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Most of the last century, bone remodeling models have been proposed based on
the observation that bone density is dependent on the intensity of the applied me-
chanical loads. Most of these cortical or trabecular bone remodeling models are
related to the osteocyte mechanosensitivity, and they all have a direct correlation
between the bone mineral density and the mechanical strain energy. However, ex-
periments on human athletes show that high-intensity sport activity tends not to in-
crease bone mineral density but rather has a negative impact. Therefore, it appears
that the optimum bone mineral density would develop for “medium”-intensity
activity (or medium mechanical loads) and not for the highest-intensity one.

In this work, we propose a new continuum approach based on bone cell activ-
ity being either positive or negative as a function of the intensity of the applied
mechanical load. At standard earth gravity without exercise, bone homeostasis is
observed with cell activity being at equilibrium. When “medium loads” such as
“low-intensity” or “optimized” sport activity are applied, cells are activated and
an increase of bone density occurs. On the other hand, “high-intensity loads” such
as over-training lead to bone density decrease or bone degradation. Our results
are in agreement with the literature and enable us to foresee applications such as
optimal sport training for best physical conditions.

1. Introduction

The last hundred years or so have seen many bone remodeling models being devel-
oped under the hypothesis that the mechanical energy is the main driving parameter
of this complex phenomenon. According to the first law of bone remodeling de-
fined in [Wolff 1986] and reprinted many times, bone mineral density is directly
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dependent on the intensity of the applied mechanical loads. Many strain-related
models for bone remodeling have followed since. To name a few, see for exam-
ple [Carter 1984], [Frost 1987] and its “mechanostat” proposal, [Cowin 1986],
[Beaupré et al. 1990], [Turner 1998], or more recently [Lekszycki 2002] where
the highly heterogeneous bone microstructure is seen as an optimum structural
response to given external mechanical boundary conditions. Many theoretical
frameworks of bone remodeling were proposed for cortical [Pivonka et al. 2008]
and trabecular [Ruimerman et al. 2005] bone accounting for different bone cells
at the origin of this remodeling [Pivonka and Komarova 2010; Klein-Nulend et al.
2013]. More recently, further theoretical models were proposed [Madeo et al. 2011;
2012; Lekszycki and dell’Isola 2012; Scala et al. 2017], some of them also taking
into account the complex viscous mechanical behavior of the bone [Andreaus et al.
2014b; Giorgio et al. 2016; 2017].

Nowadays, it is generally accepted that without considering the specific effects
of the bone cells, whatever the theoretical model, the prediction of bone remodeling
remains at best phenomenologically driven. Although at the continuous level (scale
of the bone) the continuum mechanics is “manageable”, the integration of contin-
uum biology is highly risky since, for the time being, there are no experimental
measurements available in the literature able to link the local cell phenomena to
the bone continuum. The full understanding of the bone mechanobiology is still
unknown, but some literature exists on its basic principles (see for example [Burr
and Allen 2014, pp. 85–86]). It is therefore possible to start developing more
precise mechanobiological models, but at the local scale (scale of the cells), and
to try understanding what the main biological parameters driving this evolution
are [Lemaire et al. 2011]. Nonetheless, bridging the local and the global scales
through multiscale or homogenization models remains a challenging task [Lemaire
et al. 2005; 2010; 2015]. Multiscale theories on biological materials have been
developed recently (see, e.g., [Rémond et al. 2016; George et al. 2017; Spingarn
et al. 2017]), but the uncertainties remain about the multiscale models themselves
[Sansalone et al. 2015], the scale growth response [Louna et al. 2016], or even the
influence of the microstructure on the overall behavior [Sheidaei et al. 2019].

