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Identity involving symmetric sums of regularized multiple zeta-star values

Tomoya Machide

An identity involving symmetric sums of regularized multiple zeta-star values of harmonic type was
proved by Hoffman. In this paper, we prove an identity of shuffle type. We use Bell polynomials
appearing in the study of set partitions to prove the identity.

1. Introduction and statement of results

The multiple zeta value (MZV) and multiple zeta-star value (MZSV, or sometimes referred to as the
nonstrict MZV) are real numbers defined by the nested series

ζ(k1, k2, . . . , kr )=
∑

0<m1<m2<···<mr

1

mk1
1 mk2

2 · · ·m
kr
r
, (1-1)

ζ ?(k1, k2, . . . , kr )=
∑

0<m1≤m2≤···≤mr

1

mk1
1 mk2

2 · · ·m
kr
r
, (1-2)

respectively, where ki (1 ≤ i ≤ r) are arbitrary positive integers with kr > 1. MZVs and MZSVs can
also be given by integrals. These values have been actively studied for more than two decades, but Euler
[1776] already mentioned them in a special case, r = 2. In this paper, we give an identity involving
symmetric sums for a class of regularizations of (1-2).

The two expressions of series and integrals yield two different products ∗ and x, called harmonic (or
stuffle) and shuffle, respectively, for any real value in factored form written in terms of either MZVs or
MZSVs. For example, the result of ∗ on MZSV for the value ζ ?(2)× ζ ?(2) is

ζ ?(2)ζ ?(2)= ζ ?((2) ∗ (2))= ζ ?((2, 2)+ (2, 2)− (4))= 2ζ ?(2, 2)− ζ ?(4), (1-3)

where, for notational simplicity, we think of the product ∗ as taking place among indices. (An index
means a finite sequence k = (k1, . . . , kr ) of positive integers.) The result (1-3) follows from series
expressions in (1-2) with(∑

0<m1

1
m2

1

)(∑
0<m2

1
m2

2

)
=

∑
0<m1≤m2

1
m2

1m2
2
+

∑
0<m2≤m1

1
m2

2m2
1
−

∑
0<m

1
m4 ,

or with the division of the summation∑
0<m1, 0<m2

=

∑
0<m1≤m2

+

∑
0<m2≤m1

−

∑
0<m1=m2

. (1-4)
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The other results for ζ(2)ζ(2)= ζ ?(2)ζ ?(2) are similarly obtained such that ζ((2)∗(2))= 2ζ(2, 2)+ζ(4),
ζ((2)x (2))= 2ζ(2, 2)+ 4ζ(1, 3), and ζ ?((2)x (2))= 2ζ ?(1, 3). The case of ∗ on MZV follows from
series expressions in (1-1) with division of the summation as in (1-4),∑

0<m1, 0<m2

=

∑
0<m1<m2

+

∑
0<m2<m1

+

∑
0<m1=m2

.

The cases of x on MZV and MZSV follow from integral expressions as

ζ(2)=
∫

0<s<t<1

ds
1− s

dt
t
,

with division of domains of integration∫
0<s1<1
0<s2<1

=

∫
0<s1<s2<1

+

∫
0<s2<s1<1

,

where we require an extra technique [Kaneko and Yamamoto 2018] of the integral associated to 2-labeled
posets for integral expressions of MZSVs. We omit details of ∗ and x (for which see [Hoffman 1997;
Ihara et al. 2006; Kaneko 2018; Kaneko and Yamamoto 2018; Reutenauer 1993; Zudilin 2003]),1 since
many notations are necessary for rigorous statements, though product rules are simply induced from
dividing the summation and domain.

MZVs and MZSVs are divergent if kr = 1, but recently, the theory of regularization has been estab-
lished. (For details, see [Ihara et al. 2006] and [Kaneko and Yamamoto 2018] for MZV and MZSV,
respectively.) Four polynomials whose coefficients are Q-linear combinations of MZVs and MZSVs,
which we denote by

ζ∗(k; T ), ζx(k; T ), ζ ?
∗
(k; T ), and ζ ?x(k; T ), (1-5)

are defined for any index k in the theory: ζ∗(k; T ) and ζx(k; T ) are generalizations of ζ(k) involving
products ∗ and x, respectively; ζ ?

