for the production term:

χ(r, t)=
c̃∗m− c̃∞m
πεt∗

(
1+

(
t∗− t
εt∗

)2)−1

. (11)



MODELS FOR DRUG RELEASE OF GENTAMICIN IN A POLYLACTIC ACID MATRIX 315

The production term is shown on the right of Figure 5. As it should be, it is a
very sharp function distinctly different from zero only around the time t∗, which is
indicated by the straight red lines in the plots. This also means that there is nearly
no production during stage I. Here the release process will essentially be modeled
as Fickian.

2.2. Model 2: production term obtained from a micromodel. Note that Model 1
of Section 2.1 was phenomenological in the sense that we made the drug release
stop by prescribing an appropriate production term. In this subsection we attempt to
give reasons why the release stops and will “derive” the corresponding production
term from micromechanical considerations. To this end, we will assume that ini-
tially the matrix as well as the solution do not contain any drug, i.e., cm(r, t = 0)= 0
for all r ∈� and cs(t = 0)= 0, but rather the matrix will be filled gradually with
drug by dissolution of the drug particles stored within. As in (7) of Section 2.1 this
process is described by an additional (this time positive) production term χ(r, t)
in the diffusion equation,

∂cm(r, t)
∂t

= D1cm(r, t)+χ(r, t) for all r ∈�, (12)

and (4) describing the mass transfer across the boundary remains unchanged. The
diffusion coefficient D is unknown and will be determined from inverse analysis.

In order to obtain a suitable form for a physics-based production term we now
argue microscopically and start from a dissolution law established by Shukarev
[Zelikman et al. 1983, p. 424; Wikipedia 2017] to obtain its concrete mathematical
form. This law is formulated as follows. The amount of substance transferred
across the interface by dissolution of a single particle is proportional to the differ-
ence between the concentration at the interface c|0̃ and the concentration further
away, in other words by the “intensity of the sensing phase” c, the phase contact
surface dF , and time increment dt :

dm = α(c|0̃ − c) dF dt, (13)

where dm is the mass increment of the solute and α the mass transfer coefficient.
Now in order to get to the continuum scale we homogenize and assume that the

drug-carrying particles are all spherical of the same initial radius R0≈ 7.5×10−6 m
based on SEM examinations. For simplicity and in a first step it is also assumed
that they are initially uniformly distributed throughout the matrix. This means that
the particle density n = N/Vm is constant, while N is the number of particles and
Vm is a representative volume element of the matrix. Then Shukarev’s law suggests
the following form for the production term on the continuum level:

χ(r, t)= 4πR2(t)α(R)n[cm|0̃ − cm(r, t)] for all r ∈�, (14)
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where R(t) is the particle radius, which is a function of time, n = N/Vm is the
particle number density, N is the number of particles, Vm is the matrix volume,
and cm|0̃ is the concentration of dissolved drug at the interface between solid drug
and dissolved drug. It will be estimated from the condition that the part of the drug
that can dissolve in the remaining volume of the matrix is completely dissolved:

cm|0̃ =
N · ρd ·

4
3π(R

3
0 − R3

cr)

Vm− N · 4
3πR3

cr
, (15)

where ρd = 1032 mg/ml is the mass density of drug and Rcr is a critical radius to
which the drug particles dissolve and which will be discussed further. And α(R)
is the mass transfer coefficient, which depends on the radius of the drug particle.

We proceed to give a reason why the mass transfer coefficient is not constant
but is rather a kinetic characteristic. We assume that it is a function of the (average
homogenized) radius R of the drug particles. In fact, the smaller the radius of
the particle, the greater the surface tension and therefore the smaller the mass
transfer coefficient. We must also take into account that the drug particles do
not completely dissolve, i.e., a certain critical radius Rcr exists. When the particle
approaches this radius, the production stops, because the stabilizing surface tension
is too strong. This fact has been known for a long time [Finholt and Solvang 1968]
and observed until today [Dahlberg et al. 2008]. Hence, we propose the following
linear approximation carrying all these features:

α(R)= α0
R(t)− Rcr

R0− Rcr
, (16)

where α0 is an amplitude to be determined from inverse analysis. As evident by
its unit it is characteristic of the speed of dissolution. The critical radius Rcr is a
parameter to be adjusted depending on the observed saturation level and can be
calculated from mass conservation:

[1−F(15 weeks)]m0=N ·ρd·
4
3πR3

cr =⇒ Rcr≈0.54R0, cm|0̃≈74 mg/ml. (17)

In other words, the parameter Rcr puts an end to the dissolution. As mentioned
before the idea is that surface tension limits the size of particles that can dissolve.
Clearly, the particle radius will change with time until it reaches this limit. Hence,
we need a suitable kinetic equation. If we consider the dissolution of one drug
particle, Shukarev’s law reads

ṁ(t)=−α(R)[cm|0̃ − cm(r, t)] · 4πR2(t). (18)

We decompose the rate of change of drug mass as a product of drug density and
the rate of change in particle volume:

ρdV̇ (t)=−α(R)(cm|0̃ − cm(r, t)) · 4πR2(t). (19)
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After substituting the volume of the spherical particle V (t)= 4/3πR3(t) into (19)
we get

ρd
dR(t)

dt
=−α(R)[cm|0̃ − cm(r, t)]. (20)

Hence, during the inverse analysis we must solve the coupled system of equations
(7), (14), (16), and (20), subject to the initial and boundary conditions mentioned
at the beginning of this subsection and R(0)= R0.

3. Results and discussion

We begin by presenting the results of the phenomenological model with the nega-
tive production from Section 2.1. The predicted mass release is shown in Figure 6.
Two values for the diffusion coefficients during the two stages were obtained from
inverse analysis of the data:

DI = 1.470× 10−9 mm2/s, DII = 1.509× 10−9 mm2/s. (21)

Note that DII is slightly larger than DI. Coincidentally this is confirms our intuition:
we expect fissures in the matrix to be generated and to increase during longer
exposure of the specimen to the body fluid. Overall this would correspond to an
increasing diffusion coefficient. However, it should be emphasized that this result
is nothing more than a coincidence and not really substantiated by the model.

Summarizing we may say that the traditional Fickian model of drug release from
the matrix and its release into a body fluid solution was extended by introducing a
phenomenologically motivated production term. It turns out that the stagnation of
the release can be modeled adequately in the second stage during weeks 5 to 15.
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Figure 6. Fractional cumulative release with two-stage diffusion coefficient.
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Figure 7. Fractional cumulative release predicted by Shukarev’s
dissolution model.

We now turn to the micromechanical model with constant particle distribution
in the matrix from Section 2.2. The predicted mass release and the experimental
data are depicted in Figure 7.

The corresponding values for the diffusion coefficients during the two stages are

DI = 2.418× 10−9 mm2/s, DII = 3.588× 10−9 mm2/s. (22)

As part of the inverse analysis the following value for the model parameter of
the mass transfer coefficient (16) was obtained: α0 = 2× 10−9 m/s.

By looking at the graph it turns out that the stagnation of the release can be
modeled quite well in the second stage during weeks 5 to 15. As in the model
from Section 2.1, the first stage stagnation after week 3 is not represented at all.
Again the diffusion coefficient for the second stage is slightly larger than during
the first stage. As discussed before this agrees conveniently with our intuitive
view for easier diffusion due to progressing deterioration of the matrix. It is to be
understood that the diffusion coefficient is a kinematic characteristic that, generally
speaking, depends on many facts (including the ones listed above). Therefore, our
assumption about the relationship between the quality of the matrix and the values
of the diffusion coefficient has been put into a new perspective.

4. Conclusions and outlook

Various mathematical models have been analyzed in order to describe the diffusion
process in a carrier matrix and drug release across the boundary. After a short
review of results from classical Fickian diffusion an extended diffusion equation
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with two different production terms was presented. These can mimic a locking
effect, one on a phenomenological basis and the other one on microscopic grounds
regarding the dissolution of individual drug particles.

It is intuitively clear that the deterioration of the quality of the polymer matrix
over time can be “incorporated” in the determination of the diffusion coefficient
for two different stages — before and after the fifth week.

However, we must conclude that the suggested models can give only an approx-
imate understanding of the drug release described in [Macha et al. 2019], since
they do not describe the saturation during the first phase as well as the destruction
of the carrier polymer matrix into parts before the active substance is completely
released, which is one of the reasons for the burst-type release. The analysis of
this is left to future research.

Moreover, our enhanced models may well describe drug dissolution and diffu-
sion in a nonbiodegradable polymer matrix. Such a matrix after the release of the
active substance must be removed from the body either mechanically or through
the gastrointestinal tract. To describe the release of a drug from such a matrix, we
do not need to introduce two stages and two diffusion coefficients.
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ANALYTICAL MECHANICS ALLOWS NOVEL VISTAS
ON MATHEMATICAL EPIDEMIC DYNAMICS MODELING

PAUL STEINMANN

This contribution aims to shed light on mathematical epidemic dynamics model-
ing from the viewpoint of analytical mechanics. To set the stage, it recasts the
basic SIR model of mathematical epidemic dynamics in an analytical mechanics
setting. Thereby, it considers two possible reparametrizations of the basic SIR
model: one rescales time, while the other transforms the coordinates, i.e., the
independent variables. In both cases, Hamilton’s equations in terms of a suited
Hamiltonian as well as Hamilton’s principle in terms of a suited Lagrangian are
considered in minimal and extended phase and state space coordinates, respec-
tively. The corresponding Legendre transformations relating the various options
for the Hamiltonians and Lagrangians are detailed. Ultimately, this contribu-
tion expands on a multitude of novel vistas on mathematical epidemic dynamics
modeling that emerge from the analytical mechanics viewpoint. As a result, it
is believed that interesting and relevant new research avenues open up when ex-
ploiting in depth the analogies between analytical mechanics and mathematical
epidemic dynamics modeling.

1. Motivation

The global COVID-19 pandemic, with alleged outbreak by the end of 2019 in
Wuhan, China [Lu et al. 2020] — despite its devastating implications for health,
economy, and society — has in particular challenged modeling and simulation of
mathematical epidemic dynamics. Political decision makers around the globe seek
(or should seek) advice from scientists such as virologists, biologists, clinicians,
economists, and sociologists as well as modelers from different fields. Especially
the latter are in the position to virtually simulate various scenarios based on well-
founded assumptions in order to provide support and guidance for the difficult and
momentous decisions of politicians, e.g., on lockdown measures and stepwise exit
strategies thereof. Thus, the critical importance of modeling is clearly appreciated,
and indeed, mathematical epidemic dynamics modeling is a well-established and
mature field.
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Keywords: epidemics modeling, analytical mechanics.
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Traditional mathematical modeling of epidemic dynamics is rooted in the con-
cept of susceptible, infected, and recovered (SIR) compartments as originally pro-
posed in [Kermack and McKendrick 1927; 1932; 1933; 1937; 1939]. Various
modifications extend the classical SIR model to account for further compartments
such as, e.g., deceased (SIRD model), exposed (SEIR model), and quarantined
(SIQRD model), among many other sophisticated options [Hethcote 2000; Diek-
mann et al. 2013]. Classical SIR-type compartment-based models are coupled ordi-
nary differential equations (ODEs). Extending the ODE-based SIR-type modeling
approach to integro-differential equations (IDEs) allows one to also consider the
detailed course of the disease, e.g., delay due to incubation time and the infectious
period [Keimer and Pflug 2020]. SIR-type models describe the temporal spread
of infectious diseases for integral populations, thereby, however, neglecting the
interconnectedness of spatially distributed geographic areas. Recently proposed
multiple compartment models, e.g., the mcSIR model in [Seroussi et al. 2019], also
allow consideration of the geographical spread of potentially multiple infectious
virus strains within the population and its potentially multiple subgroups (e.g., age
groups). Spatial network models, e.g., [Balcan et al. 2009; 2010; Pastor-Satorras
et al. 2015], for example based on the SEIR model at each network node can
qualitatively simulate the outbreak dynamics of infectious diseases and the impact
of travel restrictions in geographical areas at the global (macro) scale such as China
and the USA [Peirlinck et al. 2020] or Europe [Linka et al. 2020]. However, due
to its stochastic nature and strong impact of socio-economic factors, modeling
epidemic dynamics within geographical areas at the local (micro) scale requires
the use of another modeling paradigm, i.e., rule-driven, agent-based models [Rah-
mandad and Sterman 2008]. Agent-based models allow for example studying the
effect of various lockdown exit strategies on local geographical entities with only a
comparatively small number of individuals (agents); see, e.g., [German et al. 2020].
Regardless of the modeling approach taken, quantitative predictions of epidemic
dynamics remain challenging and critically require careful identification of model
parameters from reliable databases; see, e.g., [Kergaßner et al. 2020b].