The obvious next step in bone remodeling is to try integrating more biological
actions that are at the origin of the bone tissue evolution such as the capillary
growth [Bednarczyk and Lekszycki 2016], the nutrient supply [Lu and Lekszycki
2016], or the cell migration [Allena and Maini 2014; Schmitt et al. 2015; Frame
et al. 2019; 2018]. However, the homogenization of such local effects at more
macroscopic scales [George et al. 2018a; 2018b; 2019] is complex to transpose
and interpret. This is even without accounting for thermodynamically consistent
models [Martin et al. 2017] or the influence of the bone microstructure distribution
over its macroscopic behavior [Bagherian et al. 2019].
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At this stage, it is clear that bone mechanobiology is a highly complex phenom-
enon and, even with the major progress made in the past fifty years, we still know
very little to properly describe the bone remodeling scenario. In this work, we
want to address the bone remodeling phenomenon at a macroscopic scale based on
the direct relationship between the mechanical strain and the bone cell responses
(see, e.g., [Ehrlich and Lanyon 2002]). Our approach is evidently dependent on the
activation of osteoblasts for the bone creation and of the osteoclasts for the bone
resorption triggered by specific signals that are transmitted by the osteocytes, as
proposed in [Ignatius et al. 2005; Andreaus et al. 2014a; Rochefort et al. 2010]. In
agreement with the experimental literature [Herman et al. 2010; Hao et al. 2017],
we find that bone mineral density does not continually increase with the developed
mechanical strain, contrarily to the proposed “mechanostat” model by Frost [1987],
and that reverse effects can be observed.

2. Model development

2.1. Model construction. We propose a strain energy density (SED) based ap-
proach accounting for external mechanical loads driving the cell activity and lead-
ing to a macroscopic bone mineral density change at the continuous scale.

It has been observed that practicing a regular physical activity is healthy not
only for the heart, but also to reinforce bone structure and stiffness. However, it
was also acknowledged that over-training could lead to a worse health condition
than the moderate training scenario [Forwood and Parker 1989; Grimston et al.
1991; Herman et al. 2010; Hao et al. 2017]. Thus, for “medium” mechanical
loads (i.e., intermittent sport activity under a certain threshold), the bone mineral
density increases, whereas for “high” mechanical loads (i.e., critical above the
given threshold), the bone mineral density decreases.

We want to keep a simplified approach in order to be able to identify the model’s
parameters and to validate it. Our main assumption is that the cell activity is directly
proportional to the intensity of the mechanical load, but with a predefined scenario.
We define such a cell activity as the quantity of bone formation/resorption (or bone
mineral density change) as a function of time and mechanical energy. Hence, for
a given mechanical energy level, the cell activity will change the bone mineral
density in a given time. The cell activity increases with the mechanical load up
to a certain value that is proportional to the amount of available space within
the structure (related to the porosity and defined in Figure 1 by the maximum
osteoblast activity per unit volume). The cell activity cannot exceed this value and
a maximum cellular density exists. The maximum cellular activity (of osteoblasts
or osteoclasts) is dependent on the cell density at a given location and at a given
time. It is assumed that this activity linearly increases (with the mechanical load)
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Figure 1. Schematic of the mechanoregulatory model of cellu-
lar activity as a function of the developed mechanical energy W
within the structure. Blue dashed line: osteoblast activity Aob.
Green dashed line: osteoclast activity Aoc. Red line: bone density
ρbone obtained by the combined blue and green cellular activities.

up to the maximum value (defined by the porosity). Finally, as we are working at
the continuous macroscopic scale, we define a continuous representative volume
element (RVE) that is large enough so that both osteoblasts and osteoclasts can be
active within it at the same time (as a function of the given bone microstructure
distribution and the given mechanical strain field) depending on the signals trans-
mitted by the osteocytes. It is therefore assumed that the total bone mineral density
change is the sum of the positive (through osteoblasts) and the negative (through
osteoclasts) effects within this given RVE. Therefore, bone mineral density is di-
rectly proportional to the cell activity and defined by the corresponding units (i.e.,
the cellular activity is given in kg ·m−3

· unit time−1 of fabricated (or degraded)
bone per cell density).

