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Algebraic results for the values ϑ3(mτ) and ϑ3(nτ)
of the Jacobi theta-constant

Carsten Elsner, Florian Luca and Yohei Tachiya

Let ϑ3(τ )= 1+ 2
∑
∞

ν=1 eπ iν2τ denote the classical Jacobi theta-constant. We prove that the two values
ϑ3(mτ) and ϑ3(nτ) are algebraically independent over Q for any τ in the upper half-plane such that
q = eπ iτ is an algebraic number, where m, n ≥ 2 are distinct integers.

1. Introduction and statement of the results

Throughout this paper, let τ be a complex variable in the upper half-plane H := {τ ∈ C | =(τ ) > 0}. The
three classical theta functions

ϑ2(τ )= 2
∞∑
ν=0

q(ν+1/2)2, ϑ3(τ )= 1+ 2
∞∑
ν=1

qν
2
, ϑ4(τ )= 1+ 2

∞∑
ν=1

(−1)νqν
2

are known as theta-constants or Thetanullwerte, where q := eπ iτ. These theta-constants are holomorphic
in H and never vanish for any τ ∈ H. In particular, the function ϑ3(τ ) is called a Jacobi theta-constant
or Thetanullwert of the Jacobi theta function ϑ(z | τ)=

∑
∞

ν=−∞ eπ iν2τ+2π iνz . For an extensive discus-
sion of the Jacobi theta function and theta-constants we refer the reader to [Stein and Shakarchi 2003,
Chapter 10]. Y. V. Nesterenko [2006] has improved upon a result from [Grinspan 2001] and obtained
some identities for the theta-constants.

Theorem A [Nesterenko 2006, Theorem 1]. For any odd integer n ≥ 3 there exists an integer polynomial
Pn(X, Y ) with degX Pn(X, Y )= ψ(n) such that

Pn

(
n2ϑ

4
3 (nτ)

ϑ4
3 (τ )

, 16
ϑ4

2 (τ )

ϑ4
3 (τ )

)
= 0

holds for any τ ∈ H, where

ψ(n) := n
∏
p | n

(
1+ 1

p

)
.

For example, the first polynomials P3 and P5 are given in [Nesterenko 2006] by

P3 = 9− (28− 16Y + Y 2)X + 30X2
− 12X3

+ X4,

P5 = 25− (126− 832Y + 308Y 2
− 32Y 3

+ Y 4)X + (255+ 1920Y − 120Y 2)X2

+ (−260+ 320Y − 20Y 2)X3
+ 135X4

− 30X5
+ X6
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and the polynomials P7, P9, and P11 are listed in the appendix of [Elsner 2015]. Recently one of us
(Elsner) constructed similar integer polynomials in two variables X and Y , which vanish identically at
certain rational functions of theta-constants including the function ϑ3(nτ) for n = 2m. He applied this
result and Theorem A to settle the algebraic independence problem of the two values ϑ3(τ ) and ϑ3(nτ)
for integers n ≥ 2, and obtained the following Theorem B.

Theorem B [Elsner 2015, Theorem 1.1]. Let τ ∈ H such that eπ iτ is an algebraic number. Then the two
values ϑ3(τ ) and ϑ3(2mτ) are algebraically independent over Q for each integer m ≥ 1. Furthermore,
the same holds for the two values ϑ3(τ ) and ϑ3(nτ) if n = 3, 5, 6, 7, 9, 10, 11, 12.

The proof of Theorem B is based on an algebraic independence criterion, see [Elsner et al. 2011,
Lemma 3.1], which requires a nonvanishing of a Jacobian determinant. In particular, to prove the latter
assertion in Theorem B, he needed the explicit forms of the polynomials P3, P5, P7, P9 and P11 stated
above. In [Elsner and Tachiya 2017], two of us obtained the following Theorem C by studying the
specific properties of the polynomials Pn .

Theorem C [Elsner and Tachiya 2017, Theorem 1.2]. Let n ≥ 2 be an integer and j ∈ {2, 3, 4}. Then for
any τ ∈ H at least three of the numbers eπ iτ, ϑ3(τ ), ϑ3(nτ), and Dϑ j (τ ) are algebraically independent
over Q, where D := (π i)−1d/dτ denotes a differential operator.