∗
(k; T ) and ζ ?x(k; T ) are those of ζ ?(k). (Note that the polynomials in

(1-5) are constant and equal to ζ(k) when kr > 1.) A key idea of the generalizations is roughly to regard
the divergent value ζ(1)= ζ ?(1)= 1

1 +
1
2 + · · · as the variable T when using product rule. For example,

using the rule of ∗ on MZSV for ζ ?(2)ζ ?(1) yields

ζ ?(2)ζ ?(1)= ζ ?
∗
((2) ∗ (1))= ζ ?

∗
((2, 1)+ (1, 2)− (3))= ζ ?

∗
(2, 1; T )+ ζ ?(1, 2)− ζ ?(3),

which, together with ζ ?(2)ζ ?(1)= ζ ?(2)T , proves

ζ ?
∗
(2, 1; T )= ζ ?(2)T − ζ ?(1, 2)+ ζ ?(3). (1-6)

We can obtain
ζ∗(2, 1; T )= ζ(2)T − ζ(1, 2)− ζ(3),

ζx(2, 1; T )= ζ(2)T − 2ζ(1, 2),

ζ ?x(2, 1; T )= ζ ?(2)T − 1
2ζ

?(1, 2)

1We recommend [Kaneko 2018; Zudilin 2003] for nonspecialists.
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in similar ways, where evaluating ζ ?x(2, 1; T ) requires extra computations because ζ ?x(2, 1; T ) is defined
by means of the integral associated to 2-labeled posets. The regularized values ζ∗(k), ζx(k), ζ ?∗ (k), and
ζ ?x(k) are defined by their constant terms; e.g., ζ∗(k)= ζ∗(k; 0).

Fundamental theorems of regularization for MZVs and MZSVs were proved in [Ihara et al. 2006] and
[Kaneko and Yamamoto 2018], respectively, which are stated as follows. For any index k,

ρ(ζ∗(k; T ))= ζx(k; T ) and ρ?(ζ ?
∗
(k; T ))= ζ ?x(k; T ), (1-7)

where ρ and ρ? are R-linear endomorphisms on R[T ] related to the gamma function 0(u). The detailed
definition of ρ? will be introduced in Section 2, and is necessary to prove our result, Theorem 1.1.

In order to state Theorem 1.1, we will recall Hoffman’s identities involving symmetric sums of the
polynomials ζ∗(k; T ) and ζ ?

∗
(k; T ), which are shown in [Hoffman 1992; 2015]. Let Pr be the set of

partitions of the set {1, . . . , r}. For any 5 = {P1, . . . , Pg} ∈ Pr , we define integers c(5) = cr (5) and
c?(5)= c?r (5) by

cr (5)= (−1)r−g
g∏

i=1

(|Pi | − 1)! and c?r (5)=
g∏

i=1

(|Pi | − 1)! , (1-8)

respectively, where |P| is the number of the elements of a set P . We also define

H∗(k,5; T ) :=
g∏

i=1

η

(∑
p∈Pi

kp; T
)
, (1-9)

where2

η(k; T )=
{
ζ(k), k > 1,
T, k = 1.

Let Sr denote the symmetric group of degree r . Hoffman’s identities are then∑
σ∈Sr

ζ∗(kσ(1), . . . , kσ(r); T )=
∑
5∈Pr

c(5)H∗(k,5; T ), (1-10)

∑
σ∈Sr

ζ ?
∗
(kσ(1), . . . , kσ(r); T )=

∑
5∈Pr

c?(5)H∗(k,5; T ). (1-11)

Recently, a shuffle version of (1-10) was proved in [Machide 2017], which is obtained by replacing
ζ∗ and H∗ with ζx and Hx, respectively:∑

σ∈Sr

ζx(kσ(1), . . . , kσ(r); T )=
∑
5∈Pr

c(5)Hx(k,5; T ), (1-12)

where Hx will be defined in (1-15).
The main result of this paper is the shuffle version of (1-11).