A schematic of the cell activities as a function of the intensity of the developed
mechanical energy W within the structure is presented in Figure 1. The homeosta-
sis condition (W0) corresponds to the equilibrium state where it is acknowledged
that bone remodeling and cellular activity are nonzero, but they are not integrated
within the model. The modeled variations (i.e., bone density change) are dependent
on cell activity differences away from the equilibrium state.
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The osteoblast activity is shown as positive whereas the osteoclast activity is
shown as negative. Both activities increase linearly up to a maximum level as the
mechanical energy increases. Two conditions are required here:

(1) for a bone density increase for “medium low” mechanical energy (W0 < W <

W2), the osteoblast activity must be higher than the osteoclast one, and

(2) for a bone density decrease with “higher” mechanical energy (W > W2), the
osteoclast activity must be higher than the osteoblast one.

On the graph in Figure 1, the initial osteoblast activity is triggered by osteoclasts
(osteoblasts will start being active only after osteoclasts have “cleaned up” the bone
surface so bone remodeling can initiate). At W0, we are at homeostasis state where
neither bone formation nor resorption occurs at a constant living load condition.
Only continuous bone remodeling of living is present. This means that Figure 1 is
correct at a given time t and corresponds to an equilibrium state once bone forma-
tion or degradation has finished. In the current work, this condition corresponds
to the start of the analysis (initial zero condition). From W0 to W1, both osteoblast
and osteoclast activity increase at the same time leading to an increase of the bone
mineral density since the sum of both cell activities is positive. When reaching
the maximum osteoblast activity, i.e., W ≥W1, the bone mineral density increase
is impacted by the osteoclast activity taking over the osteoblast one. Above a
given energy threshold, from W2 to W3, the bone mineral density decreases as the
combined cell effect is negative. For a mechanical energy between W0 and W2, we
have a bone density increase, while for a mechanical energy above W2, we have a
bone density decrease. W2 corresponds to the energy threshold not to overtake to
keep a good bone health. The following equations interpret the scheme in Figure 1:

if W0<W <W1, then Aob=k1 ·W+ρini
bone and Aoc=−k2 ·W+ρini

bone,

if W1<W <W2, then Aob= A1+ρ
ini
bone and Aoc=−k2 ·W+ρini

bone,

if W2<W <W3, then Aob= A1+ρ
ini
bone and Aoc=−k2 ·W+ρini

bone,

if W >W3, then Aob= A1+ρ
ini
bone and Aoc=−A2+ρ

ini
bone,

(1)

where k1 and k2 are the coefficients of osteoblast and osteoclast activity increase,
A1 and A2 are their corresponding maximum values, and ρini

bone is the initial bone
density, constant over time, in kg ·m−3

·unit time−1. Thus, we obtain a model with
only four parameters (k1, k2, A1, and A2) defined as

Aob=k1·W+ρini
bone for W <W1, Aoc=−k2·W+ρini

bone for W <W3,

Amax
ob = A1+ρ

ini
bone for W >W1, Amax

oc =−A2+ρ
ini
bone for W >W3.

(2)

The units of these four parameters are given in kg ·m−3
·unit time−1 for A1 and A2,

and in kg ·mJ−1
·m−3

·unit time−1 for k1 and k2. Such parameters can be quantified
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Figure 2. Schematic of the mechanoregulatory model or cellular
activity as a function of time t for different levels of applied me-
chanical load (energy) within the structure. Blue dashed line: os-
teoblast activity Aob. Green dashed line: osteoclasts activity Aoc.
Red line: bone density ρbone.

experimentally by histochemistry through the measurement of the different cell
density activities as a function of the applied mechanical load at any given time
and point of the structure. For instance, osteocyte viability and osteoclast activity
can be determined through the ratio between empty (i.e., without cell) and full
(i.e., with cell) lacunae. More specifically, osteocyte viability can be determined
by cell apoptosis through cleaved caspase-3 activation [Lavrik 2005; Nicholson
et al. 1995; Maurel et al. 2013], and osteoclast activity through the measure of the
resorption area surrounding the cells (TRAP activity) [Kodama et al. 2009].

Once the cell activity has been defined and quantified as a function of the me-
chanical energy W , we can describe it as a function of time for different levels of
mechanical loads (as presented in Figure 2).
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Four different cases are considered:

(1) When forces correspond to everyday life conditions, we are at equilibrium
state (Whomeostasis) where the bone density is in the homeostasis condition. In
this case, the “average” osteoblastic and osteoclastic cell activities are equal
and opposite. Their sum is equal to zero (corresponding to homeostatic state)
and bone mineral density remains constant over time.