Given this mature state of affairs, why is a novel, alternative view
on mathematical epidemic dynamics modeling justified at all?

The answer is as follows: to date, modelers of complex mechanical systems and
behavior have developed a versatile and extremely successful toolset, including
sophisticated analytical and in particular efficient and accurate computational meth-
ods. Examples are techniques to master severe nonlinearities and couplings with
nonmechanical fields, a multitude of multiscale and homogenization modeling
approaches as well as incorporating uncertainty quantification into modeling and
simulation. Mathematical epidemic dynamics modeling can undoubtedly benefit
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largely from this accumulated expertise! In summary, it is therefore believed that
first translating epidemic dynamics models into an analytical mechanics setting
(related steps towards this aim may be found, e.g., in [Militaru and Munteanu
2013; Ionescu et al. 2015; Seroussi et al. 2019]) and then, secondly, exploiting the
analogy between the two approaches while utilizing the full toolset of mechanical
modeling can provide novel vistas and unprecedented opportunities. The present
contribution aims to sketch out a few of these perspectives and to encourage the me-
chanics community to offer its strong modeling expertise to possibly and hopefully
help further improve epidemic dynamics modeling.

2. Basic SIR model

Classical modeling of epidemics dynamics is rooted in the concept of susceptible,
infected, and recovered (SIR) compartments as originally proposed in [Kermack
and McKendrick 1927; 1932; 1933; 1937; 1939]. The basic compartment-based
SIR model is the set of two coupled ordinary differential equations (ODEs)[

I •

S•

]
=

[
βSI − γ I
−βSI

]
. (1)

Here, I and S denote the stock of individuals in the infected and the susceptible
compartments, respectively, normalized by the size of the entire population. The
notation for the derivative of a quantity with respect to ordinary time t is

{ · }
•
:= dt { · }. (2)

The parameters β and γ are the infection and the recovery rate, respectively, with
their ratio defining the basic reproduction number R0 := β/γ . Note finally that
the stock of individuals in the recovered compartment follows from the constraint
S+ I + R = 1; thus, the evolution equation R• =−[S•+ I •] is tacitly suppressed
in our presentation.

3. Time reparametrized SIR model

In order to recast the basic SIR model into a format more amenable to the analytical
mechanics setting, it is proposed, as a first option, to rescale time as

τ :=

∫ t

0
SI dt with dτ/dt = SI. (3)

The notation for the derivative of a quantity with respect to rescaled time τ is

{ · }
◦
:= dτ { · }. (4)
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Consequently, the derivatives with respect to rescaled and ordinary time are related
via

{ · }
◦
= { · }

•/[SI ]. (5)

As a result, the basic SIR model is eventually reparametrized in terms of rescaled
time as [

I ◦

S◦

]
= F with F :=

[
β − γ /S
−β

]
=:

[
V
F

]
. (6)

In the time reparametrized SIR model the right-hand side is abbreviated as the
forcing term F, i.e., as the column matrix consisting of the time reparametrized rate
of infection V and force of infection F (a common terminology from mathematical
epidemiology already establishing a semantic analogy to mechanics). Computing
I ◦◦ = [γ /S2

]S◦ from (6)1 and eliminating S◦ with the help of (6)2 renders I ◦◦ =
−βγ/S2. Resorting finally again to (6)1, i.e., expressing S(I ◦) = γ /[β − I ◦],
allows formulating the time reparametrized SIR model as a single nonlinear ODE

I ◦◦ =−R0[β − I ◦]2 (7)

exclusively in the stock of individuals in the infected compartment and with the
basic reproduction number and the infection rate as parameters.

3.1. Hamiltonian in minimal phase space coordinates. The minimal phase space
coordinates collectively assembled in the column matrix Z ∈ R2, i.e., the general-
ized coordinate Q defined as the stock of individuals in the infected compartment
and the generalized momentum P defined as the stock of individuals in the suscep-
tible compartment, span the two-dimensional phase space P; thus,

P :=

{
Z :=

[
Q
P

]
:=

[
I
S

]}
. (8)

The Hamiltonian H(Z) in minimal phase space coordinates, which eventually re-
sults in the time reparametrized SIR model from (6), is then identified as

H(Z) := β[I + S] − γ ln S. (9)

Indeed, the corresponding Hamilton equations deliver a reformulation of the result
in (6), i.e., [

I ◦

S◦

]
=

[
0 1
−1 0

] [
β

β − γ /S

]
. (10)

Symbolic notation clearly reveals the Hamiltonian structure of the time reparame-
trized SIR model

Z◦ = J · ∂Z H(Z). (11)
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Thereby, the skew-symmetric J ∈ R2
×R2 denotes the so-called symplectic matrix

in P

J :=
[

0 1
−1 0

]
(12)

with J t
=−J and J2

=−I , where I ∈ R2
×R2 is the common unit matrix in P.

The Hamiltonian structure in terms of the skew-symmetric J clearly identifies the
(autonomous) Hamiltonian H(Z) in minimal phase space coordinates as first inte-
gral, i.e., as a conserved quantity under the flow implied by the Hamilton equations,
since

H◦ = ∂Z H · Z◦ = ∂Z H · J · ∂Z H = 0. (13)

The gradient of the Hamiltonian H(Z) with respect to the minimal phase space
coordinates, abbreviated in the sequel as G(Z) ∈ R2, is computed as

∂Z H(Z)=
[

β

β − γ /S

]
=: G(Z). (14)

Taken together, the time reparametrized SIR model obeys Hamiltonian structure
and identifies the relation between the gradient G(Z) ∈ R2 of the Hamiltonian
H(Z) in minimal phase space coordinates and the forcing term F(Z) ∈ R2 as

Z◦ = J · G(Z)= F(Z). (15)

Exchanging the time derivative to the one with respect to ordinary time t destroys
the clean Hamiltonian structure in terms of a constant symplectic matrix; i.e.,

Z• = [SI ]J · G(Z)= [SI ]F(Z). (16)

One may, of course, reinterpret this result as a Hamiltonian structure with noncon-
stant, coordinate-dependent symplectic matrix [SI ]J on a nonflat manifold.

3.2. Lagrangian in minimal state space coordinate. The minimal state space co-
ordinate, i.e., the generalized coordinate Q defined as the stock of individuals in
the infected compartment, spans the one-dimensional state space S; thus,

S := {Q := I }. (17)

Then a Legendre transformation of the Hamiltonian in minimal phase space coor-
dinates defines the corresponding Lagrangian

L(I, I ◦) := sup
S
{SI ◦− H(Z)}. (18)

The supremum condition identifies I ◦ with the derivative ∂S H(Z) of the Hamil-
tonian in minimal phase space coordinates from (9) with respect to the generalized
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momentum, and renders

I ◦ .= β − γ /S. (19)

Resolving the above supremum condition for S in terms of I ◦ delivers

S(I ◦)= γ /[β − I ◦]. (20)

Then, with S(I ◦)I ◦ = γ I ◦/[β − I ◦] and H(I, S(I ◦)) = β[I + γ /[β − I ◦]] −
γ ln(γ /[β − I ◦]), the Lagrangian in minimal state space coordinate follows even-
tually as

L(I, I ◦)=−β I − γ + γ ln(γ /[β − I ◦]). (21)

Based on the Lagrangian in minimal state space coordinates, Hamilton’s principle
results in the stationarity condition[

∂L
∂ I ◦

]◦
=
∂L
∂ I
. (22)

Thus, with ∂I ◦L = γ /[β − I ◦] → [∂I ◦L]◦ = γ I ◦◦/[β − I ◦]2 and ∂I L = −β, the
Euler–Lagrange equation corresponding to the Lagrangian in minimal state space
coordinates reads

I ◦◦+ R0[β − I ◦]2 = 0. (23)

Clearly, the Euler–Lagrange equation in minimal state space coordinates coincides
with the single, nonlinear ODE formulation of the time reparametrized SIR model
in (7).

3.3. Lagrangian in extended state space coordinates. Alternatively, extended state
space coordinates collectively assembled in the column matrix Q ∈ R2, i.e., the
generalized coordinates jointly defined as the stock of individuals in the infected
and susceptible compartments, span the two-dimensional state space S; thus,

S :=

{
Q :=

[
I
S

]}
. (24)

Then the Lagrangian L(Q, Q◦) in extended state space coordinates, which even-
tually results in the time reparametrized SIR model from (6), is determined as

L(Q, Q◦) := 1
2 Q · J t

· Q◦− H(Q). (25)

Here, the Legendre transformation term Q · J t
· Q◦ = Q◦ · J · Q expands as the

skew-symmetric form

Q · J t
· Q◦ = SI ◦− I S◦, (26)
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whereas the Hamiltonian H(Q), corresponding to (9), is now parametrized in terms
of the extended state space coordinates Q with

H(Q) := β[I + S] − γ ln S. (27)

As a result, the Lagrangian in extended state space coordinates then renders the
stationarity conditions of the corresponding Hamilton principle as[

∂L
∂ Q◦

]◦
=
∂L
∂ Q

. (28)

With ∂Q◦L = Q · J t/2 and ∂Q L = Q◦ · J/2−G(Q), the Euler–Lagrange equations
thus follow as

1
2 Q◦ · J t

=
1
2 Q◦ · J − G(Q). (29)

Unfolding the compact symbolic notation, these expand concretely into

1
2

[
S◦

−I ◦

]
=

1
2

[
−S◦

I ◦

]
−

[
β

β − γ /S

]
. (30)

The Euler–Lagrange equations in (29) are next reformulated by recalling that due to
the skew-symmetry of the symplectic matrix, Q◦ · J =−Q◦ · J t and Q◦ · J t

= J ·Q◦

hold; thus,

J · Q◦ =−G(Q). (31)

Finally, with J2
= −I , the reformulated Euler–Lagrange equations in (31) are

modified into

Q◦ = J · G(Q)= F(Q). (32)

Obviously, this format recovers the relation between the gradient G(Q) ∈ R2 of
the Hamiltonian H(Q) (in extended state space coordinates) and the forcing term
F(Q) ∈ R2 already established previously in (15). Likewise, exchanging the time
derivative to the one with respect to ordinary time t

Q• = [SI ]J · G(Q)= [SI ]F(Q) (33)

results again in a formulation with nonconstant, coordinate-dependent symplectic
matrix [SI ]J on a nonflat manifold.