Theorem 1.1. For any index k, we have∑
σ∈Sr

ζ ?x(kσ(1), . . . , kσ(r); T )=
∑
5∈Pr

c?(5)Hx(k,5; T ), (1-13)

2We note that η(k; T )= ζ∗(k; T )= ζx(k; T )= ζ ?∗ (k; T )= ζ
?
x(k; T ).
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where Hx(k,5; T ) is similar to H∗(k,5; T ), but the characteristic function

χx(k, Pi ) :=

{
0 if |Pi |> 1, and kp = 1 for all p ∈ Pi ,

1 otherwise
(1-14)

is added in each multiplicand; that is,

Hx(k,5; T ) :=
g∏

i=1

χx(k, Pi )η

(∑
p∈Pi

kp; T
)
. (1-15)

We give some examples of (1-13). The number of the terms on its right-hand side decreases as the
number of ki equal to 1 increases, because of (1-14).

Example 1.2. Let k and l be integers at least 2. Then

ζ ?(1, k)+ ζ ?x(k, 1; T )= ζ(k)T + ζ(k+ 1),

ζ ?(1, k, l)+ ζ ?(1, l, k)+ ζ ?(k, 1, l)+ ζ ?(l, 1, k)+ ζ ?x(k, l, 1; T )+ ζ ?x(l, k, 1; T )

= (ζ(k)ζ(l)+ ζ(k+ l))T + ζ(k)ζ(l + 1)+ ζ(l)ζ(k+ 1)+ 2ζ(k+ l + 1),

2(ζ ?(1, 1, k)+ ζ ?x(1, k, 1; T )+ ζ ?x(k, 1, 1; T ))= ζ(k)T 2
+ 2ζ(k+ 1)T + 2ζ(k+ 2).

In particular, we have a simple equation (1-16) when the number of ki equal to 1 is r−1 (or equivalently,
there is just one k j that is greater than 1): the right-hand side is written in terms of only single zeta values.

Corollary 1.3. For integers k ≥ 2 and r ≥ 1, we have

r−1∑
i=0

ζ ?x({1}
i , k, {1}r−1−i

; T )=
r−1∑
j=0

ζ(k+ r − 1− j)
T j

j !
, (1-16)

where {1}i means i repetitions of 1.

The method of the proof of Theorem 1.1 is an improvement to that used in [Machide 2017]. We will
use complete exponential Bell polynomials to show Proposition 2.3, which are defined by

Br (x1, . . . , xr ) := r !
∑

i1,i2,...,ir≥0
1·i1+2·i2+···+r ·ir=r

1
i1! i2! · · · ir !

r∏
a=1

(
xa

a!

)ia

. (1-17)

Bell polynomials [1927/28] first appear in the study of set partitions. Currently it is known that they have
many relations to combinatorial numbers and applications to other areas; see, e.g., [Comtet 1974; Roman
1980]. We will mention an identity involving ζ ?

∗
(1, 1, . . . , 1; T ) in Remark 2.5, which is a variation of

the identity r ! = Br (0!, 1!, . . . , (r − 1)!).
This paper is organized as follows. We prepare some propositions in Section 2, and prove Theorem 1.1

and Corollary 1.3 in Section 3.
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2. Propositions

In this section, we introduce Propositions 2.1, 2.2, and 2.3, which will be used to prove Theorem 1.1.
We will omit the proofs of Propositions 2.1 and 2.2 because these are almost the same as Lemmas 4.7
and 4.8 in [Machide 2017], respectively, where some notation and terminology are modified.

Let [r ] denote the set {1, . . . , r}, and let A and B be its subsets. We denote by P(A) the set of
partitions of A (i.e., P([r ])= Pr ), and we define a subset PB(A) in P(A) by

PB(A) := {5= {P1, . . . , Pm} ∈ P(A) : Pi 6⊂ B for all i}.