An application of Theorem C gives an improvement of Theorem B as follows:

Theorem D. Let τ ∈ H be such that eπ iτ is an algebraic number. Then the two numbers ϑ3(τ ) and
ϑ3(nτ) are algebraically independent over Q for each integer n ≥ 2.

On the other hand, the algebraic dependence result is also obtained in [Elsner and Tachiya 2017]
through the properties of the polynomials Pn .

Theorem E [Elsner and Tachiya 2017, Theorem 1.4]. Let `,m, n ≥ 1 be integers and τ ∈ H be any
complex number. Then the three values ϑ3(`τ ), ϑ3(mτ), and ϑ3(nτ) are algebraically dependent over Q.

In this paper, we fill the gap between Theorems D and E. Our main result is the following.

Theorem 1. Let m, n ≥ 1 be distinct integers and τ ∈ H. Then at least two of the numbers eπ iτ, ϑ3(mτ),
and ϑ3(nτ) are algebraically independent over Q. In particular, the two numbers ϑ3(mτ) and ϑ3(nτ)
are algebraically independent over Q for any τ ∈ H such that eπ iτ is an algebraic number.

Of course the two numbers ϑ3(mτ) and ϑ3(nτ) can be algebraically dependent over Q without an
algebraic condition on eπ iτ. Indeed, for τ = i ∈ H the two numbers ϑ3(i) and ϑ3(2i) are algebraically
dependent over Q, since the nontrivial relation

4ϑ2
3 (2i)− (

√
2+ 2)ϑ2

3 (i)= 0 (1)

exists; see [Berndt 1998, p. 325]. Note that the number eπ = i−2i was shown to be transcendental for
the first time by A. O. Gelfond (1929) and, a few years later, this property of eπ was corroborated by
the Gelfond–Schneider theorem (1934). Conversely, the above identity (1) and Theorem 1 imply the
transcendence of eπ as well.
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2. Some properties of Pn(X,Y)

We now discuss some properties of Pn(X, Y ) given in Theorem A. We start with a short description of
the construction of Pn(X, Y ); for details, see [Nesterenko 2006]. Let 0(2) be the principal congruence
subgroup of level 2 in SL(2,Z); that is,

0(2) :=
{(

a b
c d

)
∈ SL(2,Z)

∣∣∣∣ (a b
c d

)
≡

(
1 0
0 1

)
(mod 2)

}
.

Then for each odd integer n ≥ 3 the set of matrices(
a b
c d

)
≡

(
1 0
0 1

)
(mod 2), (a, b, c, d)= 1, ad − bc = n,

is a union of ψ(n) equivalence classes with respect to the left–multiplication on the elements of 0(2),
and the class representatives are given by

αν :=

(
u 2v
0 w

)
, (u, v, w)= 1, uw = n, 0≤ v < w. (2)

For these ψ(n) matrices α1, . . . , αψ(n) in (2), we define the polynomial

ψ(n)∏
ν=1

(X − xν(τ ))=: Xψ(n)
+ a1(τ )Xψ(n)−1

+ · · ·+ aψ(n)−1(τ )X + aψ(n)(τ ),

where

xν(τ ) := u2ϑ
4
3 ((uτ + 2v)/w)

ϑ4
3 (τ )

with
(

u 2v
0 w

)
= αν, ν = 1, . . . , ψ(n). (3)

Then, using the modular method as well as Galois considerations, one finds that there exist polynomials
R j (Y ) ∈ Z[Y ], j = 1, . . . , ψ(n), such that

a j (τ )= R j (16λ(τ)), λ(τ ) :=
ϑ4

2 (τ )

ϑ4
3 (τ )

. (4)

Thus, the integer polynomial

Pn(X, Y ) := Xψ(n)
+ R1(Y )Xψ(n)−1

+ · · ·+ Rψ(n)−1(Y )X + Rψ(n)(Y ) (5)

vanishes identically at X = n2ϑ4
3 (nτ)/ϑ

4
3 (τ ) and Y = 16λ(τ).

Lemma 2. For each odd integer n ≥ 3, the polynomial Pn(X, 16λ(τ)) is irreducible over the field
C(λ(τ )).

