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A simple proof of the Hilton–Milner theorem

Peter Frankl

Let n ≥ 2k ≥ 4 be integers and F a family of k-subsets of {1, 2, . . . , n}. We call F intersecting if
F ∩ F ′ 6= ∅ for all F, F ′ ∈ F , and we call F nontrivial if

⋂
F∈F F = ∅. Strengthening the famous

Erdős–Ko–Rado theorem, Hilton and Milner proved that |F | ≤
(n−1

k−1

)
−
(n−k−1

k−1

)
+ 1 if F is nontrivial and

intersecting. We provide a proof by injection of this result.

1. Introduction

The proof of the Hilton–Milner theorem that we are going to present is very short but it is based on the
very useful operation of shifting and two old results of the author. We are going to review these in this
section.

Let [n] = {1, . . . , n} be the standard n-element set and 2[n] its power set. Subsets F ⊂ 2[n] are called
families. For i ∈ [n] we use the standard notation F(i)= {F \{i} : i ∈ F ∈F} and F(ī)= {F : i /∈ F ∈F}.
Note that

|F | = |F(i)| + |F(ī)|.

For a positive integer t the family F is said to be t-intersecting if |F ∩ F ′| ≥ t for all F, F ′ ∈ F . For
t = 1 we use the term intersecting.

Let us recall the definition of the Si, j shift, an important operation on families, discovered by Erdős,
Ko and Rado [Erdős et al. 1961].

Definition 1.1. For 1≤ i < j ≤ n and a family F ⊂ 2[n], one defines Si, j (F )= {Si, j (F) : F ∈ F}, where

Si, j (F)=
{

F ′ := (F \ { j})∪ {i} if j ∈ F, i /∈ F and F ′ /∈ F,
F otherwise.

From the definition, |Si, j (F )| = |F | and |Si, j (F)| = |F | should be obvious. More importantly, if F is
t-intersecting then Si, j (F ) is t-intersecting as well.

If Si, j (F )= F for all 1≤ i < j ≤ n then F is called shifted.
Let us use the notation (a1, a2, . . . , ar ) to denote the set {a1, a2, . . . , ar }, where a1 < a2 < · · · < ar .

For two subsets F = (a1, . . . , ar ) and G = (b1, . . . , br ) we say that F is smaller than G if ai ≤ bi for all
1≤ i ≤ r . We denote this by F ≺ G.

It is not hard to see that F is shifted if and only if for all pairs of F,G with F ≺ G, we have G ∈ F
implies F ∈ F . For the proof of this and many other useful properties of shifting see [Frankl 1987b].

We shall need the following simple result.
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Proposition 1.2 [Frankl 1978]. Let F ⊂ 2[n] be a shifted t-intersecting family. Then the following hold:

(i) For every F ∈ F there exists an integer `≥ t such that

|F ∩ [2`− t]| ≥ `.

(ii) For all F,G ∈ F there exists an integer h ≥ t such that

|F ∩ [h]| + |G ∩ [h]| ≥ h+ t. (1-1)

Note that (1-1) implies |F ∩G ∩ [h]| ≥ t .

For F ∈F define `(F)=
{
max `, t ≤ `≤ n

2 : |F∩[2`]| ≥ `
}
. Note that if 2|F | ≤ n then the maximality

of `(F) implies
|F ∩ [2`(F)]| = `(F). (1-2)

Let k ≥ s ≥ 2 be integers. Let
(
[n]
k

)
denote the collection of all k-subsets of [n].

Example 1.3. Define

E(n, k, s)=
{

E ∈
(
[n]
k

)
: 1 ∈ E, E ∩ [2, s+ 1] 6=∅

}
∪

{
F ⊂

(
[2n]

k

)
: [2, s+ 1] ⊂ F

}
.

Note that E(n, k, s) is intersecting, E ∩ [2, s+ 1] 6=∅ for all E ∈ E(n, k, s) and

|E(n, k, s)| =
(n−1

k−1

)
−

(n−s−1
k−1

)
+

(n−s−1
k−s

)
.

