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Embeddings of weighted graphs in Erdős-type settings

David M. Soukup

Many recent results in combinatorics concern the relationship between the size of a set and the number of
distances determined by pairs of points in the set. One extension of this question considers configurations
within the set with a specified pattern of distances. In this paper, we use graph-theoretic methods to prove
that a sufficiently large set E must contain at least CG |E | distinct copies of any given weighted tree G,
where CG is a constant depending only on the graph G.

1. Introduction

Many questions in combinatorics involve the behavior of the distance set 1(E) of a set E , defined as
1(E) = {d(x, y) : x, y ∈ E} for some distance function d. For instance, Erdős’ celebrated distinct
distances problem conjectured that for finite sets E ⊂ R2, |1(E)| & |E |1−ε for any positive ε. This
conjecture was proven in this form by Guth and Katz [2015]. Distance problems where the ambient
space is a finite vector space have also been a subject of much research [Bourgain et al. 2004; Iosevich
and Rudnev 2007; Koh and Shen 2012; Vu 2008].

A natural question follows: under what conditions on E can we find not just pairs of points a specified
distance apart, but groups of points with some specified pattern of distances? In other words, given some
weighted graph G where the edge weights correspond to distances between points, when can we find a
“copy” of G inside E? Bennett, Chapman, Covert, Hart, Iosevich, and Pakianathan proved a result in
this direction for the Euclidean distance in Zd

p and path graphs in [Bennett et al. 2016], and McDonald
[2016] gave a similar result for dot products in Zd

p. In this paper, we give an answer to this question for
wide classes of graphs, distances, and ambient sets. Moreover, we show that these questions, and other
similar ones, are part of a much more general framework.

These previous results depended on ad hoc methods which made use of Fourier analytic techniques
which do not generalize easily. Here, we show that elementary combinatorial arguments can be used to
expand results which are only about distances into results which describe larger patterns.

Definition 1.1. Given an ambient set X and some set D of possible distances, a symmetric distance
function is a function d : X × X→ D such that d(x1, x2)= d(x2, x1) for all x1, x2 ∈ X. Such a function
is K -surjective if, for every Y ⊂ X with |Y | ≥ K, the restriction of d to Y × Y is surjective. In other
words, every set of size at least K determines every distance.

In other words, a K -surjective distance function has its distances well-mixed enough that one cannot
construct large sets missing a particular distance. This means that we cannot avoid patterns of distances
simply by constructing a set which does not exhibit some of the specified distances.
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Some motivation for this definition is provided by the following theorem, which will allow us to apply
the results of this paper to a common setting for distance problems. Note that what we refer to as a
“distance function” does not need to encode distances in a natural sense; we do not require the function
to obey a triangle inequality, nor do we require our distances to be real numbers. We call it a distance
function in order to make it explicit how our result corresponds to known results. Throughout, we will
use Fq to refer to the unique finite field with q elements for some prime power q, and we will let Fd

q be
a d-dimensional vector space over this field.

Theorem 1.2 (A. Iosevich and M. Rudnev [2007]). Let X = Fd
q , D = Fq , and define d({xi }, {yi }) =∑

(xi − yi )
2. Then d is K -surjective with K = Cq(d+1)/2 for some constant C independent of q.

Now we just need to define a graph embedding, which is done in the natural way:

Definition 1.3. Suppose we have a space X, a set of distances D, and a symmetric distance function d.
Then for a weighted graph G with edge weights in D, an embedding of G into X is an injective function
f : V (G)→ X such that for every edge (v1, v2) ∈ E(G) with weight t ,

d( f (v1), f (v2))= t.

We will typically identify such an embedding with its image in X. A collection of such embeddings
{ fi }i∈I is disjoint if all its images are disjoint subsets of X.

Results. Now we are ready to state our main theorem:

Theorem 1.4 (main theorem). Let X be a set with a symmetric distance function d to a set of distances D,
let d be K -surjective, and let E ⊆ X with |E | = r K for some positive real number r. Then for any
weighted tree G with edge weights in D, there exists a disjoint collection AG of embeddings of G into E
with

|AG | ≥

(
r

σ(G)
− 1
)

K ,

where σ(G) is a constant depending only on the graph G.

Corollary 1.5. If |E | ≥ σ(G)K, then there is at least one embedding of G into E.

