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ANALYTICAL MECHANICS ALLOWS NOVEL VISTAS
ON MATHEMATICAL EPIDEMIC DYNAMICS MODELING

PAUL STEINMANN

This contribution aims to shed light on mathematical epidemic dynamics model-
ing from the viewpoint of analytical mechanics. To set the stage, it recasts the
basic SIR model of mathematical epidemic dynamics in an analytical mechanics
setting. Thereby, it considers two possible reparametrizations of the basic SIR
model: one rescales time, while the other transforms the coordinates, i.e., the
independent variables. In both cases, Hamilton’s equations in terms of a suited
Hamiltonian as well as Hamilton’s principle in terms of a suited Lagrangian are
considered in minimal and extended phase and state space coordinates, respec-
tively. The corresponding Legendre transformations relating the various options
for the Hamiltonians and Lagrangians are detailed. Ultimately, this contribu-
tion expands on a multitude of novel vistas on mathematical epidemic dynamics
modeling that emerge from the analytical mechanics viewpoint. As a result, it
is believed that interesting and relevant new research avenues open up when ex-
ploiting in depth the analogies between analytical mechanics and mathematical
epidemic dynamics modeling.

1. Motivation

The global COVID-19 pandemic, with alleged outbreak by the end of 2019 in
Wuhan, China [Lu et al. 2020] — despite its devastating implications for health,
economy, and society — has in particular challenged modeling and simulation of
mathematical epidemic dynamics. Political decision makers around the globe seek
(or should seek) advice from scientists such as virologists, biologists, clinicians,
economists, and sociologists as well as modelers from different fields. Especially
the latter are in the position to virtually simulate various scenarios based on well-
founded assumptions in order to provide support and guidance for the difficult and
momentous decisions of politicians, e.g., on lockdown measures and stepwise exit
strategies thereof. Thus, the critical importance of modeling is clearly appreciated,
and indeed, mathematical epidemic dynamics modeling is a well-established and
mature field.
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Traditional mathematical modeling of epidemic dynamics is rooted in the con-
cept of susceptible, infected, and recovered (SIR) compartments as originally pro-
posed in [Kermack and McKendrick 1927; 1932; 1933; 1937; 1939]. Various
modifications extend the classical SIR model to account for further compartments
such as, e.g., deceased (SIRD model), exposed (SEIR model), and quarantined
(SIQRD model), among many other sophisticated options [Hethcote 2000; Diek-
mann et al. 2013]. Classical SIR-type compartment-based models are coupled ordi-
nary differential equations (ODEs). Extending the ODE-based SIR-type modeling
approach to integro-differential equations (IDEs) allows one to also consider the
detailed course of the disease, e.g., delay due to incubation time and the infectious
period [Keimer and Pflug 2020]. SIR-type models describe the temporal spread
of infectious diseases for integral populations, thereby, however, neglecting the
interconnectedness of spatially distributed geographic areas. Recently proposed
multiple compartment models, e.g., the mcSIR model in [Seroussi et al. 2019], also
allow consideration of the geographical spread of potentially multiple infectious
virus strains within the population and its potentially multiple subgroups (e.g., age
groups). Spatial network models, e.g., [Balcan et al. 2009; 2010; Pastor-Satorras
et al. 2015], for example based on the SEIR model at each network node can
qualitatively simulate the outbreak dynamics of infectious diseases and the impact
of travel restrictions in geographical areas at the global (macro) scale such as China
and the USA [Peirlinck et al. 2020] or Europe [Linka et al. 2020]. However, due
to its stochastic nature and strong impact of socio-economic factors, modeling
epidemic dynamics within geographical areas at the local (micro) scale requires
the use of another modeling paradigm, i.e., rule-driven, agent-based models [Rah-
mandad and Sterman 2008]. Agent-based models allow for example studying the
effect of various lockdown exit strategies on local geographical entities with only a
comparatively small number of individuals (agents); see, e.g., [German et al. 2020].
Regardless of the modeling approach taken, quantitative predictions of epidemic
dynamics remain challenging and critically require careful identification of model
parameters from reliable databases; see, e.g., [Kergaßner et al. 2020b].

Given this mature state of affairs, why is a novel, alternative view
on mathematical epidemic dynamics modeling justified at all?

The answer is as follows: to date, modelers of complex mechanical systems and
behavior have developed a versatile and extremely successful toolset, including
sophisticated analytical and in particular efficient and accurate computational meth-
ods. Examples are techniques to master severe nonlinearities and couplings with
nonmechanical fields, a multitude of multiscale and homogenization modeling
approaches as well as incorporating uncertainty quantification into modeling and
simulation. Mathematical epidemic dynamics modeling can undoubtedly benefit
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largely from this accumulated expertise! In summary, it is therefore believed that
first translating epidemic dynamics models into an analytical mechanics setting
(related steps towards this aim may be found, e.g., in [Militaru and Munteanu
2013; Ionescu et al. 2015; Seroussi et al. 2019]) and then, secondly, exploiting the
analogy between the two approaches while utilizing the full toolset of mechanical
modeling can provide novel vistas and unprecedented opportunities. The present
contribution aims to sketch out a few of these perspectives and to encourage the me-
chanics community to offer its strong modeling expertise to possibly and hopefully
help further improve epidemic dynamics modeling.