(2) When forces increase (Wintermediate), corresponding to a “sport training”-like
activity at a moderate level, osteoblastic cells become predominant and the
sum of these effects is positive leading to an increase in the bone mineral
density.

(3) If the “exercise” level increases (over-training-like) leading to an increase of
the averaged developed mechanical energy, the energy level reaches a thresh-
old (Wmax = W2) corresponding to the maximum energy under which bone
density evolution remains at best positive or null. Here again, and similarly
to the homeostasis case, but not for the same reason, the combined effect of
osteoblasts and osteoclasts provides equilibrium. However, contrary to the
homeostasis case, this equilibrium is unstable, depending on the biology that
is patient-dependent.

(4) Finally, when the average mechanical energy goes beyond the threshold (W =
W2), bone density decreases due to an over-expression of the osteoclastic cells
reacting to a solicitation that needs to be biologically quantified.

In essence, an average person’s life is the result of the combined effect of all
these different cases (being dependent on both the mechanical energy level and
time) and bone mineral density evolves accordingly in space and time.

An interpretation of the schematic bone mineral density evolution in time of
Figure 2 is given by the four energy intervals

if W0 < W < W1, then
∂ρbone

∂t
> 0 and ρbone > 0,

if W1 < W < W2, then
∂ρbone

∂t
< 0 and ρbone > 0,

if W2 < W < W3, then
∂ρbone

∂t
< 0 and ρbone < 0,

if W > W3, then
∂ρbone

∂t
< 0 and ρbone < 0,

(3)

where ρbone is the bone density.
When combining the two schemes of Figures 1 and 2 on the same graph, we

obtain the corresponding Figure 3 where the bone mineral density is a function
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Figure 3. Global schematic of the mechanoregulatory model or
cell activity as a function of time and energy. Blue dashed line:
osteoblast activity Aob. Green dashed line: osteoclast activity Aoc.
Red line: bone density ρbone.

of time t and the elastic strain energy W (when we suppose that the mechanical
behavior of bone is linear elastic).

As the cell activity is defined as an amount of fabricated (or degraded) bone as
a function of its density, the amount of mechanical energy developed, and the time,
the variation of bone mineral density can be computed directly. It remains only to
calculate the corresponding Young’s modulus (as a function of the bone density),
given by the relation E = E0 · ρ

2
bone [Rho et al. 1995], that is classically accepted

in the literature, where E0 is the cortical bone Young’s modulus.

2.2. Model application. A numerical application of the above proposed model is
made on a simplified geometry accounting for simple load conditions. We consider
a femur diaphysis loaded under compression (i.e., body weight) as presented in
Figure 4, left. Since we assume a constant distribution of the stresses through the
thickness of the femur diaphysis, we propose to study a simplified 2D rectangular
beam of length L= 50 mm and height H= 20 mm (Figure 4, right).

Of course, it is acknowledged that the exact quantification of the model param-
eters will depend on the given geometry and structure of the exact experimental
model to represent. In this case, we will quantify them only for validation purposes.
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Figure 4. Geometry for the numerical application. Left: real ge-
ometry of a femoral diaphysis under simple tension. Right: sim-
plified geometry of a rectangular beam under simple tension.

The other material parameters are defined by the Young’s modulus of the cortical
bone E0 = 20.3 GPa and Poisson ratio ν = 0.3 [Bernard et al. 2013]. The applied
mechanical load is equivalent to a human body weight F = 400 N on one leg and
an initial normalized bone density ρini

bone = 0.5 is taken for validation purposes. We
suppose a closed system with no external input.

