
2019
vol. 8 no. 2

Lattices with exponentially large kissing numbers

Serge Vlădut,
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Lattices with exponentially large kissing numbers

Serge Vlădut,

We construct a sequence of lattices {Lni ⊂ Rni } for ni →∞ with exponentially large kissing numbers,
namely, log2 τ(Lni ) > 0.0338 · ni − o(ni ). We also show that the maximum lattice kissing number τ l

n in
n dimensions satisfies log2 τ

l
n > 0.0219 · n− o(n) for any n.

1. Introduction

In this paper we consider lattice packings of spheres in real n-dimensional space Rn and their kissing
numbers. Recall that the maximum kissing number is known only in a handful of dimensions, the largest
being n = 24 for which the Leech lattice 324 gives the optimal kissing number τ(324)= 196560. Recall
also that the random choice procedure guarantees, see [Chabauty 1953; Shannon 1959; Wyner 1965],
the existence of nonlattice packings Pn with

log2 τ(Pn)

n
≥ log2

2
√

3
' 0.2075 . . . .

More precisely, it gives the existence of local arrangements of spheres touching one sphere which can be
included then into a nonlattice packing. Note also that the upper bound of Kabatiansky and Levenstein
[1978] is

log2 τ(Pn)

n
≤ 0.4041 . . . .

However, for lattice packings this procedure does not work, and as far as we know, no reasonable lower
bound for the maximum lattice kissing number τ l

n is known for n →∞. For instance, the Barnes–
Wall lattices BWn with n = 2m give the quasipolynomial bound τ l

n ≥ nc log n , i.e., log τ l
n ≥ c log2 n,

which can hardly be characterized as “reasonable”. The main purpose of the present paper is to give an
exponential lower bound for τ l

n (however, these lattices are worse than nonlattice packing guaranteed by
random choice). This is achieved by applying Constructions D and E from [Barnes and Sloane 1983]
and [Bos et al. 1982], respectively, to codes from [Ashikhmin et al. 2001] having exponentially many
light vectors. In order to apply Constructions D and E we need specific good curves (the curves in the
Garcia–Stichtenoth towers [1995; 1996] do not perfectly match our construction) and some Drinfeld
modular curves [Gekeler 2001; Elkies 2001] perfectly suit our purposes.

Our main result is:
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Theorem 1.1. We have
log(τ l

N )

N
≥

1
20

(
1− 2

31 log 33
)
−

2+ 2 log N
N

(1-1)

for N = 5 · 210n+2 and any n ≥ 2,

log(τ l
N )

N
≥

1
24

(
1− 2

63 log 65
)
−

2+ 2 log N
N

(1-2)

for N = 3 · 212n+3 and any n ≥ 2,

log(τ l
N )

N
≥

1
28

(
1− 2

127 log 129
)
−

2+ 2 log N
N

(1-3)

for N = 7 · 214n+2 and any n ≥ 2, where

1
20

(
1− 2

31 log33
)
'0.033727 . . . , 1

24

(
1− 2

63 log65
)
'0.033700 . . . , 1

28

(
1− 2

127 log129
)
'0.0317709 . . . .

All our logarithms are binary.

Corollary 1.2. We have
log(τ l

n)

n
≥ c0 (1-4)

for some c0 > 0 and any n ≥ 1.

The exact value of c0 is not clear, but c0 = 0.02 is probably sufficient.

It is possible to ameliorate the constants slightly, if we do not insist on the effectiveness of results:

Theorem 1.3. We have

log(τ l
N )

N
≥

1
20

( 21
31 − log 1024

1023

)
− o(1)' 0.033800 . . .− o(1) (1-5)

for N = 5 · 210n+2,

log(τ l
N )

N
≥

1
24

( 17
21 − log 4096

4095

)
− o(1)' 0.033715 . . .− o(1) (1-6)

for N = 3 · 212n+3,

log(τ l
N )

N
≥

1
28

( 113
127 − log 16384

16383

)
− o(1)' 0.031774 . . .− o(1) (1-7)

for N = 7 · 214n+2.

In fact, the implied functions in o(1) terms can be made explicit, but they decrease slowly and their
precise calculation is not justified.

Note also that using other finite fields Fq with a square q one can obtain infinitely many series of similar
lattices in the corresponding dimensions, but for all of them the ratio log(τ l

N )/N is less than 0.03.

Corollary 1.4. We have

lim sup
n→∞

log(τ l
n)

n
≥

1
20

( 21
31 − log 1024

1023

)
.
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For the lower limit we can prove:

Theorem 1.5. Let A = log 4096
4095 . We have then

lim inf
n→∞

log(τ l
n)

n
≥

1
504(17− 21A)δ0 ' 0.021937 . . . , (1-8)

where δ0 ' 0.6506627 . . . is the unique root of the equation

21H(δ)= 2δ(4+ 21A+ (17− 21A)δ)

in the interval (0.5, 1).