2. Basic SIR model

Classical modeling of epidemics dynamics is rooted in the concept of susceptible,
infected, and recovered (SIR) compartments as originally proposed in [Kermack
and McKendrick 1927; 1932; 1933; 1937; 1939]. The basic compartment-based
SIR model is the set of two coupled ordinary differential equations (ODEs)[

I •

S•

]
=

[
βSI − γ I
−βSI

]
. (1)

Here, I and S denote the stock of individuals in the infected and the susceptible
compartments, respectively, normalized by the size of the entire population. The
notation for the derivative of a quantity with respect to ordinary time t is

{ · }
•
:= dt { · }. (2)

The parameters β and γ are the infection and the recovery rate, respectively, with
their ratio defining the basic reproduction number R0 := β/γ . Note finally that
the stock of individuals in the recovered compartment follows from the constraint
S+ I + R = 1; thus, the evolution equation R• =−[S•+ I •] is tacitly suppressed
in our presentation.

3. Time reparametrized SIR model

In order to recast the basic SIR model into a format more amenable to the analytical
mechanics setting, it is proposed, as a first option, to rescale time as

τ :=

∫ t

0
SI dt with dτ/dt = SI. (3)

The notation for the derivative of a quantity with respect to rescaled time τ is

{ · }
◦
:= dτ { · }. (4)
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Consequently, the derivatives with respect to rescaled and ordinary time are related
via

{ · }
◦
= { · }

•/[SI ]. (5)

As a result, the basic SIR model is eventually reparametrized in terms of rescaled
time as [

I ◦

S◦

]
= F with F :=

[
β − γ /S
−β

]
=:

[
V
F

]
. (6)

In the time reparametrized SIR model the right-hand side is abbreviated as the
forcing term F, i.e., as the column matrix consisting of the time reparametrized rate
of infection V and force of infection F (a common terminology from mathematical
epidemiology already establishing a semantic analogy to mechanics). Computing
I ◦◦ = [γ /S2

]S◦ from (6)1 and eliminating S◦ with the help of (6)2 renders I ◦◦ =
−βγ/S2. Resorting finally again to (6)1, i.e., expressing S(I ◦) = γ /[β − I ◦],
allows formulating the time reparametrized SIR model as a single nonlinear ODE

I ◦◦ =−R0[β − I ◦]2 (7)

exclusively in the stock of individuals in the infected compartment and with the
basic reproduction number and the infection rate as parameters.

3.1. Hamiltonian in minimal phase space coordinates. The minimal phase space
coordinates collectively assembled in the column matrix Z ∈ R2, i.e., the general-
ized coordinate Q defined as the stock of individuals in the infected compartment
and the generalized momentum P defined as the stock of individuals in the suscep-
tible compartment, span the two-dimensional phase space P; thus,

P :=

{
Z :=

[
Q
P

]
:=

[
I
S

]}
. (8)

The Hamiltonian H(Z) in minimal phase space coordinates, which eventually re-
sults in the time reparametrized SIR model from (6), is then identified as

H(Z) := β[I + S] − γ ln S. (9)

Indeed, the corresponding Hamilton equations deliver a reformulation of the result
in (6), i.e., [

I ◦

S◦

]
=

[
0 1
−1 0

] [
β

β − γ /S

]
. (10)

Symbolic notation clearly reveals the Hamiltonian structure of the time reparame-
trized SIR model

Z◦ = J · ∂Z H(Z). (11)
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Thereby, the skew-symmetric J ∈ R2
×R2 denotes the so-called symplectic matrix

in P

J :=
[

0 1
−1 0

]
(12)

with J t
=−J and J2

=−I , where I ∈ R2
×R2 is the common unit matrix in P.

The Hamiltonian structure in terms of the skew-symmetric J clearly identifies the
(autonomous) Hamiltonian H(Z) in minimal phase space coordinates as first inte-
gral, i.e., as a conserved quantity under the flow implied by the Hamilton equations,
since

H◦ = ∂Z H · Z◦ = ∂Z H · J · ∂Z H = 0. (13)

The gradient of the Hamiltonian H(Z) with respect to the minimal phase space
coordinates, abbreviated in the sequel as G(Z) ∈ R2, is computed as

∂Z H(Z)=
[

β

β − γ /S

]
=: G(Z). (14)

Taken together, the time reparametrized SIR model obeys Hamiltonian structure
and identifies the relation between the gradient G(Z) ∈ R2 of the Hamiltonian
H(Z) in minimal phase space coordinates and the forcing term F(Z) ∈ R2 as

Z◦ = J · G(Z)= F(Z). (15)

Exchanging the time derivative to the one with respect to ordinary time t destroys
the clean Hamiltonian structure in terms of a constant symplectic matrix; i.e.,

Z• = [SI ]J · G(Z)= [SI ]F(Z). (16)

One may, of course, reinterpret this result as a Hamiltonian structure with noncon-
stant, coordinate-dependent symplectic matrix [SI ]J on a nonflat manifold.