Proof. The group 0(2) fixes the function λ(τ)= ϑ4
2 (τ )/ϑ

4
3 (τ ), since the functions ϑ4

3 (τ ) and ϑ4
4 (τ ) are

modular forms of weight 2 with respect of the subgroup 0(2). Moreover, we have the transformation
formula

xν

(
aτ + b
cτ + d

)
= xµ(τ ) (6)

for a proper matrix β :=
(a

c
b
d

)
∈0(2) and subscripts ν, µ such that a proper matrix γ ∈0(2) satisfies ανβ=

γαµ; see formulae (6) and (7) in [Nesterenko 2006]. This may be regarded as an equivalence relation over
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the matrices α1, α2, . . . , αψ(n) from (2). One can show that any two matrices αν and αµ, 1≤ ν, µ≤ψ(n),
are equivalent. Together with (6) it turns out that the group 0(2) permutes the ψ(n) distinct functions
x1(τ ), . . . , xψ(n)(τ ) transitively. This implies that Pn(X, 16λ(τ)) is a minimal polynomial of x1(τ ) over
the field C(λ(τ )). �

Remark 3. There is no complex number α such that Pn(α, Y ) is identically zero. If such an α existed,
the polynomial Pn(X, Y ) would be divisible by (X − α), which is impossible by Lemma 2. This fact
can also be checked directly from the definition of xν(τ ); see [Elsner and Tachiya 2017, Lemma 2.1]. In
particular, Pn(X, Y ) has positive degree in Y.

Lemma 4. We have
Pn(X, 0)=

∏
u | n, u≥1

(X − u2)w(u,n/u),

where
w(a, b) :=

∑
(a,b,k)=1

0≤k<b

1.

Proof. This follows immediately from the relation

Pn(X, 16λ(τ))=
ψ(n)∏
ν=1

(X − xν(τ ))

as τ → i∞, since we have λ(τ)→ 0 and xν(τ )→ u2 for each ν = 1, . . . , ψ(n) in (3), respectively. �

Example 5. For the polynomial P3 given in Section 1, we have

P3(X, 0)= 9− 28X + 30X2
− 12X3

+ X4
= (X − 1)3(X − 32).

Here, ψ(3)= 4 and the four triples (u, v, w) in (2) are given by

(3, 0, 1), (1, 0, 3), (1, 1, 3), (1, 2, 3).

More generally, Pp(X, 0)= (X − 1)p(X − p2) for any odd prime p ≥ 3.

3. Lemmas

Let τ ∈ H. We prove in Lemmas 7 and 8 below that the number ϑ3(τ ) is algebraic over the field
Q(ϑ3(uτ), ϑ3(vτ)) for certain positive integers u and v. To see this, we need the following Lemma 6.
Note that Pn(0, Y ) is a nonzero integer for the polynomial Pn(X, Y ) in Theorem A; see [Elsner and
Tachiya 2017, Lemma 2.3].

Lemma 6 [Elsner and Tachiya 2017, Lemma 2.5]. Let n = 2αm be an integer with α ≥ 1 and odd integer
m ≥ 3. Then there exists a polynomial Qn(X, Y ) ∈ Z[X, Y ] such that

Qn

(
ϑ4

3 (nτ)

ϑ4
3 (τ )

,
ϑ4

2 (τ )

ϑ4
3 (τ )

)
= 0
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for any τ ∈ H. Furthermore, the polynomial Qn(X, Y ) is of the form

Qn(X, Y )= c2αY 2αψ(m)
+

2αψ(m)−1∑
j=0

Rn, j (X)Y j , (7)

with

Qn(0, Y )= c2αY 2αψ(m),

where c is equal to the nonzero integer Pm(0, Y ).

First we consider the case where u and v have different parity.

Lemma 7. Let u ≥ 1 be an odd integer and v ≥ 2 be an even integer which is not a power of 2. Then for
any τ ∈ H the number ϑ3(τ ) is algebraic over the field Q(ϑ3(uτ), ϑ3(vτ)).