The model parameters were identified without a priori knowledge of the corre-
sponding biological quantifications of the in vivo conditions and serve here only
for validation. The homeostatic energy W0 = 1× 10−5 mJ was determined based
on an average femur cross-sectional area and its corresponding bone density and
body weight load conditions. The other two energies W1 = 1.456× 10−5 mJ and
W3 = 3× 10−5 mJ were defined based on identification of the four parameters of
the model by k1=1×105 kg·mJ−1

·m−3
·unit time−1, k2=0.7×105 kg·mJ−1

·m−3
·

unit time−1, A1=1.456 kg·m−3
·unit time−1, and A2=2 kg·mJ−1

·m−3
·unit time−1,

where k1 > k2 and A2 > A1. The intermediate energy W2 is the linear interpolation
between W1 and W3. The model was implemented within the software COMSOL
Multiphysics, and the results are presented in the following section.

3. Results and discussion

3.1. Validation. The model was subjected to a constant force F = 400 N, corre-
sponding to the body weight, for an arbitrary length of time, leading to a constant
energy distribution throughout the structure and hence a bone density evolution as
defined by Figure 3. An initial numerical validation of the model was made by
testing three simplified cases: (i) osteoblasts and osteoclasts have the same activity
(i.e., the models parameters are equal and opposite: k1 = −k2 and A1 = −A2),
(ii) only osteoblasts are active (i.e., k2 = A2 = 0), and (iii) only osteoclasts are
active (i.e., k1 = A1 = 0). The results are presented in Figure 5.

As expected, an equal intensity of osteoblast and osteoclast activity (Figure 5,
left) leads to a constant bone density as a function of time. This is similar to home-
ostasis conditions when homogenized to long periods of time (everyday life activ-
ity). In Figure 5, center, when only osteoblasts are considered (i.e., k2 = A2 = 0),
there is no osteoclast activity; therefore, if the energy level is high enough to trigger
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Figure 5. Evolution of the model parameters, bone density, and
mechanical energy as a function of time for the three simplified
cases.

Figure 6. Mechanical energy W variation as function of time for
different values of the applied force F .

osteoblasts, bone density increases and since the bone stiffness increases corre-
spondingly, then the developed mechanical energy (for a constant applied force)
decreases, and so does the osteoblast activity. Finally, when only osteoclasts are
considered (i.e., k1= A1= 0, in Figure 5, right), there is no osteoblast activity, bone
density decreases and so does its stiffness, and hence the developed mechanical
energy increases (for a constant applied force) together with the osteoclast activity.

3.2. Results and sensitivity study for different load cases. Different intensities of
F were applied from 360 N to 480 N. The results are presented in Figures 6, 7,
and 8. For constant-load cases below 478 N, we observe a convergence towards an
increase of bone density (Figure 7) and a corresponding decrease of mechanical
energy (Figure 6). For load cases above 478 N, the opposite occurs with a decrease
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Figure 7. Bone mineral density ρbone variation as function of time
for different values of the applied force F .

of bone density and an increase of energy. Here, the energy threshold W2 shows
up around 478.1 N with the given values of the model parameters.

The threshold (i.e., the switch from positive to negative bone density) is very
sensitive to the intensity of the applied force and it is located within a very thin force
range around 478 N, deregulating the system very quickly. It is not possible at this
stage to know if this is a limitation of the proposed model (due to the simplified as-
sumptions made or the lack of more detailed information on the existing couplings
at the mechanobiological level) or if this is really occurring in reality. Such an
aspect needs to be investigated further experimentally at a later stage. For the case
of the control force (400 N), the mechanical energy W and the bone density ρbone

reach final values of 9.019× 10−6 mJ and 0.64.
Cell activities are presented in Figure 8. For the control case, their final values

are equal to 9.019 × 10−1 kg · m−3
· unit time−1 and −6.313 × 10−1 kg · m−3

·

unit time−1 for Aob and Aoc, respectively. Thus, we can conclude that for this
specific case, a fast stabilization is observed to reach the mechanobiological equi-
librium. Since we observed a fast switch in the variable trends around 478 N, we
decided to perform more simulations around this threshold in order to highlight
such a transition.

