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Matiyasevich-type identities for hypergeometric Bernoulli polynomials
and poly-Bernoulli polynomials

Ken Kamano

We give a Matiyasevich-type identity for hypergeometric Bernoulli polynomials and their generaliza-
tions. By using this identity, we also give an identity for poly-Bernoulli polynomials.

1. Introduction and main theorem

The Bernoulli polynomials B, (x) are defined by the generating function

[e.¢]
te*! B, (x) o

(1)
r_ ]

el —1 = n
When x = 0, the numbers B, (0) = B,, are called Bernoulli numbers.

A well-known convolution identity for Bernoulli numbers is the following Euler’s formula:

n
S (5 )BiBui=—nBuy = =DB, (=1,
=l
There are many generalizations of this identity. For example, Dilcher [1996] gave an identity for sums
of m products of Bernoulli polynomials (m =2, 3, ...).
On the other hand, by a p-adic method, Miki [1978] proved the following interesting identity which
relates two types of convolutions of Bernoulli numbers:

n—2 n—2
n
S Bibui= (7 )Bibui =2Huby 1z 4, )
i=2 i=2
where B, := B,,/m and H,, := YL, 1/i. Many alternative proofs and generalizations of this identity

have been discovered by several authors; see, e.g., [Crabb 2005; Dilcher and Vignat 2016; Gessel 2005].
Matiyasevich [1997, Identity #0202] discovered the following identity, which also relates two types of
convolutions of Bernoulli numbers:
n—2 n—2 n+2
(n+2)Y BBy =23 ("7 ) BiByi =n(+ DB, 3)
i=2 i=2

for any n > 4. We note that the identity (3) becomes trivial for odd n > 4. It is known that Miki’s and
Matiyasevich’s identities can be proved by using a difference operator [Pan and Sun 2006; Artamkin
2007]; see also [Sun and Pan 2006].
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Let N be a positive integer and Q(t) € tNR[[t]. We introduce polynomials fx ,(x; Q) € R[x]
(n=0,1,2,...) by the generating function

o) e v Q)
o~V i _g T

When Q(t) =tV /N!, the polynomials fy ,(x; Q) are nothing but the hypergeometric Bernoulli poly-
nomials By ,(x), which were first introduced by Howard [1967a; 1967b]. We note that B; ,(x) is the
ordinary n-th Bernoulli polynomial B, (x) defined by (1). We denote fy ,(x; Q) by f,(x; Q) if there is
no fear of confusion.

By definition, we have

fue+y: 0 =Y (1) i 08" =0, )
i=0
L @ =nf106.0) (= ). )

The purpose of this paper is to give a Matiyasevich-type identity for fy , by using the difference
operator. The following is the main theorem of this paper.

Theorem 1.1. Let N, m and n be integers with N,m > 1 andn > 0. For Q,(t) € VR (A <u <m),

we have
n+N+m—1 "
( N ) o T v+ Qo)
i1yl =>0 u=1
i1+ Fip=n
n+N+m—1
- Z ( P,+m—1 )BN~”—Pm+N(x)

x((]_[fN,pu(yﬁl;Qu))— 3 H(pl)pr, ],(yz,Qz)) ©)
u=1

Jiseens jm=0 =1
0<ji++jm=N-1

where P,, means p1+-- -+ pm.

In Section 2, we give a proof of Theorem 1.1. In Section 3, we see that the identity (6) is a general-
ization of Matiyasevich’s identity (3). Moreover, as an example of identity (6), we give an identity for
poly-Bernoulli polynomials.

2. Proof of Theorem 1.1

For an integer N > 1, let us define a kind of difference operator Ay as

f(’)( )

ANf@)—nﬂx+l%—§: (f(x) € RIxD), (7

where f @) is the i-th derivative of f. It is clear that A is the ordinary difference operator.
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Since .
AN( e ) o
et =Nty
we have
avByan@= ("3 =0, ®)

By definition, we have

Yty ()xmt form =N,

1

AN)Cm=
0 forO<m<N-—1.

Hence {Ayx™, AyxNtl ..} provides a basis of the vector space R[x] over R. Therefore Ay f(x) =0
implies that f(x) is a polynomial of degree N — 1 and we obtain the following lemma.

Lemma 2.1. Let f(x), g(x) eR[x]. If Ay f(x)=Ang(x), then f(x) and g(x) agree in their coefficients
of x/ for j > N.

By the identity
ZA\p)t T et =

we have

(ll ) i Im ; xpl+ +Dm

E Xt E xXm =

; P1 ; Pm (1 —x)prttpmtm
1= m=

for m > 1. By comparing the coefficients of both sides, we obtain the following lemma.

Lemma 2.2. Forintegersm > 1, n>0and py, ..., pm =0, we have
X ) ) =G i)
. — P1 Pm - P1+"'+Pm+m—1 )
Ulyeens Im=
i]'li‘"'+im:n

Now we prove our main theorem.