3.4. Hamiltonian in extended phase space coordinates. For academic curiosity
it is also interesting to consider extended phase space coordinates Q, i.e., the gen-
eralized coordinates jointly defined as the stock of individuals in the infected and
susceptible compartments, and P , i.e., heretofore undefined generalized momenta,
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collectively assembled in the column matrix Z ∈ R4, to span the four-dimensional
state space P; thus,

P :=

{
Z :=

[
Q
P

]
with Q :=

[
I
S

]
and P :=

[
ϒ

6

]}
. (34)

A Legendre transformation of the Lagrangian in extended state space coordinates
from (25) defines the associated Hamiltonian

H(Q, P)= sup
Q◦
{P · Q◦− L(Q, Q◦)}. (35)

The corresponding supremum condition identifies P with ∂Q◦L(Q, Q◦), the de-
rivative of the Lagrangian L(Q, Q◦) in extended state space coordinates from (25)
with respect to the time reparametrized rate of the generalized coordinates Q◦, and
renders

∂L
∂ Q◦

=
1
2 Q · J t

=: P . (36)

As a result, P does not depend on Q◦, thus identifying the Lagrangian L(Q, Q◦)
in (25) as degenerate in the sense of Dirac’s generalized Hamiltonian dynamics
[Dirac 1950; 1958]. Consequently, with Q · J t

= J · Q and J2
=−I , an additional

constraint for the extended phase space coordinates emerges:

C(Q, P)= Q+ 2 J · P .
= 0. (37)

The Hamiltonian H(Q, P) in extended phase space coordinates thus follows from
Legendre transformation by incorporating the constraint via the Lagrange multi-
plier 3; i.e.,

H(Q, P)= 1
2 Q · J t

· Q◦− L(Q, Q◦)+3 ·C(Q, P). (38)

Taking into account the explicit form of the Lagrangian L(Q, Q◦) in extended
state space coordinates from (25) then renders the explicit representation of the
Hamiltonian H(Q, P) in extended phase space coordinates:

H(Q, P)= H(Q)+3 ·C(Q, P). (39)

Invoking ∂Q C(Q, P)= I and ∂P C(Q, P)= 2 J , Hamilton’s equations based on
the Hamiltonian H(Q, P) in extended phase space coordinates from (39) result in[

Q◦

P◦

]
=

[
0 I
−I 0

] [
∂Q H
∂P H

]
=

[
0 I
−I 0

] [
G(Q)+3

23 · J

]
. (40)

The unknown Lagrange multiplier 3 is determined from the consistency condition
for the constraint

C◦(Q◦, P◦)= Q◦+ 2 J · P◦ .= 0, (41)



NOVEL VISTAS ON MATHEMATICAL EPIDEMIC DYNAMICS MODELING 329

which, upon introducing Hamilton’s equations Q◦=23· J and P◦=−[G(Q)+3],
results in

23 · J − 2 J · [G(Q)+3] .= 0. (42)

The solution of the consistency condition then renders the explicit representation
for the Lagrange multiplier

3=− 1
2 G(Q). (43)

Using again Hamilton’s equation Q◦ = 23 · J and exploiting the skew-symmetry
of the symplectic matrix, i.e., 3 · J = −J ·3, recovers once more the already
previously established relation between the gradient G(Q) ∈R2 of the Hamiltonian
H(Q) (in extended state space coordinates) and the forcing term F(Q) ∈ R2:

Q◦ = J · G(Q)= F(Q). (44)

Finally, using Hamilton’s equation P◦ = −[G(Q)+3] identifies eventually the
time reparametrized rate of the heretofore unknown generalized momenta as

P◦ =− 1
2 G(Q)= 1

2 J · F(Q). (45)

The last equality follows from J2
=−I and the previous relation J ·G(Q)= F(Q).

4. Coordinate reparametrized SIR model

Alternatively, and again aiming to recast the basic SIR model into an analytical
mechanics format, it is proposed, as a second option, to logarithmically transform
the coordinates (or rather the independent variables) as

I 7→ i := ln I and S 7→ s := ln S. (46)

As a result, the basic SIR model, reparametrized in terms of logarithmically trans-
formed coordinates, however still in terms of derivatives with respect to ordinary
time t , now reads[

i •

s•

]
= f with f :=

[
βS(s)− γ
−β I (i)

]
=:

[
v

f

]
. (47)

Note that in this reparametrization, the stocks of individuals in the infected and
susceptible compartments are considered as dependent functions of the logarithmi-
cally transformed coordinates

I (i) := exp i and S(s) := exp s. (48)

In the coordinate reparametrized SIR model the right-hand side is abbreviated as
the forcing term f , i.e., as the column matrix consisting of the coordinate repa-
rametrized rate of infection v and force of infection f . Computing i •• = βS(s)s•
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from (47)1 and eliminating s• with the help of (47)2 renders i ••=−β2S(s)I (i). Re-
sorting finally again to (47)1, i.e., expressing S(s)= [i •+γ ]/β, allows formulating
the coordinate reparametrized SIR model as a single nonlinear ODE

i •• =−β I (i)[i •+ γ ] (49)

exclusively in the logarithmic stock of individuals in the infected compartment.

4.1. Hamiltonian in minimal phase space coordinates. The minimal (logarith-
mic) phase space coordinates collectively assembled in the column matrix z ∈ R2,
i.e., the generalized coordinate q defined as the logarithmic stock of individuals in
the infected compartment and the generalized momentum p defined as the logarith-
mic stock of individuals in the susceptible compartment, span the two-dimensional
phase space p; thus,

p :=

{
z :=

[
q
p

]
:=

[
i
s

]}
. (50)

Next, the Hamiltonian h(z) in minimal (logarithmic) phase space coordinates, which
eventually results in the coordinate reparametrized SIR model from (47), is identi-
fied as

h(z) := β[I (i)+ S(s)] − γ s. (51)

As a result, the corresponding Hamilton equations deliver a reformulation of (47),
i.e., [

i •

s•

]
=

[
0 1
−1 0

] [
β I (i)

βS(s)− γ

]
. (52)

Symbolic notation showcases clearly the Hamiltonian structure of the (logarithmic)
coordinate reparametrized SIR model

z• = j · ∂zh(z). (53)

Here, the skew-symmetric j ∈ R2
×R2 denotes the appropriate symplectic matrix

in p

j :=
[

0 1
−1 0

]
(54)

with j t
= − j and j2

= −i , where i ∈ R2
×R2 is the common unit matrix in p.

The Hamiltonian structure in terms of the skew-symmetric j clearly identifies the
(autonomous) Hamiltonian h(z) in minimal (logarithmic) phase space coordinates
as first integral:

h• = ∂zh · z• = ∂zh · j · ∂zh = 0. (55)
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The gradient of the Hamiltonian h(z) with respect to the minimal (logarithmic)
phase space coordinates, abbreviated in the sequel as g(z) ∈ R2, is computed as

∂zh(z)=
[

β I (i)
βS(s)− γ

]
=: g(z). (56)

Summarizing, the coordinate reparametrized SIR model obeys Hamiltonian struc-
ture and identifies the relation between the gradient g(z) ∈ R2 of the Hamilton-
ian h(z) in minimal (logarithmic) phase space coordinates and the forcing term
f (z) ∈ R2 as

z• = j · g(z)= f (z). (57)

It is emphasized that despite the logarithmic nature of the reparametrized coordi-
nates, here, as a benefit, the Hamiltonian structure involves the constant, coordinate-
independent symplectic matrix j of a flat manifold as well as derivatives with
respect to ordinary time t .

4.2. Lagrangian in minimal state space coordinate. The minimal (logarithmic)
state space coordinate, i.e., the generalized coordinate q defined as the logarithmic
stock of individuals in the infected compartment, span the one-dimensional state
space s; thus,

s := {q := i}. (58)

Legendre transformation of the Hamiltonian in minimal (logarithmic) phase space
coordinates defines the corresponding Lagrangian

l(i, i •)= sup
s
{si •− h(z)}. (59)

Then the supremum condition identifies i • with the derivative ∂sh(z) of the Hamil-
tonian in minimal (logarithmic) phase space coordinates from (51) with respect to
the generalized momentum, and renders

i • = βS(s)− γ. (60)

Resolving the above supremum condition for s in terms of i • delivers

s(i •)= ln([i •+ γ ]/β). (61)

Then, with s(i •)i • = ln([i • + γ ]/β)i • and h(i, s(i •)) = β[I (i) + [i • + γ ]/β] −
γ ln([i •+ γ ]/β), the Lagrangian in minimal (logarithmic) state space coordinate
follows eventually as

l(i, i •)=−β I (i)− [i •+ γ ][1− ln([i •+ γ ]/β)]. (62)
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Based on the Lagrangian in minimal (logarithmic) state space coordinates, Hamil-
ton’s principle results in the stationarity condition[

∂l
∂i •

]
•

=
∂l
∂i
. (63)

Thus, with ∂i•l = −[1− ln([i • + γ ]/β)] + β → [∂i•l]• = i ••/[i • + γ ] and ∂i l =
−β I (i), the Euler–Lagrange equation corresponding to the Lagrangian in minimal
(logarithmic) state space coordinates reads

i ••+β I (i)[i •+ γ ] = 0. (64)

Obviously, the Euler–Lagrange equation in minimal (logarithmic) state space co-
ordinates coincides with the single, nonlinear ODE formulation of the coordinate
reparametrized SIR model in (49).

4.3. Lagrangian in extended state space coordinates. Alternatively, extended (log-
arithmic) state space coordinates collectively assembled in the column matrix q ∈
R2, i.e., the generalized coordinates jointly defined as the logarithmic stock of in-
dividuals in the infected and susceptible compartments, span the two-dimensional
state space s; thus,

s :=

{
q :=

[
i
s

]}
. (65)

The Lagrangian l(q, q•) in extended (logarithmic) state space coordinates, which
eventually results in the coordinate reparametrized SIR model from (47), reads

l(q, q•) := 1
2 q · j t

· q•− h(q). (66)

Here, the Legendre transformation term q · j t
· q• = q• · j · q expands as the skew-

symmetric form
q · j t

· q• = si •− is•. (67)

The Hamiltonian h(q), corresponding to (51), is now parametrized in terms of the
extended (logarithmic) state space coordinates q as

h(q) := β[I (i)+ S(s)] − γ s. (68)

In extended (logarithmic) state space coordinates the Lagrangian then renders the
stationarity conditions of the corresponding Hamilton principle[

∂l
∂q•

]
•

=
∂l
∂q
. (69)

With ∂q•l = q · j t/2 and ∂ql = q• · j/2− g(q), the Euler–Lagrange equations thus
follow as

1
2 q• · j t

=
1
2 q• · j − g(q) (70)
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and concretely unfold into

1
2

[
s•

−i •

]
=

1
2

[
−s•

i •

]
−

[
β I (i)

βS(s)− γ

]
. (71)

Subsequently, the Euler–Lagrange equations in (70) are reformulated by noting
that q• · j =−q• · j t and q• · j t

= j · q•; thus,

j · q• =−g(q). (72)

Finally, with j2
=−i , the Euler–Lagrange equations from (72) reformulate as

q• = j · g(q)= f (q). (73)

This format recovers the relation between the gradient g(q) ∈ R2 of the Hamilton-
ian h(q) (in extended (logarithmic) state space coordinates) and the forcing term
f (q) ∈ R2 already established previously in (57).