3.2. Lagrangian in minimal state space coordinate. The minimal state space co-
ordinate, i.e., the generalized coordinate Q defined as the stock of individuals in
the infected compartment, spans the one-dimensional state space S; thus,

S := {Q := I }. (17)

Then a Legendre transformation of the Hamiltonian in minimal phase space coor-
dinates defines the corresponding Lagrangian

L(I, I ◦) := sup
S
{SI ◦− H(Z)}. (18)

The supremum condition identifies I ◦ with the derivative ∂S H(Z) of the Hamil-
tonian in minimal phase space coordinates from (9) with respect to the generalized
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momentum, and renders

I ◦ .= β − γ /S. (19)

Resolving the above supremum condition for S in terms of I ◦ delivers

S(I ◦)= γ /[β − I ◦]. (20)

Then, with S(I ◦)I ◦ = γ I ◦/[β − I ◦] and H(I, S(I ◦)) = β[I + γ /[β − I ◦]] −
γ ln(γ /[β − I ◦]), the Lagrangian in minimal state space coordinate follows even-
tually as

L(I, I ◦)=−β I − γ + γ ln(γ /[β − I ◦]). (21)

Based on the Lagrangian in minimal state space coordinates, Hamilton’s principle
results in the stationarity condition[

∂L
∂ I ◦

]◦
=
∂L
∂ I
. (22)

Thus, with ∂I ◦L = γ /[β − I ◦] → [∂I ◦L]◦ = γ I ◦◦/[β − I ◦]2 and ∂I L = −β, the
Euler–Lagrange equation corresponding to the Lagrangian in minimal state space
coordinates reads

I ◦◦+ R0[β − I ◦]2 = 0. (23)

Clearly, the Euler–Lagrange equation in minimal state space coordinates coincides
with the single, nonlinear ODE formulation of the time reparametrized SIR model
in (7).

3.3. Lagrangian in extended state space coordinates. Alternatively, extended state
space coordinates collectively assembled in the column matrix Q ∈ R2, i.e., the
generalized coordinates jointly defined as the stock of individuals in the infected
and susceptible compartments, span the two-dimensional state space S; thus,

S :=

{
Q :=

[
I
S

]}
. (24)

Then the Lagrangian L(Q, Q◦) in extended state space coordinates, which even-
tually results in the time reparametrized SIR model from (6), is determined as

L(Q, Q◦) := 1
2 Q · J t

· Q◦− H(Q). (25)

Here, the Legendre transformation term Q · J t
· Q◦ = Q◦ · J · Q expands as the

skew-symmetric form

Q · J t
· Q◦ = SI ◦− I S◦, (26)
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whereas the Hamiltonian H(Q), corresponding to (9), is now parametrized in terms
of the extended state space coordinates Q with

H(Q) := β[I + S] − γ ln S. (27)

As a result, the Lagrangian in extended state space coordinates then renders the
stationarity conditions of the corresponding Hamilton principle as[

∂L
∂ Q◦

]◦
=
∂L
∂ Q

. (28)

With ∂Q◦L = Q · J t/2 and ∂Q L = Q◦ · J/2−G(Q), the Euler–Lagrange equations
thus follow as

1
2 Q◦ · J t

=
1
2 Q◦ · J − G(Q). (29)

Unfolding the compact symbolic notation, these expand concretely into

1
2

[
S◦

−I ◦

]
=

1
2

[
−S◦

I ◦

]
−

[
β

β − γ /S

]
. (30)

The Euler–Lagrange equations in (29) are next reformulated by recalling that due to
the skew-symmetry of the symplectic matrix, Q◦ · J =−Q◦ · J t and Q◦ · J t

= J ·Q◦

hold; thus,

J · Q◦ =−G(Q). (31)

Finally, with J2
= −I , the reformulated Euler–Lagrange equations in (31) are

modified into

Q◦ = J · G(Q)= F(Q). (32)

Obviously, this format recovers the relation between the gradient G(Q) ∈ R2 of
the Hamiltonian H(Q) (in extended state space coordinates) and the forcing term
F(Q) ∈ R2 already established previously in (15). Likewise, exchanging the time
derivative to the one with respect to ordinary time t

Q• = [SI ]J · G(Q)= [SI ]F(Q) (33)

results again in a formulation with nonconstant, coordinate-dependent symplectic
matrix [SI ]J on a nonflat manifold.

3.4. Hamiltonian in extended phase space coordinates. For academic curiosity
it is also interesting to consider extended phase space coordinates Q, i.e., the gen-
eralized coordinates jointly defined as the stock of individuals in the infected and
susceptible compartments, and P , i.e., heretofore undefined generalized momenta,
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collectively assembled in the column matrix Z ∈ R4, to span the four-dimensional
state space P; thus,

P :=

{
Z :=

[
Q
P

]
with Q :=

[
I
S

]
and P :=

[
ϒ

6

]}
. (34)

A Legendre transformation of the Lagrangian in extended state space coordinates
from (25) defines the associated Hamiltonian

H(Q, P)= sup
Q◦
{P · Q◦− L(Q, Q◦)}. (35)

The corresponding supremum condition identifies P with ∂Q◦L(Q, Q◦), the de-
rivative of the Lagrangian L(Q, Q◦) in extended state space coordinates from (25)
with respect to the time reparametrized rate of the generalized coordinates Q◦, and
renders

∂L
∂ Q◦

=
1
2 Q · J t

=: P . (36)

As a result, P does not depend on Q◦, thus identifying the Lagrangian L(Q, Q◦)
in (25) as degenerate in the sense of Dirac’s generalized Hamiltonian dynamics
[Dirac 1950; 1958]. Consequently, with Q · J t

= J · Q and J2
=−I , an additional

constraint for the extended phase space coordinates emerges:

C(Q, P)= Q+ 2 J · P .
= 0. (37)

The Hamiltonian H(Q, P) in extended phase space coordinates thus follows from
Legendre transformation by incorporating the constraint via the Lagrange multi-
plier 3; i.e.,

H(Q, P)= 1
2 Q · J t

· Q◦− L(Q, Q◦)+3 ·C(Q, P). (38)

Taking into account the explicit form of the Lagrangian L(Q, Q◦) in extended
state space coordinates from (25) then renders the explicit representation of the
Hamiltonian H(Q, P) in extended phase space coordinates:

H(Q, P)= H(Q)+3 ·C(Q, P). (39)

Invoking ∂Q C(Q, P)= I and ∂P C(Q, P)= 2 J , Hamilton’s equations based on
the Hamiltonian H(Q, P) in extended phase space coordinates from (39) result in[

Q◦

P◦

]
=

[
0 I
−I 0

] [
∂Q H
∂P H

]
=

[
0 I
−I 0

] [
G(Q)+3

23 · J

]
. (40)

The unknown Lagrange multiplier 3 is determined from the consistency condition
for the constraint

C◦(Q◦, P◦)= Q◦+ 2 J · P◦ .= 0, (41)
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which, upon introducing Hamilton’s equations Q◦=23· J and P◦=−[G(Q)+3],
results in

23 · J − 2 J · [G(Q)+3] .= 0. (42)

The solution of the consistency condition then renders the explicit representation
for the Lagrange multiplier

3=− 1
2 G(Q). (43)

Using again Hamilton’s equation Q◦ = 23 · J and exploiting the skew-symmetry
of the symplectic matrix, i.e., 3 · J = −J ·3, recovers once more the already
previously established relation between the gradient G(Q) ∈R2 of the Hamiltonian
H(Q) (in extended state space coordinates) and the forcing term F(Q) ∈ R2:

Q◦ = J · G(Q)= F(Q). (44)

Finally, using Hamilton’s equation P◦ = −[G(Q)+3] identifies eventually the
time reparametrized rate of the heretofore unknown generalized momenta as

P◦ =− 1
2 G(Q)= 1

2 J · F(Q). (45)

The last equality follows from J2
=−I and the previous relation J ·G(Q)= F(Q).

4. Coordinate reparametrized SIR model

Alternatively, and again aiming to recast the basic SIR model into an analytical
mechanics format, it is proposed, as a second option, to logarithmically transform
the coordinates (or rather the independent variables) as

I 7→ i := ln I and S 7→ s := ln S. (46)

As a result, the basic SIR model, reparametrized in terms of logarithmically trans-
formed coordinates, however still in terms of derivatives with respect to ordinary
time t , now reads[

i •

s•

]
= f with f :=

[
βS(s)− γ
−β I (i)

]
=:

[
v

f

]
. (47)

Note that in this reparametrization, the stocks of individuals in the infected and
susceptible compartments are considered as dependent functions of the logarithmi-
cally transformed coordinates

I (i) := exp i and S(s) := exp s. (48)

In the coordinate reparametrized SIR model the right-hand side is abbreviated as
the forcing term f , i.e., as the column matrix consisting of the coordinate repa-
rametrized rate of infection v and force of infection f . Computing i •• = βS(s)s•
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from (47)1 and eliminating s• with the help of (47)2 renders i ••=−β2S(s)I (i). Re-
sorting finally again to (47)1, i.e., expressing S(s)= [i •+γ ]/β, allows formulating
the coordinate reparametrized SIR model as a single nonlinear ODE

i •• =−β I (i)[i •+ γ ] (49)

exclusively in the logarithmic stock of individuals in the infected compartment.

4.1. Hamiltonian in minimal phase space coordinates. The minimal (logarith-
mic) phase space coordinates collectively assembled in the column matrix z ∈ R2,
i.e., the generalized coordinate q defined as the logarithmic stock of individuals in
the infected compartment and the generalized momentum p defined as the logarith-
mic stock of individuals in the susceptible compartment, span the two-dimensional
phase space p; thus,

p :=

{
z :=

[
q
p

]
:=

[
i
s

]}
. (50)

Next, the Hamiltonian h(z) in minimal (logarithmic) phase space coordinates, which
eventually results in the coordinate reparametrized SIR model from (47), is identi-
fied as

h(z) := β[I (i)+ S(s)] − γ s. (51)

As a result, the corresponding Hamilton equations deliver a reformulation of (47),
i.e., [

i •

s•

]
=

[
0 1
−1 0

] [
β I (i)

βS(s)− γ

]
. (52)

Symbolic notation showcases clearly the Hamiltonian structure of the (logarithmic)
coordinate reparametrized SIR model

z• = j · ∂zh(z). (53)

Here, the skew-symmetric j ∈ R2
×R2 denotes the appropriate symplectic matrix

in p

j :=
[

0 1
−1 0

]
(54)

with j t
= − j and j2

= −i , where i ∈ R2
×R2 is the common unit matrix in p.