Theorem 1.4. Let n ≥ 2k ≥ 2s ≥ 4. Suppose that F ⊂
(
[n]
k

)
is a shifted intersecting family satisfying

F ∩ [2, s+ 1] 6=∅ for all F ∈ F . Then

|F | ≤
(n−1

k−1

)
−

(n−s−1
k−1

)
+

(n−s−1
k−s

)
. (1-3)

This result is somewhat technical but its proof is rather special. We are going to prove it through an
explicit injection from F into E(n, k, s).

For sets A, B let A4 B denote their symmetric difference. Let us define the map α : F→ E(n, k, s)
by

α(F)=
{

F if 1 ∈ F or if [2, s+ 1] ⊂ F,
F 4[2`(F)] otherwise.

To prove (1-3) it is sufficient to prove the following.

Proposition 1.5. The map α is an injection into E(n, k, s).

Let us recall two important results concerning intersecting families of k-sets.

Erdős–Ko–Rado theorem [Erdős et al. 1961]. Suppose that n ≥ 2k > 0 and F ⊂
(
[n]
k

)
is an intersecting

family. Then

|F | ≤
(n−1

k−1

)
. (1-4)

Taking all k-sets containing a fixed element shows that (1-4) is the best possible bound.
An intersecting family is called nontrivial if there is no element common to all its members. For k = 1

there is no nontrivial k-intersecting family. For k = 2 the only such family is the triangle:
(
[3]
2

)
.
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Hilton–Milnor theorem [1967]. Suppose that n ≥ 2k ≥ 4 and F ⊂
(
[n]
k

)
is a nontrivial intersecting

family. Then

|F | ≤
(n−1

k−1

)
−

(n−k−1
k−1

)
+ 1. (1-5)

Recently Hurlbert and Kamat [2018] gave an injective proof for (1-4). We extend their work by
providing an injective proof for (1-5). For this we need the following proposition.

Proposition 1.6 [Frankl 1987b]. Suppose that n ≥ 2k ≥ 4 and F ⊂
(
[n]
k

)
is a nontrivial intersecting

family of maximal size. Then there exists a nontrivial intersecting family F̃ ⊂
(
[n]
k

)
such that |F̃ | = |F |

and F̃ is shifted.

Once one has Proposition 1.6, to establish (1-5) is easy. One only needs to apply the case s = k of
Theorem 1.4 to the family F̃ . Indeed, since F̃ is nontrivial and shifted, [2, k + 1] ∈ F̃ and F̃ being
intersecting imply that F ∩ [2, k+ 1] 6=∅ holds for all F ∈ F̃ .

Since the proof of Proposition 1.6 is quite short and somewhat hidden in [Frankl 1987b], we reproduce
it in Section 2.

Let us mention that there are several other, known proofs of the Hilton–Milner theorem: [Frankl and
Füredi 1986; Frankl and Tokushige 1992; Mörs 1985; Kupavskii and Zakharov 2018].

We should also mention that in [Hilton and Milner 1967] the essentially unique families attaining
equality are determined as well. This can be done via the present proof as well. However, it is rather
technical and very similar to the corresponding part of previous proofs. Therefore we prefer to omit it.

2. The proofs of Propositions 1.5 and 1.6

We divide the proof of Proposition 1.5 into two lemmas. The first shows that for F ∈ F \ E(n, k, s) the
image α(F) is in E(n, k, s) \F .

The second shows that α is an injection.

Lemma 2.1. Suppose that F ∈ F(1̄) and [2, s+ 1] 6⊂ F. Then the following hold:

(i) 1 ∈ α(F).

(ii) α(F) /∈ F .

(iii) α(F)∩ [2, s+ 1] 6=∅.

Proof. (i) Recall that α(F)= F 4[2`(F)]. As 1 /∈ F implies 1 ∈ α(F), (i) is true.

(ii) Suppose for contradiction that α(F)∈F . Apply Proposition 1.2 to F and α(F). By (1-2), F∩[2`(F)]
and α(F)∩ [2`(F)] are complementary `-element subsets of [2`(F)]. Consequently h > 2`(F).