One can think that c0 in (1-4) can be chosen rather close to that value.

The rest of the paper is organized as follows: in Section 2 we recall some basic definitions and results
on lattices and error-correcting codes. Section 3 is devoted to Constructions D and E from [Barnes
and Sloane 1983] and [Bos et al. 1982], respectively, while Section 4 recalls and slightly modifies the
constructions from [Ashikhmin et al. 2001]. We describe some known good curve families in Section 5
and prove our results in Section 6.

2. Preliminaries

In this section we recall some basic definitions and results on lattices and linear error-correcting codes.

2A. Lattice packings. A sphere packing is a configuration of nonintersecting equal open spheres in RN.
Let d be the diameter of the spheres; then the distance between any two sphere centers is at least d.
Thus a packing is a set of points P in RN such that the minimum distance between any two of them is
at least d. If P is an additive subgroup of RN, it is called a lattice or a lattice packing; below we are
concerned mainly with such packings. For any packing P its density 1(P) is defined as the fraction of
space covered by spheres (which can be defined as the upper limit of this fraction inside a large cube
whose size tends to infinity).

If L is a lattice then a choice of basis gives an embedding eL :Z
n
→Rn; its matrix is called a generating

matrix of the lattice. For the diameter of spheres one can take d(L)=min{|v| : v ∈ L , v 6= 0}. For any
packing P ⊂ Rn the ratio ν(P)=1(P)/Vn is called its center density, where

Vn =
πn/2

0(n/2+ 1)

is the volume of the unit sphere.
The ratio λ(P) = log1(P)/n is called the density exponent of P; thus, 1(P) = 2−λ(P)n. The

Minkowski bound, which is a corollary of the Minkowski–Hlawka theorem, says that some lattice fam-
ilies {Ln ⊂ Rn

} satisfy λ(Ln) ≤ 1; however, no construction is known for such families. On the other
hand, the Kabatiansky–Levenstein bound says that λ(Pn)≥ 0.599 . . .− o(1) for any family of packings
{Pn ⊂ Rn

}. Families of packings with lim infn→∞ λ(Pn) <∞ are called asymptotically good. It is not
easy to construct such families, especially for lattice packings. The best known results in that direction
use algebraic geometry codes and similar constructions; see [Litsyn and Tsfasman 1987; Rosenbloom
and Tsfasman 1990].



166 SERGE VLĂDUT,

Another important parameter of a packing P ⊂ Rn is its kissing number

τ(P)=max
x∈P
|{y ∈ P : |x − y| = d}|.

A random choice argument gives, see [Chabauty 1953; Shannon 1959], the existence of (nonlattice)
packings Pn ⊂ Rn with

lim inf
n→∞

log τ(Pn)

n
≥ log

2
√

3
' 0.2075 . . . ,

whereas the Kabatiansky–Levenstein bound [1978] for τ says that

lim sup
n→∞

log τ(Pn)

n
≤ 0.4041 . . . .

We will say that a family of packings Pn ⊂ Rn is τ -asymptotically good whenever

lim sup
n→∞

log τ(Pn)

n
> 0.

Since the random choice argument does not work for lattices, it is not clear whether τ -asymptotically
good lattice families exist, and our main purpose is to prove their existence.

2B. Error-correcting codes. Let us recall several facts about (linear error-correcting) codes; for addi-
tional information we refer to [MacWilliams and Sloane 1977a; 1977b]; see also [Tsfasman et al. 2007,
Chapter 1]. We fix a finite field Fq .

A q-ary linear code is simply a subspace C ⊆ Fn
q , where n is called the length of C , and the ratio

R = k/n for k = dim C is called the rate of C . The minimum distance d = d(C) is the minimum
Hamming weight wt(c), i.e., the number of nonzero coordinates, of c ∈ C \ {0}; the ratio δ = d/n is
called the relative minimum distance. We say in this case that C is an [n, k, d]q -code. A choice of basis
in C defines a linear map ϕC : F

k
q → Fn

q and its matrix is called a generating matrix of C . A set of codes
C1 ⊂ · · · ⊂Cm ⊆ Fn

q is called a nested family. For C ⊆ Fn
q its dual code C⊥ is the orthogonal complement

of C :
C⊥ = {v ∈ Fn

q : v · c = 0 for all c ∈ C},

where v · c = v1c1+ · · ·+ vncn; C⊥ is an [n, n− k, d⊥]q -code for some d⊥.

A random choice argument shows that asymptotically for n→∞ and fixed δ the rate R of the best
linear codes satisfies the Gilbert–Varshamov bound

R = Rq(δ)≥ 1− Hq(δ)= 1−
δ log(q − 1)+ H(δ)

log q
,

where H(δ)=−δ log δ− (1− δ) log(1− δ) is the binary entropy function.

