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A simple proof of the Hilton–Milner theorem

Peter Frankl

Let n ≥ 2k ≥ 4 be integers and F a family of k-subsets of {1, 2, . . . , n}. We call F intersecting if
F ∩ F ′ 6= ∅ for all F, F ′ ∈ F , and we call F nontrivial if

⋂
F∈F F = ∅. Strengthening the famous

Erdős–Ko–Rado theorem, Hilton and Milner proved that |F | ≤
(n−1

k−1

)
−
(n−k−1

k−1

)
+ 1 if F is nontrivial and

intersecting. We provide a proof by injection of this result.

1. Introduction

The proof of the Hilton–Milner theorem that we are going to present is very short but it is based on the
very useful operation of shifting and two old results of the author. We are going to review these in this
section.

Let [n] = {1, . . . , n} be the standard n-element set and 2[n] its power set. Subsets F ⊂ 2[n] are called
families. For i ∈ [n] we use the standard notation F(i)= {F \{i} : i ∈ F ∈F} and F(ī)= {F : i /∈ F ∈F}.
Note that

|F | = |F(i)| + |F(ī)|.

For a positive integer t the family F is said to be t-intersecting if |F ∩ F ′| ≥ t for all F, F ′ ∈ F . For
t = 1 we use the term intersecting.

Let us recall the definition of the Si, j shift, an important operation on families, discovered by Erdős,
Ko and Rado [Erdős et al. 1961].

Definition 1.1. For 1≤ i < j ≤ n and a family F ⊂ 2[n], one defines Si, j (F )= {Si, j (F) : F ∈ F}, where

Si, j (F)=
{

F ′ := (F \ { j})∪ {i} if j ∈ F, i /∈ F and F ′ /∈ F,
F otherwise.

From the definition, |Si, j (F )| = |F | and |Si, j (F)| = |F | should be obvious. More importantly, if F is
t-intersecting then Si, j (F ) is t-intersecting as well.

If Si, j (F )= F for all 1≤ i < j ≤ n then F is called shifted.
Let us use the notation (a1, a2, . . . , ar ) to denote the set {a1, a2, . . . , ar }, where a1 < a2 < · · · < ar .

For two subsets F = (a1, . . . , ar ) and G = (b1, . . . , br ) we say that F is smaller than G if ai ≤ bi for all
1≤ i ≤ r . We denote this by F ≺ G.

It is not hard to see that F is shifted if and only if for all pairs of F,G with F ≺ G, we have G ∈ F
implies F ∈ F . For the proof of this and many other useful properties of shifting see [Frankl 1987b].

We shall need the following simple result.

MSC2010: 05D05.
Keywords: finite sets, intersection, hypergraphs.

97

http://msp.org
http://msp.org/moscow
http://dx.doi.org/10.2140/moscow.2019.8-2
http://dx.doi.org/10.2140/moscow.2019.8.97


98 PETER FRANKL

Proposition 1.2 [Frankl 1978]. Let F ⊂ 2[n] be a shifted t-intersecting family. Then the following hold:

(i) For every F ∈ F there exists an integer `≥ t such that

|F ∩ [2`− t]| ≥ `.

(ii) For all F,G ∈ F there exists an integer h ≥ t such that

|F ∩ [h]| + |G ∩ [h]| ≥ h+ t. (1-1)

Note that (1-1) implies |F ∩G ∩ [h]| ≥ t .

For F ∈F define `(F)=
{
max `, t ≤ `≤ n

2 : |F∩[2`]| ≥ `
}
. Note that if 2|F | ≤ n then the maximality

of `(F) implies
|F ∩ [2`(F)]| = `(F). (1-2)

Let k ≥ s ≥ 2 be integers. Let
(
[n]
k

)
denote the collection of all k-subsets of [n].

Example 1.3. Define

E(n, k, s)=
{

E ∈
(
[n]
k

)
: 1 ∈ E, E ∩ [2, s+ 1] 6=∅

}
∪

{
F ⊂

(
[2n]

k

)
: [2, s+ 1] ⊂ F

}
.

Note that E(n, k, s) is intersecting, E ∩ [2, s+ 1] 6=∅ for all E ∈ E(n, k, s) and

|E(n, k, s)| =
(n−1

k−1

)
−

(n−s−1
k−1

)
+

(n−s−1
k−s

)
.

Theorem 1.4. Let n ≥ 2k ≥ 2s ≥ 4. Suppose that F ⊂
(
[n]
k

)
is a shifted intersecting family satisfying

F ∩ [2, s+ 1] 6=∅ for all F ∈ F . Then

|F | ≤
(n−1

k−1

)
−

(n−s−1
k−1

)
+

(n−s−1
k−s

)
. (1-3)

This result is somewhat technical but its proof is rather special. We are going to prove it through an
explicit injection from F into E(n, k, s).

For sets A, B let A4 B denote their symmetric difference. Let us define the map α : F→ E(n, k, s)
by

α(F)=
{

F if 1 ∈ F or if [2, s+ 1] ⊂ F,
F 4[2`(F)] otherwise.

To prove (1-3) it is sufficient to prove the following.

Proposition 1.5. The map α is an injection into E(n, k, s).

Let us recall two important results concerning intersecting families of k-sets.

Erdős–Ko–Rado theorem [Erdős et al. 1961]. Suppose that n ≥ 2k > 0 and F ⊂
(
[n]
k

)
is an intersecting

family. Then

|F | ≤
(n−1

k−1

)
. (1-4)

Taking all k-sets containing a fixed element shows that (1-4) is the best possible bound.
An intersecting family is called nontrivial if there is no element common to all its members. For k = 1

there is no nontrivial k-intersecting family. For k = 2 the only such family is the triangle:
(
[3]
2

)
.
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Hilton–Milnor theorem [1967]. Suppose that n ≥ 2k ≥ 4 and F ⊂
(
[n]
k

)
is a nontrivial intersecting

family. Then

|F | ≤
(n−1

k−1

)
−

(n−k−1
k−1

)
+ 1. (1-5)

Recently Hurlbert and Kamat [2018] gave an injective proof for (1-4). We extend their work by
providing an injective proof for (1-5). For this we need the following proposition.

Proposition 1.6 [Frankl 1987b]. Suppose that n ≥ 2k ≥ 4 and F ⊂
(
[n]
k

)
is a nontrivial intersecting

family of maximal size. Then there exists a nontrivial intersecting family F̃ ⊂
(
[n]
k

)
such that |F̃ | = |F |

and F̃ is shifted.

Once one has Proposition 1.6, to establish (1-5) is easy. One only needs to apply the case s = k of
Theorem 1.4 to the family F̃ . Indeed, since F̃ is nontrivial and shifted, [2, k + 1] ∈ F̃ and F̃ being
intersecting imply that F ∩ [2, k+ 1] 6=∅ holds for all F ∈ F̃ .

Since the proof of Proposition 1.6 is quite short and somewhat hidden in [Frankl 1987b], we reproduce
it in Section 2.

Let us mention that there are several other, known proofs of the Hilton–Milner theorem: [Frankl and
Füredi 1986; Frankl and Tokushige 1992; Mörs 1985; Kupavskii and Zakharov 2018].

We should also mention that in [Hilton and Milner 1967] the essentially unique families attaining
equality are determined as well. This can be done via the present proof as well. However, it is rather
technical and very similar to the corresponding part of previous proofs. Therefore we prefer to omit it.

2. The proofs of Propositions 1.5 and 1.6

We divide the proof of Proposition 1.5 into two lemmas. The first shows that for F ∈ F \ E(n, k, s) the
image α(F) is in E(n, k, s) \F .

The second shows that α is an injection.

Lemma 2.1. Suppose that F ∈ F(1̄) and [2, s+ 1] 6⊂ F. Then the following hold:

(i) 1 ∈ α(F).

(ii) α(F) /∈ F .

(iii) α(F)∩ [2, s+ 1] 6=∅.

Proof. (i) Recall that α(F)= F 4[2`(F)]. As 1 /∈ F implies 1 ∈ α(F), (i) is true.

(ii) Suppose for contradiction that α(F)∈F . Apply Proposition 1.2 to F and α(F). By (1-2), F∩[2`(F)]
and α(F)∩ [2`(F)] are complementary `-element subsets of [2`(F)]. Consequently h > 2`(F).

However, for h ≥ 2`, we have |F ∩ [h]| = |α(F)∩ [h]|. Thus 2|F ∩ [h]| ≥ h+ 1 implies

|F ∩ [h]| ≥ 1
2(h+ 1). (2-1)

Thus
|F ∩ [h+ 1]| ≥ 1

2(h+ 1)

as well, and we get a contradiction with the maximality of `(F).
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(iii) Define i(F) = min{i : 2 ≤ i ≤ n, i /∈ F}. As `(F) ≥ 2, (1-2) implies i(F) ≤ 2`(F). Also,
[2, s+ 1] 6⊂ F implies i(F)≤ s+ 1. Consequently i(F) ∈ [2`(F)] and i(F) ∈ [2, s+ 1] hold. Therefore
i(F) ∈ α(F)∩ [2, s+ 1]. �

Lemma 2.2. For distinct F, F ′ ∈ F \ E(n, k, s), it holds that α(F) 6= α(F ′).

Proof. Since F, F ′ /∈ E(n, k, s), we have α(F)= F4[2`(F)] and α(F ′)= F ′4[2`(F ′)]. If `(F)= `(F ′)
then α(F) 6= α(F ′) is evident from F 6= F ′.

By symmetry suppose `(F) < `(F ′). The maximality of `(F) implies |F ∩ [2`(F ′)]|< `(F ′). Using
|F ∩[2`(F)]| = `(F)= |α(F)∩[2`(F)]|, it follows that |α(F)∩[2`(F ′)]|< `(F ′)= |α(F ′)∩[2`(F ′)]|.
This proves α(F) 6= α(F ′). �

Since α(F)= F for F ∈F ∩E(n, k, s), Lemmas 2.1 and 2.2 prove that α is an injection into E(n, k, s).

The proof of Proposition 1.6. Starting with a nontrivial intersecting family F ⊂
(
[n]
k

)
of maximal size,

we can keep on applying the Si j shift for various pairs until we run into trouble. The possible trouble is
that Si j (F ) ceases to be nontrivial, i.e., all its members contain the element i . Then {i, j} ∩ F 6=∅ must
hold for all F ∈ F . By symmetry let i = 1, j = 2.

The maximality of |F | implies that all k-sets G with {1, 2} ⊂ G ⊂ [n] are in F . Therefore continuing
with the Sa,b shift for 3≤ a < b≤ n will never produce a trivial intersecting family. Eventually we obtain
a nontrivial intersecting family H, with |H| = |F |, such that Sa,b(H)=H for all 3≤ a < b ≤ n.

Consequently, both {1, 3, 4, . . . , k + 1} and {2, 3, 4, . . . , k + 1} are in H. Since all G ∈
(
[n]
k

)
with

{1, 2} ⊂ G ⊂ [n] are unchanged under the shift Sa,b for 3≤ a < b ≤ n, we infer that
(
[k+1]

k

)
⊂H.

Noting that
(
[k+1]

k

)
is not affected by Si, j for 1≤ i < j ≤ n, we can continue shifting and eventually

obtain a shifted, nontrivial intersecting family of the same size. �

3. Concluding remarks

For a family F ⊂ 2[n], let 4(F ) be its maximum degree, that is, maxi |F(i)|. Then γ (F )= |F | −4(F )
is called the diversity of F . With this terminology, for intersecting families F , with F ⊂

(
[n]
k

)
, n ≥ 2k,

the Hilton–Milner theorem shows that γ (F )≥ 1 implies

|F | ≤ |E(n, k, k)| =
(n−1

k−1

)
−

(n−k−1
k−1

)
+ 1.

In [Frankl 1987a] the author proved that γ (F ) ≥
(n−s−1

k−s

)
, 3 ≤ s ≤ k, implies |F | ≤ |E(n, k, s)|.

Kupavskii and Zakharov [2018] gave a new proof for a stronger version of this result. It would be
desirable to have a proof by injection. Let us note that for F ⊂ G necessarily γ (F )≤ γ (G) holds.

In the case of Theorem 1.4, we may replace F by another family G, with F ⊂ G ⊂
(
[n]
k

)
where G is

shifted, intersecting and all G ∈
(
[n]
k

)
with [2, s + 1] ⊂ G are members of G. For such a special case

Theorem 1.4 provides an injective proof. However the general case seems to be harder.
The proofs in [Frankl 1987a; Kupavskii and Zakharov 2018] rely heavily on the Kruskal–Katona

theorem; see [Kruskal 1963; Katona 1968]. Therefore we feel that it would be desirable to have a proof
by injection for this important result as well.

Note in proof

Hurlbert and Kamat [2018] independently gave a very similar proof in the new version of their paper.
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On the quotient set of the distance set

Alex Iosevich, Doowon Koh and Hans Parshall

Let Fq be a finite field of order q. We prove that if d ≥ 2 is even and E ⊂ Fd
q with |E | ≥ 9qd/2 then

Fq =
1(E)
1(E)

=

{
a
b
: a ∈1(E), b ∈1(E)\{0}

}
,

where
1(E)= {‖x − y‖ : x, y ∈ E}, ‖x‖ = x2

1 + x2
2 + · · ·+ x2

d .

If the dimension d is odd and E ⊂ Fd
q with |E | ≥ 6qd/2, then

{0} ∪ F+q ⊂
1(E)
1(E)

,

where F+q denotes the set of nonzero quadratic residues in Fq . Both results are, in general, best possible,
including the conclusion about the nonzero quadratic residues in odd dimensions.

1. Introduction

The Erdős–Falconer distance problem in vector spaces over finite fields asks for the smallest possible
size of

1(E)= {‖x − y‖ : x, y ∈ E}, ‖x‖ = x2
1 + · · ·+ x2

d ,

given E ⊂ Fd
q , d ≥ 2. This problem was introduced by Bourgain, Katz and Tao [Bourgain et al. 2004].

Here Fq denotes the finite field with q elements and Fd
q is the d-dimensional vector space over this field.

In [Iosevich and Rudnev 2007], one of us and Misha Rudnev proved that if E ⊂ Fd
q , d ≥ 2, with

|E | > 2q(d+1)/2, then 1(E) = Fq . Hart, Rudnev and two of us [Hart et al. 2011] showed that, in a
sense, this result is best possible when d is odd. More precisely, for any c ∈ (0, 1) and any q sufficiently
large with respect to c, they construct subsets E ⊂ Fd

q with |E | > c
2q(d+1)/2 but |1(E)| < cq. This

construction does not appear to generalize to the even-dimensional case. In [Chapman et al. 2012],
Chapman, Erdoğan, Hart and two of us proved that if q is prime, q ≡ 3 (mod 4) and if E ⊂ F2

q with
|E | ≥ Cq4/3 for a sufficiently large constant C > 0, then

|1(E)|>
q
2
.

This result was extended to two-dimensional vector spaces over arbitrary finite fields in [Bennett et al.
2017]. In even dimensions d ≥ 2, it is reasonable to conjecture that if |E | ≥ Cqd/2 with a sufficiently
large C , then |1(E)| > 1

2q, but this conjecture currently remains open. The exponent d
2 cannot be

MSC2010: 11T24, 52C17.
Keywords: quotient set, distance set, finite field.
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improved. To see this, let q = p2, p prime, and let E = Fd
p ⊂ Fd

q . Then |E | = qd/2, yet 1(E)= Fp. When
q is a prime and d ≥ 4, the sharpness of d

2 can be demonstrated using Lagrangian subspaces [Hart et al.
2011]. In two dimensions, the sharpness of d

2 = 1 is easily demonstrated by taking a suitable subset of
a straight line.

The purpose of this paper is to show that under the assumption |E | ≥ Cqd/2, taking the quotient of
the elements of 1(E) recovers all of Fq for d even, and at least all the square elements of Fq when d is
odd. More precisely, for E ⊂ Fd

q we define

1(E)
1(E)

:=

{
a
b
: a ∈1(E), b ∈1(E)\{0}

}
.

Our main results are the following.

Theorem 1.1. Let E ⊂ Fd
q, d even. Then if |E | ≥ 9qd/2, we have

Fq =
1(E)
1(E)

.

Theorem 1.2. Let d ≥ 3 be an odd integer and E ⊂ Fd
q . Then if |E | ≥ 6qd/2, we have

{0} ∪ F+q ⊂
1(E)
1(E)

.

Sharpness of results. The results are in general sharp up to constants. To see this, we once again take
q = p2 and E = F2

p. Then |E | = qd/2; yet{
a
b
: a ∈1(E), b ∈1(E)\{0}

}
= Fp.

The statement about the squares in Theorem 1.2 is also sharp. The example in [Hart et al. 2011,
page 15] that illustrates the sharpness of the exponent (d + 1)/2 yields a set of size cq(d+1)/2, with c
sufficiently small, such that 1(E)⊂ {(a− a′)2 : a, a′ ∈ A}, where A is a suitable arithmetic progression
in Fq . In particular, 1(E) is a subset of the squares, so the ratios of the elements of 1(E) are also
squares.

2. Proof of Theorem 1.1

For t ∈ Fq , let
ν(t)=

∑
x,y∈Fd

q

E(x)E(y)St(x − y),

where
St = {x ∈ Fd

q : ‖x‖ = t}.

It is clear that 0 ∈ 1(E)/1(E) unless 1(E) = {0}. Thus it suffices to prove that for each r 6= 0 there
exists t ∈1(E) \ {0} such that tr ∈1(E). Since t ∈1(E) if and only if ν(t) > 0, we must show that for
any r ∈ F∗q ,

ν2(0) <
∑
t∈Fq

ν(t)ν(r t). (2-1)
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We shall need the following standard Fourier-analytic preliminaries. Given f : Fd
q → C, define the

Fourier transform f̂ by the formula

f̂ (m)= q−d
∑
x∈Fd

q

χ(−x ·m) f (x),

where χ is a nontrivial principal character on Fq . We shall use the following calculation repeatedly.

Lemma 2.1. With the notation above,

f (x)=
∑
m∈Fd

q

χ(x ·m) f̂ (m) (Fourier inversion)

and ∑
m∈Fd

q

| f̂ (m)|
2
= q−d

∑
x∈Fd

q

| f (x)|2. (Plancherel)

By Fourier inversion,

ν(t)= q2d
∑
m∈Fd

q

Ŝt(m)|Ê(m)|2 = q−d
|E |2 |St | + q2d

∑
m 6=E0

Ŝt(m)|Ê(m)|2.

It follows that for r ∈ F∗q ,∑
t∈Fq

ν(t)ν(r t)=
∑
t∈Fq

(
q−d
|E |2 |St | + q2d

∑
m 6=E0

Ŝt(m)|Ê(m)|2
)(

q−d
|E |2 |Sr t | + q2d

∑
m′ 6=E0

Ŝr t(m′)|Ê(m′)|2
)

= q−2d
|E |4

∑
t∈Fq

|St ||Sr t | + qd
|E |2

∑
m′ 6=E0

|Ê(m′)|2
∑
t∈Fq

|St |Ŝr t(m′)

+ qd
|E |2

∑
m 6=E0

|Ê(m)|2
∑
t∈Fq

|Sr t |Ŝt(m)+ q4d
∑

m,m′ 6=E0

|Ê(m)|2 |Ê(m′)|2
∑
t∈Fq

Ŝt(m)Ŝr t(m′)

= I + II + III + IV . (2-2)

We shall invoke the explicit value of |St |, which can be deduced by Theorem 6.26 in [Lidl and Nieder-
reiter 1997].