Proof. The assertion is clear if u = 1. Let u ≥ 3 be an odd integer and Pu(X, Y ) be as in Theorem A.
Then

Pu

(
u2ϑ

4
3 (uτ)

ϑ4
3 (τ )

, 16
ϑ4

2 (τ )

ϑ4
3 (τ )

)
= 0 (8)

for any τ ∈ H. Noting that Pu(X, Y ) has positive degree in Y and Pu(0, Y ) is a nonzero integer, we have
the form

Pu(X, Y )=
du∑

j=0

Su, j (X)Y j , Su,du (X) 6≡ 0,

with

cu := Su,0(0)= Pu(0, 0) ∈ Z \ {0} and Su, j (0)= 0 (1≤ j ≤ du). (9)

On the other hand, since v is not a power of 2, Lemma 6 shows that there exists a nonzero polynomial
Qv(X, Y ) ∈ Z[X, Y ] such that

Qv

(
ϑ4

3 (vτ)

ϑ4
3 (τ )

,
ϑ4

2 (τ )

ϑ4
3 (τ )

)
= 0 (10)

for any τ ∈ H, where Qv(X, Y ) is of the form (7) with

Qv(0, Y ) := cvY dv , cv ∈ Z \ {0}. (11)

Let τ ∈H be a fixed complex number. Then, by (8) and (10), the polynomials Pu(u2ϑ4
3 (uτ)/ϑ

4
3 (τ ), 16Y )

and Qv(ϑ
4
3 (vτ)/ϑ

4
3 (τ ), Y ) have the same common root Y0 = ϑ

4
2 (τ )/ϑ

4
3 (τ ). Hence, the resultant

R1(X, Z) := ResY (Pu(X, 16Y ), Qv(Z , Y ))

is given by the determinant DY of the square (du + dv) Sylvester matrix depending on the coeffi-
cients of Pu(X, 16Y ) and Qv(Z , Y ) with respect to Y. Then, R1(X, Z) (and thus DY ) vanishes at
X := u2ϑ4

3 (uτ)/ϑ
4
3 (τ ) and Z := ϑ4

3 (vτ)/ϑ
4
3 (τ ), so that the polynomial

R2(W ) := R1(u2ϑ4
3 (uτ)W, ϑ

4
3 (vτ)W )
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has a root W0 = ϑ
−4
3 (τ ) over the field K :=Q(ϑ3(uτ), ϑ3(vτ)). Note that R2(W ) is not identically zero,

since by (9) and (11) the determinant DY takes the form

R2(0)= R1(0, 0)= det



cu 0 0
. . . 0

cu
cv
0
. . .

0 0 cv

=±cdv
u cdu

v 6= 0.

Therefore the number ϑ3(τ ) is algebraic over K and the proof of Lemma 7 is completed. �

Next we treat the case where both u and v are odd.

Lemma 8. Let u, v ≥ 1 be distinct odd integers. Then for any τ ∈ H the number ϑ3(τ ) is algebraic over
the field Q(ϑ3(uτ), ϑ3(vτ)).

Proof. We may assume u, v ≥ 3. Similarly to the proof of Lemma 7, we consider the resultant

R1(X, Z) := ResY (Pu(X, Y ), Pv(Z , Y )), (12)

and the polynomial
R2(W ) := R1(u2ϑ4

3 (uτ)W, v
2ϑ4

3 (vτ)W ), (13)

which has a root W0 = ϑ
−4
3 (τ ). Suppose to the contrary that the above polynomial R2(W ) is identically

zero for some τ0 ∈ H. Then, putting α := u2ϑ4
3 (uτ0) and β := v2ϑ4

3 (vτ0), we have by (12) and (13)

ResY (Pu(αW, Y ), Pv(βW, Y ))= R1(αW, βW )= R2(W )≡ 0,

and so there exists a common factor H(W, Y )∈C[W, Y ] with positive degree in Y of the two polynomials
Pu(αW, Y ) and Pv(βW, Y ). Let

Pu(αW, Y )= H(W, Y )G(W, Y ).

Substituting the function λ(τ) defined by (4) into Y in the above, we have

Pu(αW, 16λ(τ))= H(W, 16λ(τ))G(W, 16λ(τ)). (14)

In what follows, we denote by deg H(W, Y ), deg G(W, Y ), and deg Pu(αW, Y ) the total degrees of the
polynomials H(W, Y ), G(W, Y ), and Pu(αW, Y ) with respect to W and Y , respectively. Then

degW H(W, 16λ(τ))≤ deg H(W, Y ), degW G(W, 16λ(τ))≤ deg G(W, Y ),

so that
degW Pu(αW, 16λ(τ))= degW H(W, 16λ(τ))+ degW G(W, 16λ(τ))

≤ deg H(W, Y )+ deg G(W, Y )

= deg Pu(αW, Y ).