4.4. Hamiltonian in extended phase space coordinates. For completeness we also
consider extended (logarithmic) phase space coordinates q, i.e., the generalized co-
ordinates jointly defined as the logarithmic stock of individuals in the infected and
susceptible compartments, and p, i.e., heretofore undefined generalized momenta,
collectively assembled in the column matrix z ∈ R4, to span the four-dimensional
state space p; thus,

p :=

{
z :=

[
q
p

]
with q :=

[
i
s

]
and p :=

[
υ

σ

]}
. (74)

A Legendre transformation of the Lagrangian in extended (logarithmic) state space
coordinates from (66) defines the associated Hamiltonian

h(q, p)= sup
q•
{ p · q•− l(q, q•)}. (75)

The Legendre transformation identifies p with the derivative ∂q•l(q, q•) of the
Lagrangian l(q, q•) in extended (logarithmic) state space coordinates from (66)
with respect to the rate of the generalized coordinates q•, and renders

∂l
∂q•
=

1
2 q · j t

=: p. (76)

Thus, p does not depend on q•, consequently identifying the Lagrangian l(q, q•) in
(66) as degenerate [Dirac 1950; 1958]. Consequently, with q · j t

= j ·q and j2
=−i ,

an additional constraint for the extended (logarithmic) phase space coordinates
results:

c(q, p)= q+ 2 j · p .
= 0. (77)
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The Hamiltonian h(q, p) in extended (logarithmic) phase space coordinates thus
follows from Legendre transformation by incorporating the constraint via the La-
grange multiplier λ; i.e.,

h(q, p)= 1
2 q · j t

· q•− l(q, q•)+λ · c(q, p). (78)

Taking into account the explicit form of the Lagrangian l(q, q•) in extended (log-
arithmic) state space coordinates from (66) results in the explicit representation of
the Hamiltonian h(q, p) in extended (logarithmic) phase space coordinates

h(q, p)= h(q)+λ · c(q, p). (79)

Invoking ∂q c(q, p) = i and ∂ pc(q, p) = 2 j , Hamilton’s equations based on the
Hamiltonian h(q, p) in extended (logarithmic) phase space coordinates from (79)
result in [

q•

p•

]
=

[
0 i
−i 0

] [
∂qh
∂ ph

]
=

[
0 i
−i 0

] [
g(q)+λ

2λ · j

]
. (80)

The unknown Lagrange multiplier λ is determined from the consistency condition
for the constraint

c•(q•, p•)= q•+ 2 j · p• = 0, (81)

which, with q• = 2λ · j and p• =−[g(q)+λ], results in

2λ · j − 2 j · [g(q)+λ] .= 0. (82)

The solution of the consistency condition then renders the explicit representation
for the Lagrange multiplier

λ=− 1
2 g(q). (83)

Using again Hamilton’s equation q• = 2λ · j and exploiting λ · j =− j ·λ recovers
once more the already previously established relation between the gradient g(q) ∈
R2 of the Hamiltonian h(q) (in extended (logarithmic) state space coordinates) and
the forcing term f (q) ∈ R2:

q• = j · g(q)= f (q). (84)

Moreover, using Hamilton’s equation p• =−[g(q)+λ] identifies finally the rate
of the heretofore unknown generalized momenta as

p• =− 1
2 g(q)= 1

2 j · f (q). (85)

The last equality follows from j2
=−i and the previous relation j · g(q)= f (q).
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5. Novel vistas from analytical mechanics

In order to systematically explore lessons that can be learned from an analytical
mechanics viewpoint on mathematical epidemic dynamics modeling, the coordi-
nate reparametrized version of the SIR model, based on the Hamiltonian in phase
space, is taken as the point of departure:

z• = j · g(z). (86)

Building on this compact representation, several analytical-mechanics-inspired
novel vistas on mathematical epidemic dynamics that promise fruitful research
avenues for its modeling are identified in the sequel.

Vista 1. Allowing for nonautonomous, i.e., time-dependent generalized Hamilto-
nians results in the generalized representation

z• = j · g(z, t). (87)

Possible options justifying a nonautonomous Hamiltonian are for example:

(a) Various lockdown measures (cancellation of large events, school closing, con-
tact limitations, etc.) as well as their reversal (exit strategies) at discrete points
in time are modeled by time-dependent parameters such as for example the
infection and the recovery rates

β = β(t) and γ = γ (t),

thus making the Hamiltonian time-dependent.

(b) Various modifications extend the classical SIR model to account for further
compartments such as, e.g., deceased (SIRD model), exposed (SEIR model),
and quarantined (SIQRD model), among many other, more sophisticated op-
tions [Hethcote 2000; Diekmann et al. 2013]. SIR+ models of these types are
then captured by appropriately extending the phase space variables

z := [I, S, . . . ] ∈ R2+···

contributing to the Hamiltonian and its gradient.

(c) Classical SIR-type compartment-based models are coupled ordinary differ-
ential equations (ODEs). Extending the ODE-based SIR-type modeling ap-
proach to integro-differential equations allows one to also consider, e.g., delay
due to incubation time and infectious period [Keimer and Pflug 2020]. For
p representing relevant parameters, e.g., continuously distributed risk groups
and/or past time, from space P , the right-hand side of these read as

g(z, t)=
∫

P
γ (z, p, t) dp

with γ (z, p, t) the appropriate p-density of g(z, t).
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Vista 2. Allowing for an infinite-dimensional phase space with its coordinates
z = z(x, t) ∈ R2+··· defined as fields in four-dimensional space-time results in
the generalized representation

z• = j · g{z(x), t}. (88)

Here, the right-hand side is a functional of the phase space coordinates rather than a
function. Possible options for an infinite-dimensional phase space are for example:

(a) Gradient-type models, whereby the Hamiltonian depends on the phase space
coordinates z = z(x, t) and their higher spatial gradients

g{z(x), t} = δzh(z(x),∇x z(x), . . . , t).

Consequently, the right-hand side follows from the variational derivative of
the Hamiltonian, rather than from its gradient. Partial differential equations
of reaction-convection-diffusion type describing the spatio-temporal spread of
infectious diseases are thus a modeling option [Yamazaki and Wang 2017].

(b) Integral-type models, whereby, similar to peridynamics formulations [Javili
et al. 2019], the right-hand side follows from a spatial integration

g{z(x), t} =
∫

X
γ (z(x), x, t) dx

over a cut-off domain X (horizon) that covers spatial interaction.

Vista 3. Allowing for a finite-dimensional phase space with its coordinates z ∈

R[2+··· ]n defined as column matrices results in the generalized representation

z• = j · g(z, t). (89)

Possible options for a finite-dimensional phase space are for example:

(a) Partition the entire population into subpopulations, thereby separately consid-
ering different age/gender/risk groups (see, e.g., [Pastor-Satorras et al. 2015]):

z= [zpop1
, . . . , zpopmax

].

(b) Partition into various geographical locations in general network models account-
ing for the spatio-temporal spread of infectious diseases (see, e.g., [Seroussi
et al. 2019]):

z= [zloc1, . . . , zlocmax].

(c) Partition into multiple virus strains providing for generic infectious diseases
(see, e.g., [Levy et al. 2018]):

z= [zvir1, . . . , zvirmax].
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Capturing the interactions among the various partitions in a network is then re-
flected by the off-diagonal terms in the Hessian H := ∂2

zzh of the Hamiltonian.

Vista 4. For a pandemic such as COVID-19, spatial (geographical) resolution,
i.e., resolution of a network, is required at multiple scales: at the global (macro)
scale, i.e., for the entire globe; at the medium (meso) scale, i.e., for individual
countries; and at the local (micro) scale, i.e., for individual cities/communities. A
fully detailed spatial resolution at the local (micro) scale for the entire globe is
computationally prohibitive; moreover, most often an overkill degree of detail is
also not needed and/or not possible due to the lack of data. However, the spatial
resolution shall be adaptive to the quantity of interest, e.g., to study the dynamics
of infectious disease spread in a particular city/community, only the integral results
of more remote locations on the globe matter. These can be captured by a reduced
resolution of the network in those geographically remote locations. This asks for
a truly multiscale approach that adaptively zooms in only where needed. Possible
options for multiscaling are for example:

(a) Vertical coupling of scales relies on the assumption that the two scales consid-
ered are sufficiently separated; see, e.g., [Saeb et al. 2016]. Then the “force”
term on the right-hand side can be up-scaled from a subscale model by aver-
aging in the sense of computational homogenization:

z• = 〈j · g(z, t; z)〉.

Here, the sup-scale (indicated by an over-bar) on the left-hand side behaves
like an SIR-type model whereas the subscale model at the right-hand side
lives either on a finite-dimensional phase space or is represented by a rule-
driven, so-called agent-based model. Agent-based models are an alternative
modeling paradigm considering only a comparatively small number of individ-
uals (agents). They are capable of capturing the stochastic nature and strong
impact of socio-economic factors present at small scales; see, e.g., [German
et al. 2020; Rahmandad and Sterman 2008]. The subscale model is driven
by the sup-scale phase space coordinates, whereby a proper scale-transition
condition defines suited boundary/initial conditions at the subscale.

(b) Horizontal coupling of scales, analogously to the quasicontinuum method
[Miller and Tadmor 2002], requires adaptive resolution of the network spacing,
here indicated by the sup-script h:

z•h = j · g(zh, t).

Adaptivity requires suited network densification indicators that may follow
from a proper error analysis, a topic that is still largely under-investigated for
epidemic dynamics models.
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Vista 5. The availability and reliability of recorded data, e.g., regarding the cumula-
tive or daily infection cases, during an epidemic is typically characterized by a large
degree of uncertainty, e.g., regarding the infection rates, the degree of immunity,
and/or their dark figures. Uncertainty quantification is based on simulations with
uncertain data:

z• = j · g(z(ω), t). (90)

Thereby, uncertain data is here parametrized in terms of elementary events ω from
which one may repeatedly draw samples to investigate uncertainty propagation
throughout our model; see, e.g., [Pivovarov et al. 2018; 2019]. Possible options
for the description of uncertainties are for example:

(a) Aleatoric uncertainties require the use of random variables with probability
density function (pdf) as a measure of likelihood (e.g., Gaussian pdf in terms
of the mean value and standard deviation). Aleatoric uncertainties are sto-
chastic by nature and may not be neglected when the standard deviation is
large.

(b) Epistemic uncertainties may be captured by fuzzy variables with possibility
density function as a measure of degree of membership (e.g., symmetric trian-
gular membership function in terms of its modal value and support). Epistemic
uncertainties reflect a lack of knowledge and, in the case of epidemic dynamics
modeling, can be reduced by increasing testing for either infections and/or for
antibodies.

Vista 6. The discrete trajectory in time of the phase space variables is algorithmi-
cally traced by an integrator of the generic format

zn+1
= zn
+1t j · g(zn+α(ω), tn+α). (91)

Here, subscripts n+ 1, n, and n+α refer to, respectively, the end point, the start
point, and an intermediate point of/within a time step of length 1t . Possible options
for time integrators that display different accuracy, stability, and robustness, in
particular when integrating nonlinear right-hand sides, are for example:

(a) Runge–Kutta integrators are off-the-shelf algorithms that come in a variety
of different flavors (following from the corresponding Butcher tableau) like,
e.g., single- and multistage integrators of varying algorithmic accuracy. How-
ever, they do not necessarily respect first integrals such as the conservation
of the Hamiltonian for autonomous cases and may thus suffer from long-term
deterioration of algorithmic stability and robustness.
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(b) Variational integrators are based on a discrete form of the action integral,
whereby the integrand of the action integral is given by a discrete Lagrangian∫ tn+1

tn
l(zn+1, zn,1t) dt→ stat.