2C. Algebraic geometry codes. All our curves here and below are smooth projective absolutely irre-
ducible over a finite field Fq ; let X be such a curve of genus g, let D be an Fq-rational divisor of
degree a ≥ g− 1, and let, see, e.g., [Tsfasman et al. 2007, Section 2.2],

L(D)= { f ∈ Fq(X) : ( f )+ D ≥ 0}
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be the associated function space. For a set P={P1, . . . , Pn} of Fq -rational points on X with P∩Supp D=∅
the evaluation map

evP : L(D)→ Fn
q , evP( f )= ( f (P1), . . . , f (Pn)),

is well-defined. Whenever a < n, this map is injective and its image is a linear q-ary code C(X, D,P)
of length n, dimension k ≥ a− g+ 1 (by the Riemann–Roch theorem), and distance d > n− a (since
the number of zeros of a function cannot exceed the number of poles). If D = a P0 for an Fq-rational
point P0 6= Pi , i = 1, . . . , n, we get a nested family of codes Ca for a = n− 1, n− 2, . . . , g− 1. In the
particular case g = 0, a ≥ 0, P0 =∞ (i.e., X is the projective line), we get nested Reed–Solomon codes
with parameters n = q, k = a+ 1, d = q − a.

Algebraic geometry codes (AG-codes below) have good parameters when the ratio of the number
of Fq-rational points on the curve to its genus is high enough. The Drinfeld–Vlădut, bound says that
asymptotically this ratio cannot exceed

√
q − 1. For q = p2h there exist many families of curves over Fq

attaining this bound (see, e.g., Section 5 below), which implies the lower bound

Rq(δ)≥ 1−
1

√
q − 1

for the best asymptotical rate of Fq -linear codes; see, e.g., [Tsfasman et al. 2007, Section 4.5]. If q ≥ 49,
it improves (on some interval) the Gilbert–Varshamov bound.

One can dispense with the above condition P ∩ Supp D =∅ without spoiling the parameters of the
codes C(X, D,P); for instance, if Pi ∈ Supp D we can replace the term f (Pi ) in evP by fi (Pi ) with
fi = t s

i f , where ti is some fixed local parameter at Pi and s is a suitable integer (see [Tsfasman et al.
2007, Section 4.1, pp. 194–197], where the H - and P-constructions are discussed).

3. Constructions D and E

We recall now two constructions from [Barnes and Sloane 1983] and [Bos et al. 1982] (see also Chapter 8
in [Conway and Sloane 1988]), which permit us to construct good lattices from good codes.

3A. Construction D. Let C0 = Fn
2 ⊃ C1 ⊃ · · · ⊃ Ca , a ≥ 1 be a finite decreasing family of linear binary

codes with parameters [n, ki , di ] for Ci , i = 0, . . . , a, where di = 4i (we will need only the case n= 22a+1

and thus δa = da/n = 1
2 ). We can and will consider C0 as a subset of Rn. We choose a basis c1, . . . , cn

for Fn
2 such that c1, . . . , cki span Ci for i = 0, . . . , a and define L as the lattice in Rn generated by (2Z)n

and the vectors {c j · 21−i
} for i = 1, . . . , a, ki+1+ 1≤ j ≤ ki . Then we have [Barnes and Sloane 1983,

Theorem 1]:

Proposition 3.1. The lattice L has minimum distance dL = 2 and its center density satisfies

δ ≥ 2K−n

for K =
∑a

i=1 ki .

Note that we will need only the statement dL = 2, which is easy in view of the minimum distances di

of Ci for i = 0, . . . , a.
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3B. Construction E. Here we need more elaborate techniques.
First we define T -lattices as follows [Barnes and Sloane 1983; Bos et al. 1982]; see also [Litsyn and

Tsfasman 1987]. A lattice 3⊂ Rm is a T -lattice if it satisfies the following four conditions:

(i) The minimal vectors of 3 span 3.

(ii) There is a linear map T from Rm to Rm that sends all the minimal vectors of 3 into elements of 3
which have norm R2 and are at a distance R from 3 for some R > 0.

(iii) There is a positive integer ν dividing m and an element A ∈ Aut(3) such that

(iii)1 T ν
=

1
2 A and

(iii)2
1
2(A

2
− A)=

∑ν−1
i=0 ai T i , ai ∈ Z.

We set b = m/ν and q = 2b.

(iv) 3⊆ T3 and

(iv)1 [T3 :3] = q .

It follows from (iii)1 that T = t P , where t = 21/ν and P is an orthogonal transformation satisfying
Pν = A. If M is the minimal square norm of 3, we have t = R/

√
M , and from (iv)1 we get

(v) tm
= | det T | = 2−b

= q−1.