We will exhibit an explicit constant σ(G), which we define as follows:

Definition 1.6. Let G be a finite nonempty connected graph; let the degrees of the vertices of G be
d1, d2, . . . , dn , ordered so that d1 ≥ d2 ≥ · · · ≥ dn . Then the stringiness of G, denoted by σ(G), is
defined to be

σ(G)= (d1+ 1)
n∏

i=2

di .

For example, the stringiness of the Petersen graph (or any other 10-vertex 3-regular graph) is 4 · 39
=

78732. The following estimate gives bounds on the stringiness of a tree:

Theorem 1.7. Let G be a nonempty tree with n edges. Then

n+ 1≤ σ(G)≤ 2n.
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The lower bound is sharp (the star graph K1,n attains it) while the upper bound is sharp up to a constant
(the path graph Pn+1 has stringiness 3 · 2n−2).

Combining our main result with Theorem 1.2 gives the following result in Fd
q with respect to a specific

distance function:

Corollary 1.8. Let G be a weighted tree with edge weights in Fq . Then there exists a constant C inde-
pendent of q and G such that every subset E of Fd

q with |E | ≥ Cσ(G)q(d+1)/2 contains an embedding of
G with respect to the distance function d({xi }, {yi })=

∑
(xi − yi )

2.

The motivation for Corollary 1.8 comes from comparing this result to the following result in the
literature:

Theorem 1.9 (Bennett, Chapman, Covert, Hart, Iosevich, Pakianathan [Bennett et al. 2016]). Let G be
a weighted path or star graph with edge weights in Fq , and suppose G has k edges. Then there exists a
constant C independent of q and G such that every subset E of Fd

q with |E | ≥ Ckq(d+1)/2 contains an
embedding of G.

This result is very similar to Corollary 1.8 in the star graph case, but the constant is much stronger
than that of Corollary 1.8 in the path graph case. This shows the difference between the Fourier-analytic
techniques used in the proof of Theorem 1.9 and the elementary combinatorial arguments used here.

The main gain of Corollary 1.8, however, is the fact that it applies to all trees and not just to the
two specific types in Theorem 1.9. The methods used in Theorem 1.9 do not generalize easily to more
complex structures. Moreover, Corollary 1.8 also gives similar results for other distances.

The idea of this paper is to show that results of the type of Theorem 1.9 are instances of a more general
phenomenon. Corollary 1.8 is an example of this phenomenon applied to the standard distance on Fd

q ;
it enables these results to be extended to general trees for which no results existed. We also note that
proof of Theorem 1.4 is very modular, so it is possible to (for instance) use Theorem 1.9 to get slightly
better bounds for embeddings of more complicated trees in Zd

q . This is because we build embeddings of
larger graphs inductively from embeddings of smaller graphs, so if we are able to show better bounds
for smaller graphs, this will automatically give better bounds for larger graphs.

We proceed as follows: for illustrative purposes, we first state and prove Theorem 2.2, a weaker
version of Theorem 1.4, using Lemma 2.1. We then give the very similar proof of Theorem 1.4, which
relies on the analogous Lemma 2.5. Finally we prove Theorem 1.7.

2. Graph embeddings

An easier case of Theorem 1.4. The proof of Theorem 2.2 is by induction; it is convenient to state the
base case as a separate lemma.

Lemma 2.1. Let X be a set with a symmetric distance function d to a set of distances D, let d be
K -surjective, and let E ⊆ X with |E | = r K. Then for any fixed t ∈ D, there are at least 1

2(r − 1)K
disjoint pairs {ei , fi }i∈I in E such that d(ei , fi )= t for all i ∈ I.

Proof. Since E is finite, let I be an index set of maximal size. Let F be the union of all the pairs, that is,

F =
⋃
i∈I

{ei , fi }.
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Then by maximality of I , E\F cannot contain any pair of points with distance t . By K -surjectivity, this
means |E\F |< K ; so |F | ≥ (r − 1)K, giving |I | = 1

2 |F | ≥
1
2(r − 1)K as required. �

Theorem 2.2. Let X be a set with a symmetric distance function d to a set of distances D, let d be
K -surjective, and let E ⊆ X with |E | = r K. Then for any weighted nonempty tree G with edge weights
in D, suppose G has n edges. Then there exists a disjoint collection AG of embeddings of G into E with

|AG | ≥

(
r + 1

2n − 1
)

K .