The resulting discrete Hamiltonian principle then renders a variational integra-
tor that follows from the discrete action integral being stationary. Variational
integrators preserve symmetries (momentum maps) and structure (symplec-
ticity) and are thus characterized by long-term algorithmic accuracy, stability,
and robustness; see, e.g., [Lew et al. 2004].

(c) Time-finite-element integrators follow from discretizing the Galerkin (weak)
form of the Hamilton equations∫

T
δz · [z•− j · g] dt = 0 for all δz.

Choosing appropriate Ansatz spaces for the test and trial functions, and suited
quadrature rules for approximating the time integrals, render integrators of
arbitrary algorithmic accuracy that are also characterized by long-term algo-
rithmic stability and robustness; see, e.g., [Betsch and Steinmann 2000; 2001;
2002; 2005].

Vista 7. The underlying equations governing epidemic dynamics are oftentimes
unknown. However, they may be discovered from a data-driven approach [Brunton
et al. 2016] if sufficient data is available, a scenario that is typically met for the
spatio-temporal spread of infectious diseases. The key idea is then to connect
the matrix arrangement of available discrete data points for the rate of the phase
space coordinates by a matrix of Ansatz functions, e.g., monomials of the matrix
arrangement of available discrete data points for the phase space coordinates, with
the matrix arrangement of discrete Ansatz parameters

[z•dat1, . . . , z
•

datmax
]
T
= A(zdat1, . . . , zdatmax)[apar1

, . . . , aparmax
]
T. (92)

Only few relevant entries in the matrix arrangement of the discrete Ansatz parame-
ters are then determined from sparse regression; consequently the resulting models
are denoted as parsimonious and compromise between accuracy and complexity,
while avoiding overfitting [Brunton et al. 2016].

Vista 8. Many more modeling approaches inspired by analytical mechanics are
conceivable and it is left to the mechanics community to harness those to further
improve mathematical epidemic dynamics modeling.
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Figure 1. Snapshots of simulated spatio-temporal epidemic
spread across Germany with countywise resolution. Colors depict
population with COVID-19-specific symptoms on March 13, 2020
(before wave peak), March 27, 2020 (wave peak), and April 10,
2020 (after wave peak). The simulation is based on a spatial net-
work of 401 counties and a convolution-type integro-differential
model [Kergaßner et al. 2020a]. The model parameters are cali-
brated and validated based on extensive data from the Robert Koch
Institute (https://corona.rki.de/).

6. Summary and perspective

First, this contribution explored options of how to recast the classical SIR model of
mathematical epidemic dynamics modeling in the variational setting of analytical
mechanics. In particular, it demonstrated that two conceptually entirely different
reparametrizations of the basic SIR model, i.e., either by rescaling time or by
transforming coordinates (independent variables), severely ease identification of
corresponding Hamiltonians and Lagrangians for use within Hamilton’s equations
and Hamilton’s principle. In each case, formulations in either minimal or extended
phase and state space coordinates are possible, providing in total eight different
modeling options. Interestingly, in minimal phase space coordinates, the stock of
individuals in the infected and the susceptible compartments represent the general-
ized coordinate and the generalized momentum, respectively. In contrast, for ex-
tended phase space coordinates, they jointly represent the generalized coordinates,
whereas the associated generalized momenta are initially unknown and only follow
from exploiting a constraint on the extended phase space coordinates. However,
regardless of the particular formulation chosen, from either Hamilton’s equations
or Hamilton’s principle one eventually recovers the original set of coupled ODEs
of the SIR model. As a recommendation, logarithmically transforming the coordi-
nates appears more attractive, since derivatives with respect to ordinary time are

https://corona.rki.de/


NOVEL VISTAS ON MATHEMATICAL EPIDEMIC DYNAMICS MODELING 341

retained for the evolution of the phase space coordinates. As an important perspec-
tive, recasting the classical SIR model in one of the eight different modeling options
enables the analytical mechanician to employ the full mechanical modeling toolset
for a plethora of important extensions. The striking analogy between analytical
mechanics and mathematical epidemic dynamics modeling opens up a multitude
of fascinating and relevant new research avenues for the progression of the latter.
It is thus believed that future exploitation of the Hamiltonian and/or Lagrangian
structure of mathematical epidemic dynamics modeling leads to unprecedented
insights and options for novel formulations.

As a perspective, Figure 1 showcases (previously unpublished) snapshots of
the simulated spatio-temporal epidemic spread across Germany with countywise
resolution as an example for the potential of combining, e.g., Vista 1(a)–(c) and
Vista 3(b) [Kergaßner et al. 2020a].
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A GEOMETRICALLY NONLINEAR EULER–BERNOULLI
BEAM MODEL WITHIN STRAIN GRADIENT ELASTICITY

WITH ISOGEOMETRIC ANALYSIS
AND LATTICE STRUCTURE APPLICATIONS

LOC V. TRAN AND JARKKO NIIRANEN

The nonlinear governing differential equation and variational formulation of the
Euler–Bernoulli beam model are formulated within Mindlin’s strain gradient
elasticity theory of form II by adopting the von Kármán strain assumption. The
formulation can retrieve some simplified beam models of generalized elasticity
such as the models of simplified strain gradient theory (SSGT), modified strain
gradient theory (MSGT), and modified couple stress theory (MCST). Without
the presence of nonlinear terms, the resulting linear differential equation is solv-
able by analytical means, whereas the mathematical complexity of the nonlinear
problem is treated with the Newton–Raphson iteration and a conforming isogeo-
metric Galerkin method with C p−1-continuous B-spline basis functions of order
p ≥ 3. Through a set of numerical examples, the accuracy and validity of the
present theoretical formulation at linear and nonlinear regimes are confirmed.
Finally, an application to lattice frame structures illustrates the benefits of the
present beam model in saving computational costs, while maintaining high accu-
racy as compared to standard 2D finite element simulations.

1. Introduction

Microbeams are nowadays the key components in micro- and nanoelectromechan-
ical systems (MEMS and NEMS, respectively) which are broadly applicable in
designs such as microsensors and -actuators [Hu et al. 2004; Lun et al. 2006;
Moghimi Zand and Ahmadian 2009], atomic force microscopes [Chang et al. 2007;
Turner and Wiehn 2001], and so on. In these devices, the beam thickness is
sized down to the order of microns and submicrons. A number of experimental
tests [Fleck et al. 1994; Lam et al. 2003; Stölken and Evans 1998] have demon-
strated, however, that the size-dependent behavior of these extremely small-scale
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microstructural systems cannot be predicted and explained by classical continuum
mechanics. In fact, experimental measurements have revealed that reducing the
beam/rod size, e.g., decreasing the beam/rod thickness or diameter, results in an
enhancement of the torsional stiffness of a copper wire [Fleck et al. 1994], a sig-
nificant increase in the level of plastic hardening of a thin nickel beam [Stölken
and Evans 1998], or a remarkable increase in the bending rigidity of an epoxy
beam [Lam et al. 2003]. Interestingly, another class of structures sharing the same
nature is microarchitectural structures of any scale [dell’Isola et al. 2016; Khakalo
et al. 2018; Khakalo and Niiranen 2019]: size-dependent behavior is an inherent
property of materials or metamaterials, present when the characteristic length of
the material microstructure becomes comparable with the dimensions of the struc-
ture itself, such as the thickness of thin structures. This leads to the necessity of
nonclassical continuum theories which include material length scale parameters
for predicting size effects, in addition to the classical Lamé constants used in the
conventional theory of elasticity.

The nonclassical continuum theories can be classified into two branches: “higher-
order” theories proposing additional (internal) variables [Cosserat and Cosserat
1909; Eringen 1999; Green and Rivlin 1964] and “higher-grade” theories includ-
ing higher gradients of the classical variables, displacements, or strains. In the
latter, one of the most well known theories is the strain gradient elasticity theory
pioneered by Mindlin [1964; Mindlin and Eshel 1968] and other contemporaries.
In the restriction of the present work, we focus only on the strain gradient theory
of form II in which the second derivatives of strains are involved. It is worth
noting that the three-dimensional isotropic version of Mindlin’s theory employs
five additional material parameters as compared to the classical isotropic elasticity.
Over the last fifty years, many versions of Mindlin’s original formulation have
been proposed [Lam et al. 2003; Aifantis 1992; Yang et al. 2002] in order to
introduce fewer additional material parameters. In the framework of strain gra-
dient elasticity theory, Aifantis’s proposal [1992] for a nonlocal version of the
generalized Hooke’s law introduced only one length scale parameter beside the
two conventional Lamé parameters. The corresponding variational formulation
was introduced by Altan and Aifantis [1997]. In the framework of this simplified
strain gradient theory (SSGT), bending and vibration analysis of beam- and plate-
like structures, in particular, has been accomplished in [Lazopoulos 2004; 2012;
Lazopoulos and Lazopoulos 2010; Askes and Aifantis 2009; Niiranen et al. 2019;
2017; Balobanov and Niiranen 2018]. Lam et al. [2003] simplified Mindlin’s for-
mulation to the so-called modified strain gradient theory (MSGT) involving three
material length scale parameters. By eliminating two of them, Yang et al. [2002]
suggested a modified couple stress theory (MCST) with one additional material
parameter again. Based on these two theories, many works involving static and
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dynamic investigations of linear Euler–Bernoulli and Timoshenko beams have been
published [Park and Gao 2006; Ma et al. 2008; Kong et al. 2009; Wang et al.
2010]. The reviews in [Lurie and Solyaev 2018; Thai et al. 2017] are suggested
for a detailed exposition. Regarding more general models incorporating more non-
classical constitutive parameters but still fewer than in the full anisotropic form
of Mindlin’s theory, we refer to the following recent contributions: an anisotropic
form of the so-called weak nonlocality [Lazar and Po 2015], an anisotropic version
of Mindlin’s form-II thermoelasticity [Khakalo and Niiranen 2020], a simplified
version of Mindlin’s second strain gradient (third displacement gradient) elasticity
[Khakalo and Niiranen 2018], or microarchitecture-specific second displacement
gradient formulations; see, e.g., [Boutin et al. 2017; Rickert et al. 2019; dell’Isola
et al. 2019a; 2019b; Abdoul-Anziz and Seppecher 2018].