Lemma 2.2. Let St ⊂ Fd
q denote the sphere with radius t ∈ Fq . Then if d ≥ 2 is even,

|St | = qd−1
+ λ(t)q(d−2)/2η((−1)d/2),

where η is the quadratic character of F∗q , λ(t)=−1 for t ∈ F∗q , and λ(0)= q − 1.

We also use the following result, which was given as Lemma 4 in [Iosevich and Koh 2010].

Lemma 2.3. Let S j be a sphere in Fd
q , d ≥ 2. Then for any m ∈ Fd

q , we have

Ŝ j (m)= q−1δ0(m)+ q−d−1ηd(−1)Gd
∑
s∈F∗q

ηd(s)χ
(

js+
‖m‖
4s

)
,

where G denotes the Gauss sum, η is the quadratic character of F∗q , and δ0(m)= 1 if m = (0, . . . , 0) and
δ0(m)= 0 otherwise.
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A lower bound of
∑

t∈Fq
ν(t)ν(r t) for even dimensions d ≥ 2. Since

∑
t∈Fq

λ(r t) = 0 for r 6= 0, it
follows from Lemma 2.2 that

I := q−2d
|E |4

∑
t∈Fq

|St ||Sr t | = q−2d
|E |4

(
q2d−1

+ qd−2
∑
t∈Fq

λ(t)λ(r t)
)

= q−2d
|E |4

(
q2d−1

+ qd−2λ2(0)+ qd−2
∑
t 6=0

λ(t)λ(r t)
)

= q−2d
|E |4

(
q2d−1

+ qd−2(q − 1)2+ qd−2(q − 1)
)
.

Hence, we obtain
I = q−1

|E |4+ q−d
|E |4− q−d−1

|E |4. (2-3)

In order to estimate the remaining terms, we need the following calculations.

Lemma 2.4. Suppose that m 6= E0 in Fd
q , d ≥ 2. Then for any r 6= 0, we have∑

t∈Fq

Ŝr t(m)= 0, (2-4)

∑
t∈Fq

λ(t)Ŝr t(m)= q Ŝ0(m), (2-5)

where λ(t) is defined as in Lemma 2.2.

To see this, observe that the left-hand side of (2-4) equals

q−d
∑
t∈Fq

∑
x∈Fd

q

χ(−x ·m)Sr t(x)= q−d
∑
x∈Fd

q

χ(−x ·m)
∑
t∈Fq

Sr t(x)= q−d
∑
x∈Fd

q

χ(−x ·m)= 0

since m 6= (0, . . . , 0). Hence (2-4) follows. By the definition of λ(t),∑
t∈Fq

λ(t)Ŝr t(m)= (q − 1)Ŝ0(m)−
∑
t 6=0

Ŝr t(m)= (q − 1)Ŝ0(m)−
∑
t∈Fq

Ŝr t(m)+ Ŝ0(m).

Then (2-5) follows by (2-4). This completes the proof of Lemma 2.4.

We shall also need the following orthogonality lemma.

Lemma 2.5. Suppose that r ∈ F∗q and m,m′ ∈ Fd
q . If d ≥ 2 is even, then we have

∑
t∈Fq

Ŝt(m)Ŝr t(m′)=
{

q−1δ0(m)δ0(m′)+ q−d
− q−d−1 if ‖m‖ = r‖m′‖,

−q−d−1 if ‖m‖ 6= r‖m′‖.

The proof shall be given at the end of the paper (see Lemma 4.2). With the lemmas in tow, we are
ready to handle terms II , III and IV . In view of Lemmas 2.2 and 2.4, if m′ 6= E0, then∑

t∈Fq

|St |Ŝr t(m′)= qd−1
∑
t∈Fq

Ŝr t(m′)+ q(d−2)/2η((−1)d/2)
∑
t∈Fq

λ(t)Ŝr t(m′)= qd/2η((−1)d/2)Ŝ0(m′).



ON THE QUOTIENT SET OF THE DISTANCE SET 107

Using this equation, it follows that

II := qd
|E |2

∑
m′ 6=E0

|Ê(m′)|2
∑
t∈Fq

|St |Ŝr t(m′)= q3d/2η((−1)d/2)|E |2
∑
m′ 6=E0

|Ê(m′)|2 Ŝ0(m′).

By the same argument, it is not difficult to see that II = III . Namely, we have

II + III = 2q3d/2η((−1)d/2)|E |2
∑
m 6=E0

|Ê(m)|2 Ŝ0(m). (2-6)

We now move on to the term

IV := q4d
∑

m,m′ 6=E0

|Ê(m)|2 |Ê(m′)|2
∑
t∈Fq

Ŝt(m)Ŝr t(m′).

Using Lemma 2.5, we can write IV = A+ B, where

A =−q3d−1
∑

‖m‖6=r‖m′‖
m,m′ 6=E0

|Ê(m)|2|Ê(m′)|2,

B = (q3d
− q3d−1)

∑
‖m‖=r‖m′‖

m,m′ 6=E0

|Ê(m)|2|Ê(m′)|2.

It follows that

IV = A+ B = q3d
∑

‖m‖=r‖m′‖
m,m′ 6=E0

|Ê(m)|2|Ê(m′)|2− q3d−1
∑

m,m′ 6=E0

|Ê(m)|2|Ê(m′)|2 = A′− B ′.

Combining this with (2-3), (2-6), we obtain that if d ≥ 2 is even and r 6= 0, then∑
t∈Fq

ν(t)ν(r t)= I + II + III + IV

= (q−1
|E |4+ q−d

|E |4− q−d−1
|E |4)

+ 2q3d/2η((−1)d/2)|E |2
(∑

m 6=E0

|Ê(m)|2 Ŝ0(m)
)
+ (A′− B ′).

Notice that each term above is a real number. It follows that∑
t∈Fq

ν(t)ν(r t)≥ q−1
|E |4− 2q3d/2

|E |2
(
max
m 6=E0
|Ŝ0(m)|

)(∑
m∈Fd

q

|Ê(m)|2
)
+ (A′− B ′)

= q−1
|E |4− 2qd/2

|E |3
(
max
m 6=E0
|Ŝ0(m)|

)
+ (A′− B ′),

where we used the Plancherel theorem, which states∑
m∈Fd

q

|Ê(m)|2 = q−d
|E |.
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By the definitions of A′ and B ′, we see that

A′− B ′ ≥ q3d
( ∑
‖m‖=0
m 6=E0

|Ê(m)|2
)2

− q3d−1
(∑

m∈Fd
q

|Ê(m)|2
)2

= q3d
( ∑
‖m‖=0
m 6=E0

|Ê(m)|2
)2

− qd−1
|E |2.

We also see from Lemma 2.3 that if d ≥ 2 is even, then

max
m 6=E0
|Ŝ0(m)| ≤ q−d/2.

Thus we conclude that if d ≥ 2 is even and r 6= 0, then∑
t∈Fq

ν(t)ν(r t)≥ q−1
|E |4− 2|E |3+ q3d

( ∑
‖m‖=0
m 6=E0

|Ê(m)|2
)2

− qd−1
|E |2. (2-7)

An upper bound of ν2(0) for even dimensions d ≥ 2. It follows that

ν(0)= q2d
∑
m∈Fd

q

Ŝ0(m)|Ê(m)|2.

By Lemma 2.3, notice that if d ≥ 2 is even, then

Ŝ0(m)= q−1δ0(m)+ q−d−1Gd
∑
s∈F∗q

χ(s‖m‖).

Then we see that

ν(0)= q−1
|E |2+ qd−1Gd

∑
m∈Fd

q

|Ê(m)|2
(
−1+

∑
s∈Fq

χ(s‖m‖)
)
.

By the Plancherel theorem and the orthogonality of χ ,

ν(0)= q−1
|E |2− q−1Gd

|E | + qd Gd
∑
‖m‖=0

|Ê(m)|2.

Since Ê(E0)= q−d
|E |, we can write

ν(0)= q−1
|E |2− q−1Gd

|E | + q−d Gd
|E |2+ qd Gd

∑
‖m‖=0
m 6=E0

|Ê(m)|2. (2-8)

We shall use the following explicit form of the Gauss sum G.

Lemma 2.6 [Lidl and Niederreiter 1997, Theorem 5.15]. Let Fq be a finite field with q = p` for an odd
prime p and ` ∈ N. Then the Gauss sum G satisfies

G =
{
(− 1)`−1q1/2 if p ≡ 1 (mod 4),
(− 1)`−1i`q1/2 if p ≡ 3 (mod 4).
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Observe from Lemma 2.6 that if the dimension d is even, then Gd
=±qd/2, where the sign depends

on d and q . Combining this observation with (2-8), and considering the sign of each term, we see that if
d is even, then

ν(0)≤
{

q−1
|E |2+ q(d−2)/2

|E | if Gd
=−qd/2,

q−1
|E |2+ q−d/2

|E |2+ q3d/2∑
‖m‖=0,m 6=E0 |Ê(m)|

2 if Gd
= qd/2.

Assuming that |E | ≥ qd/2, we see that

ν(0)≤
{

2q−1
|E |2 if Gd

=−qd/2,

2q−1
|E |2+ q3d/2∑

‖m‖=0,m 6=E0 |Ê(m)|
2 if Gd

= qd/2.

Since ν(0) is a nonnegative real number, it follows that if |E | ≥ qd/2, then

ν2(0)≤ 4q−2
|E |4+ 4q(3d−2)/2

|E |2
∑
‖m‖=0
m 6=E0

|Ê(m)|2+ q3d
( ∑
‖m‖=0
m 6=E0

|Ê(m)|2
)2

.

Since ∑
‖m‖=0
m 6=E0

|Ê(m)|2 ≤
∑
m∈Fd

q

|Ê(m)|2 = q−d
|E |,

we conclude that if |E | ≥ qd/2, then

ν2(0)≤ 4q−2
|E |4+ 4q(d−2)/2

|E |3+ q3d
( ∑
‖m‖=0
m 6=E0

|Ê(m)|2
)2

. (2-9)

Now we are ready to complete the proof of Theorem 1.1.

Complete proof of Theorem 1.1. We must show that (2-1) holds. By (2-7) and (2-9), it is enough to
show that if |E | ≥ 9qd/2, then

q−1
|E |4− 2|E |3− qd−1

|E |2 > 4q−2
|E |4+ 4q(d−2)/2

|E |3.

It suffices to show that

q−1
|E |4− 6q(d−2)/2

|E |3− qd−1
|E |2 > 4q−2

|E |4.

If |E | ≥ 9qd/2, then we see that

q−1
|E |4− 6q(d−2)/2

|E |3− qd−1
|E |2 ≥ 1

3q−1
|E |4− qd−1

|E |2,

so it is sufficient to show that
1
3q−1
|E |4− qd−1

|E |2 > 4q−2
|E |4.

Observe that if |E | ≥ 9qd/2(≥
√

12qd/2), then
1
3q−1
|E |4− qd−1

|E |2 ≥ 1
4q−1
|E |4.

Consequently, it suffices to show that
1
4q−1
|E |4 > 4q−2

|E |4,
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which holds if q > 16. Therefore, when q ≤ 16, it suffices to prove the statement of Theorem 1.1.
More precisely, it remains to show that if |E | ≥ 9qd/2 and q ≤ 16, then Fq = 1(E)/1(E). Since
9qd/2 > 2q(d+1)/2 for q ≤ 16, it will be enough to prove that if |E |> 2q(d+1)/2, then 1(E)= Fq . This
was proved in [Iosevich and Rudnev 2007]. Thus the proof of Theorem 1.1 is complete.

3. Proof of Theorem 1.2

We proceed as in the proof of Theorem 1.1. As seen in (2-2), for r ∈ F+q , we can write∑
t∈Fq

ν(t)ν(r t)=
∑
t∈Fq

(
q−d
|E |2 |St | + q2d

∑
m 6=E0

Ŝt(m)|Ê(m)|2
)(

q−d
|E |2 |Sr t | + q2d

∑
m′ 6=E0

Ŝr t(m′)|Ê(m′)|2
)

= q−2d
|E |4

∑
t∈Fq

|St ||Sr t | + qd
|E |2

∑
m′ 6=E0

|Ê(m′)|2
∑
t∈Fq

|St |Ŝr t(m′)

+ qd
|E |2

∑
m 6=E0

|Ê(m)|2
∑
t∈Fq

|Sr t |Ŝt(m)+ q4d
∑

m,m′ 6=E0

|Ê(m)|2 |Ê(m′)|2
∑
t∈Fq

Ŝt(m)Ŝr t(m′)

= I+ II+ III+ IV.

The following explicit value of |St | is given as Theorem 6.27 in [Lidl and Niederreiter 1997].

Lemma 3.1. Let St ⊂ Fd
q denote the sphere with radius t ∈ Fq . If d ≥ 3 is odd, then

|St | = qd−1
+ q(d−1)/2η((−1)(d−1)/2t),

where η denotes the quadratic character of F∗q and η(0)= 0.

We recall from Lemma 2.3 that if d ≥ 3 is odd, then for any m ∈ Fd
q ,

Ŝ j (m)= q−1δ0(m)+ q−d−1η(−1)Gd
∑
s∈F∗q

η(s)χ
(

js+
‖m‖
4s

)
. (3-1)

Estimate of
∑

t∈Fq
ν(t)ν(r t) for odd dimensions d ≥ 3. Since

∑
t∈F∗q

η(t)= 0 (by the orthogonality
of η) and η(0)= 0, it follows from Lemma 3.1 that

I := q−2d
|E |4

∑
t∈Fq

|St ||Sr t |

= q−2d
|E |4

∑
t∈Fq

(
qd−1
+ q(d−1)/2η((−1)(d−1)/2t)

)(
qd−1
+ q(d−1)/2η((−1)(d−1)/2r t)

)
= q−2d

|E |4
(∑

t∈Fq

q2d−2
+

∑
t∈Fq

qd−1η(r)η2(t)
)
= q−2d

|E |4
(
q2d−1

+ qd−1η(r)(q − 1)
)
.

Since η(r)= 1 (by the assumption that r ∈ F+q ), we have

I≥ q−1
|E |4.

In order to estimate the second term II, we begin by proving the following result.
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Lemma 3.2. Let S j be the sphere in Fd
q for odd d ≥ 3. Then for r 6= 0 and m 6= E0, we have

� :=
∑
t∈Fq

|St |Ŝr t(m)= q(−d−3)/2Gd+1η(r (−1)(d+1)/2)

(
−1+

∑
s∈Fq

χ(s‖m‖)
)
.

To prove this lemma, recall from (2-4) of Lemma 2.4 that
∑

t∈Fq
Ŝr t(m)= 0 for r 6= 0 and m 6= E0. By

Lemma 3.1,

�=
∑
t∈Fq

(
qd−1
+ q(d−1)/2η((−1)(d−1)/2t)

)
Ŝr t(m)= q(d−1)/2η((−1)(d−1)/2)

∑
t∈Fq

η(t)Ŝr t(m).

By using the value of Ŝr t(m) in (3-1), we can write

�= q(−d−3)/2η((−1)(d+1)/2)Gd
∑
s 6=0

η(s)χ
(
‖m‖
4s

)(∑
t∈Fq

η(t)χ(rst)
)
.

Since η(0)= 0 and η(a)= η(a−1) for a 6= 0, a simple change of variables yields∑
t∈Fq

η(t)χ(rst)= η(rs)G

and thus we have
�= q(−d−3)/2η((−1)(d+1)/2)Gd+1η(r)

∑
s 6=0

χ(s‖m‖),

which completes the proof of Lemma 3.2.
By Lemma 3.2 and the orthogonality of χ , we see that

II := qd
|E |2

∑
m′ 6=E0

|Ê(m′)|2
∑
t∈Fq

|St |Ŝr t(m′)

= q(d−1)/2
|E |2Gd+1η(r (−1)(d+1)/2)

∑
m′ 6=E0
‖m′‖=0

|Ê(m′)|2−q(d−3)/2
|E |2Gd+1η(r (−1)(d+1)/2)

∑
m′ 6=E0

|Ê(m′)|2

= II1−II2.

Now observe from Lemma 2.6 that Gd+1
∈ R for odd d and so both II1 and II2 are real numbers. Further-

more, both values are real numbers with the same sign. Hence, II= II1− II2 ≥min{−|II1|,−|II2|}. Since

min{−|II1|,−|II2|} ≥ −
∣∣q(d−1)/2

|E |2Gd+1η(r (−1)(d+1)/2)
∣∣ ∑

m′∈Fd
q

|Ê(m′)|2,

which is same as −|E |3, we obtain that
II≥−|E |3.

By the same argument, it is not hard to see that II= III and we also have

III≥−|E |3.

In order to estimate the fourth term IV, we shall need the following orthogonality lemma.
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Lemma 3.3. Suppose that r ∈ F∗q and m,m′ ∈ Fd
q . If d ≥ 3 is odd, then we have

∑
t∈Fq

Ŝt(m)Ŝr t(m′)=
{

q−1δ0(m)δ0(m′)+ (q−d
− q−d−1)η(r) if ‖m‖ = r‖m′‖,

−q−d−1η(r) if ‖m‖ 6= r‖m′‖,

where η denotes the quadratic character of F∗q .

The proof shall be given at the end of the paper (see Lemma 4.2). By the definition of the term IV
and Lemma 3.3, it follows that

IV := q4d
∑

m,m′ 6=E0

|Ê(m)|2 |Ê(m′)|2
∑
t∈Fq

Ŝt(m)Ŝr t(m′)

= − q3d−1η(r)
∑

m,m′ 6=E0
‖m‖6=r‖m′‖

|Ê(m)|2 |Ê(m′)|2+ (q3d
− q3d−1)η(r)

∑
m,m′ 6=E0
‖m‖=r‖m′‖

|Ê(m)|2 |Ê(m′)|2.

Since η(r)= 1 (by our assumption that r is a square number in F∗q), the second term above is positive.
Thus we have

IV≥−q3d−1
∑

m,m′∈Fd
q

|Ê(m)|2 |Ê(m′)|2.

By the Plancherel theorem,
IV≥−qd−1

|E |2.

Putting this together with all other estimates, we obtain that if d ≥ 3 is odd and r is a square number,
then ∑

t∈Fq

ν(t)ν(r t) := I+ II+ III+ IV≥ q−1
|E |4− 2|E |3− qd−1

|E |2. (3-2)

Estimate of ν2(0) for odd dimensions d ≥ 3. Recall that we can write

ν(0)= q2d
∑
m∈Fd

q

Ŝ0(m)|Ê(m)|2 = q2d Ŝ0(E0)|Ê(E0)|2+ q2d
∑
m 6=E0

Ŝ0(m)|Ê(m)|2 := M + R.

Since |S0| = qd−1 for odd d ≥ 3 (see Lemma 3.1),

M = q−d
|S0||E |2 = q−1

|E |2.

To estimate R, observe that

R ≤ q2d(max
m 6=E0
|Ŝ0(m)|

)(∑
m∈Fd

q

|Ê(m)|2
)
=
(
max
m 6=E0
|Ŝ0(m)|

)
qd
|E |.

By (3-1), we see that if d ≥ 3 is odd and m 6= E0, then

Ŝ0(m)= q−d−1η(−1)Gd
∑
s 6=0

η(s)χ
(
‖m‖
4s

)
.
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Since ∣∣∣∣∑
s 6=0

η(s)χ
(
‖m‖
4s

)∣∣∣∣=√q

for ‖m‖ 6= 0 and 0 otherwise, we see

max
m 6=E0
|Ŝ0(m)| ≤ q(−d−1)/2.

Hence we obtain
R ≤ q(d−1)/2

|E |.