The Hamiltonian structure in terms of the skew-symmetric j clearly identifies the
(autonomous) Hamiltonian h(z) in minimal (logarithmic) phase space coordinates
as first integral:

h• = ∂zh · z• = ∂zh · j · ∂zh = 0. (55)
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The gradient of the Hamiltonian h(z) with respect to the minimal (logarithmic)
phase space coordinates, abbreviated in the sequel as g(z) ∈ R2, is computed as

∂zh(z)=
[

β I (i)
βS(s)− γ

]
=: g(z). (56)

Summarizing, the coordinate reparametrized SIR model obeys Hamiltonian struc-
ture and identifies the relation between the gradient g(z) ∈ R2 of the Hamilton-
ian h(z) in minimal (logarithmic) phase space coordinates and the forcing term
f (z) ∈ R2 as

z• = j · g(z)= f (z). (57)

It is emphasized that despite the logarithmic nature of the reparametrized coordi-
nates, here, as a benefit, the Hamiltonian structure involves the constant, coordinate-
independent symplectic matrix j of a flat manifold as well as derivatives with
respect to ordinary time t .

4.2. Lagrangian in minimal state space coordinate. The minimal (logarithmic)
state space coordinate, i.e., the generalized coordinate q defined as the logarithmic
stock of individuals in the infected compartment, span the one-dimensional state
space s; thus,

s := {q := i}. (58)

Legendre transformation of the Hamiltonian in minimal (logarithmic) phase space
coordinates defines the corresponding Lagrangian

l(i, i •)= sup
s
{si •− h(z)}. (59)

Then the supremum condition identifies i • with the derivative ∂sh(z) of the Hamil-
tonian in minimal (logarithmic) phase space coordinates from (51) with respect to
the generalized momentum, and renders

i • = βS(s)− γ. (60)

Resolving the above supremum condition for s in terms of i • delivers

s(i •)= ln([i •+ γ ]/β). (61)

Then, with s(i •)i • = ln([i • + γ ]/β)i • and h(i, s(i •)) = β[I (i) + [i • + γ ]/β] −
γ ln([i •+ γ ]/β), the Lagrangian in minimal (logarithmic) state space coordinate
follows eventually as

l(i, i •)=−β I (i)− [i •+ γ ][1− ln([i •+ γ ]/β)]. (62)
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Based on the Lagrangian in minimal (logarithmic) state space coordinates, Hamil-
ton’s principle results in the stationarity condition[

∂l
∂i •

]
•

=
∂l
∂i
. (63)

Thus, with ∂i•l = −[1− ln([i • + γ ]/β)] + β → [∂i•l]• = i ••/[i • + γ ] and ∂i l =
−β I (i), the Euler–Lagrange equation corresponding to the Lagrangian in minimal
(logarithmic) state space coordinates reads

i ••+β I (i)[i •+ γ ] = 0. (64)

Obviously, the Euler–Lagrange equation in minimal (logarithmic) state space co-
ordinates coincides with the single, nonlinear ODE formulation of the coordinate
reparametrized SIR model in (49).

4.3. Lagrangian in extended state space coordinates. Alternatively, extended (log-
arithmic) state space coordinates collectively assembled in the column matrix q ∈
R2, i.e., the generalized coordinates jointly defined as the logarithmic stock of in-
dividuals in the infected and susceptible compartments, span the two-dimensional
state space s; thus,

s :=

{
q :=

[
i
s

]}
. (65)

The Lagrangian l(q, q•) in extended (logarithmic) state space coordinates, which
eventually results in the coordinate reparametrized SIR model from (47), reads

l(q, q•) := 1
2 q · j t

· q•− h(q). (66)

Here, the Legendre transformation term q · j t
· q• = q• · j · q expands as the skew-

symmetric form
q · j t

· q• = si •− is•. (67)

The Hamiltonian h(q), corresponding to (51), is now parametrized in terms of the
extended (logarithmic) state space coordinates q as

h(q) := β[I (i)+ S(s)] − γ s. (68)

In extended (logarithmic) state space coordinates the Lagrangian then renders the
stationarity conditions of the corresponding Hamilton principle[

∂l
∂q•

]
•

=
∂l
∂q
. (69)

With ∂q•l = q · j t/2 and ∂ql = q• · j/2− g(q), the Euler–Lagrange equations thus
follow as

1
2 q• · j t

=
1
2 q• · j − g(q) (70)
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and concretely unfold into

1
2

[
s•

−i •

]
=

1
2

[
−s•

i •

]
−

[
β I (i)

βS(s)− γ

]
. (71)

Subsequently, the Euler–Lagrange equations in (70) are reformulated by noting
that q• · j =−q• · j t and q• · j t

= j · q•; thus,

j · q• =−g(q). (72)

Finally, with j2
=−i , the Euler–Lagrange equations from (72) reformulate as

q• = j · g(q)= f (q). (73)

This format recovers the relation between the gradient g(q) ∈ R2 of the Hamilton-
ian h(q) (in extended (logarithmic) state space coordinates) and the forcing term
f (q) ∈ R2 already established previously in (57).