Note that the square lattice Z2 is a T -lattice with T = (1/
√

2)Rπ/4 for the rotation Rπ/4 through the
angle π/4= 45◦.

Construction E produces from a T -lattice, together with a nested family of linear codes C0 = Fn
2b ⊃

C1 ⊃ · · · ⊃ Ca over F2b , another T -lattice L ⊂ Rmn in the following way.
We suppose that the parameters of the code Ci , 0≤ i ≤a are [n, ki , di ] and we choose a basis c1, . . . , cn

for Fn
2b such that c1, . . . , cki span Ci for i = 0, . . . , a. Define then the lattices3i as follows. Let vi , . . . , vm

be minimal vectors of 3 that span 3. Then T vi , . . . , T vm span T3 and T3/3 is an elementary abelian
group of order q , so that there are b vectors u(1)i = T vr1, . . . , u(1)b = T vrb , for appropriate r1, . . . , rb, such
that T3/3 is isomorphic to the F2-span of u(1)i , . . . , u(1)b . Let

3i = T i3, u(i)j = T ivr j , j = 1, . . . , b, for all i ∈ Z.

The lattice 3i has minimal square norm t2i M , and dist(u(1)i ,3i )≥ t i−1 R.
Define now the maps σi : Fq →3i by

σi

( b∑
j=1

α jω j

)
=

b∑
j=1

α j u
(i)
j

for some generators ω1, . . . , ωb for Fq over F2 and any α j ∈ F2, j = 1, . . . , b; those maps define the
maps σi : F

n
q → Rmn.

The construction. The lattice L ⊂ Rmn consists of all vectors of the form

x = l +
a∑

i=1

bki∑
j=1

α
(i)
j σi (c j )
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for l ∈3n , α(i)j ∈ F2. Note that L is a T -lattice, since it inherits T from 3; the parameter t remains the
same, while b becomes nb; see also Proposition 3.2 below. The main property of this Construction E,
which coincides with Construction D for 3= 2Z, is [Barnes and Sloane 1983, Theorem 3]:

Proposition 3.2. The lattice L is fixed under the transformation Â, which applies A simultaneously to
each component, and its minimum distance equals√

M for M = min
i=1,...,a

{M, di R2i M1−i
}.

Theorem 3 of [Barnes and Sloane 1983] gives also the density of L , but we do not need it.

Applying Construction E to Z2 with a = 1, M = 4, R =
√

2 and the single parity check [2, 1, 2]q
code C1, we get successfully the T -lattices D4, E8,316, 3̄32 in the corresponding dimensions; one can
take this description as a definition for those lattices. Moreover, applying Construction E to D4 and the
single parity check [m,m − 1, 2]4 code for any m ≥ 2 we get a T -lattice 3̃4m in 4m dimensions. The
Leech lattice 324 is also a T -lattice [Bos et al. 1982, p. 177]; note, however that 324 6= 3̃24.

4. Codes with many light vectors

Recall the following principal result of [Ashikhmin et al. 2001].
Denote by Ad is the number of minimum weight vectors in an [n, k, d]q-code Cn , and let Es for

s ∈ N, s ≥ 3 be the function

Es(δ)= H(δ)−
2s

2s − 1
− log

22s

22s − 1
, (4-1)

which has two zeros 0 < δ1 < δ2 < 1− 2−2s and is positive for δ1 < δ < δ2. In particular, for s = 3,
q = 64, δ = 1

2 we have

E3(0.5)= 1
7 − log 64

63 ' 0.1201 . . . , 1
64 E3(0.5)' 0.001877 . . . .

Theorem 4.1. Let q = 22s, s = 3, 4, . . . be fixed. Then for any δ1 < δ < δ2 there exists a sequence of
binary linear codes {Cn} of length n = q N, N →∞ and distance dn = nδ/2 such that

log Adn

n
≥

Es(δ)

22s − o(1). (4-2)

Theorem 4.1 is a simple consequence of the following result concerning AG codes. Consider a curve X
of genus g over Fq , where q = 22s, s ≥ 3. Suppose that N ≥ (2s

−1)g, where N = |X (Fq)| is the number
of Fq-rational points of X (e.g., X is a curve from Subsections 5A, 5B below). Let D be an Fq -rational
positive divisor of degree a > 0, and let C = C(X, D, X (Fq)) be the corresponding AG code of length N,
dimension k(C)≥ a− g+ 1, and distance d(C)≥ N − a.

