Download this article
 Download this article For screen
For printing
Recent Issues
Volume 12, Issue 4
Volume 12, Issue 3
Volume 12, Issue 2
Volume 12, Issue 1
Volume 11, Issue 4
Volume 11, Issue 3
Volume 11, Issue 2
Volume 11, Issue 1
Volume 10, Issue 4
Volume 10, Issue 3
Volume 10, Issue 2
Volume 10, Issue 1
Volume 9, Issue 4
Volume 9, Issue 3
Volume 9, Issue 2
Volume 9, Issue 1
Volume 8, Issue 4
Volume 8, Issue 3
Volume 8, Issue 2
Volume 8, Issue 1
Volume 7, Issue 4
Volume 7, Issue 3
Volume 7, Issue 2
Volume 7, Issue 1
Volume 6, Issue 4
Volume 6, Issue 3
Volume 6, Issue 2
Volume 6, Issue 1
Volume 5, Issue 3-4
Volume 5, Issue 2
Volume 5, Issue 1
Volume 4, Issue 3-4
Volume 4, Issue 2
Volume 4, Issue 1
Volume 3, Issue 4
Volume 3, Issue 3
Volume 3, Issue 2
Volume 3, Issue 1
Volume 2, Issue 2
Volume 2, Issue 1
Volume 1, Issue 2
Volume 1, Issue 1
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN 2325-3444 (online)
ISSN 2326-7186 (print)
 
Author index
To appear
 
Other MSP journals
The location problem for compressor stations in pipeline networks

Martin Gugat, Michael Schuster and Jan Sokołowski

Vol. 12 (2024), No. 4, 507–546
Abstract

In the operation of pipeline networks, compressors play a crucial role in ensuring the network’s functionality for various scenarios. In this contribution we address the important question of finding the optimal location of the compressors. This problem is of a novel structure, since it is related to the gas dynamics that governs the network flow. That results in nonconvex mixed integer stochastic optimization problems with probabilistic constraints.

Using a steady state model for the gas flow in pipeline networks including compressor control and uncertain loads given by certain probability distributions, we consider the problem of finding the optimal location for the control on the network such that the control cost is minimal and the gas pressure stays within given bounds.

In the deterministic setting, we present explicit bounds for the pipe length and the inlet pressure such that a unique optimal compressor location with minimal control cost exists. In the probabilistic setting, we give an existence result for the optimal compressor location and discuss the uniqueness of the solution depending on the probability distribution. For Gaussian distributed loads a uniqueness result for the optimal compressor location is presented.

We further present the problem of finding optimal compressor locations on networks including the number of compressor stations as a variable. Results for the existence of optimal locations on a graph in both the deterministic and the probabilistic setting are presented, and the uniqueness of the solutions is discussed depending on probability distributions and graph topology. The paper concludes with an illustrative example on a diamond graph demonstrating that the minimal number of compressor stations is not necessarily equal to the optimal number of compressor stations.

Keywords
gas network, compressor control, compressor location, Weber problem, optimal location, uncertain boundary data, nonconvex mixed integer stochastic problem
Mathematical Subject Classification
Primary: 49J55, 90B15
Milestones
Received: 21 February 2024
Revised: 18 October 2024
Accepted: 19 November 2024
Published: 29 December 2024

Communicated by Emilio Barchiesi
Authors
Martin Gugat
Department of Mathematics
Friedrich-Alexander Universität Erlangen-Nürnberg
91058 Erlangen
Germany
Michael Schuster
Department of Mathematics
Friedrich-Alexander Universität Erlangen-Nürnberg
91058 Erlangen
Germany
Jan Sokołowski
Institut Élie Cartan de Lorraine
CNRS, UMR 7502, Université de Lorraine
54506 Vandoeuvre-lès-Nancy
France
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warszawa
Poland