For example, if (r, A, B)= (4, {1, 2, 3}, {3, 4}), then

P(A)= {1|2|3, 12|3, 13|2, 23|1, 123} and PB(A)= {13|2, 23|1, 123},

where a1 · · · ap |b1 · · · bq | · · · means a partition such as 12|3= {{1, 2}, {3}}.
Let 4= {P1, . . . , Pg} ∈ P(A), and let s = |A|. We will define a partition σA(4) in Ps as follows. Let

a1 < · · ·< as be the increasing sequence of integers such that

A = {a1, . . . , as}

and let σA be the permutation of Sr that is uniquely determined by

σ−1
A (i)= ai (i = 1, . . . , s) and σ−1

A (s+ 1) < · · ·< σ−1
A (r);

by the definition,
σA(A)= {σA(a1), . . . , σA(as)} = [s].

We then define
σA(4) := {σA(P1), . . . , σA(Pg)} ∈ Ps .

For convenience, σA(4)= φ if A =4= φ.
The propositions are as follows.

Proposition 2.1 [Machide 2017, Lemma 4.7]. For any subset B $ [r ], we have⊔
A⊂B
{4t1 : (4,1) ∈ P(A)×PB([r ] \ A)} = Pr , (2-1)

where t denotes the disjoint union, and
⊔

A⊂B ranges over all subsets in B which include φ.

Proposition 2.2 [Machide 2017, Lemma 4.8]. Let A and B be subsets such that A ⊂ B $ [r ], and let
(4,1) be in P(A)×PB([r ] \ A). Let the symbol • mean either ∗ or x:

(i) We define c?(φ)= 1. We have
c?(4∪1)= c?(4)c?(1). (2-2)

(ii) We define H•(φ, φ; T )= 1 and
1s = (1, . . . , 1︸ ︷︷ ︸

s

).

Suppose that k = (k1, . . . , kr ) is an index satisfying B = {a ∈ [r ] : ka = 1} (and k 6= 1r ). Then we have

H•(k, 4∪1; T )=
( h∏

i=1

ζ(kQi )

)
H•(1|A|, σA(4); T ), (2-3)
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where Q1, . . . , Qh are the blocks of 1 (i.e., 1= {Q1, . . . , Qh}), and

kQi =

∑
q∈Qi

kq (i = 1, . . . , h).

Note that kQi > 1 and ζ(kQi ) is not infinity for any i , because 1 ∈ PB([r ] \ A) and Qi 6⊂ B.

Proposition 2.3 [Machide 2017, Lemma 4.9]. For any positive integer r , we have∑
5∈Pr

c?(5)H∗(1r ,5; T )= ρ?
−1
(T r ), (2-4)

∑
5∈Pr

c?(5)Hx(1r ,5; T )= T r . (2-5)

The condition B 6= [r ] in the first two propositions is necessary for taking an element in PB([r ] \ A);
see [Machide 2017, Remark 4.6] for details.

To prove Proposition 2.3, we need Lemma 2.4, which is the star-version of [Machide 2017, Lemma 4.10]
in terms of Bell polynomials.

Lemma 2.4. For any positive integer r , we have∑
5∈Pr

c?(5)H∗(1r ,5; T )= Br
(
0! η(1; T ), 1! η(2; T ), . . . , (r − 1)! η(r; T )

)
. (2-6)

We will now prove Proposition 2.3, and then prove Lemma 2.4.

Proof of Proposition 2.3. We first recall the definition of ρ?, which is an R-linear endomorphism on R[T ]
determined by the equality

ρ?(eT t)= A(−t)−1eT t (2-7)

in the formal power series algebra R[T ][[t]] on which ρ? acts coefficientwise, see [Kaneko and Yamamoto
2018, Section 4], where

A(t)= exp
( ∞∑

m=2

(−1)mζ(m)
m

tm
)
.

Note that A(t) = eγ t0(1 + t), where γ is Euler’s constant. We can see from (2-7) that the inverse
endomorphism ρ?−1 exists and it satisfies

ρ?
−1
(eT t)= A(−t)eT t

= exp
(

T t +
∞∑

m=2

ζ(m)
m

tm
)
= exp

( ∞∑
m=1

η(m; T )
m

tm
)
. (2-8)

The exponential partial Bell polynomials can be defined by use of the generating function (see [Comtet
1974, Chapter 3]):

exp
( ∞∑

m=1

xm
tm

m!