We have seen that ν(0) := M + R ≤ q−1
|E |2+ q(d−1)/2

|E |, which in turn implies

ν2(0)≤ q−2
|E |4+ 2q(d−3)/2

|E |3+ qd−1
|E |2, (3-3)

since ν(0) is a nonnegative integer.

Complete proof of Theorem 1.2. Let d ≥ 3 be odd. Suppose that r is a square number in F∗q . We must
show that if E ⊂ Fd

q with |E | ≥ 6qd/2, then∑
t∈Fq

ν(t)ν(r t) > ν2(0).

By (3-2) and (3-3), it will be enough to show that if |E | ≥ 6qd/2, then

q−1
|E |4− 2|E |3− qd−1

|E |2 > q−2
|E |4+ 2q(d−3)/2

|E |3+ qd−1
|E |2.

Note that to prove this it suffices to show that

q−1
|E |4− 4q(d−3)/2

|E |3− 2qd−1
|E |2 > q−2

|E |4.

If |E | ≥ 6qd/2(≥ 6q(d−1)/2), then we see that

q−1
|E |4− 4q(d−3)/2

|E |3− 2qd−1
|E |2 ≥ 1

3q−1
|E |4− 2qd−1

|E |2.

Hence it is sufficient to show that if |E | ≥ 6qd/2, then

1
3q−1
|E |4− 2qd−1

|E |2 > q−2
|E |4.

Observe that if |E | ≥ 6qd/2(≥
√

24qd/2), then

1
3q−1
|E |4− 2qd−1

|E |2 ≥ 1
4q−1
|E |4.

In conclusion, it is enough to prove that if |E | ≥ 6qd/2, then

1
4q−1
|E |4 > q−2

|E |4,

which is clearly true provided that q > 4. For this reason, it suffices to prove the statement of Theorem 1.2
in the case when q ≤ 4 and |E | ≥ 6qd/2. In other words, our task is to prove that if |E | ≥ 6qd/2 for
q ≤ 4, then Fq = 1(E)/1(E). Since 6qd/2 > 2q(d+1)/2 for q ≤ 4, it will be enough to show that if
|E |> 2q(d+1)/2, then 1(E)= Fq . This is a well-known result on the Erdős–Falconer distance problem
shown in [Iosevich and Rudnev 2007]. Thus we finish the proof of Theorem 1.2.
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4. Proofs of Lemmas 2.5 and 3.3

We begin by proving the following lemma.

Lemma 4.1. Let r ∈ F∗q and m,m′ ∈ Fd
q . Then we have

∑
t∈Fq

Ŝt(m)Ŝr t(m′)=
{

q−1δ0(m)δ0(m′)+ q−2d G2dηd(−r)(1− q−1) if ‖m‖ = r‖m′‖,
−q−2d−1G2dηd(−r) if ‖m‖ 6= r‖m′‖.

Proof. By Lemma 2.3, we have

Ŝt(m)= q−1δ0(m)+ q−d−1ηd(−1)Gd
∑
s∈F∗q

ηd(s)χ
(

ts+
‖m‖
4s

)
:= A(t)+ B(t),

Ŝr t(m′)= q−1δ0(m′)+ q−d−1ηd(−1)Gd
∑
s′∈F∗q

ηd(s ′)χ
(

r ts ′+
‖m′‖
4s ′

)
:= C(t)+ D(t).

Since
∑

t∈Fq
A(t)D(t)= 0=

∑
t∈Fq

B(t)C(t) by the orthogonality of χ , we have∑
t∈Fq

Ŝt(m)Ŝr t(m′)=
∑
t∈Fq

A(t)C(t)+
∑
t∈Fq

B(t)D(t)

= q−1δ0(m)δ0(m′)+q−2d−2G2d
∑

s,s′∈F∗q

ηd(s)ηd(s ′)χ
(
‖m‖
4s
+
‖m′‖
4s ′

)∑
t∈Fq

χ(t (s+rs ′))

= q−1δ0(m)δ0(m′)+q−2d−1G2d
∑
s∈F∗q

ηd(−s2/r)χ
(
‖m‖
4s
−

r‖m′‖
4s

)
= q−1δ0(m)δ0(m′)+q−2d−1G2dηd(−r)

∑
s∈F∗q

χ(s(‖m‖−r‖m′‖))

= q−1δ0(m)δ0(m′)+
[
q−2d−1G2dηd(−r)

∑
s∈Fq

χ(s(‖m‖−r‖m′‖))
]
−q−2d−1G2dηd(−r).

Thus the statement follows by the orthogonality of χ . �

As a corollary of Lemma 4.1, one can deduce Lemmas 2.5 and 3.3 which can be restated as follows.

Lemma 4.2. Suppose that r ∈ F∗q and m,m′ ∈ Fd
q . If d ≥ 2 is even, then we have

∑
t∈Fq

Ŝt(m)Ŝr t(m′)=
{

q−1δ0(m)δ0(m′)+ q−d
− q−d−1 if ‖m‖ = r‖m′‖,

−q−d−1 if ‖m‖ 6= r‖m′‖.

On the other hand, if d ≥ 3 is odd, then we have∑
t∈Fq

Ŝt(m)Ŝr t(m′)=
{

q−1δ0(m)δ0(m′)+ (q−d
− q−d−1)η(r) if ‖m‖ = r‖m′‖,

−q−d−1η(r) if ‖m‖ 6= r‖m′‖.
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Proof. Suppose that d ≥ 2 is even. Then ηd
= 1. By Lemma 2.6, we see that G2d

= qd for even d ≥ 2.
Thus the statement follows by Lemma 4.1.

Next, assume that d≥3 is odd. Then ηd
=η. Hence, by Lemma 4.1 it suffices to show that G2dη(−1)=

qd for odd d ≥ 3. This equality follows by combining Lemma 2.6 with the facts that η(−1) = 1 for
q ≡ 1 (mod 4), and η(−1)=−1 for q ≡ 3 (mod 4). �
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Embeddings of weighted graphs in Erdős-type settings

David M. Soukup

Many recent results in combinatorics concern the relationship between the size of a set and the number of
distances determined by pairs of points in the set. One extension of this question considers configurations
within the set with a specified pattern of distances. In this paper, we use graph-theoretic methods to prove
that a sufficiently large set E must contain at least CG |E | distinct copies of any given weighted tree G,
where CG is a constant depending only on the graph G.

1. Introduction

Many questions in combinatorics involve the behavior of the distance set 1(E) of a set E , defined as
1(E) = {d(x, y) : x, y ∈ E} for some distance function d. For instance, Erdős’ celebrated distinct
distances problem conjectured that for finite sets E ⊂ R2, |1(E)| & |E |1−ε for any positive ε. This
conjecture was proven in this form by Guth and Katz [2015]. Distance problems where the ambient
space is a finite vector space have also been a subject of much research [Bourgain et al. 2004; Iosevich
and Rudnev 2007; Koh and Shen 2012; Vu 2008].

A natural question follows: under what conditions on E can we find not just pairs of points a specified
distance apart, but groups of points with some specified pattern of distances? In other words, given some
weighted graph G where the edge weights correspond to distances between points, when can we find a
“copy” of G inside E? Bennett, Chapman, Covert, Hart, Iosevich, and Pakianathan proved a result in
this direction for the Euclidean distance in Zd

p and path graphs in [Bennett et al. 2016], and McDonald
[2016] gave a similar result for dot products in Zd

p. In this paper, we give an answer to this question for
wide classes of graphs, distances, and ambient sets. Moreover, we show that these questions, and other
similar ones, are part of a much more general framework.

These previous results depended on ad hoc methods which made use of Fourier analytic techniques
which do not generalize easily. Here, we show that elementary combinatorial arguments can be used to
expand results which are only about distances into results which describe larger patterns.

Definition 1.1. Given an ambient set X and some set D of possible distances, a symmetric distance
function is a function d : X × X→ D such that d(x1, x2)= d(x2, x1) for all x1, x2 ∈ X. Such a function
is K -surjective if, for every Y ⊂ X with |Y | ≥ K, the restriction of d to Y × Y is surjective. In other
words, every set of size at least K determines every distance.

In other words, a K -surjective distance function has its distances well-mixed enough that one cannot
construct large sets missing a particular distance. This means that we cannot avoid patterns of distances
simply by constructing a set which does not exhibit some of the specified distances.

MSC2010: 52C10.
Keywords: finite point configurations, distance sets, graphs.
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Some motivation for this definition is provided by the following theorem, which will allow us to apply
the results of this paper to a common setting for distance problems. Note that what we refer to as a
“distance function” does not need to encode distances in a natural sense; we do not require the function
to obey a triangle inequality, nor do we require our distances to be real numbers. We call it a distance
function in order to make it explicit how our result corresponds to known results. Throughout, we will
use Fq to refer to the unique finite field with q elements for some prime power q, and we will let Fd

q be
a d-dimensional vector space over this field.

Theorem 1.2 (A. Iosevich and M. Rudnev [2007]). Let X = Fd
q , D = Fq , and define d({xi }, {yi }) =∑

(xi − yi )
2. Then d is K -surjective with K = Cq(d+1)/2 for some constant C independent of q.

Now we just need to define a graph embedding, which is done in the natural way:

Definition 1.3. Suppose we have a space X, a set of distances D, and a symmetric distance function d.
Then for a weighted graph G with edge weights in D, an embedding of G into X is an injective function
f : V (G)→ X such that for every edge (v1, v2) ∈ E(G) with weight t ,

d( f (v1), f (v2))= t.

We will typically identify such an embedding with its image in X. A collection of such embeddings
{ fi }i∈I is disjoint if all its images are disjoint subsets of X.

Results. Now we are ready to state our main theorem:

Theorem 1.4 (main theorem). Let X be a set with a symmetric distance function d to a set of distances D,
let d be K -surjective, and let E ⊆ X with |E | = r K for some positive real number r. Then for any
weighted tree G with edge weights in D, there exists a disjoint collection AG of embeddings of G into E
with

|AG | ≥

(
r

σ(G)
− 1
)

K ,

where σ(G) is a constant depending only on the graph G.

Corollary 1.5. If |E | ≥ σ(G)K, then there is at least one embedding of G into E.

We will exhibit an explicit constant σ(G), which we define as follows:

Definition 1.6. Let G be a finite nonempty connected graph; let the degrees of the vertices of G be
d1, d2, . . . , dn , ordered so that d1 ≥ d2 ≥ · · · ≥ dn . Then the stringiness of G, denoted by σ(G), is
defined to be

σ(G)= (d1+ 1)
n∏

i=2

di .

For example, the stringiness of the Petersen graph (or any other 10-vertex 3-regular graph) is 4 · 39
=

78732. The following estimate gives bounds on the stringiness of a tree:

Theorem 1.7. Let G be a nonempty tree with n edges. Then

n+ 1≤ σ(G)≤ 2n.
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The lower bound is sharp (the star graph K1,n attains it) while the upper bound is sharp up to a constant
(the path graph Pn+1 has stringiness 3 · 2n−2).

Combining our main result with Theorem 1.2 gives the following result in Fd
q with respect to a specific

distance function:

Corollary 1.8. Let G be a weighted tree with edge weights in Fq . Then there exists a constant C inde-
pendent of q and G such that every subset E of Fd

q with |E | ≥ Cσ(G)q(d+1)/2 contains an embedding of
G with respect to the distance function d({xi }, {yi })=

∑
(xi − yi )

2.

The motivation for Corollary 1.8 comes from comparing this result to the following result in the
literature:

Theorem 1.9 (Bennett, Chapman, Covert, Hart, Iosevich, Pakianathan [Bennett et al. 2016]). Let G be
a weighted path or star graph with edge weights in Fq , and suppose G has k edges. Then there exists a
constant C independent of q and G such that every subset E of Fd

q with |E | ≥ Ckq(d+1)/2 contains an
embedding of G.

This result is very similar to Corollary 1.8 in the star graph case, but the constant is much stronger
than that of Corollary 1.8 in the path graph case. This shows the difference between the Fourier-analytic
techniques used in the proof of Theorem 1.9 and the elementary combinatorial arguments used here.

The main gain of Corollary 1.8, however, is the fact that it applies to all trees and not just to the
two specific types in Theorem 1.9. The methods used in Theorem 1.9 do not generalize easily to more
complex structures. Moreover, Corollary 1.8 also gives similar results for other distances.

The idea of this paper is to show that results of the type of Theorem 1.9 are instances of a more general
phenomenon. Corollary 1.8 is an example of this phenomenon applied to the standard distance on Fd

q ;
it enables these results to be extended to general trees for which no results existed. We also note that
proof of Theorem 1.4 is very modular, so it is possible to (for instance) use Theorem 1.9 to get slightly
better bounds for embeddings of more complicated trees in Zd

q . This is because we build embeddings of
larger graphs inductively from embeddings of smaller graphs, so if we are able to show better bounds
for smaller graphs, this will automatically give better bounds for larger graphs.

We proceed as follows: for illustrative purposes, we first state and prove Theorem 2.2, a weaker
version of Theorem 1.4, using Lemma 2.1. We then give the very similar proof of Theorem 1.4, which
relies on the analogous Lemma 2.5. Finally we prove Theorem 1.7.

2. Graph embeddings

An easier case of Theorem 1.4. The proof of Theorem 2.2 is by induction; it is convenient to state the
base case as a separate lemma.

Lemma 2.1. Let X be a set with a symmetric distance function d to a set of distances D, let d be
K -surjective, and let E ⊆ X with |E | = r K. Then for any fixed t ∈ D, there are at least 1

2(r − 1)K
disjoint pairs {ei , fi }i∈I in E such that d(ei , fi )= t for all i ∈ I.

Proof. Since E is finite, let I be an index set of maximal size. Let F be the union of all the pairs, that is,

F =
⋃
i∈I

{ei , fi }.
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Then by maximality of I , E\F cannot contain any pair of points with distance t . By K -surjectivity, this
means |E\F |< K ; so |F | ≥ (r − 1)K, giving |I | = 1

2 |F | ≥
1
2(r − 1)K as required. �

Theorem 2.2. Let X be a set with a symmetric distance function d to a set of distances D, let d be
K -surjective, and let E ⊆ X with |E | = r K. Then for any weighted nonempty tree G with edge weights
in D, suppose G has n edges. Then there exists a disjoint collection AG of embeddings of G into E with

|AG | ≥

(
r + 1

2n − 1
)

K .

Proof. We proceed by induction on n. The case n = 0 is tautological, and the case n = 1 is equivalent to
Lemma 2.1.

So assume n ≥ 2, which means G must have a leaf. Fix any leaf; call it v, its associated edge e, the
unique vertex adjacent to it w, and the edge weight t . Then G− v is a tree with strictly fewer edges; so
by the inductive hypothesis we have a disjoint collection AG−v of embeddings of G− v into E with

|AG−v| ≥

(
r + 1
2n−1 − 1

)
K .

Consider the set W = { f (w) | f ∈ AG−v}. By Lemma 2.1, there exist at least 1
2(|W |/K −1)K disjoint

pairs of points { f (w), f ′(w)} in W with d( f (w), f ′(w))= t . But for each of these pairs we can consider
the function g : V (G)→ E given by

g(x)=
{

f ′(w), x = v,
f (x), x 6= v.

By construction, these are disjoint embeddings of G into E , and there are at least 1
2(|W |/K − 1)K of

them; but by disjointness of AG−v we have |W | = |AG−v| so there are at least

|AG−v|/K − 1
2

K ≥
((r + 1)/2n−1

− 1)− 1
2

K =
(

r + 1
2n − 1

)
K

disjoint embeddings of G as required. �

Corollary 2.3. If |E | ≥ 2n+1K, there is at least one embedding of G into E.

Note that this proof would have worked equally well even if d were not symmetric, which will not
carry over to Theorem 1.4.

Proof of Theorem 1.4. Analogously to the proof of Theorem 2.2, we will state a governing lemma
(Lemma 2.5); the structure will be identical except that we are building our graph G out of stars instead
of working purely with edges. For technical reasons, the application of the K -surjectivity assumption is
more difficult in this case, so we will first state an auxiliary lemma, Lemma 2.4.

Lemma 2.4. Let X be a set with a symmetric distance function d to a set of distances D, let d be
K -surjective, and let E ⊆ X with |E | = r K. Then for any fixed t ∈ D, s ∈ N, there are at most sK points
e ∈ E for which there are fewer than s other distinct points e1, e2, . . . , es ∈ E such that d(e, ei )= t for
all i .
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Proof. Create a graph H whose vertices are the points of E and where two vertices are connected by an
edge if and only if the corresponding points of E are distance t . Then consider the subgraph H∗ of H
generated by only those vertices of degree < s. By construction, the maximum degree of vertices in H
is less than s, which means H∗ can be s-colored by the standard greedy algorithm, that is, partitioned
into s independent sets. Since the K -surjectivity condition guarantees that an independent set in H (and
thus in H∗) has size < K, it follows that |H∗| < sK. This means that at most sK of the vertices of H
have degree < s, proving the lemma. �

Lemma 2.5. Let X be a set with a symmetric distance function d to a set of distances D, let d be
K -surjective, and let E ⊆ X with |E | = r K. Then for any weighted nonempty star graph G ∼= K1,n with
edge weights in D, the set E contains at least K (r − n)/(n+ 1) disjoint embeddings of G.

Proof. As in the proof of Lemma 2.1, let

I = {{g1,0, g1,1, . . . , g1,n}, . . . , {gm,0, gm,1, . . . , gm,n}}

be a maximal (with respect to m) set of embeddings of G into E , and define F to be the union of all the
embeddings contained in I , that is,

F =
m⋃

i=1

{gi,0, gi,1, . . . , gi,n}.

Then E\F must have no embeddings of G by maximality of I .
Suppose the set of edge weights of G is {t1, t2, . . . , ta} appearing with multiplicities {m1,m2, . . .ma}

respectively. Then by Lemma 2.4, for each fixed i there are at most mi K points of E\F which are not
distance ti from at least mi other points of E\F . Summing over i we get that there are at most

a∑
i=1

mi K = nK

points of E\F which are not distance ti from at least mi other points of E\F for every i . But if x ∈ E\F
is in fact distance ti from at least mi other points of E\F for every i , then there exists an embedding of
G into E\F where x corresponds to the nonleaf vertex of G. Thus |E\F | ≤ nK ; so

|I | =
|F |

n+ 1
≥

r K − nK
n+ 1

=
r − n
n+ 1

K

as required. �

Note that when n = 1, this is exactly the statement of Lemma 2.1, but when n ≥ 2 we may have to
deal with repeated edge weights, which adds the extra complexity.

Now we are ready to prove the main theorem, Theorem 1.4:

Proof. The proof proceeds by strong induction on the number of edges in G. If G contains no edges,
σ(G)= 1 and the theorem is clearly true; if G is a star graph K1,n , then σ(G)= n+ 1 and the theorem
is just Lemma 2.5.

So assume G is not a star graph. Then we can always find a vertex w ∈ G such that:

(1) w is not a leaf of G (equivalently, degG w ≥ 2).
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(2) All but one of the vertices connected to w are leaves (call these leaves v1, v2, . . . , vy , and the
associated distances t1, t2, . . . , ty , where y = degG w− 1.)

(3) There exists a vertex v 6= w in G such that degG v ≥ degG w.

To see this, let L be the set of leaves of G. Then since G is a tree which is not a star graph, G− L is a
tree which contains at least one edge; any leaf of G− L satisfies conditions (1) and (2), and since G− L
has at least two leaves, at least one of these must satisfy condition (3).

Define the graph H to be G−{v1, v2, . . . , vy}. By conditions (1) and (2), H is a tree with fewer edges
than G; by condition (3), σ(H)= σ(G)/(y+ 1) (since we can reorder the product in Definition 1.6 to
make v correspond to d1, and all we lose by deleting these leaves is a factor of degG w). By the inductive
hypothesis we have a disjoint collection AH of embeddings of H into E with

|AH | ≥

(
r

σ(H)
− 1
)

K .