However, for h ≥ 2`, we have |F ∩ [h]| = |α(F)∩ [h]|. Thus 2|F ∩ [h]| ≥ h+ 1 implies

|F ∩ [h]| ≥ 1
2(h+ 1). (2-1)

Thus
|F ∩ [h+ 1]| ≥ 1

2(h+ 1)

as well, and we get a contradiction with the maximality of `(F).
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(iii) Define i(F) = min{i : 2 ≤ i ≤ n, i /∈ F}. As `(F) ≥ 2, (1-2) implies i(F) ≤ 2`(F). Also,
[2, s+ 1] 6⊂ F implies i(F)≤ s+ 1. Consequently i(F) ∈ [2`(F)] and i(F) ∈ [2, s+ 1] hold. Therefore
i(F) ∈ α(F)∩ [2, s+ 1]. �

Lemma 2.2. For distinct F, F ′ ∈ F \ E(n, k, s), it holds that α(F) 6= α(F ′).

Proof. Since F, F ′ /∈ E(n, k, s), we have α(F)= F4[2`(F)] and α(F ′)= F ′4[2`(F ′)]. If `(F)= `(F ′)
then α(F) 6= α(F ′) is evident from F 6= F ′.

By symmetry suppose `(F) < `(F ′). The maximality of `(F) implies |F ∩ [2`(F ′)]|< `(F ′). Using
|F ∩[2`(F)]| = `(F)= |α(F)∩[2`(F)]|, it follows that |α(F)∩[2`(F ′)]|< `(F ′)= |α(F ′)∩[2`(F ′)]|.
This proves α(F) 6= α(F ′). �

Since α(F)= F for F ∈F ∩E(n, k, s), Lemmas 2.1 and 2.2 prove that α is an injection into E(n, k, s).

The proof of Proposition 1.6. Starting with a nontrivial intersecting family F ⊂
(
[n]
k

)
of maximal size,

we can keep on applying the Si j shift for various pairs until we run into trouble. The possible trouble is
that Si j (F ) ceases to be nontrivial, i.e., all its members contain the element i . Then {i, j} ∩ F 6=∅ must
hold for all F ∈ F . By symmetry let i = 1, j = 2.

The maximality of |F | implies that all k-sets G with {1, 2} ⊂ G ⊂ [n] are in F . Therefore continuing
with the Sa,b shift for 3≤ a < b≤ n will never produce a trivial intersecting family. Eventually we obtain
a nontrivial intersecting family H, with |H| = |F |, such that Sa,b(H)=H for all 3≤ a < b ≤ n.

Consequently, both {1, 3, 4, . . . , k + 1} and {2, 3, 4, . . . , k + 1} are in H. Since all G ∈
(
[n]
k

)
with

{1, 2} ⊂ G ⊂ [n] are unchanged under the shift Sa,b for 3≤ a < b ≤ n, we infer that
(
[k+1]

k

)
⊂H.

Noting that
(
[k+1]

k

)
is not affected by Si, j for 1≤ i < j ≤ n, we can continue shifting and eventually

obtain a shifted, nontrivial intersecting family of the same size. �

3. Concluding remarks

For a family F ⊂ 2[n], let 4(F ) be its maximum degree, that is, maxi |F(i)|. Then γ (F )= |F | −4(F )
is called the diversity of F . With this terminology, for intersecting families F , with F ⊂

(
[n]
k

)
, n ≥ 2k,

the Hilton–Milner theorem shows that γ (F )≥ 1 implies

|F | ≤ |E(n, k, k)| =
(n−1

k−1

)
−

(n−k−1
k−1

)
+ 1.

In [Frankl 1987a] the author proved that γ (F ) ≥
(n−s−1

k−s

)
, 3 ≤ s ≤ k, implies |F | ≤ |E(n, k, s)|.

Kupavskii and Zakharov [2018] gave a new proof for a stronger version of this result. It would be
desirable to have a proof by injection. Let us note that for F ⊂ G necessarily γ (F )≤ γ (G) holds.

In the case of Theorem 1.4, we may replace F by another family G, with F ⊂ G ⊂
(
[n]
k

)
where G is

shifted, intersecting and all G ∈
(
[n]
k

)
with [2, s + 1] ⊂ G are members of G. For such a special case

Theorem 1.4 provides an injective proof. However the general case seems to be harder.
The proofs in [Frankl 1987a; Kupavskii and Zakharov 2018] rely heavily on the Kruskal–Katona

theorem; see [Kruskal 1963; Katona 1968]. Therefore we feel that it would be desirable to have a proof
by injection for this important result as well.

Note in proof

Hurlbert and Kamat [2018] independently gave a very similar proof in the new version of their paper.
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