Similarly to the developed mechanical energy and bone mineral density varia-
tions, when the applied mechanical force increases above 478 N, osteoblast activity
reaches its maximum value, and we observe an inversion of the osteoclast activity
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Figure 8. Osteoblast activity Aob and osteoclast activity Aoc vari-
ations as functions of time for different values of the applied
force F . Osteoblast activity is shown positive in continuous lines
up to a force of 478.15 N above which it remains maximal at
1.46 kg ·m−3

·unit time−1. Osteoclast activity is shown negative in
dashed lines up to a force of 480 N showing the transient behavior
through 478 N towards bone degradation.

(decreasing to increasing). As the osteoblast activity is at its maximum of 1.46 kg ·
m−3
· unit time−1, when increasing the applied force, the osteoclast activity will

pass from “ineffective” (below the osteoblast activity of −1.5 kg ·m−3
·unit-time−1)

to “effective” as it reaches a final value of −2 kg ·m−3
· unit time−1. Once the new

equilibrium reached, where both osteoblast and osteoclast activities have reached
their maximum value, a fast bone degradation is observed (Figure 7). A return
to normal physical conditions depends upon a decrease of the applied mechanical
force and a new stabilization of the system under study.

The proposed model only relies on a few parameters: ρini
bone, A1, A2, k1, k2,

W0, W1, and W3. A sensitivity study was performed in order to evaluate their
influence on the overall results. We vary one parameter at a time in the range
±10% and we recorded the obtained results for the energy W , the osteoblast (Aob)
and osteoclast (Aoc) activities, and the bone density ρbone. The obtained results
show that ρini

bone, A1, A2, W0, W1, and W3, within the 10% range variation, have
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k1 9×104 9.5×104 10×104 10.5×104 11×104

(kg·mJ−1
·m−3
·ut−1) (−10%) (−5%) (control) (+5%) (+10%)

W (mJ) +11.76% +5.39% 9.019×10−6
−4.63% −8.67%

ρbone (×100%) −5.42% −2.58% 0.6352 +2.41% +4.64%
Aob (kg·m−3

·ut−1) +0.61% +0.12% 0.9019 +0.13% +0.47%
Aoc (kg·m−3

·ut−1) −11.80% −5.39% −0.6313 +4.63% +8.66%

k2 6.3×104 6.65×104 7×104 7.35×104 7.7×104

(kg·mJ−1
·m−3
·ut−1) (−10%) (−5%) (control) (+5%) (+10%)

W (mJ) −6.31% −3.32% 9.019×10−6
+3.68% +7.82%

ρbone (×100%) +3.32% +1.7% 0.6352 −1.78% −3.68%
Aob (kg·m−3

·ut−1) −6.31% −3.32% 0.9019 +3.68% +7.82%
Aoc (kg·m−3

·ut−1) +15.68% +8.14% −0.6313 −8.87% −18.60%

Table 1. Results of the sensitivity study performed for k1 and k2,
where “ut” stands for “unit time”.

little effect. The initial bone mineral density value has no effect since we apply a
constant force on the structure, so whatever the initial state equilibrium, it will lead
to the same final results with a different kinematic evolution. Since most of the
evolution occurs during the osteoblast (Aob) and osteoclast (Aoc) activities through
k1 and k2 parameters, the other parameters do not impact either of the obtained
results in this study.

However, it appeared that k1 and k2 have a higher impact on the final results as
reported in Table 1. As k1 decreases, ρbone decreases too (−11.8%), whereas as
k2 decreases, ρbone increases (+15.68%). For W and Aob, inverse trends can be
noticed when varying k1 and k2. For k1, W and Aob fluctuate between +11.76%
and −8.67% and between −5.42% and +4.64%, respectively. For k2, W and
Aob fluctuate between −6.31% and +7.82% and between +3.32% and −3.68%,
respectively. Finally, Aoc varies between +0.61% and +0.47% for k1 and between
+6.31% and +7.82% for k2.

Most of the bone mineral density variation occurs within the k1 and k2 phases.
Hence, modifying only one parameter (k1 or k2) at a time has a direct impact on
the final results. This effect would be compensated for if both parameters would
change oppositely in the same proportions, which would lead to the same final
results.