Consider the set W = { f (w) | f ∈ AH }. By Lemma 2.5, there exist at least (|W |/K − y)/(y + 1)
disjoint sets of points { f (w), f1(w), . . . , fy(w)} contained in W with d( f (w), fi (w))= ti for every i
(i.e., embedddings of a particular star graph). But for each of these sets we can consider the function
g : V (G)→ E given by

g(x)=
{

fi (w), x = vi ,

f (x), x /∈ {v1, . . . , vy}.

By construction, these are disjoint embeddings of G into E , and there are at least K (|W |/K − y)/(y+1)
of them; but by disjointness of AH , we have |W | = |AH | so there are at least

|AH |/K − y
y+ 1

K ≥
(r/σ(H)− 1)− y

y+ 1
K =

(
r

(y+ 1) · σ(H)
− 1
)

K =
(

r
σ(G)

− 1
)

K

disjoint embeddings of G as required. �

Note that in view of Theorem 1.7, this is stronger than Theorem 2.2.

Proof of Theorem 1.7.
Proof. Let G have n edges.

For the lower bound on σ(G), a simple inductive argument suffices. If n = 1 then σ(G) = 2 since
there is only one possible graph with one edge. If n > 1 then deleting a leaf must decrease the stringiness
since the degree of the other vertex decreases, so for a graph with n edges, σ(G) > σ(G− v)≥ n. Thus
σ(G)≥ n+ 1 (since σ(G) ∈ Z).

For the upper bound, write the degrees of the vertices of G as d1, d2, . . . , dn+1; without loss of gener-
ality say dn+1 = 1. Then by the arithmetic-geometric mean inequality

((d1+ 1) · d2 · d3 · · · · · dn)
1/n
≤

d1+ 1+ d2+ d3+ · · ·+ dn

n

σ(G)1/n
≤

∑
di

n

σ(G)1/n
≤

2n
n

σ(G)≤ 2n. �
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Identity involving symmetric sums of regularized multiple zeta-star values

Tomoya Machide

An identity involving symmetric sums of regularized multiple zeta-star values of harmonic type was
proved by Hoffman. In this paper, we prove an identity of shuffle type. We use Bell polynomials
appearing in the study of set partitions to prove the identity.

1. Introduction and statement of results

The multiple zeta value (MZV) and multiple zeta-star value (MZSV, or sometimes referred to as the
nonstrict MZV) are real numbers defined by the nested series

ζ(k1, k2, . . . , kr )=
∑

0<m1<m2<···<mr

1

mk1
1 mk2

2 · · ·m
kr
r
, (1-1)

ζ ?(k1, k2, . . . , kr )=
∑

0<m1≤m2≤···≤mr

1

mk1
1 mk2

2 · · ·m
kr
r
, (1-2)

respectively, where ki (1 ≤ i ≤ r) are arbitrary positive integers with kr > 1. MZVs and MZSVs can
also be given by integrals. These values have been actively studied for more than two decades, but Euler
[1776] already mentioned them in a special case, r = 2. In this paper, we give an identity involving
symmetric sums for a class of regularizations of (1-2).

The two expressions of series and integrals yield two different products ∗ and x, called harmonic (or
stuffle) and shuffle, respectively, for any real value in factored form written in terms of either MZVs or
MZSVs. For example, the result of ∗ on MZSV for the value ζ ?(2)× ζ ?(2) is

ζ ?(2)ζ ?(2)= ζ ?((2) ∗ (2))= ζ ?((2, 2)+ (2, 2)− (4))= 2ζ ?(2, 2)− ζ ?(4), (1-3)

where, for notational simplicity, we think of the product ∗ as taking place among indices. (An index
means a finite sequence k = (k1, . . . , kr ) of positive integers.) The result (1-3) follows from series
expressions in (1-2) with(∑

0<m1

1
m2

1

)(∑
0<m2

1
m2

2

)
=

∑
0<m1≤m2

1
m2

1m2
2
+

∑
0<m2≤m1

1
m2

2m2
1
−

∑
0<m

1
m4 ,

or with the division of the summation∑
0<m1, 0<m2

=

∑
0<m1≤m2

+

∑
0<m2≤m1

−

∑
0<m1=m2

. (1-4)

MSC2010: primary 11M32; secondary 11B73.
Keywords: multiple zeta value, multiple zeta-star value, symmetric sum, Bell polynomial.
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The other results for ζ(2)ζ(2)= ζ ?(2)ζ ?(2) are similarly obtained such that ζ((2)∗(2))= 2ζ(2, 2)+ζ(4),
ζ((2)x (2))= 2ζ(2, 2)+ 4ζ(1, 3), and ζ ?((2)x (2))= 2ζ ?(1, 3). The case of ∗ on MZV follows from
series expressions in (1-1) with division of the summation as in (1-4),∑

0<m1, 0<m2

=

∑
0<m1<m2

+

∑
0<m2<m1

+

∑
0<m1=m2

.

The cases of x on MZV and MZSV follow from integral expressions as

ζ(2)=
∫

0<s<t<1

ds
1− s

dt
t
,

with division of domains of integration∫
0<s1<1
0<s2<1

=

∫
0<s1<s2<1

+

∫
0<s2<s1<1

,

where we require an extra technique [Kaneko and Yamamoto 2018] of the integral associated to 2-labeled
posets for integral expressions of MZSVs. We omit details of ∗ and x (for which see [Hoffman 1997;
Ihara et al. 2006; Kaneko 2018; Kaneko and Yamamoto 2018; Reutenauer 1993; Zudilin 2003]),1 since
many notations are necessary for rigorous statements, though product rules are simply induced from
dividing the summation and domain.

MZVs and MZSVs are divergent if kr = 1, but recently, the theory of regularization has been estab-
lished. (For details, see [Ihara et al. 2006] and [Kaneko and Yamamoto 2018] for MZV and MZSV,
respectively.) Four polynomials whose coefficients are Q-linear combinations of MZVs and MZSVs,
which we denote by

ζ∗(k; T ), ζx(k; T ), ζ ?
∗
(k; T ), and ζ ?x(k; T ), (1-5)

are defined for any index k in the theory: ζ∗(k; T ) and ζx(k; T ) are generalizations of ζ(k) involving
products ∗ and x, respectively; ζ ?

∗
(k; T ) and ζ ?x(k; T ) are those of ζ ?(k). (Note that the polynomials in

(1-5) are constant and equal to ζ(k) when kr > 1.) A key idea of the generalizations is roughly to regard
the divergent value ζ(1)= ζ ?(1)= 1

1 +
1
2 + · · · as the variable T when using product rule. For example,

using the rule of ∗ on MZSV for ζ ?(2)ζ ?(1) yields

ζ ?(2)ζ ?(1)= ζ ?
∗
((2) ∗ (1))= ζ ?

∗
((2, 1)+ (1, 2)− (3))= ζ ?

∗
(2, 1; T )+ ζ ?(1, 2)− ζ ?(3),

which, together with ζ ?(2)ζ ?(1)= ζ ?(2)T , proves

ζ ?
∗
(2, 1; T )= ζ ?(2)T − ζ ?(1, 2)+ ζ ?(3). (1-6)

We can obtain
ζ∗(2, 1; T )= ζ(2)T − ζ(1, 2)− ζ(3),

ζx(2, 1; T )= ζ(2)T − 2ζ(1, 2),

ζ ?x(2, 1; T )= ζ ?(2)T − 1
2ζ

?(1, 2)

1We recommend [Kaneko 2018; Zudilin 2003] for nonspecialists.
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in similar ways, where evaluating ζ ?x(2, 1; T ) requires extra computations because ζ ?x(2, 1; T ) is defined
by means of the integral associated to 2-labeled posets. The regularized values ζ∗(k), ζx(k), ζ ?∗ (k), and
ζ ?x(k) are defined by their constant terms; e.g., ζ∗(k)= ζ∗(k; 0).

Fundamental theorems of regularization for MZVs and MZSVs were proved in [Ihara et al. 2006] and
[Kaneko and Yamamoto 2018], respectively, which are stated as follows. For any index k,

ρ(ζ∗(k; T ))= ζx(k; T ) and ρ?(ζ ?
∗
(k; T ))= ζ ?x(k; T ), (1-7)

where ρ and ρ? are R-linear endomorphisms on R[T ] related to the gamma function 0(u). The detailed
definition of ρ? will be introduced in Section 2, and is necessary to prove our result, Theorem 1.1.

In order to state Theorem 1.1, we will recall Hoffman’s identities involving symmetric sums of the
polynomials ζ∗(k; T ) and ζ ?

∗
(k; T ), which are shown in [Hoffman 1992; 2015]. Let Pr be the set of

partitions of the set {1, . . . , r}. For any 5 = {P1, . . . , Pg} ∈ Pr , we define integers c(5) = cr (5) and
c?(5)= c?r (5) by

cr (5)= (−1)r−g
g∏

i=1

(|Pi | − 1)! and c?r (5)=
g∏

i=1

(|Pi | − 1)! , (1-8)

respectively, where |P| is the number of the elements of a set P . We also define

H∗(k,5; T ) :=
g∏

i=1

η

(∑
p∈Pi

kp; T
)
, (1-9)

where2

η(k; T )=
{
ζ(k), k > 1,
T, k = 1.

Let Sr denote the symmetric group of degree r . Hoffman’s identities are then∑
σ∈Sr

ζ∗(kσ(1), . . . , kσ(r); T )=
∑
5∈Pr

c(5)H∗(k,5; T ), (1-10)

∑
σ∈Sr

ζ ?
∗
(kσ(1), . . . , kσ(r); T )=

∑
5∈Pr

c?(5)H∗(k,5; T ). (1-11)

Recently, a shuffle version of (1-10) was proved in [Machide 2017], which is obtained by replacing
ζ∗ and H∗ with ζx and Hx, respectively:∑

σ∈Sr

ζx(kσ(1), . . . , kσ(r); T )=
∑
5∈Pr

c(5)Hx(k,5; T ), (1-12)

where Hx will be defined in (1-15).
The main result of this paper is the shuffle version of (1-11).

Theorem 1.1. For any index k, we have∑
σ∈Sr

ζ ?x(kσ(1), . . . , kσ(r); T )=
∑
5∈Pr

c?(5)Hx(k,5; T ), (1-13)

2We note that η(k; T )= ζ∗(k; T )= ζx(k; T )= ζ ?∗ (k; T )= ζ
?
x(k; T ).
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where Hx(k,5; T ) is similar to H∗(k,5; T ), but the characteristic function

χx(k, Pi ) :=

{
0 if |Pi |> 1, and kp = 1 for all p ∈ Pi ,

1 otherwise
(1-14)

is added in each multiplicand; that is,

Hx(k,5; T ) :=
g∏

i=1

χx(k, Pi )η

(∑
p∈Pi

kp; T
)
. (1-15)

We give some examples of (1-13). The number of the terms on its right-hand side decreases as the
number of ki equal to 1 increases, because of (1-14).

Example 1.2. Let k and l be integers at least 2. Then

ζ ?(1, k)+ ζ ?x(k, 1; T )= ζ(k)T + ζ(k+ 1),

ζ ?(1, k, l)+ ζ ?(1, l, k)+ ζ ?(k, 1, l)+ ζ ?(l, 1, k)+ ζ ?x(k, l, 1; T )+ ζ ?x(l, k, 1; T )

= (ζ(k)ζ(l)+ ζ(k+ l))T + ζ(k)ζ(l + 1)+ ζ(l)ζ(k+ 1)+ 2ζ(k+ l + 1),

2(ζ ?(1, 1, k)+ ζ ?x(1, k, 1; T )+ ζ ?x(k, 1, 1; T ))= ζ(k)T 2
+ 2ζ(k+ 1)T + 2ζ(k+ 2).

In particular, we have a simple equation (1-16) when the number of ki equal to 1 is r−1 (or equivalently,
there is just one k j that is greater than 1): the right-hand side is written in terms of only single zeta values.

Corollary 1.3. For integers k ≥ 2 and r ≥ 1, we have

r−1∑
i=0

ζ ?x({1}
i , k, {1}r−1−i

; T )=
r−1∑
j=0

ζ(k+ r − 1− j)
T j

j !
, (1-16)

where {1}i means i repetitions of 1.

The method of the proof of Theorem 1.1 is an improvement to that used in [Machide 2017]. We will
use complete exponential Bell polynomials to show Proposition 2.3, which are defined by

Br (x1, . . . , xr ) := r !
∑

i1,i2,...,ir≥0
1·i1+2·i2+···+r ·ir=r

1
i1! i2! · · · ir !

r∏
a=1

(
xa

a!

)ia

. (1-17)

Bell polynomials [1927/28] first appear in the study of set partitions. Currently it is known that they have
many relations to combinatorial numbers and applications to other areas; see, e.g., [Comtet 1974; Roman
1980]. We will mention an identity involving ζ ?

∗
(1, 1, . . . , 1; T ) in Remark 2.5, which is a variation of

the identity r ! = Br (0!, 1!, . . . , (r − 1)!).
This paper is organized as follows. We prepare some propositions in Section 2, and prove Theorem 1.1

and Corollary 1.3 in Section 3.
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2. Propositions

In this section, we introduce Propositions 2.1, 2.2, and 2.3, which will be used to prove Theorem 1.1.
We will omit the proofs of Propositions 2.1 and 2.2 because these are almost the same as Lemmas 4.7
and 4.8 in [Machide 2017], respectively, where some notation and terminology are modified.

Let [r ] denote the set {1, . . . , r}, and let A and B be its subsets. We denote by P(A) the set of
partitions of A (i.e., P([r ])= Pr ), and we define a subset PB(A) in P(A) by

PB(A) := {5= {P1, . . . , Pm} ∈ P(A) : Pi 6⊂ B for all i}.

For example, if (r, A, B)= (4, {1, 2, 3}, {3, 4}), then

P(A)= {1|2|3, 12|3, 13|2, 23|1, 123} and PB(A)= {13|2, 23|1, 123},

where a1 · · · ap |b1 · · · bq | · · · means a partition such as 12|3= {{1, 2}, {3}}.
Let 4= {P1, . . . , Pg} ∈ P(A), and let s = |A|. We will define a partition σA(4) in Ps as follows. Let

a1 < · · ·< as be the increasing sequence of integers such that

A = {a1, . . . , as}

and let σA be the permutation of Sr that is uniquely determined by

σ−1
A (i)= ai (i = 1, . . . , s) and σ−1

A (s+ 1) < · · ·< σ−1
A (r);

by the definition,
σA(A)= {σA(a1), . . . , σA(as)} = [s].

We then define
σA(4) := {σA(P1), . . . , σA(Pg)} ∈ Ps .

For convenience, σA(4)= φ if A =4= φ.
The propositions are as follows.

Proposition 2.1 [Machide 2017, Lemma 4.7]. For any subset B $ [r ], we have⊔
A⊂B
{4t1 : (4,1) ∈ P(A)×PB([r ] \ A)} = Pr , (2-1)

where t denotes the disjoint union, and
⊔

A⊂B ranges over all subsets in B which include φ.

Proposition 2.2 [Machide 2017, Lemma 4.8]. Let A and B be subsets such that A ⊂ B $ [r ], and let
(4,1) be in P(A)×PB([r ] \ A). Let the symbol • mean either ∗ or x:

(i) We define c?(φ)= 1. We have
c?(4∪1)= c?(4)c?(1). (2-2)

(ii) We define H•(φ, φ; T )= 1 and
1s = (1, . . . , 1︸ ︷︷ ︸

s

).

Suppose that k = (k1, . . . , kr ) is an index satisfying B = {a ∈ [r ] : ka = 1} (and k 6= 1r ). Then we have

H•(k, 4∪1; T )=
( h∏

i=1

ζ(kQi )

)
H•(1|A|, σA(4); T ), (2-3)
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where Q1, . . . , Qh are the blocks of 1 (i.e., 1= {Q1, . . . , Qh}), and

kQi =

∑
q∈Qi

kq (i = 1, . . . , h).

Note that kQi > 1 and ζ(kQi ) is not infinity for any i , because 1 ∈ PB([r ] \ A) and Qi 6⊂ B.

Proposition 2.3 [Machide 2017, Lemma 4.9]. For any positive integer r , we have∑
5∈Pr

c?(5)H∗(1r ,5; T )= ρ?
−1
(T r ), (2-4)

∑
5∈Pr

c?(5)Hx(1r ,5; T )= T r . (2-5)

The condition B 6= [r ] in the first two propositions is necessary for taking an element in PB([r ] \ A);
see [Machide 2017, Remark 4.6] for details.

To prove Proposition 2.3, we need Lemma 2.4, which is the star-version of [Machide 2017, Lemma 4.10]
in terms of Bell polynomials.

Lemma 2.4. For any positive integer r , we have∑
5∈Pr

c?(5)H∗(1r ,5; T )= Br
(
0! η(1; T ), 1! η(2; T ), . . . , (r − 1)! η(r; T )

)
. (2-6)

We will now prove Proposition 2.3, and then prove Lemma 2.4.

Proof of Proposition 2.3. We first recall the definition of ρ?, which is an R-linear endomorphism on R[T ]
determined by the equality

ρ?(eT t)= A(−t)−1eT t (2-7)

in the formal power series algebra R[T ][[t]] on which ρ? acts coefficientwise, see [Kaneko and Yamamoto
2018, Section 4], where

A(t)= exp
( ∞∑

m=2

(−1)mζ(m)
m

tm
)
.

Note that A(t) = eγ t0(1 + t), where γ is Euler’s constant. We can see from (2-7) that the inverse
endomorphism ρ?−1 exists and it satisfies

ρ?
−1
(eT t)= A(−t)eT t

= exp
(

T t +
∞∑

m=2

ζ(m)
m

tm
)
= exp

( ∞∑
m=1

η(m; T )
m

tm
)
. (2-8)

The exponential partial Bell polynomials can be defined by use of the generating function (see [Comtet
1974, Chapter 3]):

exp
( ∞∑

m=1

xm
tm

m!

)
=

∞∑
r=0

Br (x1, . . . , xr )
tr

r !
. (2-9)

Combining (2-8) and (2-9) with xm = (m− 1)! η(m; T ), we obtain

ρ?
−1
(eT t)=

∞∑
r=0

Br
(
0! η(1; T ), 1! η(2; T ), . . . , (r − 1)! η(r; T )

) tr

r !
,
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which, together with (2-6), gives

ρ?
−1
(eT t)=

∞∑
r=0

tr

r !

∑
5∈Pr

c?(5)H∗(1r ,5; T ).

Identity (2-4) follows from comparing the coefficients of tr on both sides of this equation. We will give
a proof of (2-5), which is a modification to that of (4-58) in [Machide 2017, Lemma 4.9].3 Let 3=3r

be the partition in Pr defined by

3r := 1|2| · · · |r = {{1}, {2}, . . . , {r}}.

We see from (1-14) and (1-15) that Hx(1r ,5; T )= 0 for any 5 ∈ Pr with 5 6=3, and so∑
5∈Pr

c?(5)Hx(1r ,5; T )= c?(3)Hx(1r ,3; T ).