As seen, the studies in [Lazopoulos 2004; 2012; Lazopoulos and Lazopoulos
2010; Askes and Aifantis 2009; Niiranen et al. 2019; 2017; Balobanov and Ni-
iranen 2018; Park and Gao 2006; Ma et al. 2008; Kong et al. 2009; Wang et al.
2010] are restricted to the linear regime of structural analysis. However, the beam
structures used in MEMS or NEMS, or microarchitectural structures, can exhibit
large deformations in which the stretching becomes dominant, which results in ge-
ometrical nonlinearity which, in turn, results in significant changes in the structural
response in both statics and dynamics [Hassanpour et al. 2010; Abdel-Rahman et al.
2002]. Therefore, beside the linear investigations listed above, studies on nonlin-
earities have gotten attention. For instance, Xia et al. [2010] developed a nonlinear
Euler–Bernoulli model based on MCST for the analysis of statics, free vibration,
and postbuckling. Asgharis et al. [2010; 2012; Kahrobaiyan et al. 2011] studied the
same beam problems by using a nonlinear Timoshenko beam model. Lazopoulos
et al. formulated the nonlinear bending and buckling problems of beams [Lazopou-
los et al. 2014] and shallow shells [Lazopoulos and Lazopoulos 2011]. In addition,
Ramezani [2012; 2013] adopted the multiple scales perturbation technique to solve
analytically the geometrically nonlinear beam and plate problems based on strain
gradient elasticity. As observed in the aforementioned works, the governing dif-
ferential equations in the framework of strain gradient theory are mathematically
complex due to the appearance of many nonlinear terms involving higher-order
derivatives of the variables. Generally, analytical approaches can be utilized only
in some simple cases of geometries, loadings, and boundary conditions. Therefore,
numerical techniques are necessary. Furthermore, the numerical tools must be
somewhat special in cases which require higher-order continuity. Dadgar-Rad and
Beheshti [2017] proposed a novel two-node microbeam element based on using
fifth-order Hermite functions in order to deal with the stringent continuity require-
ments. By another way, Hughes et al. [2005] proposed an isogeometric analysis
(IGA) utilizing the same basis functions as a B-spline or NURBS in describing the
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geometry to construct the finite approximation. Literature on the computational
application of IGA is extremely vast, especially for the beam and plate problems
[Bauer et al. 2016; Kiendl et al. 2015; Luu et al. 2015; Tran et al. 2013; Thai et al.
2014; Vo and Nanakorn 2020; Greco and Cuomo 2014; Greco et al. 2017; Greco
2020]. One of the most salient features of the IGA shown clearly in Niiranen’s
works [Niiranen et al. 2019; 2017] is to use a conforming isogeometric C p−1-
continuous discretization (with order p ≥ 3) to naturally fulfill the required C2-
continuity requirement without any additional variables. In the present work, we
extend this approach to nonlinear deformations.

First, we formulate a nonlinear strain-gradient-elastic beam model based on
Mindlin’s strain gradient elasticity theory of form II [Mindlin 1964]. The formula-
tion takes into account the von Kármán strain tensor for geometrical nonlinearity.
With proper choices of length scale parameters, we retrieve various one-parameter
beam models corresponding to SSGT, MSGT, and MCST and a relation between
these models.

Second, we adopt isogeometric B-spline basis functions for implementing a
conforming C p−1-continuous Galerkin method. Then by applying the Newton–
Raphson method, the nonlinear beam bending problem is solved iteratively. Through
a set of numerical benchmarks, the accuracy and validity of the present theoretical
formulations at linear and nonlinear regimes are confirmed.

Third, we demonstrate the advantages of applying the strain gradient elasticity
theory for analyzing 2D triangular lattice structures from the linear regime to the
regime of the von Kármán–type geometrical nonlinearity. By using a dimension
reduction model, we significantly reduce the number of degrees of freedom, which
results in essential savings in computational costs, while maintaining a good level
of accuracy, as compared to standard 2D finite element simulations. From the
theoretical point of view, it is interesting to witness that beam structures having a tri-
angular, stretching-dominated lattice microarchitecture follow the size-dependent
generalized beam models, allowing us to extend the results of [Khakalo et al. 2018;
Khakalo and Niiranen 2019] concerning the linear regime of the generalized Euler–
Bernoulli and Timoshenko beam models. From the mechanical point of view, it
is crucial that these beam models share the kinematical assumption of straight
cross-sectional fibers fulfilled by the lattice beams [Khakalo and Niiranen 2019,
Appendix C].

This paper is outlined as follows. The next section details the strain gradient
elasticity theory for the Euler–Bernoulli beam model adopting the von Kármán
strain assumption. In Section 3, we derive a variational formulation of the beam
model for which we then write a conforming Galerkin method based on isogeomet-
ric analysis. A set of numerical examples is examined in Section 4. Finally, some
concluding remarks close the article.
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2. Continuum models for generalized beams

2.1. Strain gradient elasticity theory. To capture the size effects of isotropic mate-
rials, Mindlin [1964] proposed the strain energy density of a microstructural solid
in a general form with an additional higher-order strain gradient tensor ξ beside
the infinitesimal strain tensor ε appearing in the conventional continuum theories:

U (ε, ξ)= 1
2λεi iε j j +µεi jεi j

+ a1ξi ikξk j j + a2ξi j jξikk + a3ξi ikξ j jk + a4ξi jkξi jk + a5ξi jkξk ji (1)

where λ and µ are the classical Lamé constants related to Young’s modulus and
Poisson’s ratio as λ = Eν/(1− 2ν)(1+ ν) and µ = E/2(1+ ν), whereas the ai

(i = 1, 2, . . . , 5) are nonclassical material parameters. The components of the third-
order strain gradient tensor ξi jk are defined according to the type-II formulation of
Mindlin’s theory as

ξi jk = ε jk,i (2)

where the infinitesimal strain tensor εi j is written in terms of the displacement
components ui according to the Green strain assumption as usual in continuum
mechanics:

εi j =
1
2(ui, j + u j,i + uk,i uk, j ). (3)

Note that the symbol ( · ),i denotes the derivative with respect to coordinate xi .
The constitutive equations for the Cauchy-like stress and double stress are then
given by

σi j =
∂U
∂εi j

= λεkkδi j +µεi j (4)

τi jk =
∂U
∂ξi jk

=
1
2a1(δi jξkpp + 2δ jkξppi + δikξ j pp)+ 2a2δ jkξi pp

+ a3(δi jξppk + δikξppj )+ 2a4ξi jk + a5(ξ jki + ξki j ). (5)

By assigning specific values for the additional material parameters ai , certain
versions of strain gradient theories can be obtained. For instance, Lam et al. [2003]
introduced the modified strain gradient theory with three length scale parameters
li (i = 0, 1, 2) which are used to calculate the five independent parameters ai in
Mindlin’s form II as

a1 = µ
(
−

4
15 l2

1 + l2
2
)
, a2 = µ

(
l2
0 −

1
15 l2

1
)
,

a3 = µ
(
−

4
15 l2

1 −
1
2 l2

2
)
, a4 = µ

( 1
3 l2

1 + l2
2
)
, a5 = µ

( 2
3 l2

1 − l2
2
)
.

(6)

In the special case of l0 = l1 = l2 = l, the nonclassical material parameters ai

can be written in terms of one additional length scale parameter as

{a1, a2, a3, a4, a5} =
1

30µl2
{22, 13,−23, 40,−10}. (7)
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Similarly, Yang et al. [2002] suggested the modified couple stress theory by
eliminating l0 and l1. As a consequence, (6) is rewritten as

a1 =−2a2 =−2a3 = a4 =−a5 = µl2. (8)

In the framework of simplified strain gradient theory [Aifantis 1992], only the
nonclassical terms related to a2 and a4 are considered by introducing a material
length scale parameter g as

a1 = a3 = a5 = 0, a2 =
1
2 g2λ, a4 = g2µ. (9)

2.2. Kinematics of Euler–Bernoulli beams. Let us consider a three-dimensional
prismatic beam structure with length L , thickness h, and width b. For simplicity, it
is assumed that the beam cross-section A is constant. Within the Euler–Bernoulli
hypotheses for in-plane bending, the displacement field of an arbitrary point in the
beam is defined as

ux(x, y, z)= u(x)− yw′(x), u y(x, y, z)= w(x), uz(x, y, z)= 0, (10)

where u and w denote the axial extension and transverse displacement of the beam,
respectively. Substituting the displacement field of (10) into (3), with such an as-
sumption that the beam can exhibit large deflection but small or moderate rotation,
only one nonzero strain component remains active, expressed according to the
von Kármán strain formulation as

εxx = u′x +
1
2(u
′

y)
2
= ε0+ yε1. (11)

Accordingly, two nonzero components of the strain tensor gradient are obtained
according to (2):

εxxx = εxx,x = ε2+ yε3,

εyxx = εxx,y = ε1,
(12)

where these variables can be written in a matrix form as

ε̂ =


ε0

ε1

ε2

ε3

=


u′+ 1
2(w

′)2

−w′′

u′′+w′w′′

−w′′′

 . (13)

Herein, the prime stands for a derivative with respect to x . By following the
constitutive equations in (4) and (5), the nonzero Cauchy-like stress and double
stress for the beam are given as

σxx = Eεxx , τxxx = 2
5∑

I=1

aI εxxx = α1εxxx , τyxx = 2(a2+ a4)εyxx = α2εyxx .

(14)
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3. Variational formulation and Galerkin-type isogeometric analysis

3.1. Variational formulation and boundary conditions. The virtual strain energy
in the Euler–Bernoulli beam model based on the strain gradient theory has the form

δU =
∫

V
(σxxδεxx + τxxxδεxxx + τyxxδεyxx) dV

=

∫ L

0

∫
A
(σxx(δε0+ yδε1)+ τxxx(δε2+ yδε3)+ τyxxδε1) d A dx

=

∫ L

0
(Nδε0+ (M + Q)δε1+ Rδε2+ Pδε3) dx =

∫ L

0
δε̂T σ̂ dx, (15)

where the classical and nonclassical stress resultants are defined as

N =
∫

A
σxx d A = E A

[
u′+ 1

2(w
′)2
]
, M =

∫
A

yσxx d A =−E Iw′′,

R =
∫

A
τxxx d A = α1 A(u′′+w′w′′), P =

∫
A

yτxxx d A =−α1 Iw′′′,

Q =
∫

A
τyxx d A =−α2 Aw′′.

(16)

We note that M and N represent the classical stress resultants and N includes
a nonlinear strain term as usual, whereas P , Q, and R are characteristic for the
generalized beam models as follows. P is a parameter-dependent higher-order
bending term responsible for possible boundary layers depending on boundary
conditions [Niiranen et al. 2019]. Q brings a size dependency to the model, which
can be revealed as follows [Niiranen et al. 2019]: when Q, proportional to α2 A,
which in turn is proportional to α2h2, is combined with M , proportional to EI,
being in turn proportional to Eh4, one obtains a bending term proportional to
E I (1+ α2/h2). The first term of R can be identified as a boundary layer term
related to the corresponding bar problem [Niiranen et al. 2016], whereas the sec-
ond term is a nonclassical term having a link to the nonlinear part of strain. In fact,
when the second term of R is combined with M and Q, it can be interpreted as a
stiffening nonlinear term (actually, equal to −w′Q by assuming that α1 = α2).

Equation (16) can be rewritten in a compact form as

σ̂ = [N ,M + Q, R, P]T = Dε̂ (17)

in which D= diag(E A, E I +α2 A, α1 A, α1 I ) forms a diagonal constitutive matrix.
The virtual work done by the external forces fx and fy can be written as

δW =
∫ L

0
( fxδu+ fyδw) dx, (18)



352 LOC V. TRAN AND JARKKO NIIRANEN

and finally the principle of virtual work is expressed in the form

0= δ5=−δU+δW

=−

∫ L

0
(Nδε0+(M+Q)δε1+Rδε2+Pδε3) dx+

∫ L

0
( fxδu+ fyδw) dx . (19)

Let us next integrate by parts (19) until getting terms which contain the virtual
displacements δu and δw as common factors. Thereafter, the strong form as a pair
of governing equations is expressed as

(δu) −N ′+ R′′ = fx ,

(δw) −(Nw′)′− (M + Q)′′+ (R′w′)′+ P ′′′ = fy .
(20)

Additionally, the corresponding boundary conditions are obtained via the fol-
lowing essential (left) or natural (right) conditions:

u = u or N − R′ = N ,

u′ = α or R = R,

w = w or (N − R′)w′+ (M + Q)′− P ′′ = V ,

w′ = β or −(M + Q)+ Rw′+ P ′ = M,

w′′ = κ or P = P.