Proof of Theorem 1.1. For integers i1, ..., i, > 0, we have by (7)

Ay ( ]_[ Ji, (eyus Qu))

(l_[f,,,<x+1+yu, Qu )) —— ] fu &ty Qu)

) 0. U 0,
—n(z<’“>f,,,,<yu+lw ey A s,

[ |
j],...,ijO ]1 ]m
0<ji++jm<N-1

where we have used the general Leibniz rule. For any i, j > 0 we have, by (4) and (5),

i—i

106ty 0) ()it o=(5) (T ) ho Q)xf‘f‘pzi(;)(f)fp—,-(y; )i,

!
J p=0 p=j
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where an empty sum is taken to be zero. Hence

2

jl ----- ijO
0<jit+jn<N-1

fi(ljl)(x—l-yu Ql)...fl.fnj’”)(x—i—ym; Om)
Jit e Jm!

= X ﬁ( 12: (Z)(?Z)fpu—ju(yu; Qu)xi""’”).

Jlseees Jm=0 u=1 “py=ju
0< )i+t jm<N—1

Therefore, by Lemma 2.2, we have

> AN(H fie @+ s Qu))
u=1

P gl
it =n
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By the relation

0Py _ ONBNn—p,+N ()

(n—P},\,;+N) ’

X

which comes from (8), we have, for n > 0,

Ay Yo T A6+ Q0

[]yenes in=>0 u=l
i1+-+ip=n

1 n+m—1
= Ay Z TH—P, TN\ BN,n—Pm+N(x)(Pm+m_1)
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x ((ﬂ P+ 1: Qu>> - XTI ) enow Qu)>.
u=1 0<jit++jm<N—-1 u=1

Applying Lemma 2.1 to this last identity, with

1 n+m—11y\ ("}fﬁé’:l)
(n—Pm+N) (Pm+m_1) - (n+N+m—1)s
N N

we see that (6) holds up to a polynomial in x of degree N — 1. Finally, for any n > 0, by replacing n by
n+ N in (6) and differentiating with respect to x both sides N times, we obtain (6) for n. O
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3. Identities for poly-Bernoulli polynomials

In this section, we give some identities derived from Theorem 1.1. Firstly, we give identities for the
ordinary Bernoulli polynomials.

Corollary 3.1. The following identities hold:

n+2) 3 Bgl(x>Bi2<x>=(’”3”2)8"_1<x>+2Z(Zi§)Ban-p<x> (n=1), (10)
p>0

i1+ir=n

n+2
(42 Y0 BB = 3 () a1 )Bron-m
i1+iz=n r1,p2=0
X (Bp (y1+1) B, (y2+1)=Bp, (y1) By, (y2)) (1 =0). (11)
Proof. We apply N =1, m =2, Q1(t) = Q»>(t) =t and y; = y, =0 in Theorem 1.1. Since fi ,(x;t) =

B, (x), we have

2
(142 Y ByBa@ = Y (4 ) Byt OBy (DB () = By By). (12)

i1+i2=n P1,p2>0

It is well known that B, (1) = B, + 81, (p > 0), where §;; is Kronecker’s delta function. Therefore the
right-hand side of (12) equals

(n§2>3n_1 (x) +2 Z(Zig)Bn_p(x)Bp,
p=>0

and this proves (10). Equation (11) can be also proved by applying x = 0 in Theorem 1.1. O

Remark 3.2. (i) Matiyasevich’s identity (3) can be obtained by setting x = 0 in (10).

(i) Agoh and Dilcher [2014, Theorem 1] gave an identity which includes (10). Pan and Sun [2006, Theo-
rem 2.1] gave an identity for > B;, (y1) Bi,(y2) with y; # y», but our identity (11) is different from theirs.

For any integer k, poly-Bernoulli polynomials C ,(Lk) (x) are defined by the generating function

Lig(1—e™) ,, w=CPx)
P DTl

see, e.g., [Imatomi 2014, Chapter 6]. Here Lix (z) is the k-th polylogarithm defined by Lix (z) = oo, 2"/ nk.
The numbers C,gk)(l) and C,(,k)(O) are poly-Bernoulli numbers B,(,k) and C,(,k) introduced by Kaneko [1997]
and Arakawa and Kaneko [1999], respectively. When k = 1, it can be checked that C,(Ll)(x) = B,(x)
where B, (x) are the ordinary Bernoulli polynomials defined by (1). When N =1 and Q(r) =Liy (1 —e™),
we have f,(x; Q) = C,(,k) (x). Hence the following corollary is obtained from Theorem 1.1.

Corollary 3.3. For integers ki, ky and n with n > 0, we have

k k n+2
0+D 3 ANOCE0= T ()4 1) Bropenn G EL -~ CRICED,
i1tiz=n p1,p2=0
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It is known that B,ﬁk) = c,i") + C,(lk__ll) for n > 0. Here, when n = 0, we set C(_k]_l) = 0 for any k. Hence
the identity above can be rewritten in the form using only C,(,k):

Corollary 3.4. For integers ki, ky and n with n > 0, we have

k k
n+2) Y O
i1+ir=n +2
_ n (k) ~(ka—1) (ko) (~(k1=1) (ki =1) ~(k2—1)
- Z <p1+p2+1>B"_1"_P2+1(x)(cpll CP22—1 +CP22 CPll—l +CP11—1 Cp22—1 )-
P1,p2=0
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