Proof. We proceed by induction on n. The case n = 0 is tautological, and the case n = 1 is equivalent to
Lemma 2.1.

So assume n ≥ 2, which means G must have a leaf. Fix any leaf; call it v, its associated edge e, the
unique vertex adjacent to it w, and the edge weight t . Then G− v is a tree with strictly fewer edges; so
by the inductive hypothesis we have a disjoint collection AG−v of embeddings of G− v into E with

|AG−v| ≥

(
r + 1
2n−1 − 1

)
K .

Consider the set W = { f (w) | f ∈ AG−v}. By Lemma 2.1, there exist at least 1
2(|W |/K −1)K disjoint

pairs of points { f (w), f ′(w)} in W with d( f (w), f ′(w))= t . But for each of these pairs we can consider
the function g : V (G)→ E given by

g(x)=
{

f ′(w), x = v,
f (x), x 6= v.

By construction, these are disjoint embeddings of G into E , and there are at least 1
2(|W |/K − 1)K of

them; but by disjointness of AG−v we have |W | = |AG−v| so there are at least

|AG−v|/K − 1
2

K ≥
((r + 1)/2n−1

− 1)− 1
2

K =
(

r + 1
2n − 1

)
K

disjoint embeddings of G as required. �

Corollary 2.3. If |E | ≥ 2n+1K, there is at least one embedding of G into E.

Note that this proof would have worked equally well even if d were not symmetric, which will not
carry over to Theorem 1.4.

Proof of Theorem 1.4. Analogously to the proof of Theorem 2.2, we will state a governing lemma
(Lemma 2.5); the structure will be identical except that we are building our graph G out of stars instead
of working purely with edges. For technical reasons, the application of the K -surjectivity assumption is
more difficult in this case, so we will first state an auxiliary lemma, Lemma 2.4.

Lemma 2.4. Let X be a set with a symmetric distance function d to a set of distances D, let d be
K -surjective, and let E ⊆ X with |E | = r K. Then for any fixed t ∈ D, s ∈ N, there are at most sK points
e ∈ E for which there are fewer than s other distinct points e1, e2, . . . , es ∈ E such that d(e, ei )= t for
all i .
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Proof. Create a graph H whose vertices are the points of E and where two vertices are connected by an
edge if and only if the corresponding points of E are distance t . Then consider the subgraph H∗ of H
generated by only those vertices of degree < s. By construction, the maximum degree of vertices in H
is less than s, which means H∗ can be s-colored by the standard greedy algorithm, that is, partitioned
into s independent sets. Since the K -surjectivity condition guarantees that an independent set in H (and
thus in H∗) has size < K, it follows that |H∗| < sK. This means that at most sK of the vertices of H
have degree < s, proving the lemma. �

Lemma 2.5. Let X be a set with a symmetric distance function d to a set of distances D, let d be
K -surjective, and let E ⊆ X with |E | = r K. Then for any weighted nonempty star graph G ∼= K1,n with
edge weights in D, the set E contains at least K (r − n)/(n+ 1) disjoint embeddings of G.

Proof. As in the proof of Lemma 2.1, let

I = {{g1,0, g1,1, . . . , g1,n}, . . . , {gm,0, gm,1, . . . , gm,n}}

be a maximal (with respect to m) set of embeddings of G into E , and define F to be the union of all the
embeddings contained in I , that is,

F =
m⋃

i=1

{gi,0, gi,1, . . . , gi,n}.

Then E\F must have no embeddings of G by maximality of I .
Suppose the set of edge weights of G is {t1, t2, . . . , ta} appearing with multiplicities {m1,m2, . . .ma}

respectively. Then by Lemma 2.4, for each fixed i there are at most mi K points of E\F which are not
distance ti from at least mi other points of E\F . Summing over i we get that there are at most

a∑
i=1

mi K = nK

points of E\F which are not distance ti from at least mi other points of E\F for every i . But if x ∈ E\F
is in fact distance ti from at least mi other points of E\F for every i , then there exists an embedding of
G into E\F where x corresponds to the nonleaf vertex of G. Thus |E\F | ≤ nK ; so

|I | =
|F |

n+ 1
≥

r K − nK
n+ 1

=
r − n
n+ 1

K

as required. �

Note that when n = 1, this is exactly the statement of Lemma 2.1, but when n ≥ 2 we may have to
deal with repeated edge weights, which adds the extra complexity.