Since

c?(3)=
r∏

i=1

0! = 1 and Hx(1r ,3; T )=
r∏

i=1

η(1; T )= T r ,

we obtain (2-5). �

We will need the partial exponential Bell polynomials to prove Lemma 2.4, which we denote by
Br,k(x1, . . . , xr−k+1) for integers r and k with 1 ≤ k ≤ r . Complete and partial Bell polynomials have
the relations

Br (x1, . . . , xr )=

r∑
k=1

Br,k(x1, . . . , xr−k+1). (2-10)

Let br,k(i1, . . . , ir−k+1) be the coefficients of Br,k(x1, . . . , xr−k+1) such that

Br,k(x1, . . . , xr−k+1)=
∑

i1,...,ir−k+1≥0
i1+i2+···+ir−k+1=k

1·i1+2·i2+···+(r−k+1)·ir−k+1=r

br,k(i1, . . . , ir−k+1)

r−k+1∏
a=1

x ia
a .

From combinatorial considerations, see, e.g., [Comtet 1974, Chapter 3], we know that br,k(i1, . . . , ir−k+1)

is the number of partitions with total k blocks in Pr which consist of ia blocks of size a for a ∈ [r−k+1].
For instance,

b4,2(1, 0, 1)= 4, b4,2(0, 2, 0)= 3, and B4,2(x1, x2, x3)= 4x1x3+ 3x2
2 ,

since we have four partitions with blocks of size 1 and 3 and three partitions with 2 blocks of size 2
when a set with four elements is divided into two blocks. We note that Br,k = Br,k(1, . . . , 1) are Stirling
numbers of the second kind; that is, they count the number of ways to partition a set of r elements into
k nonempty subsets.

3There is a misprint in the proof of [Machide 2017, (4-58)]: {{1}, . . . , {1}︸ ︷︷ ︸
n

} should be {{1}, . . . , {n}}.
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Proof of Lemma 2.4. For any partition 5 = {P1, . . . , Pg} in Pr and integer a in [r ], let Na(5) be the
number of the blocks whose cardinalities equal a; i.e.,

Na(5) := |{ j ∈ [g] : |Pj | = a}|.

We see from the definition that

g = N1(5)+ · · ·+ Nr (5) and r = 1 · N1(5)+ · · ·+ r · Nr (5),

so that

c?(5)H∗(1r ,5; T )=
g∏

i=1

(|Pi | − 1)! η(|Pi |; T )=
r∏

a=1

((a− 1)! η(a; T ))Na(5).

It follows from the combinatorial meaning of br,k(i1, . . . , ir−k+1) that∑
5∈Pr

Na(5)=ia(∀a)

1= br,k(i1, . . . , ir−k+1)

for nonnegative integers i1, . . . , ir−k+1 with
∑r−k+1

a=1 ia = k and
∑r−k+1

a=1 a · ia = r , and so∑
i1,i2,...,ir≥0

1·i1+2·i2+···+r ·ir=r

∑
5∈Pr

Na(5)=ia(∀a)

c?(5)H∗(1r ,5; T )

=

∑
i1,i2,...,ir≥0

1·i1+2·i2+···+r ·ir=r

( r∏
a=1

((a− 1)!η(a; T ))ia

) ∑
5∈Pr

Na(5)=ia(∀a)

1

=

r∑
k=1

∑
i1,i2,...,ir−k+1≥0

i1+i2+···+ir−k+1=k
1·i1+2·i2+···+(r−k+1)·ir−k+1=r

( r−k+1∏
a=1

((a− 1)!η(a; T ))ia

)
br,k(i1, . . . , ir−k+1)

=

r∑
k=1

Br,k
(
0! η(1; T ), 1! η(2; T ), . . . , (r − k)! η(r − k+ 1; T )

)
. (2-11)

We thus obtain (2-6), since the first line of (2-11) is equal to the left-hand side of (2-6) because of
[Machide 2017, (4-74)], or

Pr =
⊔

i1,i2,...,ir≥0
1·i1+2·i2+···+r ·ir=r

{5 ∈ Pr : Na(5)= ia,where a ∈ [r ]},

and since the last line of (2-11) is equal to the right-hand side of (2-6) because of (2-10). �

Remark 2.5. Bell polynomials are related to many combinatorial numbers. It may be worth noting the
relation to the unsigned Stirling numbers of the first kind, which can be expressed as

c(r, k)= Br,k(0!, . . . , (r − k)!).
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The unsigned Stirling numbers are defined as coefficients of the rising factorial; that is,

x(x + 1) · · · (x + r − 1)=
r∑

k=1

Br,k(0!, . . . , (r − k)!)xk . (2-12)

Substituting x = 1 in this equation and combining it with (2-10), we thus obtain

r ! = Br (0!, 1!, . . . , (r − 1)!). (2-13)
We also have

r !ζ ?
∗
(1r ; T )= Br

(
0! η(1; T ), 1! η(2; T ), . . . , (r − 1)! η(r; T )

)
, (2-14)

which follows from Hoffman’s identity (1-11) with k = 1r and (2-6). Equation (2-14) is a variation
of (2-13) in the sense that we can obtain (2-14) from (2-13) by replacing r ! in the left-hand side with
r ! ζ ?x(1r ; T ) and j ! in the right-hand side with j ! η( j + 1; T ). We note that (2-14) corresponds to an
identity in terms of symmetric functions (see [Hoffman 1997, Theorem 5.1] and [Kaneko and Yamamoto
2018, Lemma 5.1]):

r !hr = Br (0! p1, 1! p2, . . . , (r − 1)! pr ), (2-15)

where hi is the complete symmetric function of degree i and pi is the i-th power sum symmetric function.

3. Proof

We will need (3-1) to prove (1-13), which is the star version of [Machide 2017, (4-51)].

Proposition 3.1. For any index k,

ρ?
(∑
5∈Pr

c?(5)H∗(k,5; T )
)
=

∑
5∈Pr

c?(5)Hx(k,5; T ). (3-1)

We can prove (3-1) in a quite similar way, as we see below.

Proof of Proposition 3.1. Let B = { j ∈ [r ] : k j = 1} ⊂ [r ]. We suppose that B = [r ]. Then, k = 1r , and
so we can see from Proposition 2.3 that

ρ?
(∑
5∈Pr

c?(5)H∗(k,5; T )
)

(2-4)
= ρ?(ρ?

−1
(T r ))= T r (2-5)

=

∑
5∈Pr

c?(5)Hx(k,5; T ), (3-2)

which proves (3-1) for this case.
We suppose that B 6= [r ]. Let A be a subset in B. Then we have

{σA(4) :4 ∈ P(A)} = {4′ :4′ ∈ P|A|}, (3-3)

because the restriction of σA to A is a bijection from A to [|A|]. From (1-8) we easily see that c?(4)=
c?(σA(4)). Thus,∑

5∈Pr

c?(5)H∗(k,5; T )
Prop. 2.1
=

∑
A⊂B

∑
4∈P(A)

1∈PB([r ]\A)

c?(4∪1)H∗(k, 4∪1; T )

Prop. 2.2
=

∑
A⊂B

∑
1∈PB([r ]\A)

c?(1)
( h∏

i=1

ζ(kQi )

) ∑
4∈P(A)

c?(4)H∗(1|A|, σA(4); T )
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(3-3)
=

∑
A⊂B

∑
1∈PB([r ]\A)

c?(1)
( h∏

i=1

ζ(kQi )

) ∑
4′∈P|A|

c?(4′)H∗(1|A|, 4′; T )

(2-4)
=

∑
A⊂B

∑
1∈PB([r ]\A)

c?(1)
( h∏

i=1

ζ(kQi )

)
ρ?
−1
(T |A|),

where Q1, . . . , Qh mean the blocks of 1. Therefore,

ρ?
( ∑
5∈Pr

c?(5)H∗(k,5; T )
)
=

∑
A⊂B

∑
1∈PB([r ]\A)

c?(1)
( h∏

i=1

ζ(kQi )

)
ρ?(ρ?

−1
(T |A|))

=

∑
A⊂B

∑
1∈PB([r ]\A)

c?(1)
( h∏

i=1

ζ(kQi )

)
T |A|. (3-4)

By using Propositions 2.1 and 2.2, and (3-3), and by using (2-5) instead of (2-4), we can similarly prove∑
5∈Pr

c?(5)Hx(k,5; T )=
∑
A⊂B

∑
1∈PB([r ]\A)

c?(1)
( h∏

i=1

ζ(kQi )

)
T |A|. (3-5)

Equating (3-4) and (3-5), we obtain (3-1) for B 6= [r ], and complete the proof. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Recall the star-regularization theorem, the second identity of (1-7), which we tag
as (s-reg) here. We obtain∑

σ∈Sr

ζ ?x(kσ(1), . . . , kσ(r); T )
(s-reg)
= ρ?

(∑
σ∈Sr

ζ ?
∗
(kσ(1), . . . , kσ(r); T )

)
(1-11)
= ρ?

(∑
5∈Pr

c?(5)H∗(k,5; T )
)

(3-1)
=

∑
5∈Pr

c?(5)Hx(k,5; T ),

which proves (1-13). �

Finally, we deduce Corollary 1.3 from Theorem 1.1.

Proof of Corollary 1.3. Let k = (k1, . . . , kr ) be the index (k, 1, . . . , 1), and let 5= {P1, . . . , Pm} denote
a partition in Pr . Assume 1 ∈ P1 through this proof, which does not lose the generality. We see from
(1-14) that

Hx(k,5; T )=
{

0 if |Pi |> 1 for some i ≥ 2,
ζ(k+ |P1| − 1)T m−1 otherwise.

Since

m− 1=
m∑

i=2

|Pi | = r − |P1|
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if |Pi | = 1 for all i ≥ 2, it follows from (1-13) that

(r − 1)!
r−1∑
i=0

ζ ?x({1}
i , k, {1}r−1−i

; T )=
r∑

j=1

∑
5∈X j

( j − 1)! ζ(k+ j − 1)T r− j

=

r∑
j=1

( j − 1)! ζ(k+ j − 1)T r− j
∑
5∈X j

1, (3-6)

where
X j = {{P1, P2, . . . , Pr+1− j } ∈ Pr : |P1| = j, |P2| = · · · = |Pr+1− j | = 1}.

Noting the assumption 1 ∈ P1, we have

X j =
{
{[r ] \ {a2, . . . , ar+1− j }, {a2}, . . . , {ar+1− j }} : 2≤ a2 < · · ·< ar+1− j ≤ r

}
,

where [r ] \ {a2, . . . , ar+1− j } corresponds to P1 and {ai } (2 ≤ i ≤ r) correspond to Pi . Thus |X j | is the
number of (r− j)-combinations of {2, . . . , r}, or∑

5∈X j

1=
(r− j

r−1

)
. (3-7)

Combining (3-6) and (3-7), we obtain
r−1∑
i=0

ζ ?x({1}
i , k, {1}r−1−i

; T )=
r∑

j=1

1
(r − j)!

ζ(k+ j − 1)T r− j .

Replacing j with r − j in the right-hand side of this equation gives (1-16). �
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Matiyasevich-type identities for hypergeometric Bernoulli polynomials
and poly-Bernoulli polynomials

Ken Kamano

We give a Matiyasevich-type identity for hypergeometric Bernoulli polynomials and their generaliza-
tions. By using this identity, we also give an identity for poly-Bernoulli polynomials.

1. Introduction and main theorem

The Bernoulli polynomials Bn(x) are defined by the generating function

text

et − 1
=

∞∑
n=0

Bn(x)
n!

tn. (1)

When x = 0, the numbers Bn(0)= Bn are called Bernoulli numbers.
A well-known convolution identity for Bernoulli numbers is the following Euler’s formula:

n∑
i=0

(n
i

)
Bi Bn−i =−nBn−1− (n− 1)Bn (n ≥ 1).

There are many generalizations of this identity. For example, Dilcher [1996] gave an identity for sums
of m products of Bernoulli polynomials (m = 2, 3, . . .).

On the other hand, by a p-adic method, Miki [1978] proved the following interesting identity which
relates two types of convolutions of Bernoulli numbers:

n−2∑
i=2

βiβn−i −

n−2∑
i=2

(n
i

)
βiβn−i = 2Hnβn (n ≥ 4), (2)

where βm := Bm/m and Hm :=
∑m

i=1 1/ i . Many alternative proofs and generalizations of this identity
have been discovered by several authors; see, e.g., [Crabb 2005; Dilcher and Vignat 2016; Gessel 2005].
Matiyasevich [1997, Identity #0202] discovered the following identity, which also relates two types of
convolutions of Bernoulli numbers:

(n+ 2)
n−2∑
i=2

Bi Bn−i − 2
n−2∑
i=2

(n+2
i

)
Bi Bn−i = n(n+ 1)Bn (3)

for any n ≥ 4. We note that the identity (3) becomes trivial for odd n > 4. It is known that Miki’s and
Matiyasevich’s identities can be proved by using a difference operator [Pan and Sun 2006; Artamkin
2007]; see also [Sun and Pan 2006].

MSC2010: 11B68.
Keywords: Matiyasevich’s identity, poly-Bernoulli numbers.
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Let N be a positive integer and Q(t) ∈ t N R[[t]]. We introduce polynomials fN ,n(x; Q) ∈ R[x]
(n = 0, 1, 2, . . .) by the generating function

Q(t)

et −
∑N−1

i=0 t i/ i !
ext
=

∞∑
n=0

fN ,n(x; Q)
n!

tn.

When Q(t)= t N/N ! , the polynomials fN ,n(x; Q) are nothing but the hypergeometric Bernoulli poly-
nomials BN ,n(x), which were first introduced by Howard [1967a; 1967b]. We note that B1,n(x) is the
ordinary n-th Bernoulli polynomial Bn(x) defined by (1). We denote fN ,n(x; Q) by fn(x; Q) if there is
no fear of confusion.

By definition, we have

fn(x + y; Q)=
n∑

i=0

(n
i

)
fi (y; Q)xn−i (n ≥ 0), (4)

d
dx

fn(x; Q)= n fn−1(x; Q) (n ≥ 1). (5)

The purpose of this paper is to give a Matiyasevich-type identity for fN ,n by using the difference
operator. The following is the main theorem of this paper.

Theorem 1.1. Let N , m and n be integers with N , m ≥ 1 and n ≥ 0. For Qu(t) ∈ t N R[[t]] (1≤ u ≤ m),
we have(n+N+m−1

N

) ∑
i1,...,im≥0

i1+···+im=n

m∏
u=1

fN ,iu (x + yu; Qu)

=

∑
p1,...,pm≥0

(n+N+m−1
Pm+m−1

)
BN ,n−Pm+N (x)

×

(( m∏
u=1

fN ,pu (yu + 1; Qu)

)
−

∑
j1,..., jm≥0

0≤ j1+···+ jm≤N−1

m∏
l=1

( pl
jl

)
fN ,pl− jl (yl, Ql)

)
, (6)

where Pm means p1+ · · ·+ pm .

In Section 2, we give a proof of Theorem 1.1. In Section 3, we see that the identity (6) is a general-
ization of Matiyasevich’s identity (3). Moreover, as an example of identity (6), we give an identity for
poly-Bernoulli polynomials.

2. Proof of Theorem 1.1

For an integer N ≥ 1, let us define a kind of difference operator 1N as

1N f (x) := f (x + 1)−
N−1∑
i=0

f (i)(x)
i !

( f (x) ∈ R[[x]]), (7)

where f (i) is the i-th derivative of f . It is clear that 11 is the ordinary difference operator.
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Since

1N

(
ext

et −
∑N−1

i=0 t i/ i !

)
= ext ,

we have
1N BN ,n+N (x)=

(n+N
N

)
xn (n ≥ 0). (8)

By definition, we have

1N xm
=

{∑m
i=N

(m
i

)
xm−i for m ≥ N ,

0 for 0≤ m ≤ N − 1.

Hence {1N x N ,1N x N+1, . . .} provides a basis of the vector space R[x] over R. Therefore 1N f (x)= 0
implies that f (x) is a polynomial of degree N − 1 and we obtain the following lemma.

Lemma 2.1. Let f (x), g(x)∈R[x]. If 1N f (x)=1N g(x), then f (x) and g(x) agree in their coefficients
of x j for j ≥ N.

By the identity
∞∑

i=0

( i
p

)
x i
=

x p

(1− x)p+1 (p ≥ 0),

we have
∞∑

i1=0

( i1
p1

)
x i1 · · ·

∞∑
im=0

( im
pm

)
x im =

x p1+···+pm

(1− x)p1+···+pm+m

for m ≥ 1. By comparing the coefficients of both sides, we obtain the following lemma.

Lemma 2.2. For integers m ≥ 1, n ≥ 0 and p1, . . . , pm ≥ 0, we have∑
i1,...,im≥0

i1+···+im=n

( i1
p1

)
· · ·

( im
pm

)
=

( n+m−1
p1+· · ·+ pm+m−1

)
.

Now we prove our main theorem.

Proof of Theorem 1.1. For integers i1, . . . , im ≥ 0, we have by (7)

1N

( m∏
u=1

fiu (x+yu;Qu)

)

=

( m∏
u=1

fiu (x+1+yu;Qu)

)
−

N−1∑
j=0

1
j !

d j

dx j

m∏
u=1

fiu (x+yu;Qu)

=

m∏
u=1

( iu∑
pu=0

( iu
pu

)
f pu (yu+1;Qu)x iu−pu

)
−

∑
j1,..., jm≥0

0≤ j1+···+ jm≤N−1

f ( j1)
i1
(x+y1;Q1) · · · f ( jm)

im
(x+ym;Qm)

j1! · · · jm !
, (9)

where we have used the general Leibniz rule. For any i , j ≥ 0 we have, by (4) and (5),

f ( j)
i (x+y;Q)

j !
=

( i
j

)
fi− j (x+y;Q)=

( i
j

) i− j∑
p=0

( i− j
p

)
f p(y;Q)x i− j−p

=

i∑
p= j

( i
p

)( p
j

)
f p− j (y;Q)x i−p,
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where an empty sum is taken to be zero. Hence

∑
j1,..., jm≥0

0≤ j1+···+ jm≤N−1

f ( j1)
i1
(x + y1; Q1) · · · f ( jm)

im
(x + ym; Qm)

j1! · · · jm !

=

∑
j1,..., jm≥0

0≤ j1+···+ jm≤N−1

m∏
u=1

( iu∑
pu= ju

( iu
pu

)( pu
ju

)
f pu− ju (yu; Qu)x iu−pu

)
.

Therefore, by Lemma 2.2, we have∑
i1,...,im≥0

i1+···+im=n

1N

( m∏
u=1

fiu (x + yu; Qu)

)

= xn
∑

p1,...,pm≥0

( n+m−1
Pm+m−1

)( m∏
u=1

f pu (yu + 1; Qu)x−pu

)
− xn

∑
0≤ j1+···+ jm≤N−1

∑
p1,...,pm≥0

( n+m−1
Pm+m−1

) m∏
u=1

( pu
ju

)
f pu− ju (yu; Qu)x−pu

=

∑
p1,...,pm≥0

xn−Pm
( n+m−1

Pm+m−1

)( m∏
u=1

f pu (yu+1; Qu)−
∑

0≤ j1+···+ jm≤N−1

m∏
u=1

( pu
ju

)
f pu− ju (yu; Qu)

)
.

By the relation

xn−Pm =
1N BN ,n−Pm+N (x)(n−Pm+N

N

) ,

which comes from (8), we have, for n ≥ 0,

1N

∑
i1,...,im≥0

i1+···+im=n

m∏
u=1

fiu (x + yu; Qu)

=1N

∑
p1,...,pm≥0

1(n−Pm+N
N

) BN ,n−Pm+N (x)
( n+m−1

Pm+m−1

)

×

(( m∏
u=1

f pu (yu + 1; Qu)

)
−

∑
0≤ j1+···+ jm≤N−1

m∏
u=1

( pu
ju

)
f pu− ju (yu; Qu)

)
.