)
=

∞∑
r=0

Br (x1, . . . , xr )
tr

r !
. (2-9)

Combining (2-8) and (2-9) with xm = (m− 1)! η(m; T ), we obtain

ρ?
−1
(eT t)=

∞∑
r=0

Br
(
0! η(1; T ), 1! η(2; T ), . . . , (r − 1)! η(r; T )

) tr

r !
,
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which, together with (2-6), gives

ρ?
−1
(eT t)=

∞∑
r=0

tr

r !

∑
5∈Pr

c?(5)H∗(1r ,5; T ).

Identity (2-4) follows from comparing the coefficients of tr on both sides of this equation. We will give
a proof of (2-5), which is a modification to that of (4-58) in [Machide 2017, Lemma 4.9].3 Let 3=3r

be the partition in Pr defined by

3r := 1|2| · · · |r = {{1}, {2}, . . . , {r}}.

We see from (1-14) and (1-15) that Hx(1r ,5; T )= 0 for any 5 ∈ Pr with 5 6=3, and so∑
5∈Pr

c?(5)Hx(1r ,5; T )= c?(3)Hx(1r ,3; T ).

Since

c?(3)=
r∏

i=1

0! = 1 and Hx(1r ,3; T )=
r∏

i=1

η(1; T )= T r ,

we obtain (2-5). �

We will need the partial exponential Bell polynomials to prove Lemma 2.4, which we denote by
Br,k(x1, . . . , xr−k+1) for integers r and k with 1 ≤ k ≤ r . Complete and partial Bell polynomials have
the relations

Br (x1, . . . , xr )=

r∑
k=1

Br,k(x1, . . . , xr−k+1). (2-10)

Let br,k(i1, . . . , ir−k+1) be the coefficients of Br,k(x1, . . . , xr−k+1) such that

Br,k(x1, . . . , xr−k+1)=
∑

i1,...,ir−k+1≥0
i1+i2+···+ir−k+1=k

1·i1+2·i2+···+(r−k+1)·ir−k+1=r

br,k(i1, . . . , ir−k+1)

r−k+1∏
a=1

x ia
a .

From combinatorial considerations, see, e.g., [Comtet 1974, Chapter 3], we know that br,k(i1, . . . , ir−k+1)

is the number of partitions with total k blocks in Pr which consist of ia blocks of size a for a ∈ [r−k+1].
For instance,

b4,2(1, 0, 1)= 4, b4,2(0, 2, 0)= 3, and B4,2(x1, x2, x3)= 4x1x3+ 3x2
2 ,

since we have four partitions with blocks of size 1 and 3 and three partitions with 2 blocks of size 2
when a set with four elements is divided into two blocks. We note that Br,k = Br,k(1, . . . , 1) are Stirling
numbers of the second kind; that is, they count the number of ways to partition a set of r elements into
k nonempty subsets.

3There is a misprint in the proof of [Machide 2017, (4-58)]: {{1}, . . . , {1}︸ ︷︷ ︸
n

} should be {{1}, . . . , {n}}.
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Proof of Lemma 2.4. For any partition 5 = {P1, . . . , Pg} in Pr and integer a in [r ], let Na(5) be the
number of the blocks whose cardinalities equal a; i.e.,

Na(5) := |{ j ∈ [g] : |Pj | = a}|.

We see from the definition that

g = N1(5)+ · · ·+ Nr (5) and r = 1 · N1(5)+ · · ·+ r · Nr (5),

so that

c?(5)H∗(1r ,5; T )=
g∏

i=1

(|Pi | − 1)! η(|Pi |; T )=
r∏

a=1

((a− 1)! η(a; T ))Na(5).