Proposition 4.2. Let δ = (N − a)/N satisfy the inequality δ1 < δ < δ2. Then there exists an Fq -rational
positive divisor with deg(D) = a such that the corresponding AG code C has the minimum distance
d = N − a = δN and for the number Ad of vectors of weight d we have

log Ad ≥ N Es(d)− o(N ).
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Recall that this is proved using an averaging procedure applied to the set of linearly equivalent classes
of Fq-rational positive divisors D with deg(D)= a which form the set JX (Fq) of Fq-rational points on
the Jacobian JX of X . This result is based on the estimate

log |JX (Fq)|

g
= q + (

√
q − 1) log

q
q − 1

+ o(1). (4-3)

In order to deduce Theorem 4.1 from Proposition 4.2 we take the binary simplex code, that is, the
linear code dual to the [n = q − 1, n− 2s, 3] Hamming code and lengthen each vector of this simplex
code by a zero coordinate. This gives a binary linear [q, 2s, q/2]-code C0 in which every nonzero vector
has Hamming weight q/2. Using then a linear bijection ϕ : Fq → C0 and replacing every coordinate by
its image, we obtain from C(D) a linear binary code Cn in Theorem 4.1.

Remark. Proposition 4.2 is valid for any even prime power q ≥ 49, but we do not use this below. Note
also that its proof guarantees in general only the existence of one divisor class D satisfying the conclusion
(and not of exponentially many such divisor classes); however, when the bound is strictly bigger than
k(C), we get exponentially many such divisor classes in JX (Fq).

Effective version. Note that at the expense of a small decline in parameters the above estimate can be
made completely explicit, namely, we have:

Theorem 4.3. Let q = ph be a prime power, let X be a curve of genus g over Fq , let S ⊆ X (Fq), |S| = N,
and let a ∈ N with 1≤ a ≤ N − 1. Then there exists an Fq -rational positive divisor D ≥ 0, deg(D)= a,
such that the corresponding AG code C = C(X, D, S) has the minimum distance d = N − a = δN and
we have

Ad ≥

(N
a

)
(
√

q + 1)2g .

The proof simply replaces the asymptotic inequality (4-3) by a simpler effective inequality

|JX (Fq)| ≤ (
√

q + 1)2g.

Applying Stirling’s formula, we get:

Corollary 4.4. We have
log Ad

N
≥ H(δ)−

2g
N

log(
√

q + 1)−
log(2πad)

2N
−

1
12ad

.

In particular, if N = 2a = 2d ≥ (
√

q − 1)g, then

log Ad

N
> 1−

2 log(
√

q + 1)
√

q − 1
−

2+ 2 log N
N

.

Note, that Theorem 4.3 and Corollary 4.4 are applicable, e.g., for g = 0, where we get an estimate for
the Reed–Solomon codes.

5. Some good families of curves

We recall now some constructions of curves over Fq with many rational points. Let q be a prime power
(we will be interested only by the case q = p2h), and let

Nq(g) :=max{|C(Fq)| : C is a curve of genus g over Fq}.
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Define then

A(q) := lim sup
g→∞

Nq(g)
g
≤
√

q − 1, A−(q) := lim inf
g→∞

Nq(g)
g

as the corresponding upper and lower asymptotic quantities. We begin with some families attaining the
bound for A(q) (the Drinfeld–Vlădut, bound).

5A. Garcia–Stichtenoth tower. The tower Xn , n = 1, 2, . . ., from [Garcia and Stichtenoth 1996] is
defined recursively by the equations

xq
i+1+ xi+1 =

xq
i

xq−1
i + 1

for i = 1, . . . , n− 1. (5-1)

Therefore, the function field Tn := Fq2(Xn) of the curve Xn is given by Tn = Fq2(x1, . . . , xn), where xi ,
i = 1, . . . , n, are related by (5-1). The main result of [Garcia and Stichtenoth 1996] gives the parameters
of that tower.

Theorem 5.1. We have for the genus gn = g(Xn)

gn = (qm
− 1)2 for n = 2m,

gn = (qm
− 1)(qm−1

− 1) for k = 2m− 1,

and the number N (n)= |Xn(Fq2)| of Fq2-rational points of Xn satisfies

N (n)≥ (q − 1)qn.

Let us then describe an optimal tower of Drinfeld curves closely related to the tower Xn .

5B. Drinfeld modular curves. The general reference for Drinfeld modular curves is [Gekeler 1986], but
we use a particular case from [Elkies 2001]; see also [Gekeler 2001].

A tower of Drinfeld curves. For any field L ⊇ Fq , we denote by L{τ } the noncommutative L-algebra
generated by τ and satisfying the relation τa = aqτ for all a ∈ L . Let A = Fq [T ]; then a rank-2 Drinfeld
module ϕ over A is an Fq -algebra homomorphism from A to L{τ } such that

ϕ(T )= l0+ l1τ + l2τ
2
= l0+ gτ +1τ 2

∈ L{τ }, (5-2)

with nonzero discriminant 1=1(ϕ). The map γ : A→ L taking any a ∈ A to the constant term of a is
a ring homomorphism; thus, γ (T )= l0 in (5-2).