Applying Lemma 2.1 to this last identity, with

1(n−Pm+N
N

)( n+m−1
Pm+m−1

)
=

(n+N+m−1
Pm+m−1

)(n+N+m−1
N

) ,
we see that (6) holds up to a polynomial in x of degree N − 1. Finally, for any n ≥ 0, by replacing n by
n+ N in (6) and differentiating with respect to x both sides N times, we obtain (6) for n. �
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3. Identities for poly-Bernoulli polynomials

In this section, we give some identities derived from Theorem 1.1. Firstly, we give identities for the
ordinary Bernoulli polynomials.

Corollary 3.1. The following identities hold:

(n+2)
∑

i1+i2=n

Bi1(x)Bi2(x)=
(n+2

3

)
Bn−1(x)+2

∑
p≥0

( n+2
p+2

)
Bp Bn−p(x) (n≥ 1), (10)

(n+2)
∑

i1+i2=n

Bi1(y1)Bi2(y2)=
∑

p1,p2≥0

( n+2
p1+ p2+1

)
Bn−p1−p2+1

×
(
Bp1(y1+1)Bp2(y2+1)−Bp1(y1)Bp2(y2)

)
(n≥ 0). (11)

Proof. We apply N = 1, m = 2, Q1(t)= Q2(t)= t and y1 = y2 = 0 in Theorem 1.1. Since f1,n(x; t)=
Bn(x), we have

(n+ 2)
∑

i1+i2=n

Bi1(x)Bi2(x)=
∑

p1,p2≥0

( n+2
p1+ p2+1

)
Bn−p1−p2+1(x)(Bp1(1)Bp2(1)− Bp1 Bp2). (12)

It is well known that Bp(1)= Bp + δ1p (p ≥ 0), where δi j is Kronecker’s delta function. Therefore the
right-hand side of (12) equals(n+2

3

)
Bn−1(x)+ 2

∑
p≥0

( n+2
p+2

)
Bn−p(x)Bp,

and this proves (10). Equation (11) can be also proved by applying x = 0 in Theorem 1.1. �

Remark 3.2. (i) Matiyasevich’s identity (3) can be obtained by setting x = 0 in (10).

(ii) Agoh and Dilcher [2014, Theorem 1] gave an identity which includes (10). Pan and Sun [2006, Theo-
rem 2.1] gave an identity for

∑
Bi1(y1)Bi2(y2) with y1 6= y2, but our identity (11) is different from theirs.

For any integer k, poly-Bernoulli polynomials C (k)
n (x) are defined by the generating function

Lik(1− e−t)

et − 1
ext
=

∞∑
n=0

C (k)
n (x)
n!

tn
;

see, e.g., [Imatomi 2014, Chapter 6]. Here Lik(z) is the k-th polylogarithm defined by Lik(z)=
∑
∞

n=1 zn/nk .
The numbers C (k)

n (1) and C (k)
n (0) are poly-Bernoulli numbers B(k)n and C (k)

n introduced by Kaneko [1997]
and Arakawa and Kaneko [1999], respectively. When k = 1, it can be checked that C (1)

n (x) = Bn(x)
where Bn(x) are the ordinary Bernoulli polynomials defined by (1). When N = 1 and Q(t)=Lik(1−e−t),
we have fn(x; Q)= C (k)

n (x). Hence the following corollary is obtained from Theorem 1.1.

Corollary 3.3. For integers k1, k2 and n with n ≥ 0, we have

(n+ 2)
∑

i1+i2=n

C (k1)
i1
(x)C (k2)

i2
(x)=

∑
p1,p2≥0

( n+2
p1+ p2+1

)
Bn−p1−p2+1(x)(B(k1)

p1
B(k2)

p2
−C (k1)

p1
C (k2)

p2
).
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It is known that B(k)n = C (k)
n +C (k−1)

n−1 for n ≥ 0. Here, when n = 0, we set C (k−1)
−1 = 0 for any k. Hence

the identity above can be rewritten in the form using only C (k)
n :

Corollary 3.4. For integers k1, k2 and n with n ≥ 0, we have

(n+ 2)
∑

i1+i2=n

C (k1)
i1
(x)C (k2)

i2
(x)

=

∑
p1,p2≥0

( n+2
p1+ p2+1

)
Bn−p1−p2+1(x)(C (k1)

p1
C (k2−1)

p2−1 +C (k2)
p2

C (k1−1)
p1−1 +C (k1−1)

p1−1 C (k2−1)
p2−1 ).
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A family of four-variable expanders with quadratic growth

Mehdi Makhul

We prove that if g(x, y) is a polynomial of degree d that is not a polynomial of only y, then for any finite
set A ⊂ R

|X | �d |A|2, where X :=
{

g(a1, b1)− g(a2, b2)

b2− b1
: a1, a2, b1, b2 ∈ A

}
.

We will see this bound is also tight for some polynomial g(x, y).

1. Introduction

Throughout this paper, when we write X � Y, this means that X ≥ cY for some absolute constant c > 0.
The sum set of a subset A ⊂ R is defined as A+ A := {a+ b : a, b ∈ A}. The product set is defined

in a similar way, AA := {ab : a, b ∈ A}.
The Erdős–Szemerédi conjecture [1983] states that, for all ε > 0 and for any finite set A ⊂ N,

max{|A+ A|, |AA|} ≥ c(ε)|A|2−ε .

It is natural to extend this conjecture to other settings (such as R), and also to change the polynomials
F(x, y) = x + y and F(x, y) = xy defining the sum and product sets to other polynomials or rational
functions. In recent years much research has been done in this direction.

For many such functions, the images of sets are known to always grow. For example, the authors of
[Murphy et al. 2015] have studied several multivariable polynomials, including the function

G(x1, x2, x3, x4, x5)= x1(x2+ x3+ x4+ x5).

More precisely they showed that, for any finite set A ⊂ R,

|A(A+ A+ A+ A)| �
|A|2

log |A|
,

where A(A+ A+ A+ A) := {x1(x2+ x3+ x4+ x5) : xi ∈ A}.
In [Murphy et al. 2017], the authors studied a more complicated function, namely

H(x1, x2, x3, x4, x5)= (x1+ x2+ x3+ x4)
2
+ log x5.

Makhul was supported by the Austrian Science Fund (FWF): W1214-N15, Project DK9.
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They showed that, for any finite A ⊂ R,

|{(a1+ a2+ a3+ a4)
2
+ log a5 : ai ∈ A}| �

|A|2

log |A|
.

In the same circle of ideas, Balog and Roche-Newton [2015] investigated the rational function

F(x1, x2, x3, x4)=
x1+ x2

x3+ x4
,

showing that for any finite set A ⊂ R, we have

|F(A, A, A, A)| ≥ 2|A|2− 1.

Our result is a generalization of the method of [Murphy et al. 2015, Corollary 3.1], where they used the
Szemerédi–Trotter theorem to prove that for any finite set A ⊂ R∣∣∣∣ A− A

A− A

∣∣∣∣� |A|2.
A stronger version of this result, with a multiplicative constant 1, follows from an earlier geometric result
of Ungar [1982].

In this article we consider a certain class of rational functions of four variables. Suppose that g(x, y)
is a polynomial of two variables of degree d . Let

F(x1, x2, y1, y2)=
g(x1, y1)− g(x2, y2)

y2− y1

be a four-variable rational function in terms of x1, x2, y1, y2. The main theorem of this paper is the
following result concerning the growth of F.

Theorem 1.1. Suppose that g(x, y) is a polynomial of degree d , that it is not a polynomial of only y, and
that A ⊂ R is a finite set. Then

|X | �d |A|2, where X :=
{

g(a1, b1)− g(a2, b2)

b2− b1
: a1, a2, b1, b2 ∈ A

}
.

Notice that the following example shows that the condition that g(x, y) cannot be a polynomial of
only y is necessary.

Example 1.2. Suppose that g(x, y)= y2 and A = {1, 2, . . . , n}. Then

X =
{

b2
1− b2

2

b2− b1
: b1, b2 ∈ A

}
equals −{b2+ b1 : bi ∈ A} and has cardinality O(n).

On the other hand, it is known that for some polynomials g, the result of Theorem 1.1 is tight. For
example, if we define g(x1, y1)= x1 then Theorem 1.1 recovers the result of [Murphy et al. 2015; Ungar
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1982]. This is known to be tight, since for the set A = {1, . . . , N },∣∣∣∣ A− A
A− A

∣∣∣∣= O(N 2).

However, we are not aware of any other polynomials g for which the bound in Theorem 1.1 is tight, and
whether or not the bound can be improved for some particular g is an interesting question.

Our main result has some similarities with a result of Raz, Sharir and Solymosi [Raz et al. 2015] con-
cerning the growth of two-variable polynomials. Their result states that, if F is a two-variable polynomial
with bounded degree, then for any A, B ⊂ R with |A| = |B| = n,

|F(A, B)| �d n4/3,

provided that F satisfies a nondegeneracy condition. This condition states that F cannot be of one of the
following forms:

(1) F(u, v)= f (g(u)+ h(v)).

(2) F(u, v)= f (g(u) · h(v)).

This result gave an improvement upon an earlier result of Elekes and Ronyai [2000].

The Szemerédi–Trotter theorem. The essential ingredient used to prove our result is a corollary of the
Szemerédi–Trotter theorem [1983], which gives a bound for the number of lines in the plane containing
at least a fixed number of points k from a given finite set, that is, the number of k-rich lines.

Theorem 1.3. Let P be a finite set of points and let L be a finite set of lines. Then the number of
incidences I (P, L) := {(p, `) ∈ P × L : p ∈ `} has the upper bound

I (P, L)� |P|2/3|L|2/3+ |P| + |L|.

More precisely,
I (P, L)≤ 4|P|2/3|L|2/3+ 4|P| + |L|.

If each line in L appears at most d times for some constant d , then a generalization of the Szemerédi–
Trotter theorem states that

I (P, L)≤ 4d|P|2/3|L|2/3+ 4d|P| + d|L|.

The main idea of the following corollary is known in literature; we present here a slightly improved
version which we could not find in the literature in the form we need.

Corollary 1.4. Let k, n ≥ 2 be natural numbers and fix d ∈N such that 4d+1≤ k ≤ d
√

n. Let L be a set
of n lines in the plane, and let t≥k denote the number of points in the plane contained in at least k lines
of L, where each line appears with multiplicity at most d. Then

t≥k = Od

(
n2

k3

)
.

Notice that if L is a set of n lines in the plane such that each line appears at most d times for some
constant d , then for computing tk , k should be greater than or equal to 4d + 1. To see this, suppose that
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Pk is the set of k-rich points. Then we have k|Pk | ≤ 4d|Pk |
2/3
|L|2/3+ 4d|Pk | + d|L|. This implies

(k− 4d)|Pk | ≤ 4d|Pk |
2/3
|L|2/3+ d|L|.

Hence we may assume k ≥ 4d + 1, otherwise the inequality gives nothing.

Proof of Corollary 1.4. Let Pk be the set of k-rich points. Since each line appears at most d times we
have

k|Pk |

d
� |Pk |

2/3
|L|2/3+ |L|,

so k3
|Pk | � d3

|L|2 or otherwise |Pk | � d|L|/k. Plugging these bounds back into the Szemerédi–Trotter
theorem gives

I (Pk, L)� |L|2/3
(

d3
|L|2

k3

)2/3

+ |L|2/3
(

d|L|
k

)2/3

+ |L| +
d3
|L|2

k3 +
d|L|

k
.

Since k > 4d we can ignore last two summands and we obtain

I (Pk, L)�
d2
|L|2

k2 +

(
d
k

)2/3

|L|4/3+ |L|.

Note that we have
d2
|L|2

k2 ≥

(
d
k

)2/3

|L|4/3

if k ≤ d
√

n. �

2. Main results

Suppose that A, B ⊂ R are finite, and g(x1, y1) is a polynomial of degree d . We associate an element of
A× B with a line via

A× B 3 (a, b) ←→ la,b : y = bx − g(a, b).

Consider L = {`a,b : a, b ∈ A× B} as a multiset. Then L is a set of |A||B| lines, such that each line
appears at most d times. We also define the quantity

n(x, y)= |{(a, b) ∈ A× B : (x, y) ∈ la,b}|,

which is interpreted geometrically as the number of lines of L that pass through (x, y).

Lemma 2.1. Suppose that d ∈ N is fixed. Suppose that A, B, X ⊂ R are finite and satisfy

|X | ≤
|A||B|

4d2 ,

with 0 /∈ X. Then ∑
x∈X

∑
y

n2(x, y)� |A|3/2|B|3/2|X |1/2. (1)

Proof. The set of t-rich points is given by

Rt := {(x, y) ∈ R2
: n(x, y)≥ t}.
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We first show that

|Rt | �
|A|2|B|2

t3 .

We begin by bounding n(x, y) for a given point (x, y). For fixed b0 ∈ B we obtain a line with slope b0

passing through (x, y) and a one-variable polynomial equation g(a, b0). Since each line is determined
uniquely, by its slope and one point on it (for fixed b0 and (x, y) the equation g(a, b0)= 0 has at most
d distinct solutions), we have

n(x, y)≤ d|B|.

With a similar argument for fixed a ∈ A we obtain a univariate polynomial equation. Since each line is
determined uniquely by its y-intercept and one point on it we have

n(x, y)≤ d|A|.

These together imply

n(x, y)≤ d(min{|A|, |B|})≤ (d|A|d|B|)1/2 = d|L|1/2.

This implies there are no points incident to more than d
√
|L| lines in L, and by applying Corollary 1.4

we get

|Rt | �
|L|2

t3 ≤
|A|2|B|2

t3 .

Let 1> 2d be an integer to be specified later. We have∑
x∈X

∑
y

n2(x, y)≤
∑
x∈X

∑
n(x,y)≤1

n2(x, y)+
∑
(x,y)

n(x,y)>1

n2(x, y). (2)

The first term is bounded by 1|A||B||X |; in fact∑
x∈X

∑
n(x,y)≤1

n2(x, y)≤1
∑
x∈X

∑
y

n(x, y)=1|A||B|
∑
x∈X

1=1|A||B||X |. (3)

For the second term we have∑
(x,y)

n(x,y)>1

n2(x, y)=
∑
j≥1

∑
2 j−11≤n(x,y)≤2 j1

n2(x, y)

�

∑
j≥1

|A|2|B|2

(2 j1)3
· (2 j1)2 =

|A|2|B|2

1

∑
j≥1

1
2 j =

|A|2|B|2

1
. (4)

For an optimal choice, set

1=

⌈
(|A||B|)1/2

|X |1/2

⌉
> 2d.

Combining the bounds from (2) and (3) and (4), it follows that∑
x

∑
y

n2(x, y)� |A|3/2|B|3/2|X |1/2. �
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Proof of Theorem 1.1. Consider

|Y | =
∣∣∣∣{(x, a1, a2, b1, b2) : x =

g(a1, b1)− g(a2, b2)

b1− b2
, ai , bi ∈ A

}∣∣∣∣
=
∣∣{(x, a1, a2, b1, b2) : b1x − g(a1, b1)= b2x − g(a2, b2)

}∣∣
=

∑
x∈X

∑
y

n2(x, y)� |A|3|X |1/2.

On the other hand, |Y | ≥ |A|4. Thus we obtain

|A|4� |A|3|X |1/2, and hence |X | � |A|2. �

Notice that the proof of Theorem 1.1 fails when g(x, y) is a polynomial of only y. In fact if g(x, y)=
h(y) for some polynomial h, then L = {la,b : a, b ∈ A × B} is a set of |A||B| lines such that each
line appears at least |A| times (and at most d|A| times). On the other hand the generalization of the
Szemerédi–Trotter theorem and its corollary hold when each line appears at most d times, where d is
independent of |P| and |L| in Theorem 1.3.

Corollary 2.2. Suppose that P = A× A is a set of |A|2 points. Let l be the y-axis. Suppose that B(P)
is the set of all bisectors determined by P. Then |B ∩ l|� |A|2.

Proof. By a simple calculation we can see that the equation of the bisector determined by two points
(x1, y1) and (x2, y2) in the (s, t)-plane is

s =
2(x1− x2)t + (x2

2 − x2
1)+ (y

2
2 − y2

1)

2(y2− y1)
.

Inserting t = 0, the hitting point has coordinate(
0,
(x2

2 − x2
1)+ (y

2
2 − y2

1)

2(y2− y1)

)
.

Setting g(x, y)=− 1
2(x

2
+ y2), we obtain the result by Theorem 1.1. �

As we mentioned, this bound is tight for some polynomials, for instance g(x, y)= x . However, we
expect that if F(x1, x2, y1, y2) is a generic rational function satisfying the condition of Theorem 1.1 we
have |X |� |A|3.
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The Lind–Lehmer Constant for Zr
2

� Zs
4

Michael J. Mossinghoff, Vincent Pigno and Christopher Pinner

For a finite abelian group the Lind–Lehmer constant is the minimum positive logarithmic Lind–Mahler
measure for that group. Finding this is equivalent to determining the minimal nontrivial group determi-
nant when the matrix entries are integers.

For a group of the form G D Zr
2
� Zs

4
with jGj � 4 we show that this minimum is always jGj � 1,

a case of sharpness in the trivial bound. For G D Z2 � Z2n with n � 3 the minimum is 9, and for
G D Z3 �Z3n the minimum is 8. Previously the minimum was only known for 2- and 3-groups of the
form G D Zk

p or Zpk . We also show that a congruence satisfied by the group determinant when G D Zr
p

generalizes to other abelian p-groups.

1. Introduction

Recall that for a polynomial F.x1; : : : ;xk/ in ZŒx1; : : : ;xk �, one defines the traditional logarithmic
Mahler measure by

m.F /D

Z 1

0

� � �

Z 1

0

log jF.e2� ix1 ; : : : ; e2�ixk /j dx1 � � � dxk :

Lind [2005] viewed Œ0; 1�k as the group .R=Z/k and generalized the Mahler measure to arbitrary compact
abelian groups. In particular, for the finite abelian group

G D Zn1
� � � � �Znk

(1)

and F 2 ZŒx1; : : : ;xk �, we define the logarithmic Lind–Mahler measure by

mG.F /D
1

jGj

n1X
x1D1

� � �

nkX
xkD1

log jF.e2�ix1=n1 ; : : : ; e2� ixk=nk /j:

Writing
wn WD e2� i=n;

we plainly have

mG.F /D
1

jGj
log jMG.F /j;

This work was supported in part by a grant from the Simons Foundation (#426694 to Mossinghoff).
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where

MG.F / WD

n1Y
j1D1

� � �

nkY
jkD1

F.wj1
n1
; : : : ; wjk

nk
/ 2 Z:

The close connection of the Lind–Mahler measure to the group determinant was explored by Vipismakul
[2013]. Recall that for a finite group G D fg1; : : : ;gN g one assigns a variable xg for each g in G and
defines the group determinant, DG.xg1

; : : : ;xgN
/, to be the determinant of the N �N matrix whose

ij -th entry is xgi g�1
j

, a homogeneous polynomial of degree N in the xg. From Dedekind’s factorization
of the group determinant of an abelian group in terms of the group characters [Dedekind 1968, pp. 420–
421] (see also [Lang 1978, p. 89], or the historical survey [Conrad 1998]), it is readily seen that for a
group of the form (1) we have

DG.ag1
; : : : ; agN

/DMG.F /; F.x1; : : : ;xk/ WD
X

gD.m1;:::;mk/2G

ag x
m1

1
� � �x

mk

k
: (2)

Analogous to the classical Lehmer problem [1933], we can ask for the minimal positive mG.F /, and
to this end we define the Lind–Lehmer constant for G by

�.G/ WDminfjMG.F /j> 1 W F 2 ZŒx1; : : : ;xk �g:

We use jMG.F /j rather than mG.F / or jMG.F /j
1=jGj so that we are dealing with integers; of course

the minimal positive logarithmic measure will be .1=jGj/ log�.G/. As Lind observed, for jGj � 3 we
always have the trivial bound

�.G/� jGj � 1; (3)

achieved, for example, by

F.x1; : : : ;xk/D�1C

kY
iD1

�
xi

ni � 1

xi � 1

�
:

Lind also showed that for prime powers p˛ with ˛ � 1 we have

�.Zp˛ /D

�
3 if p D 2,
2 if p � 3,

(4)

achieved with x2C xC 1 if p D 2 and xC 1 if p � 3. Lind’s results for cyclic groups were extended
by Kaiblinger [2010] and Pigno and Pinner [2014] so that �.Zm/ is now known if 892 371 480−m. The
value for the p-group Zk

p was recently established by De Silva and Pinner [2014], but little is known for
direct products involving at least one term Zp˛ with ˛ � 2.