It follows from the combinatorial meaning of br,k(i1, . . . , ir−k+1) that∑
5∈Pr

Na(5)=ia(∀a)

1= br,k(i1, . . . , ir−k+1)

for nonnegative integers i1, . . . , ir−k+1 with
∑r−k+1

a=1 ia = k and
∑r−k+1

a=1 a · ia = r , and so∑
i1,i2,...,ir≥0

1·i1+2·i2+···+r ·ir=r

∑
5∈Pr

Na(5)=ia(∀a)

c?(5)H∗(1r ,5; T )

=

∑
i1,i2,...,ir≥0

1·i1+2·i2+···+r ·ir=r

( r∏
a=1

((a− 1)!η(a; T ))ia

) ∑
5∈Pr

Na(5)=ia(∀a)

1

=

r∑
k=1

∑
i1,i2,...,ir−k+1≥0

i1+i2+···+ir−k+1=k
1·i1+2·i2+···+(r−k+1)·ir−k+1=r

( r−k+1∏
a=1

((a− 1)!η(a; T ))ia

)
br,k(i1, . . . , ir−k+1)

=

r∑
k=1

Br,k
(
0! η(1; T ), 1! η(2; T ), . . . , (r − k)! η(r − k+ 1; T )

)
. (2-11)

We thus obtain (2-6), since the first line of (2-11) is equal to the left-hand side of (2-6) because of
[Machide 2017, (4-74)], or

Pr =
⊔

i1,i2,...,ir≥0
1·i1+2·i2+···+r ·ir=r

{5 ∈ Pr : Na(5)= ia,where a ∈ [r ]},

and since the last line of (2-11) is equal to the right-hand side of (2-6) because of (2-10). �

Remark 2.5. Bell polynomials are related to many combinatorial numbers. It may be worth noting the
relation to the unsigned Stirling numbers of the first kind, which can be expressed as

c(r, k)= Br,k(0!, . . . , (r − k)!).
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The unsigned Stirling numbers are defined as coefficients of the rising factorial; that is,

x(x + 1) · · · (x + r − 1)=
r∑

k=1

Br,k(0!, . . . , (r − k)!)xk . (2-12)

Substituting x = 1 in this equation and combining it with (2-10), we thus obtain

r ! = Br (0!, 1!, . . . , (r − 1)!). (2-13)
We also have

r !ζ ?
∗
(1r ; T )= Br

(
0! η(1; T ), 1! η(2; T ), . . . , (r − 1)! η(r; T )

)
, (2-14)

which follows from Hoffman’s identity (1-11) with k = 1r and (2-6). Equation (2-14) is a variation
of (2-13) in the sense that we can obtain (2-14) from (2-13) by replacing r ! in the left-hand side with
r ! ζ ?x(1r ; T ) and j ! in the right-hand side with j ! η( j + 1; T ). We note that (2-14) corresponds to an
identity in terms of symmetric functions (see [Hoffman 1997, Theorem 5.1] and [Kaneko and Yamamoto
2018, Lemma 5.1]):

r !hr = Br (0! p1, 1! p2, . . . , (r − 1)! pr ), (2-15)

where hi is the complete symmetric function of degree i and pi is the i-th power sum symmetric function.

3. Proof

We will need (3-1) to prove (1-13), which is the star version of [Machide 2017, (4-51)].

Proposition 3.1. For any index k,

ρ?
(∑
5∈Pr

c?(5)H∗(k,5; T )
)
=

∑
5∈Pr

c?(5)Hx(k,5; T ). (3-1)

We can prove (3-1) in a quite similar way, as we see below.

Proof of Proposition 3.1. Let B = { j ∈ [r ] : k j = 1} ⊂ [r ]. We suppose that B = [r ]. Then, k = 1r , and
so we can see from Proposition 2.3 that

ρ?
(∑
5∈Pr

c?(5)H∗(k,5; T )
)

(2-4)
= ρ?(ρ?

−1
(T r ))= T r (2-5)

=

∑
5∈Pr

c?(5)Hx(k,5; T ), (3-2)

which proves (3-1) for this case.
We suppose that B 6= [r ]. Let A be a subset in B. Then we have

{σA(4) :4 ∈ P(A)} = {4′ :4′ ∈ P|A|}, (3-3)

because the restriction of σA to A is a bijection from A to [|A|]. From (1-8) we easily see that c?(4)=
c?(σA(4)). Thus,∑

5∈Pr

c?(5)H∗(k,5; T )
Prop. 2.1
=

∑
A⊂B

∑
4∈P(A)

1∈PB([r ]\A)

c?(4∪1)H∗(k, 4∪1; T )