If ϕ,ψ are two Drinfeld modules, an isogeny from ϕ to ψ is an element u ∈ L{τ } such that

u ◦ϕa = ψa ◦ u

for all a ∈ A, and its kernel is the A-submodule of L given by

ker(u) := {x ∈ L : u(x)= 0},

which is of finite dimension over Fq unless u = 0. In particular, if u = ϕa then u is an isogeny from
ϕ to itself, called multiplication by a, and its kernel is isomorphic with (A/a A)2 as an A-module for
γ (a) 6= 0; elements of ker(a) are called a-torsion points of ϕ. If γ is not injective then ker γ = Ab for
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some irreducible b ∈ A; ϕ is then said to be supersingular if ker(b)= {0}, and for deg(b)= 1 we have
ϕb = gτ +1τ 2 and ϕb is supersingular if and only if g = 0. An isomorphism between Drinfeld modules
is simply an element u ∈ L∗, and it multiplies each coefficient li in (5-2) by u1−q i

. Let

J (ϕ)=
gq+1

1
.

Then ϕ and ψ with the same γ are isomorphic over L if and only if J (ϕ)= J (ψ). Thus, we can refer to
the J -line as the Drinfeld modular curve X (1) for a given γ . Moreover, for N ∈ A with γ (N ) 6= 0, we
have Drinfeld modular curves X0(N ) parametrizing Drinfeld modules with a choice of torsion subgroup
G ' A/N A (and fixed γ ). If γ (T ) ∈ Fq , we may regard the curves X (1) and X0(N ) as the “reduction
mod (T − γ (T ))” of the corresponding modular curves for γ (T )= T. Below we suppose that γ (T )= 1
and we say that a point on X0(N ) is supersingular if the corresponding Drinfeld module is supersingular;
such points are Fq2-rational.

Let us consider the case N = T k+1; for the curve X̃k := X0(T k+1) of genus g̃k = g(X̃k) we have
[Gekeler 2001, Example 10.2]

g̃k =
(qm
− 1)2

q − 1
for k = 2m,

g̃k =
(qm+1

− 1)(qm
− 1)

q − 1
for k = 2m+ 1,

Ñ (k)=
∣∣X̃k(Fq2)

∣∣≥ qk
+ 4 for k ≥ 2;

thus,

Ñ (k)≥ (q − 1)g̃k for k ≥ 2

and the number of supersingular points on X̃k equals qk.

Elkies [2001] proved that the function field K̃k = Fq(X̃k), k ≥ 2, is given by

K̃k = Fq(x1, . . . , xk) with x j+1(x j+1+ 1)q−1(x j + 1)q−1
= xq

j , j = 1, . . . , k− 1,

and the set of qk supersingular points of X̃k(Fq2) is determined by the conditions 8q+1(x j ) = 0 for
j = 1, . . . , k, where 8q+1(t)= (tq+1

− 1)/(t − 1).
Note also that the Garcia–Stichtenoth curve Xn is a cyclic covering of X̃n of degree q + 1, but we do

not need this fact.

More general Drinfeld curves. We will need also more general Drinfeld modular curves which do not
form a tower and as yet have no explicit equations. However, the family of those curves is optimal
and their genera are explicitly known [Gekeler 2001]. Let M be a monic element of A with M(1) 6= 0,
deg M ≥ 3, and let M =

∏s
i=1 Pri

i be its prime factorization; thus each Pi ∈ A is a monic irreducible
polynomial of degree li and ri ≥ 1 for 1≤ i ≤ s. We put qi := qli and define the arithmetic functions

ε = ε(M)=
s∏

i=1

qri−1
i (qi + 1), κ = κ(M)=

s∏
i=1

(q [ri/2]
i + q [(ri−1)/2]

i ).
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Consider the curve X̃0(M) over Fq which is the Drinfeld modular curve X0(M) with γ (T )= 1. We
have then [Gekeler 1986, Sections 8–10]:

Proposition 5.2. Suppose that at least one degree li is odd. Then:

(i) The curve X̃0(M) is smooth of genus g0(M) given by

g0(M)= 1+
ε− (q + 1)κ − 2s−1(q + 1)(q − 2)

q2− 1
≤

ε

q2− 1
.

(ii) |X̃0(M)(Fq2)| ≥
ε

q + 1
≥ (q − 1)g0(M).

Therefore, for any sequence Mi with deg(Mi )→∞ the family X̃0(Mi ) is asymptotically optimal
over Fq2 .

5C. Curves of every genus with many points. Note the genera of curves in Subsections 5A–5B are of
a special form and thus they give no estimate for the quantity A−(q) measuring the maximal number of
points on curves of every genus. However, in [Elkies et al. 2004] it was shown that A−(q)≥ c log q for
any prime power q and a positive constant c. Moreover, for an even square q the result gets much better:

Theorem 5.3. For q = 22h we have

A−(q)≥
√

q − 1
2+ 1/log q

=
2h
− 1

2+ 1/(2h)
.