(21)

The overlined symbols above denote prescribed boundary values, as usual.
By substituting the definitions of the stress resultants in (16) into (20), the gov-

erning equation can be rewritten in terms of displacements as

−E A[u′′+w′w′′] +α1 A(u(4)+ 3w′′w′′′+w′w(4))= fx ,

−E A
[
u′w′+ 1

2w
′3]′
+ (E I +α2 A)w(4)

+α1 A[(u′′′w′+w′2w′′′+w′w′′2)]′−α1 Iw(6) = fy .

(22)

In particular, by eliminating the nonlinear terms in (22) we can obtain the equi-
librium equations corresponding to the linear form of the strain gradient Euler–
Bernoulli beam model as a pair of decoupled stretching and bending equations
[Niiranen et al. 2019]:

−E Au′′+α1 Au(4) = fx ,

(E I +α2 A)w(4)−α1 Iw(6) = fy
(23)
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with the respective boundary conditions

u = u or E Au′−α1 Au′′′ = N ,

u′ = α or α1 Au′′ = R,

w = w or −(E I +α2 A)w′′′+α1 Iw(5) = V ,

w′ = β or (E I +α2 A)w′′−α1 Iw(4) = M,

w′′ = κ or α1 Iw′′′ = P.

(24)

Regarding (23) and (24), notice that the axial and transverse displacements are
prescribed independently.

3.2. Finite element equations. Solving the nonlinear equation (22) even in the
simplest cases is a nontrivial task. Therefore, we prefer solving the problem via
a weak form equation based on the discrete formulation of (19) by using the iso-
geometric finite element method [Hughes et al. 2005]. With an open knot vector
4= {ς1, ς2, . . . , ςm+p+1}, which is a nondecreasing sequence of parameter values
ςi ∈ R+ (i = 1, 2, . . . ,m+ p) with m denoting the number of basis functions, the
univariate B-spline basis functions φ p

i (ς) are defined recursively by using the Cox–
de Boor algorithm [Piegl and Tiller 1997]:

φ
p
i (ς)=

ς − ςi

ςi+p − ςi
φ

p−1
i (ς)+

ςi+p+1− ς

ςi+p+1− ςi+1
φ

p−1
i+1 (ς) if p ≥ 1,

φ0
i (ς)=

{
1 if ςi < ς < ςi+1,

0 otherwise.

(25)

Similar to the traditional finite element method, isogeometric analysis invokes
the isoparametric concept in which the displacements are approximated by a linear
combination of the basis functions and the unknown degrees of freedom in the
form

uh
=

∑
I=1

φI (ς)dI (26)

where dI = [u I , wI ]
T denotes the degrees of freedom associated to control point I .

According to the approximate displacement in (26), the variation of the strain
vectors denoted by δε̂ can be computed as

δε̂ =
∑

I

BI δdI (27)

where the generalized strain matrix is defined as

BI =

[
φ′I 0 φ′′ 0
w′φ′I −φ

′′

I w′φ′′I +w
′′φ′I −φ

′′′

I

]T

. (28)
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As seen, the third derivative of the basic function is required in (28). Therefore,
at least cubic B-spline basis functions (p ≥ 3) providing C2-continuity are adopted
for spanning the approximation space.

By substituting (27) into (19), one can obtain the nonlinear equilibrium equa-
tions (after eliminating the arbitrary nodal virtual displacement δdI ) as

R(d)=
∑

I

∫ L

0
BT

I σ̂ dx − FI = 0 (29)

where FI is the load vector

FI =

∫ L

0
φI [ fx , fy]

T dx . (30)

The nonlinear equation (29) is solved iteratively by the Newton–Raphson scheme
in which the obtained solution is updated by an incremental displacement 1d given
through the following system of a linear algebraic equation:

KT1d =−R (31)

where the tangent stiffness matrix is defined as

KT =
∂R
∂d
=

∑
I

∫ L

0

(
BT

I
∂σ̂

∂d
+
∂BT

I

∂d
σ̂

)
dx

=

∑
I

∑
J

∫ L

0
(BT

I DBJ + Nφ′Iφ
′

J I + R(φ′Iφ
′′

J +φ
′′

I φ
′

J )I) dx (32)

where I denotes an identity matrix. The iteration is repeated until the difference
between two consecutive iterations reduces below a desired error tolerance, e.g.,
0.1%. For a detailed description of the solution procedure, one can refer to [Tran
et al. 2015; Tran and Kim 2018].

4. Numerical examples

4.1. Model comparison. Let us consider a microbeam with thickness h, length L ,
and width b = 2h subjected to a concentrated load Q = 100µN placed at the
mid-span in the case of simply supported (SS) or clamped (CC) constraints at both
ends or at the free-end of a cantilever beam (CF). At first, the assumption of small
deformations is adopted for studying the linear behavior of the beams. It is assumed
that the beam is made of epoxy with material properties as Young’s modulus and
Poisson ratio E = 1.44 GPa and ν = 0.38, respectively, and with the length scale
parameter assigned to be equal to l = 17.6µm [Lam et al. 2003]. Note that in the
case of MSGT, the number of length scale parameters is reduced to one by setting
l0 = l1 = l2 = l = 17.6µm. The beam dimension is scaled up, by which the ratio
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MSGT MCST SSGT C
h/ l FEM l exact l l = 33.08 l l = 19.91 exact

SS 1 1.2718 1.2722 1.2722 3.8957 1.2733 1.601 1.270 20.8336
5 12.8917 12.8998 12.8997 17.7471 12.9041 14.0603 12.8987 20.8336

100 20.8013 20.8016 20.8013 20.8245 20.8016 20.8085 20.8016 20.8336

CC 1 0.3173 0.3173 0.3173 0.9739 0.3183 0.399 0.317 5.2083
4 2.6526 2.6526 2.6526 4.0955 2.6571 2.9706 2.6515 5.2083
8 4.1973 4.1973 4.1973 4.8771 4.2002 4.3829 4.1966 5.2083

100 5.1999 5.2004 5.2003 5.2061 5.2004 5.2021 5.2004 5.2083

CF 1 20.3678 20.3659 62.3306 20.372 25.6345 20.3667 333.333
4 170.0372 170.0373 262.1083 170.0555 190.4536 170.0324 333.333
8 268.7979 268.798 312.1289 268.8093 280.6895 268.7949 333.333

100 332.8219 332.8219 333.1885 332.822 332.9337 332.8219 333.333

Table 1. Normalized central deflection 103ŵ of the microbeams
in the linear regime of deformation (L/h = 30, Q = 100µN, E =
1.44 GPa, ν = 0.38, l = 17.6µm, and b = 2h). See [Dadgar-Rad
and Beheshti 2017] for the FEM column and [Timoshenko and
Goodier 1970] for the C column.

of the thickness to the length scale parameter h/ l changes in the range of [1, 100],
while the slenderness ratio is kept unchanged at the value L/h= 30. The maximum
normalized deflection ŵ=wE I/(QL3) for the three different types of beams based
on MSGT, MCST, SSGT, and classical elasticity (C) has been reported in Table 1.
For the sake of comparison, the results of Dadgar-Rad’s work [Dadgar-Rad and
Beheshti 2017] based on MSGT are inserted in the table. In addition, the maximum
deflection values based on the classical Euler–Bernoulli beam theory [Timoshenko
and Goodier 1970] given as ŵ = 1

48 ,
1

192 ,
1
3 for the simply supported, clamped, and

cantilever beams, respectively, are also supplied. As can be seen, the deflections
of classical elasticity are constant and independent of ratios L/h and h/ l. On
the other hand, all nonclassical theories propose lower deflection values which are
strongly dependent on ratio h/ l. It is observed that the discrepancy as compared
to the classical elasticity becomes very small as thickness h is far greater than the
value of the material length scale parameter l, e.g., l/h = 100. Importantly, the
present numerical simulation using IGA and based on only two unknowns (u and w)
produces results in accordance with the FEM results by Dadgar-Rad [Dadgar-Rad
and Beheshti 2017] utilizing a nonconforming element with five degrees of free-
dom per node and also analytical solutions (given in the Appendix) for all of the
case studies. For instance, as seen in Figure 1, the numerical results depicted
with markers perfectly match the analytical curves plotted with lines. Moreover,
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Figure 1. Comparison of various size-dependent theories for a
simply supported beam (L/h = 30 and h = 17.6µm) with a
concentrated load Q = 100µN at the mid-span. Note that the
closed-form results are plotted with lines, while markers depict
the numerical results based on IGA.

it is also clearly indicated that different strain gradient elasticity theories produce
different results. For example, MCST in the green line, eliminating the sixth-order
term in the governing equation (23), overestimates the transverse displacement as
compared to the others. To find the relation between these nonclassical models, let
us revisit the analytical deflection function in (35) with the values of integration
constants given in (37), (39), and (41) according to the different types of boundary
constraints. By keeping the integration constant c3 fixed, a relation of the material
length scale parameter for a particular model is given as

(lMCST, lSSGT)=

(√
53
15
,

√
53

30(1+ ν)

)
lMSGT. (33)

According to relation (33), the material length scale parameters of MCST and
SSGT are given by factors 33.08 and 19.91, respectively, in accordance with the
parameter 17.6 of MSGT. With these factors, the results of the models become
practically identical as seen in Table 1 [Niiranen et al. 2019].

As the next step, we again investigate the singly simply supported microbeam
with the above data except for a couple of changes: the slenderness ratio is L/h =
20 and the concentrated load is Q = 12 mN, in order to make sure that the beam
exhibits a relatively large deflection involving geometric nonlinearity. Table 2 lists
a tabular comparison between the nonlinear finite element analysis by Dadgar-Rad
[Dadgar-Rad and Beheshti 2017] based on the MSGT and classical elasticity and
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MSGT MCST SSGT classical
h/ l FEM l l l = 33.08 l l = 19.91 FEM IGA

1 0.9895 0.9897 1.4253 0.9909 1.1065 0.9894 1.7312 1.6765
2 2.8646 2.8649 3.6020 2.8675 3.0727 2.8643 4.0287 3.9591
4 7.1612 7.1622 8.2773 7.1663 7.4860 7.1611 8.8529 8.7573

100 20.8010 20.8058 20.8287 20.8058 20.8124 20.8054 21.0016 20.8331

Table 2. Normalized central deflection 103ŵ of a simply sup-
ported microbeams considering geometrically nonlinear effect un-
der a concentrated load at mid-span Q = 12 mN (L/h = 20,
E = 1.44 GPa, ν = 0.38, l = 17.6µm, b = 2h). See [Dadgar-
Rad and Beheshti 2017] for the FEM columns.

the present IGA. In addition, we also provide some results using MCST, SSGT,
and classical elasticity as well, for comparison. First, let us note that the normal-
ized deflection reduces with an increase in thickness, in contrast to the constant
20.8336 of the classical model. As seen, the smallest beam (h = l) exhibits the
largest deformation with relative deflection w/h = 2.165. Thus, the geometrically
nonlinear effect becomes significant and makes the beam stiffer. Meanwhile, the
largest beam (h = 100l) reveals a very small relative deflection w/h = 0.003, indi-
cating no geometrically nonlinear effects. Therefore, the transverse displacement
coincides with that of linear analysis — opposite to the finite element method used
by Dadgar-Rad [Dadgar-Rad and Beheshti 2017] which overestimates the linear
solution. This indicates that the present nonlinear finite element formulation works
very well for both linear and nonlinear bending analysis. Furthermore, the same
conclusions regarding linear analysis are drawn here. (1) The obtained results are in
good agreement with the result using FEM in [Dadgar-Rad and Beheshti 2017], and
(2) the nonclassical theories exhibit higher bending rigidity due to the appearance of
gradient terms related to the material length scale parameter l. However, the effect
is no longer dominant in large-scale structures (e.g., h/ l = 100). (3) By choosing
the material length scale parameter according to (33), the results are practically
identical for all the generalized theories. Therefore, in future studies, we prefer to
use MSGT as a representative model in the numerical simulations unless otherwise
specified.