Prop. 2.2
=

∑
A⊂B

∑
1∈PB([r ]\A)

c?(1)
( h∏

i=1

ζ(kQi )

) ∑
4∈P(A)

c?(4)H∗(1|A|, σA(4); T )
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(3-3)
=

∑
A⊂B

∑
1∈PB([r ]\A)

c?(1)
( h∏

i=1

ζ(kQi )

) ∑
4′∈P|A|

c?(4′)H∗(1|A|, 4′; T )

(2-4)
=

∑
A⊂B

∑
1∈PB([r ]\A)

c?(1)
( h∏

i=1

ζ(kQi )

)
ρ?
−1
(T |A|),

where Q1, . . . , Qh mean the blocks of 1. Therefore,

ρ?
( ∑
5∈Pr

c?(5)H∗(k,5; T )
)
=

∑
A⊂B

∑
1∈PB([r ]\A)

c?(1)
( h∏

i=1

ζ(kQi )

)
ρ?(ρ?

−1
(T |A|))

=

∑
A⊂B

∑
1∈PB([r ]\A)

c?(1)
( h∏

i=1

ζ(kQi )

)
T |A|. (3-4)

By using Propositions 2.1 and 2.2, and (3-3), and by using (2-5) instead of (2-4), we can similarly prove∑
5∈Pr

c?(5)Hx(k,5; T )=
∑
A⊂B

∑
1∈PB([r ]\A)

c?(1)
( h∏

i=1

ζ(kQi )

)
T |A|. (3-5)

Equating (3-4) and (3-5), we obtain (3-1) for B 6= [r ], and complete the proof. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Recall the star-regularization theorem, the second identity of (1-7), which we tag
as (s-reg) here. We obtain∑

σ∈Sr

ζ ?x(kσ(1), . . . , kσ(r); T )
(s-reg)
= ρ?

(∑
σ∈Sr

ζ ?
∗
(kσ(1), . . . , kσ(r); T )

)
(1-11)
= ρ?

(∑
5∈Pr

c?(5)H∗(k,5; T )
)

(3-1)
=

∑
5∈Pr

c?(5)Hx(k,5; T ),

which proves (1-13). �

Finally, we deduce Corollary 1.3 from Theorem 1.1.

Proof of Corollary 1.3. Let k = (k1, . . . , kr ) be the index (k, 1, . . . , 1), and let 5= {P1, . . . , Pm} denote
a partition in Pr . Assume 1 ∈ P1 through this proof, which does not lose the generality. We see from
(1-14) that

Hx(k,5; T )=
{

0 if |Pi |> 1 for some i ≥ 2,
ζ(k+ |P1| − 1)T m−1 otherwise.

Since

m− 1=
m∑

i=2

|Pi | = r − |P1|
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if |Pi | = 1 for all i ≥ 2, it follows from (1-13) that

(r − 1)!
r−1∑
i=0

ζ ?x({1}
i , k, {1}r−1−i

; T )=
r∑

j=1

∑
5∈X j

( j − 1)! ζ(k+ j − 1)T r− j

=

r∑
j=1

( j − 1)! ζ(k+ j − 1)T r− j
∑
5∈X j

1, (3-6)

where
X j = {{P1, P2, . . . , Pr+1− j } ∈ Pr : |P1| = j, |P2| = · · · = |Pr+1− j | = 1}.

Noting the assumption 1 ∈ P1, we have

X j =
{
{[r ] \ {a2, . . . , ar+1− j }, {a2}, . . . , {ar+1− j }} : 2≤ a2 < · · ·< ar+1− j ≤ r

}
,

where [r ] \ {a2, . . . , ar+1− j } corresponds to P1 and {ai } (2 ≤ i ≤ r) correspond to Pi . Thus |X j | is the
number of (r− j)-combinations of {2, . . . , r}, or∑

5∈X j

1=
(r− j

r−1

)
. (3-7)

Combining (3-6) and (3-7), we obtain
r−1∑
i=0

ζ ?x({1}
i , k, {1}r−1−i

; T )=
r∑

j=1

1
(r − j)!

ζ(k+ j − 1)T r− j .

Replacing j with r − j in the right-hand side of this equation gives (1-16). �
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