4.4. Hamiltonian in extended phase space coordinates. For completeness we also
consider extended (logarithmic) phase space coordinates q, i.e., the generalized co-
ordinates jointly defined as the logarithmic stock of individuals in the infected and
susceptible compartments, and p, i.e., heretofore undefined generalized momenta,
collectively assembled in the column matrix z ∈ R4, to span the four-dimensional
state space p; thus,

p :=

{
z :=

[
q
p

]
with q :=

[
i
s

]
and p :=

[
υ

σ

]}
. (74)

A Legendre transformation of the Lagrangian in extended (logarithmic) state space
coordinates from (66) defines the associated Hamiltonian

h(q, p)= sup
q•
{ p · q•− l(q, q•)}. (75)

The Legendre transformation identifies p with the derivative ∂q•l(q, q•) of the
Lagrangian l(q, q•) in extended (logarithmic) state space coordinates from (66)
with respect to the rate of the generalized coordinates q•, and renders

∂l
∂q•
=

1
2 q · j t

=: p. (76)

Thus, p does not depend on q•, consequently identifying the Lagrangian l(q, q•) in
(66) as degenerate [Dirac 1950; 1958]. Consequently, with q · j t

= j ·q and j2
=−i ,

an additional constraint for the extended (logarithmic) phase space coordinates
results:

c(q, p)= q+ 2 j · p .
= 0. (77)
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The Hamiltonian h(q, p) in extended (logarithmic) phase space coordinates thus
follows from Legendre transformation by incorporating the constraint via the La-
grange multiplier λ; i.e.,

h(q, p)= 1
2 q · j t

· q•− l(q, q•)+λ · c(q, p). (78)

Taking into account the explicit form of the Lagrangian l(q, q•) in extended (log-
arithmic) state space coordinates from (66) results in the explicit representation of
the Hamiltonian h(q, p) in extended (logarithmic) phase space coordinates

h(q, p)= h(q)+λ · c(q, p). (79)

Invoking ∂q c(q, p) = i and ∂ pc(q, p) = 2 j , Hamilton’s equations based on the
Hamiltonian h(q, p) in extended (logarithmic) phase space coordinates from (79)
result in [

q•

p•

]
=

[
0 i
−i 0

] [
∂qh
∂ ph

]
=

[
0 i
−i 0

] [
g(q)+λ

2λ · j

]
. (80)

The unknown Lagrange multiplier λ is determined from the consistency condition
for the constraint

c•(q•, p•)= q•+ 2 j · p• = 0, (81)

which, with q• = 2λ · j and p• =−[g(q)+λ], results in

2λ · j − 2 j · [g(q)+λ] .= 0. (82)

The solution of the consistency condition then renders the explicit representation
for the Lagrange multiplier

λ=− 1
2 g(q). (83)

Using again Hamilton’s equation q• = 2λ · j and exploiting λ · j =− j ·λ recovers
once more the already previously established relation between the gradient g(q) ∈
R2 of the Hamiltonian h(q) (in extended (logarithmic) state space coordinates) and
the forcing term f (q) ∈ R2:

q• = j · g(q)= f (q). (84)

Moreover, using Hamilton’s equation p• =−[g(q)+λ] identifies finally the rate
of the heretofore unknown generalized momenta as

p• =− 1
2 g(q)= 1

2 j · f (q). (85)

The last equality follows from j2
=−i and the previous relation j · g(q)= f (q).
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5. Novel vistas from analytical mechanics

In order to systematically explore lessons that can be learned from an analytical
mechanics viewpoint on mathematical epidemic dynamics modeling, the coordi-
nate reparametrized version of the SIR model, based on the Hamiltonian in phase
space, is taken as the point of departure:

z• = j · g(z). (86)

Building on this compact representation, several analytical-mechanics-inspired
novel vistas on mathematical epidemic dynamics that promise fruitful research
avenues for its modeling are identified in the sequel.

Vista 1. Allowing for nonautonomous, i.e., time-dependent generalized Hamilto-
nians results in the generalized representation

z• = j · g(z, t). (87)

Possible options justifying a nonautonomous Hamiltonian are for example:

(a) Various lockdown measures (cancellation of large events, school closing, con-
tact limitations, etc.) as well as their reversal (exit strategies) at discrete points
in time are modeled by time-dependent parameters such as for example the
infection and the recovery rates

β = β(t) and γ = γ (t),

thus making the Hamiltonian time-dependent.

(b) Various modifications extend the classical SIR model to account for further
compartments such as, e.g., deceased (SIRD model), exposed (SEIR model),
and quarantined (SIQRD model), among many other, more sophisticated op-
tions [Hethcote 2000; Diekmann et al. 2013]. SIR+ models of these types are
then captured by appropriately extending the phase space variables

z := [I, S, . . . ] ∈ R2+···

contributing to the Hamiltonian and its gradient.

(c) Classical SIR-type compartment-based models are coupled ordinary differ-
ential equations (ODEs). Extending the ODE-based SIR-type modeling ap-
proach to integro-differential equations allows one to also consider, e.g., delay
due to incubation time and infectious period [Keimer and Pflug 2020]. For
p representing relevant parameters, e.g., continuously distributed risk groups
and/or past time, from space P , the right-hand side of these read as

g(z, t)=
∫

P
γ (z, p, t) dp

with γ (z, p, t) the appropriate p-density of g(z, t).
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Vista 2. Allowing for an infinite-dimensional phase space with its coordinates
z = z(x, t) ∈ R2+··· defined as fields in four-dimensional space-time results in
the generalized representation

z• = j · g{z(x), t}. (88)

Here, the right-hand side is a functional of the phase space coordinates rather than a
function. Possible options for an infinite-dimensional phase space are for example:

(a) Gradient-type models, whereby the Hamiltonian depends on the phase space
coordinates z = z(x, t) and their higher spatial gradients

g{z(x), t} = δzh(z(x),∇x z(x), . . . , t).

