Download this article
 Download this article For screen
For printing
Recent Issues
Volume 12, Issue 4
Volume 12, Issue 3
Volume 12, Issue 3
Volume 12, Issue 2
Volume 12, Issue 1
Volume 11, Issue 4
Volume 11, Issue 3
Volume 11, Issue 2
Volume 11, Issue 1
Volume 10, Issue 4
Volume 10, Issue 3
Volume 10, Issue 2
Volume 10, Issue 1
Volume 9, Issue 4
Volume 9, Issue 3
Volume 9, Issue 2
Volume 9, Issue 1
Volume 8, Issue 4
Volume 8, Issue 3
Volume 8, Issue 2
Volume 8, Issue 1
Volume 7, Issue 4
Volume 7, Issue 3
Volume 7, Issue 2
Volume 7, Issue 1
Volume 6, Issue 4
Volume 6, Issue 3
Volume 6, Issue 2
Volume 6, Issue 1
Volume 5, Issue 3-4
Volume 5, Issue 2
Volume 5, Issue 1
Volume 4, Issue 3-4
Volume 4, Issue 2
Volume 4, Issue 1
Volume 3, Issue 4
Volume 3, Issue 3
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 2
Volume 1, Issue 1
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN 2325-3444 (online)
ISSN 2326-7186 (print)
 
Author index
To appear
 
Other MSP journals
On Dirac structures admitting a variational approach

Oscar Cosserat, Alexei Kotov, Camille Laurent-Gengoux, Leonid Ryvkin and Vladimir Salnikov

Vol. 11 (2023), No. 1, 1–18
DOI: 10.2140/memocs.2023.11.1
Abstract

We discuss the notion of horizontal cohomology for Dirac structures and, more generally, Lie algebroids. We then use this notion to describe the condition allowing a variational formulation of Dirac dynamics.

Keywords
Dirac structures, variational approach, theoretical mechanics, constraints
Mathematical Subject Classification
Primary: 37J06, 70H30
Secondary: 65P10
Milestones
Received: 10 May 2022
Revised: 18 October 2022
Accepted: 15 December 2022
Published: 23 October 2023

Communicated by Francesco dell'Isola
Authors
Oscar Cosserat
LaSIE – CNRS
University of La Rochelle
17042 La Rochelle Cedex 1
France
Alexei Kotov
Faculty of Science
University of Hradec Králové
50003 Hradec Králové
Czech Republic
Camille Laurent-Gengoux
Institut Élie Cartan de Lorraine (UMR 7502)
Université de Lorraine
57070 Metz
France
Leonid Ryvkin
Georg-August-Universität Göttingen
37073 Göttingen
Germany
Institut Camille Jordan
Université Claude Bernard Lyon 1
69622 Villeurbanne
France
Vladimir Salnikov
LaSIE – CNRS / La Rochelle University
17042 La Rochelle
France