Thus A−(q) is, roughly speaking, only half as small as A(q); a similar result holds also for the odd
squares.

6. Proofs

We begin with an easy construction which gives a small positive constant lower bound for the ratio
log(τ l

n)/n, ensuring thus the existence of τ -asymptotically good lattice families. Indeed, let us take
N = 2K+1, d = a = N/2= 2K for some K ≥ 2, and let us apply Theorem 4.1 with s = 3, q = 64 and
the Drinfeld curves X̃k over F8 having at least 8k

= 2K+1, K = 3k− 1, points rational over the field F64.
We get then a binary [N , k, d]-code CK with

log Ad ≥
1

64 E3(0.5)N − o(N )= 1
64

( 1
7 − log 64

63

)
N − o(N ).

We can construct then a decreasing family C0 = FN
2 ⊃ C1 ⊃ · · · ⊃ CK defining inductively CK−i for

i = 1, . . . , K − 1 as generated by CK−i+1 and ci for some binary vector ci ∈ FN
2 with wt(ci ) = 2K−i .

Applying then Construction D we get a lattice L N ⊂ RN with dL = 2, and each minimum weight vector
of CK produces a minimum norm vector in L . Therefore we have

log τ(L N )

N
≥

log Ad

N
≥

1
64

( 1
7 − log 64

63

)
− o(1) > 0.00187− o(1).

This formula implies Corollary 1.2, albeit with a very small c0.

Remark. We do not care here about the density of L , but the constructed family is still asymptotically
good, albeit very poor for its density; however, it is easy to modify the construction to get a better (yet
rather poor) family while conserving the ratio log τ(L N )/N.



174 SERGE VLĂDUT,

Remark. If we replace in the above construction the Drinfeld curve X̃k by the Garcia–Stichtenoth
curve Xk over F64 which has 63 · 64k

+ O(1) points rational over F64, we can use δ = 32
63 , since the

minimum distance should be a power of 2. This leads to the bound 1
64

(
H
( 32

63

)
−

6
7−log 64

63

)
' 0.001874 . . .

instead of 1
64

( 1
7 − log 64

63

)
' 0.001877 . . . , and in that sense the Garcia–Stichtenoth tower is not optimal

for our construction. The same remark applies to the constructions below, but the deterioration of the
parameters is always very small.

It is then clear how to proceed: we can replace Construction D by Construction E applied to suitable
T -lattices and codes from Theorem 4.3, which we complete in an appropriate manner. The best results are
obtained using the T -lattices 3̃20, 324 (or 3̃24), and 3̃28, which give the lattice families in Theorem 4.1.

More precisely, in the case of 324 we take q = 212
= 4096, the curve X̃k over F64 having N =

212k
= 46k points rational over F212 , put d = a = N/2 and apply Construction E to 324 and the family

C0= FN
2 ⊃C1⊃ · · · ⊃C6k of [N , ki , 4i

]-codes over F212 for i = 0, . . . , 6k, where di = 4i, d6k = d = N/2
and C6k−i is defined inductively for i = 1, . . . , 6k− 1 as generated by C6k−i+1 and ci for some vector
ci ∈ FN

4096 with wt(ci ) = 46k−i. Exactly as above, each minimum-weight vector of C6k gives rise to a
minimum-norm vector of the resulting lattice L24N and applying Corollary 4.4 we get (1-2). If we apply
the same construction to 3̃4m , q = 22m and the curve X̃k over Fq having N = 22mk

= 4mk points rational
over Fq , we get a lattice with

log(τ l
N )

N
≥

1
4m

(
1−

2 log(2m
+ 1)

2m − 1

)
−

2+ 2 log N
N

, (6-1)

which gives (1-1)–(1-3) for m = 5, 6 and 7, respectively (the result is < 0.03 for any other value of m).
Applying in the same way Proposition 4.2 instead of Corollary 4.4 we get the lattices with

log(τ l
N )

N
≥

1
4m

(
1−

2m
2m − 1

− log
22m

22m − 1

)
− o(1) (6-2)

and thus Theorem 1.3 for m = 5, 6 and 7.

We begin the proof of Theorem 1.5 with the following:

Proposition 6.1. For any q = ph there exist monic polynomials Mi ∈ Fq [T ] for i = 1, 2, . . . , with
deg Mi+1 ≥ deg Mi , satisfying

lim
i→∞

g̃i+1

g̃i
= 1, g̃i < g̃i+1,

for g̃i := g(X̃0(Mi )) > 0.