On the other hand, it is clear that

degW Pu(αW, 16λ(τ))= deg Pu(αW, Y ),
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since by [Nesterenko 2006, Corollary 4] the inequalities

degY Rk(Y )≤ k · n−1
n
, 1≤ k ≤ ψ(n),

hold in (5). Thus, we get

degW H(W, 16λ(τ))= deg H(W, Y )≥ degY H(W, Y )≥ 1. (15)

Hence by Lemma 2 together with (14) and (15), we obtain

Pu(αW, 16λ(τ))= c1 H(W, 16λ(τ))

for some nonzero complex numbers c1. Similarly there exists a nonzero complex number c2 such that

Pv(βW, 16λ(τ))= c2 H(W, 16λ(τ)),
and hence

Pu(αW, 16λ(τ))= cPv(βW, 16λ(τ)), c := c1/c2.

Taking τ → i∞ in the above equality, we have by Lemma 4∏
d | u, d≥1

(αW − d2)w(d,u/d) = c
∏

d | v, d≥1

(βW − d2)w(d,v/d).

Assume, without loss of generality, that u > v. Then, comparing the multiplicity of the zeros of these
polynomials at 1/α, we obtain

u = w(1, u)≤max
d
w(d, v/d)≤ v,

which is a contradiction. Hence, the polynomial R2(W ) is not identically zero for any τ ∈ H, and the
proof of Lemma 8 is completed by R2(ϑ

−4
3 (τ ))= 0. �

4. Proof of Theorem 1

Proof of Theorem 1. Let m and n be distinct positive integers. Define m1 := m/d and n1 := n/d,
where d := gcd(m, n). Without loss of generality, we may assume that m1 is odd. In what follows, we
distinguish two cases based on the parity of n1. We first suppose that n1 is even. Let τ ∈ H. Then, by
Lemma 7 with u := 3m1 ≥ 3, v := 3n1 6= 2α (α ≥ 0), and τ0 := dτ/3 ∈H, the number ϑ3(τ0) is algebraic
over the field Q(ϑ3(uτ0), ϑ3(vτ0)). Hence, we obtain

trans. degQ Q(eπ iτ , ϑ3(mτ), ϑ3(nτ))= trans. degQ Q(eπ iτ0, ϑ3(uτ0), ϑ3(vτ0))

= trans. degQ Q(eπ iτ0, ϑ3(τ0), ϑ3(uτ0), ϑ3(vτ0))

≥ trans. degQ Q(eπ iτ0, ϑ3(τ0), ϑ3(uτ0))

≥ 2,

where for the last inequality we used the fact that u > 2 and that at least two of the numbers eπ iτ0, ϑ3(τ0)

and ϑ3(uτ0) are algebraically independent over Q; see [Elsner and Tachiya 2017, Theorem 1.2]. In the
case where n1 is odd, we can deduce the same inequality as above by applying Lemma 8 with the same
quantities u, v, τ0 as above.
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Therefore, at least two of the numbers eπ iτ, ϑ3(mτ), and ϑ3(nτ) are algebraically independent over Q,
and the proof of Theorem 1 is complete. �

In the case where m > n with two odd integers m, n, we obtain a stronger result based on [Elsner and
Tachiya 2017, Theorem 1.2] and on Lemma 8.

Theorem 9. Let m > n ≥ 1 be odd integers, j ∈ {2, 3, 4} and τ ∈ H. Then we have

trans. degQ Q(eiπτ , ϑ3(mτ), ϑ3(nτ), Dϑ j (τ ))≥ 3.

Proof. We apply Lemma 8 with u = m and v = n. Therefore, we know that ϑ3(τ ) is algebraic over the
field Q(ϑ3(mτ), ϑ3(nτ)). Hence we obtain with Theorem C,

trans. degQ Q(eiπτ , ϑ3(mτ), ϑ3(nτ), Dϑ j (τ ))= trans. degQ Q(eπ iτ , ϑ3(τ ), ϑ3(mτ), ϑ3(nτ), Dϑ j (τ ))

≥ trans. degQ Q(eiπτ , ϑ3(τ ), ϑ3(mτ), Dϑ j (τ ))

≥ 3,

as desired. This proves the theorem. �
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