Consequently, the right-hand side follows from the variational derivative of
the Hamiltonian, rather than from its gradient. Partial differential equations
of reaction-convection-diffusion type describing the spatio-temporal spread of
infectious diseases are thus a modeling option [Yamazaki and Wang 2017].

(b) Integral-type models, whereby, similar to peridynamics formulations [Javili
et al. 2019], the right-hand side follows from a spatial integration

g{z(x), t} =
∫

X
γ (z(x), x, t) dx

over a cut-off domain X (horizon) that covers spatial interaction.

Vista 3. Allowing for a finite-dimensional phase space with its coordinates z ∈

R[2+··· ]n defined as column matrices results in the generalized representation

z• = j · g(z, t). (89)

Possible options for a finite-dimensional phase space are for example:

(a) Partition the entire population into subpopulations, thereby separately consid-
ering different age/gender/risk groups (see, e.g., [Pastor-Satorras et al. 2015]):

z= [zpop1
, . . . , zpopmax

].

(b) Partition into various geographical locations in general network models account-
ing for the spatio-temporal spread of infectious diseases (see, e.g., [Seroussi
et al. 2019]):

z= [zloc1, . . . , zlocmax].

(c) Partition into multiple virus strains providing for generic infectious diseases
(see, e.g., [Levy et al. 2018]):

z= [zvir1, . . . , zvirmax].



NOVEL VISTAS ON MATHEMATICAL EPIDEMIC DYNAMICS MODELING 337

Capturing the interactions among the various partitions in a network is then re-
flected by the off-diagonal terms in the Hessian H := ∂2

zzh of the Hamiltonian.

Vista 4. For a pandemic such as COVID-19, spatial (geographical) resolution,
i.e., resolution of a network, is required at multiple scales: at the global (macro)
scale, i.e., for the entire globe; at the medium (meso) scale, i.e., for individual
countries; and at the local (micro) scale, i.e., for individual cities/communities. A
fully detailed spatial resolution at the local (micro) scale for the entire globe is
computationally prohibitive; moreover, most often an overkill degree of detail is
also not needed and/or not possible due to the lack of data. However, the spatial
resolution shall be adaptive to the quantity of interest, e.g., to study the dynamics
of infectious disease spread in a particular city/community, only the integral results
of more remote locations on the globe matter. These can be captured by a reduced
resolution of the network in those geographically remote locations. This asks for
a truly multiscale approach that adaptively zooms in only where needed. Possible
options for multiscaling are for example:

(a) Vertical coupling of scales relies on the assumption that the two scales consid-
ered are sufficiently separated; see, e.g., [Saeb et al. 2016]. Then the “force”
term on the right-hand side can be up-scaled from a subscale model by aver-
aging in the sense of computational homogenization:

z• = 〈j · g(z, t; z)〉.

Here, the sup-scale (indicated by an over-bar) on the left-hand side behaves
like an SIR-type model whereas the subscale model at the right-hand side
lives either on a finite-dimensional phase space or is represented by a rule-
driven, so-called agent-based model. Agent-based models are an alternative
modeling paradigm considering only a comparatively small number of individ-
uals (agents). They are capable of capturing the stochastic nature and strong
impact of socio-economic factors present at small scales; see, e.g., [German
et al. 2020; Rahmandad and Sterman 2008]. The subscale model is driven
by the sup-scale phase space coordinates, whereby a proper scale-transition
condition defines suited boundary/initial conditions at the subscale.

(b) Horizontal coupling of scales, analogously to the quasicontinuum method
[Miller and Tadmor 2002], requires adaptive resolution of the network spacing,
here indicated by the sup-script h:

z•h = j · g(zh, t).

Adaptivity requires suited network densification indicators that may follow
from a proper error analysis, a topic that is still largely under-investigated for
epidemic dynamics models.
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Vista 5. The availability and reliability of recorded data, e.g., regarding the cumula-
tive or daily infection cases, during an epidemic is typically characterized by a large
degree of uncertainty, e.g., regarding the infection rates, the degree of immunity,
and/or their dark figures. Uncertainty quantification is based on simulations with
uncertain data:

z• = j · g(z(ω), t). (90)

Thereby, uncertain data is here parametrized in terms of elementary events ω from
which one may repeatedly draw samples to investigate uncertainty propagation
throughout our model; see, e.g., [Pivovarov et al. 2018; 2019]. Possible options
for the description of uncertainties are for example:

(a) Aleatoric uncertainties require the use of random variables with probability
density function (pdf) as a measure of likelihood (e.g., Gaussian pdf in terms
of the mean value and standard deviation). Aleatoric uncertainties are sto-
chastic by nature and may not be neglected when the standard deviation is
large.

(b) Epistemic uncertainties may be captured by fuzzy variables with possibility
density function as a measure of degree of membership (e.g., symmetric trian-
gular membership function in terms of its modal value and support). Epistemic
uncertainties reflect a lack of knowledge and, in the case of epidemic dynamics
modeling, can be reduced by increasing testing for either infections and/or for
antibodies.