After identification and validation of the mechanobiological phenomena at play
in this model (developed mechanical energy, osteoblast and osteoclast activities,
and bone mineral density variations) as a function of time for given intensities
of mechanical forces, the results were plotted not as a function of time, but as a
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Figure 9. Numerical results (in comparison to the initial model
hypotheses of Figure 1).

function of the intensity of mechanical energy for all the simulations. The results
are presented in Figure 9.

Figure 9 shows the results obtained with the newly proposed mechanoregulatory
model. These results should be compared with Figure 1 showing the theoretical
hypotheses defined initially. An observation is made that a very strong correlation
is obtained between the proposed model and the obtained numerical results. We
have an initial increase of the osteoblast and osteoclast activities up to their max-
imum values that remain constant afterwards. The only difference is that in the
numerical model, the initial osteoblast activity being triggered by the osteoclasts
was not included, which explains why it is not visible in Figure 9, but starts directly
increasing at the origin. We also observe that the bone mineral density evolution
follows the sum of both cell activities (function of the applied mechanical force)
being positive initially for lower mechanical energy and negative later on for higher
energy from an original normalized bone density of 0.5. The maximum osteoblast
activity is reached first (energy level W1) followed by the maximum of the osteo-
clast activity (energy level W3). We note that the equilibrium between osteoblast
and osteoclast activity does not correspond to the bone mineral density variation
equaling zero (i.e., a return to the initial bone density of 0.5) as there appears to be
a time delay of the structure response to the mechanical load. The passage of the
bone mineral density from positive to negative variation occurs later. Thereafter,
there is a continuing decrease of the bone mineral density with stabilization later
on, dependent on the intensity of the applied force.

3.3. Application to variable load conditions. The numerical results were validated
on constant load and showed good correlation with the proposed model hypotheses.
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Figure 10. Bone mineral density, cell activity, and energy varia-
tions when applying a variable force below and above the degra-
dation threshold (overload threshold).

Hence, to extract bone density variations in a more “real application”-like environ-
ment, variable mechanical forces were considered. A constant force is applied
on the model until equilibrium is reached (constant bone density that occurs in
normal living conditions after several weeks). Then the intensity of the applied
force is changed to reach a new equilibrium. This is done for two intensities of
the mechanical force, one below and one above the overload degradation threshold.
Results are presented in Figure 10.

At initial mechanical load (300 N), bone density quickly reaches equilibrium
(≈ 0.55) with decreasing cellular activity. Next, the force is increased above the
threshold (520 N). The cell activity is changed to reach its maximum with imme-
diate response from osteoblasts and delayed response from osteoclasts. This is
dependent on the evolution of the elastic strain energy within the model that takes
time to develop as a function of the bone density that is present at a given point of
the structure and at a given time. Once the energy has developed above the thresh-
old, bone density starts to decrease to reach a new equilibrium that is lower than the
previous one. When cycling this effect by applying in turn these two mechanical
forces, we observe the corresponding bone density variations and new equilibrium
being formed. Decreasing the overloading force will lead to a reincrease of the
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bone density coming back to its “normal” healthy working conditions. However, it
is anticipated that keeping an overload condition on the bone will probably lead to
a complete degradation of the structure. This was not modeled here as it certainly
requires accounting for extra mechanobiological actions that were not integrated
within this simplified mechanoregulatory model.

4. Conclusion

A new comprehensive approach based on cell activity to describe bone remod-
eling is proposed to assess the possible bone degradation kinetics when under
high-intensity mechanical loads. Despite the complexity of the mechanobiological
process, only four experimentally measurable parameters are required to tune this
model for specific cases. These are the variations of the bone density kinetics with
the intensity of the applied mechanical loads up to their maximum value, and the
two maximum values for osteoblasts and osteoclasts activities. The results show
the respective contributions of each process on the bone mineral density evolution
and are in agreement with the experimental data provided in the literature. In fact,
the model is able to depict both the harmful and the favorable effects of high and
medium mechanical loads, respectively. With this approach, when experimentally
measuring the four model parameters for different load scenario (force intensity,
test specimen, aging, diseased, etc.), potential differences are expected between
the cases and possible foreseen applications for the optimization process for sport
activities.
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