4.2. Nonlinear behavior of generalized beams under a uniform distributed load.
Let us continue to study the nonlinear behavior of the microbeams with thickness
h= 17.6 mm and slenderness ratio L/h= 20 subjected to a uniform distributed load
with magnitude q = 30 N/m for the simply supported (SS) beam or q = 60 N/m
if the beam is clamped (CC). These loading values are chosen to make sure that
the maximum rotation of the cross-section does not exceed 15◦ (Figures 3 and 4),
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Figure 2. Load displacement curve of a microbeam under differ-
ent boundary conditions: (bottom) SS and (top) CC (with linear
and nonlinear responses plotted with dashed and solid lines, re-
spectively).

which satisfies the moderate rotation limitation of the von Kármán assumption.
Figure 2 plots the load displacement curves at the mid-span of the beams for dif-
ferent values of the length scale parameter l scaled down to [1, 2, 4, 8, 100] times
thickness h. It is observed that the linear load displacement responses (dashed lines)
are always tangent — at the origin — to the nonlinear load displacement curves
(solids lines). Also, the response curves are strongly dependent on ratio h/ l. As can
be seen, the stiffest beam (h/ l = 1) does not exhibit much nonlinearity, typically
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Figure 3. Behavior of a simply supported beam under a uniform
load q = 30 N/m with L/h = 20 and h = 17.6µm: (top) the
deflection profile and (bottom) the corresponding rotation of the
cross-section.

meaning that the linear and nonlinear results coincide (especially for the clamped
beam). However, increase in ratio h/ l essentially increases the beam deflection.
As the deflection-to-thickness ratio becomes high (i.e., w/h > 1), geometric non-
linearity plays a more essential role through the large difference between the linear
and nonlinear solutions. To close this subsection, the distributions of transverse
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Figure 4. Behavior of a clamped-clamped beam under a uniform
load q = 60 N/m with L/h = 20 and h = 17.6µm: (top) the
deflection profile and (bottom) the corresponding rotation of the
cross-section.

displacement and cross-section rotations through the beam axis coordinate are re-
vealed in Figures 3 and 4. It is noted that the absolute value of rotation based on
the strain gradient theory is smaller than that predicted by the classical formulation
due to the size effect taken into account.
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Figure 5. Top: one half of a lattice frame with L = 90 mm and
h = 8.66 mm, produced by replicating a unit cell 18 and 2 times
along the x- and y-axes, respectively. Bottom: 2D finite element
mesh of a unit cell in the FEM software COMSOL Multiphysics.

4.3. Application to triangular lattice structures. In order to demonstrate the ap-
plicability of strain gradient theories for structures, we further study the linear and
geometrically nonlinear behavior of an elastic triangular lattice frame (see Figure 5)
with length L = 180 mm and height h = 8.66 mm. The frame is constrained at two
ends by clamped and simply supported conditions and subjected to a uniformly
distributed load applied in increments of 1q = 4 N/m until reaching the final
magnitude of 200 N/m. Due to symmetry, only a half of the frame is modeled
as given in Figure 5, top. As seen, the lattice strip can be produced simply by
replicating a unit cell or the so-called representative volume element (RVE with
the dimensions from [Khakalo et al. 2018, Table 3]). The material properties of
the structure are simply Young’s modulus E = 2 GPa and Poisson’s ratio ν = 0.25.

A reference model of the structure is built by using linear quadrilateral finite
elements of classical elasticity in COMSOL Multiphysics with a mesh for each unit
cell shown in Figure 5, bottom. The structure can be modeled by a one-dimensional
generalized beam model as a homogenized isotropic beam with equivalent mechan-
ical properties as Eeff = 246.7 MPa and νeff = 0.335 and intrinsic material length
scale parameter l = 1.57 mm [Khakalo et al. 2018].

The maximum deflection of the beam is recorded at the mid-span and plotted for
each load increment in Figure 6. The red solid lines denote the nonlinear solutions,
while red dashed lines correspond to the linear ones, both corresponding to the
2D reference model. As seen, the present results from the 1D strain gradient
beam model with red circles and diamond markers, corresponding to the linear
and nonlinear regimes, respectively, are nearly lying on the curves. This means
that the strain gradient beam model captures the bending behavior of the lattice
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Figure 6. Load displacement curves of a lattice beam under uni-
form load q = 200 N/m with h = 8.66 mm, L = 180 mm, and
l = 1.57 mm with (top) simply supported and (bottom) clamped
boundary conditions.

frame in both linear and nonlinear regimes. Again, the same observation as for
Figure 2 is that the predicted deflection of the lattice frame (or the strain gradient
beam model) is always smaller than that of the classical beam theory plotted with
a blue curve. Furthermore, a comparison of the deflection distribution between the
2D reference and 1D beam simulations is plotted in Figure 7. As observed, the
present generalized beam model is in good accordance with the global deflection
of the frame represented through the mid-line OA but, naturally, does not describe
in detail any local behavior such as bending or buckling of single struts near the
clamped end of the frame as shown in Figure 8, bottom.
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Figure 7. A comparison for the deflection distribution along the
mid-line between the 1D beam model and 2D reference simu-
lations with clamped (CC) and simply supported (SS) boundary
conditions.

2D reference model 1D beam model
N DoFs time (s) DoFs time (s)

2 165366 258
4 651562 880 24 0.5
8 2586450 4416

Table 3. Number of DoFs and time consumption for the present
1D beam model and the 2D reference model.

To end this subsection, we discuss the computational efficiency of the present
beam model by studying clamped lattice structure strips subjected to a concentrated
load P = 30 N at the mid-span. A series of beam-like lattice structures is formed by
scaling up the frame studied above having two (N = 2) unit cells in the thickness
direction. The subsequent structures of the series have four and eight (N = 4
and N = 8) unit cells in the thickness direction, whereas the slenderness of the
beam-like structures is kept constant: L/h = 20.7. Table 3 shows the number of
degrees of freedom (DoFs) and time consumption in the 2D reference and 1D beam
simulations. As seen, in 2D simulations doubling factor N implies an increase of
N 2 DoFs. Meanwhile, the present strain gradient beam model requires 8 elements
associated with 24 DoFs (as using quartic B-spline basic functions with q = 4) but
still achieves a good agreement with the 2D solutions as shown in Figure 9. (Both
programs are compiled on a desktop PC with an Intel Core i7-7600U 2.80 GHz
CPU and 16 GB of RAM.)
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Figure 8. The transverse displacement of a lattice frame modeled
by 2D finite elements (with COMSOL Multiphysics) under simply
supported (top) and clamped (bottom) boundary conditions.

5. Conclusions

This paper studies the nonlinear bending of the Euler–Bernoulli beam model within
Mindlin’s strain gradient elasticity theory of form II retrieved with simplified one-
parameter beam models of generalized elasticity. In principle, different beam mod-
els give different results. In practice, however, by choosing the value of the length
scale parameter properly, almost identical results can be obtained — for both linear
and nonlinear regimes of deformation. Furthermore, the geometrical nonlinearity
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Figure 9. Load displacement curves for structures with N unit
cells in the thickness direction: linear solutions (dashed lines),
nonlinear solutions with 2D reference model (solid lines), and 1D
beam model (markers).

and size effects reduce the deflection of the beams as compared to the classical
theory of elasticity, especially as the material length scale parameter becomes
comparable to the beam thickness. It is noted that according to the von Kármán
strain assumptions nonlinear deformations are limited to small or moderate rota-
tions. More general large deformations are left for further works.

For the computational part, besides analytical results for some benchmark prob-
lems, a conforming and isogeometric B-spline Galerkin discretization is adopted
for numerical solutions. With basis functions of order p ≥ 3, the method naturally
satisfies the stringent C2-continuity required by the strain gradient beam model.

Finally, we demonstrate the advantage of the present beam model by studying
2D lattice frame structures. With a 1D beam model, we significantly reduce the
number of DoFs but still maintain a good level of accuracy as compared with 2D
reference simulations. However, the beam model as a homogenized model describ-
ing the mid-line of the beam does not describe such behavior as local bending or
buckling of single lattice struts in the vicinity of concentrated loads or constrained
boundaries. A homogenization method considering initial imperfections for geo-
metrically nonlinear analysis [Reinaldo Goncalves et al. 2016] could be considered
to treat this issue in future studies.
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Appendix: Analytical solution for linear statics of strain-gradient-elastic
thin beams

First, let us consider a singly simply supported beam with a concentrated load Q at
the mid-span. The governing equation related to the transverse displacement can
be derived from (23) by setting fy = 0, giving

(E I +α2 A)w(4)−α1 Iw(6) = 0. (34)

The analytical solution of (34) is given by

w(x)= c0+ c1x + c2x2
+ c3x3

+ c4eβx
+ c5e−βx (35)

in which β=
√
(E I +α2 A)/α1 I and the six integration constants cI (I =0,1, . . . ,5)

are determined from the essential and natural boundary conditions. In this beam
problem, due to symmetry, a half of the beam is considered with boundary condi-
tions

w(0)= 0, V (L/2)= Q/2,

M(0)= 0, w′(L/2)= 0,

w′′′(0)= 0, w′′′(L/2)= 0.

(36)

With these constrains, the integration constants are defined as

c0=
6c3

β3 sinh(βL/2)
(1−cosh(βL/2)), c3=

−Q
12(E I+α2 A)

,

c1=c3

(
6
β2−

3L2

4

)
, c4=

−3c3

β3 sinh(βL/2)
(1−e−βL/2),

c2=0, c5=
−3c3

β3 sinh(βL/2)
(1−eβL/2).

(37)

Second, analogously, a singly clamped beam with a concentrated load at the
mid-span satisfies the boundary conditions

w(0)= 0, V (L/2)= Q/2,

w′(0)= 0, w′(L/2)= 0,

w′′′(0)= 0, w′′′(L/2)= 0.

(38)
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The integration constants are accordingly defined as

c0=
6c3

β3 sinh(βL/2)
(1−cosh(βL/2)), c3=

−Q
12(E I+α2 A)

,

c1=
6c3

β2 , c4=
−3c3

β3 sinh(βL/2)
(1−e−βL/2),

c2=−
3Lc3

4
, c5=

−3c3

β3 sinh(βL/2)
(1−eβL/2).

(39)

Third, a cantilever beam subjected to loading Q at the free end gets the integra-
tion constants of (41) which satisfy the boundary conditions

w(0)= w′(0)= 0,

w′′′(0)= w′′′(L)= 0,

V (L)= Q, M(L)= 0

(40)

and integration constants

c0 =
6c3

β3 sinh(βL)
(1− cosh(βL)), c3 =

−Q
6(E I +α2 A)

,

c1 = 6c3/β
2, c4 =

−3c3

β3 sinh(βL)
(1− e−βL),

c2 =−3c3L , c5 =
−3c3

β3 sinh(βL)
(1− eβL),

(41)
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