Vista 6. The discrete trajectory in time of the phase space variables is algorithmi-
cally traced by an integrator of the generic format

zn+1
= zn
+1t j · g(zn+α(ω), tn+α). (91)

Here, subscripts n+ 1, n, and n+α refer to, respectively, the end point, the start
point, and an intermediate point of/within a time step of length 1t . Possible options
for time integrators that display different accuracy, stability, and robustness, in
particular when integrating nonlinear right-hand sides, are for example:

(a) Runge–Kutta integrators are off-the-shelf algorithms that come in a variety
of different flavors (following from the corresponding Butcher tableau) like,
e.g., single- and multistage integrators of varying algorithmic accuracy. How-
ever, they do not necessarily respect first integrals such as the conservation
of the Hamiltonian for autonomous cases and may thus suffer from long-term
deterioration of algorithmic stability and robustness.



NOVEL VISTAS ON MATHEMATICAL EPIDEMIC DYNAMICS MODELING 339

(b) Variational integrators are based on a discrete form of the action integral,
whereby the integrand of the action integral is given by a discrete Lagrangian∫ tn+1

tn
l(zn+1, zn,1t) dt→ stat.

The resulting discrete Hamiltonian principle then renders a variational integra-
tor that follows from the discrete action integral being stationary. Variational
integrators preserve symmetries (momentum maps) and structure (symplec-
ticity) and are thus characterized by long-term algorithmic accuracy, stability,
and robustness; see, e.g., [Lew et al. 2004].

(c) Time-finite-element integrators follow from discretizing the Galerkin (weak)
form of the Hamilton equations∫

T
δz · [z•− j · g] dt = 0 for all δz.

Choosing appropriate Ansatz spaces for the test and trial functions, and suited
quadrature rules for approximating the time integrals, render integrators of
arbitrary algorithmic accuracy that are also characterized by long-term algo-
rithmic stability and robustness; see, e.g., [Betsch and Steinmann 2000; 2001;
2002; 2005].

Vista 7. The underlying equations governing epidemic dynamics are oftentimes
unknown. However, they may be discovered from a data-driven approach [Brunton
et al. 2016] if sufficient data is available, a scenario that is typically met for the
spatio-temporal spread of infectious diseases. The key idea is then to connect
the matrix arrangement of available discrete data points for the rate of the phase
space coordinates by a matrix of Ansatz functions, e.g., monomials of the matrix
arrangement of available discrete data points for the phase space coordinates, with
the matrix arrangement of discrete Ansatz parameters

[z•dat1, . . . , z
•

datmax
]
T
= A(zdat1, . . . , zdatmax)[apar1

, . . . , aparmax
]
T. (92)

Only few relevant entries in the matrix arrangement of the discrete Ansatz parame-
ters are then determined from sparse regression; consequently the resulting models
are denoted as parsimonious and compromise between accuracy and complexity,
while avoiding overfitting [Brunton et al. 2016].

Vista 8. Many more modeling approaches inspired by analytical mechanics are
conceivable and it is left to the mechanics community to harness those to further
improve mathematical epidemic dynamics modeling.
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Figure 1. Snapshots of simulated spatio-temporal epidemic
spread across Germany with countywise resolution. Colors depict
population with COVID-19-specific symptoms on March 13, 2020
(before wave peak), March 27, 2020 (wave peak), and April 10,
2020 (after wave peak). The simulation is based on a spatial net-
work of 401 counties and a convolution-type integro-differential
model [Kergaßner et al. 2020a]. The model parameters are cali-
brated and validated based on extensive data from the Robert Koch
Institute (https://corona.rki.de/).

6. Summary and perspective

First, this contribution explored options of how to recast the classical SIR model of
mathematical epidemic dynamics modeling in the variational setting of analytical
mechanics. In particular, it demonstrated that two conceptually entirely different
reparametrizations of the basic SIR model, i.e., either by rescaling time or by
transforming coordinates (independent variables), severely ease identification of
corresponding Hamiltonians and Lagrangians for use within Hamilton’s equations
and Hamilton’s principle. In each case, formulations in either minimal or extended
phase and state space coordinates are possible, providing in total eight different
modeling options. Interestingly, in minimal phase space coordinates, the stock of
individuals in the infected and the susceptible compartments represent the general-
ized coordinate and the generalized momentum, respectively. In contrast, for ex-
tended phase space coordinates, they jointly represent the generalized coordinates,
whereas the associated generalized momenta are initially unknown and only follow
from exploiting a constraint on the extended phase space coordinates. However,
regardless of the particular formulation chosen, from either Hamilton’s equations
or Hamilton’s principle one eventually recovers the original set of coupled ODEs
of the SIR model. As a recommendation, logarithmically transforming the coordi-
nates appears more attractive, since derivatives with respect to ordinary time are

https://corona.rki.de/
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retained for the evolution of the phase space coordinates. As an important perspec-
tive, recasting the classical SIR model in one of the eight different modeling options
enables the analytical mechanician to employ the full mechanical modeling toolset
for a plethora of important extensions. The striking analogy between analytical
mechanics and mathematical epidemic dynamics modeling opens up a multitude
of fascinating and relevant new research avenues for the progression of the latter.
It is thus believed that future exploitation of the Hamiltonian and/or Lagrangian
structure of mathematical epidemic dynamics modeling leads to unprecedented
insights and options for novel formulations.

As a perspective, Figure 1 showcases (previously unpublished) snapshots of
the simulated spatio-temporal epidemic spread across Germany with countywise
resolution as an example for the potential of combining, e.g., Vista 1(a)–(c) and
Vista 3(b) [Kergaßner et al. 2020a].
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