To prove this we “densify” the tower {X̃k}, inserting between its consecutive levels some curves from
the family {X̃0(M)}. Indeed, let us consider two consecutive curves X̃2m of genus g̃2m= (qm

− 1)2/(q − 1)
and X̃2m+1 of genus

g̃2m+1 =
(qm+1

− 1)(qm
− 1)

q − 1
= qg̃2m + O(

√
g̃2m),

say, for k = 2m ≥ 100. Set s = s(k) for a suitable nondecreasing unbounded function s : N→ N (to be
chosen afterwards); then the number P(s) of monic irreducible polynomials in A of degree s satisfies

qs
− qs/2

s
≤ P(s)≤

qs

s
.
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We consider then the curves X̃k, j , j = 1, . . . , lk for lk =min{P(s), bk/sc}, defined by

X̃k, j = X0(T k+1− js Ms, j ) for Ms, j =

j∏
i=1

M (s)
i ,

where {M (s)
1 , . . . ,M (s)

P(s)} is the list of all monic degree-s irreducible polynomials in A. The genus of
X̃k, j equals

g̃k, j =
q2m−s j (qs

+ 1) j

q − 1
+ O(

√
g̃2m),

which is increasing with j and g̃k, j+1/g̃k, j tends to 1 for growing k. If g̃k,lk is still less than q2m+1/(q − 1),
we can increase further the genus, taking s+ 1 instead of s and continuing to replace the factors T s+1

consecutively by irreducible polynomials of degree s + 1, until we run out of such polynomials. If
k− s P(s)− (s+ 1)P(s+ 1) > 0 we can continue with the polynomials of degree s+ 2 and so on. The
procedure stops when either we reach the genus g̃2m+1 and we have densified our level, or there are no
factors T l to replace by the next polynomial of degree, say, s+ h, h ≥ 1. We want to show that choosing
s(k) appropriately, we can always reach g̃2m+1 and thus densify our initial tower, which will end the
proof. Indeed, for a given s, using all P(s) degree-s irreducible polynomials, we multiply the genus by
the factor (1+ q−s)P(s)

' exp(1/s). Therefore, using all irreducible polynomials of degrees from s to,
say s+ t , we can multiply the genus by

exp
(

1
s
+ · · ·+

1
s+ t

)
' 1+

t
s
,

where this is possible whenever s P(s)+· · ·+(s+ t)P(s+ t)' qs
+· · ·+qs+t

≤ k. It is then sufficient to
take t/s > q , (s+ t)qs+t

≤ k; for example, we can choose t = (q+1)s, s = log k/(2q log q) to guarantee
those inequalities for sufficiently large k, and the proof is finished (the case of an odd k is similar).

Remark. This proof can replace the sketchy proof of Claim (3.2)–(3.3) in [Shparlinski et al. 1992],
equivalent to Proposition 6.1.

Let us deduce Theorem 1.5 from Proposition 6.1. Let q = 212
= 4096, and let k ∈N satisfy g̃k < n/24≤

g̃k+1 for a given large dimension n; moreover, let 2a g̃k < n/24≤ 2a+1g̃k for some 0≤ a ≤ 11 (recall that
g̃k+1/g̃k ' q). Let us take the curve X0(Mi ) from Proposition 6.1 of genus closest to 2a g̃k and the curve
X0(M j ) of genus closest to 2a+1g̃k . Then we construct, by Proposition 4.2, an [Ni , ki , 2a+12k

= di ]-code
Ci on X0(Mi ) with exponentially many light vectors and the same with an [N j , k j , 2a+1+12k

= d j ]-code
C j on X0(M j ); note that relative distances of both codes are asymptotic to 1

2 and the ratio N j/Ni is
asymptotic to 2. We can then construct the lattices L24Ni and L24N j in dimensions 24Ni and 24N j using
Construction E for the Leech lattice 324 (or 3̃24) and nested families of codes beginning, respectively,
by Ci and C j . The lattices L24Ni and L24N j have then kissing numbers satisfying (1-6). Since 24Ni ≤

n ≤ 24N j ' 48Ni , the kissing number of the lattice L24Ni gives the estimate

log(τ l
n)

n
≥

1
24

( 17
21 − log 4096

4095

)
δ (6-3)

for δ = 24Ni/n ∈ [0.5, 1], and thus we can shorten the code C j by deleting some Fq -rational points from
the corresponding curve to get a code of length n/24 and then apply Construction E with 324. This gives
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the estimate
log(τ l

n)

n
≥

1
24

(
λH

( 1
2λ

)
−

4
21 − log 4096

4095

)
, (6-4)

with λ' 1/(2δ)= n/(24N j ) ∈ [0.5, 1], and taking the minimax we get (1-8).

Remark. Using the lattices 3̃4m together with the codes over F22m with similar properties constructed on
the curves from Theorem 5.3, instead of the above “densified” curves, we get the lattices with somewhat
worse parameters, which are optimal for m = 7 and give the estimate

lim inf
n→∞

log(τ l
N )

N
≥ 0.020715 . . . .
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