Now we are ready to prove the main theorem, Theorem 1.4:

Proof. The proof proceeds by strong induction on the number of edges in G. If G contains no edges,
σ(G)= 1 and the theorem is clearly true; if G is a star graph K1,n , then σ(G)= n+ 1 and the theorem
is just Lemma 2.5.

So assume G is not a star graph. Then we can always find a vertex w ∈ G such that:

(1) w is not a leaf of G (equivalently, degG w ≥ 2).
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(2) All but one of the vertices connected to w are leaves (call these leaves v1, v2, . . . , vy , and the
associated distances t1, t2, . . . , ty , where y = degG w− 1.)

(3) There exists a vertex v 6= w in G such that degG v ≥ degG w.

To see this, let L be the set of leaves of G. Then since G is a tree which is not a star graph, G− L is a
tree which contains at least one edge; any leaf of G− L satisfies conditions (1) and (2), and since G− L
has at least two leaves, at least one of these must satisfy condition (3).

Define the graph H to be G−{v1, v2, . . . , vy}. By conditions (1) and (2), H is a tree with fewer edges
than G; by condition (3), σ(H)= σ(G)/(y+ 1) (since we can reorder the product in Definition 1.6 to
make v correspond to d1, and all we lose by deleting these leaves is a factor of degG w). By the inductive
hypothesis we have a disjoint collection AH of embeddings of H into E with

|AH | ≥

(
r

σ(H)
− 1
)

K .

Consider the set W = { f (w) | f ∈ AH }. By Lemma 2.5, there exist at least (|W |/K − y)/(y + 1)
disjoint sets of points { f (w), f1(w), . . . , fy(w)} contained in W with d( f (w), fi (w))= ti for every i
(i.e., embedddings of a particular star graph). But for each of these sets we can consider the function
g : V (G)→ E given by

g(x)=
{

fi (w), x = vi ,

f (x), x /∈ {v1, . . . , vy}.

By construction, these are disjoint embeddings of G into E , and there are at least K (|W |/K − y)/(y+1)
of them; but by disjointness of AH , we have |W | = |AH | so there are at least

|AH |/K − y
y+ 1

K ≥
(r/σ(H)− 1)− y

y+ 1
K =

(
r

(y+ 1) · σ(H)
− 1
)

K =
(

r
σ(G)

− 1
)

K

disjoint embeddings of G as required. �

Note that in view of Theorem 1.7, this is stronger than Theorem 2.2.

Proof of Theorem 1.7.
Proof. Let G have n edges.

For the lower bound on σ(G), a simple inductive argument suffices. If n = 1 then σ(G) = 2 since
there is only one possible graph with one edge. If n > 1 then deleting a leaf must decrease the stringiness
since the degree of the other vertex decreases, so for a graph with n edges, σ(G) > σ(G− v)≥ n. Thus
σ(G)≥ n+ 1 (since σ(G) ∈ Z).

For the upper bound, write the degrees of the vertices of G as d1, d2, . . . , dn+1; without loss of gener-
ality say dn+1 = 1. Then by the arithmetic-geometric mean inequality

((d1+ 1) · d2 · d3 · · · · · dn)
1/n
≤

d1+ 1+ d2+ d3+ · · ·+ dn

n

σ(G)1/n
≤

∑
di

n

σ(G)1/n
≤

2n
n

σ(G)≤ 2n. �
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Acknowledgements

I would like to thank Alex Iosevich and Steven Senger for their help, support and feedback.

References

[Bennett et al. 2016] M. Bennett, J. Chapman, D. Covert, D. Hart, A. Iosevich, and J. Pakianathan, “Long paths in the distance
graph over large subsets of vector spaces over finite fields”, J. Korean Math. Soc. 53:1 (2016), 115–126. MR Zbl

[Bourgain et al. 2004] J. Bourgain, N. Katz, and T. Tao, “A sum-product estimate in finite fields, and applications”, Geom.
Funct. Anal. 14:1 (2004), 27–57. MR Zbl
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