Here we are principally interested in the case of 2-groups

G D Z2˛1 � � � � �Z2˛k : (5)

It was shown in [DeSilva and Pinner 2014] that for all k � 2

�.Zk
2/D 2k

� 1; (6)
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a case of equality in (3). We establish two main results regarding the Lind–Lehmer constant for groups
of the form (5). First, we prove that equality occurs in (3) whenever G is a 2-group whose factors are all
Z2 or Z4.

Theorem 1.1. If G D Zr
2

or Zs
4

or Zr
2
�Zs

4
, then

�.G/Dmaxf3; jGj � 1g:

Second, we show that this is not true for all 2-groups: if we allow ˛i � 3 in (5) then (3) need not be
sharp.

Theorem 1.2. For n� 3

�.Z2 �Z2n/D 9;

achieved with F.x;y/D y2CyC 1.

Crucial to our proofs of these statements will be a congruence satisfied by MG.F / when G is an
abelian p-group. This generalizes a result [DeSilva and Pinner 2014, Lemma 2.1] for groups of the form
G D Zk

p ; see also [Vipismakul 2013, Theorem 2.1.2].

Lemma 1.3. If p is a prime and
G D Zp˛1 � � � � �Zp˛k ; (7)

then
MG.F /� F.1; : : : ; 1/jGj mod pk :

By the correspondence (2) this gives us a congruence satisfied by the group determinant, when the
variables are integers and G is of the form (7),

DG.ag1
; : : : ; agN

/�

�X
g2G

ag

�N

mod pk :

Notice that for the p-group (7) we have

MG.F /D

˛1Y
t1D0

� � �

˛kY
tkD0

Nt1;:::;tk
.F /;

where

Nt1;:::;tk
.F /D

p˛1Y
j1D1

.j1;p
˛1 /Dpt1

� � �

p˛kY
jkD1

.jk ;p
˛k /Dptk

F.w
j1

p˛1
; : : : ; w

jk

p˛k
/ 2 Z:

Since j1�wj
p˛ jp < 1 and the Nt1;:::;tk

.F / are integers, we have

Nt1;:::;tk
.F /� F.1; : : : ; 1/'.p

˛1�t1 /���'.p˛k�tk / mod p: (8)

In particular if p jF.1; : : : ; 1/ we have p jNt1;:::;tk
.F / for all ti and jGjpk jMG.F /. So, in view of (3),

we can assume for the p-group (7) that p−F.1; : : : ; 1/ for any F achieving �.G/.
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Thus, in the case of 2-groups we can assume an F with minimal measure has F.1; : : : ; 1/ odd, and
by Lemma 1.3 we see that

MG.F /� 1 mod 2k : (9)

Note this immediately produces (6).
Similarly for 3-groups we can assume that an F with minimal measure has 3−F.1; : : : ; 1/ and

MG.F /�˙1 mod 3k . This produces another case of equality in (3):

�.Zk
3/D 3k

� 1;

as observed in [DeSilva and Pinner 2014]. For G D Z3 �Z3n , we have MG.F /�˙1 mod 9 and so we
immediately obtain the minimal measure for an additional family of 3-groups.

Theorem 1.4. For n� 1

�.Z3 �Z3n/D 8;

achieved with F.x;y/D yC 1.

Section 2 of this article is devoted to the proof of Lemma 1.3, Section 3 establishes Theorem 1.1, and
Section 4 proves Theorem 1.2.

2. Proof of Lemma 1.3

We proceed by induction on ˛1C � � �C˛k . If G D Zp then, as in (8), we can just use that jwp � 1jp D

p�1=.p�1/ < 1; since MG.F / 2 Z and MG.F / � F.1/p mod .1�wp/ we see that MG.F / � F.1/p

mod p.
Set

g.x1; : : : ;xk/D

p˛1Y
l1D1

� � �

p˛kY
lkD1

F.x
l1

1
; : : : ;x

lk

k
/

and let I be the ideal in ZŒx1; : : : ;xn� generated by x
p˛1

1
� 1; : : : ;x

p˛k

k
� 1. Expanding, we have

g.x1; : : : ;xk/D
X

0�`1<p˛1

� � �

X
0�`k<p˛k

a.`1; : : : ; `k/x
`1

1
� � �x

`k

k
mod I:

We set

S WD

p˛1X
j1D1

� � �

p˛kX
jkD1

g.w
j1

p˛1
; : : : ; w

jk

p˛k
/

D

X
0�`1<p˛1

� � �

X
0�`k<p˛k

a.`1; : : : ; `k/

p˛1X
j1D1

� � �

p˛kX
jkD1

w
j1`1

p˛1
� � �w

jk`k

p˛k

D a.0; : : : ; 0/p˛1C���C˛k :

If .j1;p
˛1/D � � � D .jk ;p

˛k /D 1, then for these '.p˛1/ � � �'.p˛k / values we have

g.w
j1

p˛1
; : : : ; w

jk

p˛k
/DMG.F /:
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Suppose that .j1;p
˛1/D pt1 ; : : : ; .jk ;p

˛k /D ptk with at least one tj ¤ 0, and with ti D ˛i for exactly
L� 0 of the ti . Suppose without loss of generality that ti D ˛i for any i D 1; : : : ;L and ti < ˛i for any
i DLC 1; : : : ; k. For these '.p˛LC1�tLC1/ � � �'.p˛k�tk / values, applying the induction hypothesis to
G0 D Zp˛LC1�tLC1 � � � � �Zp˛k�tk , we have

g.w
j1

p˛1
; : : : ; w

jk

p˛k
/DMG0.F.1; : : : ; 1;xLC1; : : : ;xk//

pt1C���Ctk

D .F.1; : : : ; 1/p
.˛LC1�tLC1/C���C.˛k�tk /

C hpk�L/p
t1C���Ctk

� F.1; : : : ; 1/jGj mod pk�LC˛1C���C˛LCtLC1C���Ctk :

Hence these .p� 1/k�Lp.˛LC1�tLC1�1/C���C.˛k�tk�1/ terms contribute

'.p˛LC1�tLC1/ � � �'.p˛k�tk /F.1; : : : ; 1/jGj mod p˛1C���C˛k

to S . Thus

0� '.p˛1/ � � �'.p˛k /MG.F /C .p
˛1C���C˛k �'.p˛1/ � � �'.p˛k //F.1; : : : ; 1/jGj

� .p� 1/kp˛1C���C˛k�k.MG.F /�F.1; : : : ; 1/jGj/ mod p˛1C���C˛k

and the statement follows. �

3. Proof of Theorem 1.1

To prove Theorem 1.1, we require the following lemma.

Lemma 3.1. Suppose that F 2 ZŒx1; : : : ;xn�, and let I denote the ideal of ZŒx1; : : : ;xn� generated by
x

n1

1
� 1; : : : ;x

nk

k
� 1. Then F.w

j1
n1
; : : : ; w

jk
nk
/D 0 for all 1� ji � ni if and only if F 2 I .

Proof. Plainly any F in I will have F.w
j1
n1
; : : : ; w

jk
nk
/D 0 for all 0� ji < ni . Conversely, suppose that

F.w
j1
n1
; : : : ; w

jk
nk
/D 0 for all 0� ji < ni . Clearly any F can be reduced mod I to a polynomial of degree

less than ni in each xi :

F.x1; : : : ;xk/D

n1�1X
t1D0

� � �

nk�1X
tkD0

a.t1; : : : ; tk/x
t1

1
� � �x

tk

k
mod I:

Since
Pni�1

jiD0
w
.ti�Ti /ji
ni

D 0 if ti 6� Ti mod ni (and ni otherwise) we have

a.T1; : : : ;Tk/D
1

n1 � � � nk

n1�1X
j1D0

� � �

nk�1X
jkD0

F.wj1
n1
; : : : ; wjk

nk
/ w�T1j1

n1
� � �w�Tkjk

nk
:

So a.T1; : : : ;Tk/D 0 for all 0� Ti < ni and F D 0 mod I . �

We now proceed to the proof of our first principal result.

Proof of Theorem 1.1. Suppose that G D Z2˛1 � � � � �Z2˛k with 2˛i D 4 for 1 � i � s and 2˛i D 2 for
sC 1� i � k. We write r D k � s. In view of (4) and (6) we may assume that k � 2 and s � 1. Suppose
that F.x1; : : : ;xk/ has

1< jMG.F /j< jGj � 1D 2kCs
� 1;
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where

MG.F /D
Y

u1;:::;usD˙1;˙i
usC1;:::;ukD˙1

F.u1; : : : ;uk/: (10)

Suppose that one of the nonunits F.u1; : : : ;uk/ in the product (10) has at least one of its uj complex,
say u1 D˙i , and set G0 D Z2˛2 � � � � �Z2˛k . Plainly we may write

MG.F /DAB;

with

A WDMZ2�G0.F /; B WDMG0.F.i;x2; : : : ;xk/F.�i;x2; : : : ;xk//:

From (9) we know that MG.F / and A, and hence B, are all congruent to 1 mod 2k. Also B will be
of the form jaC ibj2 and hence cannot be negative. Since it contains a nonunit we have B > 1; hence
B � 2kC1. If A¤ 1 then jAj � 2k�1 and jMG.F /j � .2

k�1/.2kC1/D 4k�1� jGj�1, so we must
have AD 1. Thus if F.u1;u2; : : : ;uk/ is a nonunit with uj D˙i , we may assume that the F.u1; : : : ;uk/

with uj D˙1 are units. We have two possibilities for the F.u1; : : : ;uk/ in the product (10):

(a) There is at least one nonunit F.u1; : : : ;uk/ with some uj D˙i .

(b) F.u1; : : : ;uk/ is a unit whenever any of the uj D˙i .

With I denoting the ideal generated by the x2 j̨

j � 1, and splitting the x1-dependence into even and
odd exponents p.x1/D ˛.x

2
1
/Cx1ˇ.x

2
1
/, we can write

F.x1; : : : ;xk/D
X

0�"2;:::;"s�3;
0�"1;"sC1;:::;"k�1

a."1; "2; : : : ; "k/.x
2
1/x

"1

1
x
"2

2
� � �x

"k

k
mod I:

Since F.1; : : : ; 1/D
P

a."1; "2; : : : ; "k/.1/ is odd, we know that at least one of the a."1; "2; : : : ; "k/.1/

is odd. Replacing F by x
ı1

1
� � �x

ın
n F with 0� ı1; ısC1; : : : ; ık � 1 and 0� ı2; : : : ; ıs � 3, and reducing

mod I , to reshuffle the a."1; : : : ; "k/.x
2
1
/, and replacing F by �F as necessary, we can assume that

F.1; : : : ; 1/� 1 mod 4; a.0; : : : ; 0/.1/ is odd: (11)

Case (a): Suppose we have nonunits in the product (10) with complex uj . Reordering and taking xj 7!

˙x1xj for 2 � j � s and xj 7! ˙xj for s < j � k as necessary, we assume that the first of these
is 1 D F.i; 1; : : : ; 1/. If (after the transformations) there are other nonunits with complex entries in
positions other than the first, by reordering and substituting xj with xj x2 as necessary for j � 3, we
may assume that 2 D F.˙i; i;˙1; : : : ;˙1/. If there are still nonunits with uj D˙i , j � 3, then, after
reordering and substitutions, we have a nonunit 3 D F.˙i;˙i; i;˙1; : : : ;˙1/. We repeat this, h times
say, until there are no new nonunits with a complex uj , j > h. That is, for some 1 � h � s, we have
h nonunits j DF.aj1; : : : ; ajk/ with ajj D i , aj` D˙i for 1� ` < j and aj` D˙1 for h< `� k, and
F.u1; : : : ;uk/ is a unit whenever u` D˙i with h< `� s if h< s. Adjusting as above we can assume
that (11) holds.
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Since the F.˙1;u2; : : : ;uk/ are all units, with F.1; : : : ; 1/D 1, and

a.0; : : : ; 0/.1/D
2

jGj

X
u2;:::;usD˙i;˙1

u1;usC1;:::;ukD˙1

F.u1; : : : ;uk/

is odd, plainly the F.˙1;u2; : : : ;uk/ must all be 1. Applying Lemma 3.1, we may therefore assume
that

F.x1; : : : ;xk/D 1C .x2
1 � 1/

X
0�"2;:::;"s�3;

0�"1;"sC1;:::;"k�1

a."1; "2; : : : ; "k/x
"1

1
x
"2

2
� � �x

"k

k
:

Notice that the F.˙i;u2; : : : ;uk/ 2 ZŒi � will all have odd real part and even imaginary part. More-
over, writing � D .1 � i/, where �2 j 2, we have uj � 1 mod � for any uj D ˙1 or ˙i , and the
F.˙i;u2; : : : ;uk/ must all be congruent mod �3 in ZŒi �. Since j�j2 D 2�1=2, plainly two units
˙1;˙i in ZŒi � cannot be congruent mod �3 unless they are equal. If h � 2 then we know that the
F.˙i;˙1;u3; : : : ;uk/ will all be units and so must be all 1 or all �1. Replacing F by x2

1
F we can

assume that they are all 1. Applying Lemma 3.1 we get

F.x1; : : : ;xk/D 1C .x2
1 � 1/.x2

2 � 1/
X

0�"3;:::;"s�3;
0�"1;"2;"sC1;:::;"k�1

a."1; "2; : : : ; "k/x
"1

1
x
"2

2
� � �x

"k

k
:

Likewise, if h � 3 we have that F.˙i;˙i;˙1;u4; : : : ;uk/ are all units and congruent to 1 mod 4, so
these must all equal 1. Applying the lemma and repeating up to F.˙i; : : : ;˙i;˙1;uhC1; : : : ;uk/, we
deduce that

F.x1; : : : ;xk/D 1C

hY
jD1

.x2
j � 1/

X
0�"hC1;:::;"s�3;

0�"1;:::;"h;"sC1;:::;"k�1

a."1; "2; : : : ; "k/x
"1

1
x
"2

2
� � �x

"k

k
:

If s > h, we further have that the F.˙i; : : : ;˙i;uhC2; : : : ;uk/ are all units. If h � 2 they will all be
congruent to 1 mod 4 and so must all equal 1. If hD 1 then they are all 1 or all �1 and, by replacing F

by x2
1
F if necessary, we may assume they are all 1. Writing

F.x1; : : : ;xk/D 1C

hY
jD1

.x2
j � 1/

�
f .xhC2; : : : ;xk/CxhC1g.xhC2; : : : ;xk/ mod .x2

hC1C 1/
�
;

separating into real and imaginary parts and applying Lemma 3.1 to f and g, we get that f;gD 0 mod I .
Repeating for each variable, we find that

F.x1; : : : ;xk/D 1C

hY
jD1

.x2
j � 1/

sY
jDhC1

.x2
j C 1/

X
0�"1;:::;"k�1

a."1; "2; : : : ; "k/x
"1

1
x
"2

2
� � �x

"k

k
:

Suppose that there are t � 1 conjugate pairs of nonunits F.aj1; : : : ; ajk/D j . Then plainly

j D aj C ibj ; aj � 1 mod 2s; bj � 0 mod 2s: (12)
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Trivially we have jj j2 � 5, and if t � r C s then

jMG.F /j � 5t
� 5r

� 5s > 2r
� 4s
� 1;

so we can assume that

t � r C s� 1: (13)

If t � r then, using xi 7! �xi as necessary for 1, and for the subsequent j reordering and using the
transformation x` 7! x`xj if uj D�1 to remove any u`D�1 with `> j , we can assume that the r -tuples
.usC1; : : : ;uk/ achieving the j take the form

.1; : : : ; 1/; .˙1; 1; : : : ; 1/; .˙1;˙1; 1; : : : ; 1/; : : : ; .

t�1‚ …„ ƒ
˙1; : : : ;˙1; 1; : : : ; 1/

(here we are focusing on the uj with j > s, which recall are taking the values ˙1). In particular,
F.u1; : : : ;uk/ will be a unit if uj D�1 for any sC t � j � k. (If s � 2, the units will all be 1; if s D 1

we may need to take x2
1
F to make the value when usCt D�1 and hence the rest equal 1.) Successively

applying the lemma again, we find

F.x1; : : : ;xk/D 1C

hY
jD1

.x2
j � 1/

sY
jDhC1

.x2
j C 1/

kY
jDsCt

.xj C 1/R

with

RD
X

0�"1;:::;"sCt�1�1

a."1; "2; : : : ; "sCt�1/x
"1

1
x
"2

2
� � �x

"sCt�1

sCt�1
:

Hence we obtain

j D aj C ibj ; aj � 1 mod 2sCrC1�t ; bj � 0 mod 2sCrC1�t :

From (13) and (12) this is plainly also valid if t > r . Thus, we have

jMG.F /j D j1j � � � jt j � .2
rCsC1�t

� 1/2t > 22t.rCsC1=2�t/
� 22.rCs�1=2/

� 2rC2s

for r � 1. If r D 0 and t � 2 then we have s � 2, and from (12) we obtain

jMG.F /j � .2
s
� 1/2t > 22t.s�1=2/

� 24s�2 > 4s:

Finally if t D 1 and r D 0 then, since F.i; 1; : : : 1/ and its conjugate are the only nonunits, we know that
F.˙i;�1;u3; : : : ;uk/ are all units and so equal 1. Hence we can add an extra factor .x2C 1/ to get

jMG.F /j � .2
sC1
� 1/2 > 22s:

Case (b): Since a.0; : : : ; 0/.1/ is odd, we know that a.0; : : : ; 0/.�1/ is odd. Since the F.˙i;u2; : : : ;uk/

are all units and

a.0; : : : ; 0/.�1/D
1

jGj=2

X
u1D˙i

u2;:::;usD˙i;˙1
usC1;:::;ukD˙1

F.u1; : : : ;uk/
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is odd, plainly the F.˙i;u2; : : : ;uk/ must all be 1 or all be �1. Replacing F by x2
1
F we assume

F.˙i;u2; : : : ;uk/D 1. Applying Lemma 3.1 to the real and imaginary parts we can assume that

F.x1; : : : ;xk/D 1C .x2
1 C 1/

X
0�"2;:::;"s�3;

0�"1;"sC1;:::;"k�1

a."1; "2; : : : ; "k/x
"1

1
x
"2

2
� � �x

"k

k
:

Notice that all the F.˙1;u2; : : : ;uk/ satisfy F.˙1;u2; : : : ;uk/� F.1; : : : ; 1/� 1 mod �3. Hence if
s > 1, the units F.˙1;˙i;u3; : : : ;uk/ are all 1. Applying the lemma and repeating we obtain

F.x1; : : : ;xk/D 1C

sY
jD1

.x2
j C 1/

X
0�"1;:::;"k�1

a."1; "2; : : : ; "k/x
"1

1
x
"2

2
� � �x

"k

k
:

Hence we have
MG.F /DM

Zk
2
.f /;

where
f .x1; : : : ;xk/D 1C 2s

X
0�"1;:::;"k�1

A."1; : : : ; "k/x
"1

1
� � �x

"k

k
:

Suppose that there are t elements f .˙1; : : : ;˙1/ that are not ˙1. If t � k C s � 1 then plainly
jMG.F /j � 3t � 3kCs�1 > 2kCs since k C s � 3, so we assume that t � k C s � 2. Sending
xj 7! �xj we assume that one of them is f .1; : : : ; 1/ D 1. If t > 1 then, reordering and mapping
x` to x`xj if we have ` > j with u` D uj D �1, we can assume that the remaining values are
2 D f .�1; 1; : : : ; 1/, 3 D f .a31; a32; 1; : : : ; 1/, : : : , t D f .at1; : : : at.t�1/; 1; : : : ; 1/. If t � k

then we will have f .u1; : : : ;uk/D 1 whenever uj D�1 for some t � j � k, and applying the lemma
we find

f .x1; : : : ;xk/D 1C 2s
kY

jDt

.xj C 1/
X

0�"1;:::;"t�1�1

A."1; : : : ; "t�1/x
"1

1
� � �x

"t�1

t�1
:

Thus
j � 1 mod 2sCk�tC1

(with this trivially holding if k � t � 1), and

jMG.F /j � .2
sCkC1�t

� 1/t :

For t D 1 this gives
jMG.F /j � 2sCk

� 1D jGj � 1;

and for t � 2

jMG.F /j � 2t.sCkC1=2�t/
� 22sC2k�3

� 2sCk : �

4. Proof of Theorem 1.2

Using ĵ .x/ to denote the j -th cyclotomic polynomial and recalling, see [Apostol 1970; Lehmer 1930],
that for j > k the resultant satisfies jRes. ĵ ; ˆk/j D q'.k/ if j D kq˛ for some prime q and 1 otherwise,
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we see that

MZ2�Z2n .1CyCy2/DMZ2n .ˆ3.y//
2
D

� nY
jD0

jRes.ˆ3; ˆ2j /j

�2

D 9:

Let G D Z2 �Z2n . Reducing mod x2� 1, we can write our F.x;y/ in ZŒx;y� in the form

F.x;y/DA0.y
2/CxA1.y

2/CyA2.y
2/CxyA3.y

2/:

Plainly,
MG.F.x;y//DMZ2n .F.1;y//MZ2n .F.�1;y//;

where each of these measures is a product of nC 1 integers,

MZ2n .f .y//D

nY
jD0

Nj .f /; Nj .f / WD Res.f;ˆ2j /;

that is,
N0.f /D f .1/; N1.f /D f .�1/; N2.f /D f .i/f .�i/D jf .i/j2;

and, writing wj WD e2�i=2j, for any j D 3; : : : ; n, we have

Nj .f /D

2jY
kD1
k odd

f .wk
j /D

2j�1Y
kD1
k odd

f .wk
j /f .�w

k
j /D jRj .f /j

2;

where

Rj .f / WD

2j�1Y
kD1

k�1 mod 4

f .wk
j /f .�w

k
j / 2 ZŒi �; 3� j � n:

Note Nj .f / and Rj .f / represent the norms of f .wk
j / from Q.wj / to Q and Q.i/ respectively, and

since they are algebraic integers they will be in Z and ZŒi �, respectively.
Since j1�wj j2 D 2�1='.2j /, for all j D 3; : : : ; n we have Nj .F.˙1;y//� F.1; 1/2

j�1

mod 2, and
if MG.F / < 22nC2 we can assume F.1; 1/ and all the Nj .F.˙1;y// are odd. Note that for all the j � 2

we have
Nj .F.˙1;y//D jaC ibj2 D a2

C b2
� 1 mod 4:

If jMG.F /j < 9 then jMZ2n .F.1;y//j or jMZ2n .F.�1;y//j must be 1. Replacing x with �x as
necessary we assume that

1< jMZ2n .F.1;y//j< 9; jMZ2n .F.�1;y//j D 1:

Since
F.1; 1/DA0.1/CA1.1/CA2.1/CA3.1/

is odd, we can assume that at least one of the Ai.1/ is odd. Replacing F by xF or yF or xyF and
reducing by x2� 1 as necessary, we may assume that A0.1/ is odd. Replacing y by �y and F by �F

as necessary, we may further assume that jF.1; 1/j � jF.1;�1/j and F.1; 1/ > 0.
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Since
F.1;�1/DA0.1/CA1.1/�A2.1/�A3.1/;

F.�1; 1/DA0.1/�A1.1/CA2.1/�A3.1/;

F.�1;�1/DA0.1/�A1.1/�A2.1/CA3.1/;

we have
A0.1/D

1
4

�
F.1; 1/CF.1;�1/CF.�1; 1/CF.�1;�1/

�
;

A1.1/D
1
4

�
F.1; 1/CF.1;�1/�F.�1; 1/�F.�1;�1/

�
;

A2.1/D
1
4

�
F.1; 1/�F.1;�1/CF.�1; 1/�F.�1;�1/

�
;

A3.1/D
1
4

�
F.1; 1/�F.1;�1/�F.�1; 1/CF.�1;�1/

�
:

Observe that

F.1; wk
j /F.1;�w

k
j /D

�
A0.w

2k
j /CA1.w

2k
j /

�2
�w2k

j

�
A2.w

2k
j /CA3.w

2k
j /

�2
and

F.�1; wk
j /F.�1;�wk

j /D
�
A0.w

2k
j /�A1.w

2k
j /

�2
�w2k

j

�
A2.w

2k
j /�A3.w

2k
j /

�2
differ by

4
�
A0.w

2k
j /A1.w

2k
j /�w2k

j A2.w
2k
j /A3.w

2k
j /

�
2 4ZŒwj�1�:

Hence Rj .F.1;y// and Rj .F.�1;y// differ by an element of 4ZŒwj�1� and, since both are in ZŒi �, we
conclude that

Rj .F.1;y//�Rj .F.�1;y// 2 4ZŒi �:

Since Nj .F.�1;y//D 1, we have Rj .F.�1;y//D˙1 or ˙i , and either Rj .F.1;y//DRj .F.�1;y//

and Nj .F.1;y//D 1, or Nj .F.1;y//� .4� 1/2 D 9.
Thus if jMG.F /j < 9 then we must have Nj .F.1;y// D Nj .F.�1;y// D 1 for j D 3; : : : ; n and

MG.F /DMZ2�Z4
.F /: By Theorem 1.1 and Lemma 1.3, we have jMZ2�Z4

.F /j � 7 and MZ2�Z4
.F /�

1 mod 4, and so
MG.F /DMZ2�Z4

.F /D�7:

Since Nj .f /� 1 mod 4 for j � 2 we must have jF.1; 1/F.1;�1/j D 7 and N2.F.1;y//D 1 and

F.1; 1/D 7; F.1;�1/; F.�1;˙1/D˙1; F.˙1;˙i/D˙1 or ˙ i;

with Rj .F.1;y//DRj .F.�1;y//D˙1 or ˙i for j D 3; : : : ; n.
We have

A0.1/D
1
4

�
F.1; 1/CF.1;�1/CF.�1; 1/CF.�1;�1/

�
D

1
4
.7˙ 1˙ 1˙ 1/

and, since A0.1/ is odd, we must have F.1;�1/ D F.�1;˙1/ D �1 and A0.1/ D 1 and A1.1/ D

A2.1/DA3.1/D 2. Hence

F.x;y/D 1C 2xC 2yC 2xyC .y2
� 1/

�
B0.y

2/CxB1.y
2/CyB2.y

2/CxyB3.y
2/
�
:

Thus
F.1; i/D 3C 4i � 2

�
B0.�1/CB1.�1/C iB2.�1/C iB3.�1/

�
;

F.�1; i/D�1� 2
�
B0.�1/�B1.�1/C iB2.�1/� iB3.�1/

�
;
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and since F.˙1; i/ are units with odd real part and difference in 4ZŒi � they must both be 1 or �1. By
replacing F by y2F as necessary, we may assume F.˙1; i/ D �1. Solving, we obtain B0.�1/ D

B1.�1/D B2.�1/D B3.�1/D 1 and

F.x;y/D�1C .1Cx/.1Cy/.1Cy2/C .y4
� 1/

�
C0.y

2/CxC1.y
2/CyC2.y

2/CxyC3.y
2/
�
:

Therefore

F.1; w3/F.1;�w3/D .1C 2i � 2C0.i/� 2C1.i//
2
� 4i.1C i �C2.i/�C3.i//

2

and
F.�1; w3/F.�1;�w3/D .�1� 2C0.i/C 2C1.i//

2
� 4i.C2.i/�C3.i//

2:

Since both are units and are members of 1C 4ZŒi �, these must both equal 1. However, their difference

4
�
.i � 2C0.i//.1C i � 2C1.i//� i.1C i � 2C3.i//.1C i � 2C2.i//

�
2 4.1C i C 2ZŒi �/

is not zero. �
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Lattices with exponentially large kissing numbers

Serge Vlădut,

We construct a sequence of lattices {Lni ⊂ Rni } for ni →∞ with exponentially large kissing numbers,
namely, log2 τ(Lni ) > 0.0338 · ni − o(ni ). We also show that the maximum lattice kissing number τ l

n in
n dimensions satisfies log2 τ

l
n > 0.0219 · n− o(n) for any n.

1. Introduction

In this paper we consider lattice packings of spheres in real n-dimensional space Rn and their kissing
numbers. Recall that the maximum kissing number is known only in a handful of dimensions, the largest
being n = 24 for which the Leech lattice 324 gives the optimal kissing number τ(324)= 196560. Recall
also that the random choice procedure guarantees, see [Chabauty 1953; Shannon 1959; Wyner 1965],
the existence of nonlattice packings Pn with

log2 τ(Pn)

n
≥ log2

2
√

3
' 0.2075 . . . .

More precisely, it gives the existence of local arrangements of spheres touching one sphere which can be
included then into a nonlattice packing. Note also that the upper bound of Kabatiansky and Levenstein
[1978] is

log2 τ(Pn)

n
≤ 0.4041 . . . .

However, for lattice packings this procedure does not work, and as far as we know, no reasonable lower
bound for the maximum lattice kissing number τ l

n is known for n →∞. For instance, the Barnes–
Wall lattices BWn with n = 2m give the quasipolynomial bound τ l

n ≥ nc log n , i.e., log τ l
n ≥ c log2 n,

which can hardly be characterized as “reasonable”. The main purpose of the present paper is to give an
exponential lower bound for τ l

n (however, these lattices are worse than nonlattice packing guaranteed by
random choice). This is achieved by applying Constructions D and E from [Barnes and Sloane 1983]
and [Bos et al. 1982], respectively, to codes from [Ashikhmin et al. 2001] having exponentially many
light vectors. In order to apply Constructions D and E we need specific good curves (the curves in the
Garcia–Stichtenoth towers [1995; 1996] do not perfectly match our construction) and some Drinfeld
modular curves [Gekeler 2001; Elkies 2001] perfectly suit our purposes.

Our main result is:

MSC2010: 11H31, 11H71, 14G15, 52C17.
Keywords: lattices, algebraic geometry codes, kissing numbers, Drinfeld modular curves.
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Theorem 1.1. We have
log(τ l

N )

N
≥

1
20

(
1− 2

31 log 33
)
−

2+ 2 log N
N

(1-1)

for N = 5 · 210n+2 and any n ≥ 2,

log(τ l
N )

N
≥

1
24

(
1− 2

63 log 65
)
−

2+ 2 log N
N

(1-2)

for N = 3 · 212n+3 and any n ≥ 2,

log(τ l
N )

N
≥

1
28

(
1− 2

127 log 129
)
−

2+ 2 log N
N

(1-3)

for N = 7 · 214n+2 and any n ≥ 2, where

1
20

(
1− 2

31 log33
)
'0.033727 . . . , 1

24

(
1− 2

63 log65
)
'0.033700 . . . , 1

28

(
1− 2

127 log129
)
'0.0317709 . . . .

All our logarithms are binary.

Corollary 1.2. We have
log(τ l

n)

n
≥ c0 (1-4)

for some c0 > 0 and any n ≥ 1.

The exact value of c0 is not clear, but c0 = 0.02 is probably sufficient.

It is possible to ameliorate the constants slightly, if we do not insist on the effectiveness of results:

Theorem 1.3. We have

log(τ l
N )

N
≥

1
20

( 21
31 − log 1024

1023

)
− o(1)' 0.033800 . . .− o(1) (1-5)

for N = 5 · 210n+2,

log(τ l
N )

N
≥

1
24

( 17
21 − log 4096

4095

)
− o(1)' 0.033715 . . .− o(1) (1-6)

for N = 3 · 212n+3,

log(τ l
N )

N
≥

1
28

( 113
127 − log 16384

16383

)
− o(1)' 0.031774 . . .− o(1) (1-7)

for N = 7 · 214n+2.

In fact, the implied functions in o(1) terms can be made explicit, but they decrease slowly and their
precise calculation is not justified.

Note also that using other finite fields Fq with a square q one can obtain infinitely many series of similar
lattices in the corresponding dimensions, but for all of them the ratio log(τ l

N )/N is less than 0.03.

Corollary 1.4. We have

lim sup
n→∞

log(τ l
n)

n
≥

1
20

( 21
31 − log 1024

1023

)
.
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For the lower limit we can prove:

Theorem 1.5. Let A = log 4096
4095 . We have then

lim inf
n→∞

log(τ l
n)

n
≥

1
504(17− 21A)δ0 ' 0.021937 . . . , (1-8)

where δ0 ' 0.6506627 . . . is the unique root of the equation

21H(δ)= 2δ(4+ 21A+ (17− 21A)δ)

in the interval (0.5, 1).

One can think that c0 in (1-4) can be chosen rather close to that value.

The rest of the paper is organized as follows: in Section 2 we recall some basic definitions and results
on lattices and error-correcting codes. Section 3 is devoted to Constructions D and E from [Barnes
and Sloane 1983] and [Bos et al. 1982], respectively, while Section 4 recalls and slightly modifies the
constructions from [Ashikhmin et al. 2001]. We describe some known good curve families in Section 5
and prove our results in Section 6.

2. Preliminaries

In this section we recall some basic definitions and results on lattices and linear error-correcting codes.

2A. Lattice packings. A sphere packing is a configuration of nonintersecting equal open spheres in RN.
Let d be the diameter of the spheres; then the distance between any two sphere centers is at least d.
Thus a packing is a set of points P in RN such that the minimum distance between any two of them is
at least d. If P is an additive subgroup of RN, it is called a lattice or a lattice packing; below we are
concerned mainly with such packings. For any packing P its density 1(P) is defined as the fraction of
space covered by spheres (which can be defined as the upper limit of this fraction inside a large cube
whose size tends to infinity).

If L is a lattice then a choice of basis gives an embedding eL :Z
n
→Rn; its matrix is called a generating

matrix of the lattice. For the diameter of spheres one can take d(L)=min{|v| : v ∈ L , v 6= 0}. For any
packing P ⊂ Rn the ratio ν(P)=1(P)/Vn is called its center density, where

Vn =
πn/2

0(n/2+ 1)

is the volume of the unit sphere.
The ratio λ(P) = log1(P)/n is called the density exponent of P; thus, 1(P) = 2−λ(P)n. The

Minkowski bound, which is a corollary of the Minkowski–Hlawka theorem, says that some lattice fam-
ilies {Ln ⊂ Rn

} satisfy λ(Ln) ≤ 1; however, no construction is known for such families. On the other
hand, the Kabatiansky–Levenstein bound says that λ(Pn)≥ 0.599 . . .− o(1) for any family of packings
{Pn ⊂ Rn

}. Families of packings with lim infn→∞ λ(Pn) <∞ are called asymptotically good. It is not
easy to construct such families, especially for lattice packings. The best known results in that direction
use algebraic geometry codes and similar constructions; see [Litsyn and Tsfasman 1987; Rosenbloom
and Tsfasman 1990].
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Another important parameter of a packing P ⊂ Rn is its kissing number

τ(P)=max
x∈P
|{y ∈ P : |x − y| = d}|.

A random choice argument gives, see [Chabauty 1953; Shannon 1959], the existence of (nonlattice)
packings Pn ⊂ Rn with

lim inf
n→∞

log τ(Pn)

n
≥ log

2
√

3
' 0.2075 . . . ,

whereas the Kabatiansky–Levenstein bound [1978] for τ says that

lim sup
n→∞

log τ(Pn)

n
≤ 0.4041 . . . .

We will say that a family of packings Pn ⊂ Rn is τ -asymptotically good whenever

lim sup
n→∞

log τ(Pn)

n
> 0.

Since the random choice argument does not work for lattices, it is not clear whether τ -asymptotically
good lattice families exist, and our main purpose is to prove their existence.

2B. Error-correcting codes. Let us recall several facts about (linear error-correcting) codes; for addi-
tional information we refer to [MacWilliams and Sloane 1977a; 1977b]; see also [Tsfasman et al. 2007,
Chapter 1]. We fix a finite field Fq .

A q-ary linear code is simply a subspace C ⊆ Fn
q , where n is called the length of C , and the ratio

R = k/n for k = dim C is called the rate of C . The minimum distance d = d(C) is the minimum
Hamming weight wt(c), i.e., the number of nonzero coordinates, of c ∈ C \ {0}; the ratio δ = d/n is
called the relative minimum distance. We say in this case that C is an [n, k, d]q -code. A choice of basis
in C defines a linear map ϕC : F

k
q → Fn

q and its matrix is called a generating matrix of C . A set of codes
C1 ⊂ · · · ⊂Cm ⊆ Fn

q is called a nested family. For C ⊆ Fn
q its dual code C⊥ is the orthogonal complement

of C :
C⊥ = {v ∈ Fn

q : v · c = 0 for all c ∈ C},

where v · c = v1c1+ · · ·+ vncn; C⊥ is an [n, n− k, d⊥]q -code for some d⊥.

A random choice argument shows that asymptotically for n→∞ and fixed δ the rate R of the best
linear codes satisfies the Gilbert–Varshamov bound

R = Rq(δ)≥ 1− Hq(δ)= 1−
δ log(q − 1)+ H(δ)

log q
,

where H(δ)=−δ log δ− (1− δ) log(1− δ) is the binary entropy function.

2C. Algebraic geometry codes. All our curves here and below are smooth projective absolutely irre-
ducible over a finite field Fq ; let X be such a curve of genus g, let D be an Fq-rational divisor of
degree a ≥ g− 1, and let, see, e.g., [Tsfasman et al. 2007, Section 2.2],

L(D)= { f ∈ Fq(X) : ( f )+ D ≥ 0}
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be the associated function space. For a set P={P1, . . . , Pn} of Fq -rational points on X with P∩Supp D=∅
the evaluation map

evP : L(D)→ Fn
q , evP( f )= ( f (P1), . . . , f (Pn)),

is well-defined. Whenever a < n, this map is injective and its image is a linear q-ary code C(X, D,P)
of length n, dimension k ≥ a− g+ 1 (by the Riemann–Roch theorem), and distance d > n− a (since
the number of zeros of a function cannot exceed the number of poles). If D = a P0 for an Fq-rational
point P0 6= Pi , i = 1, . . . , n, we get a nested family of codes Ca for a = n− 1, n− 2, . . . , g− 1. In the
particular case g = 0, a ≥ 0, P0 =∞ (i.e., X is the projective line), we get nested Reed–Solomon codes
with parameters n = q, k = a+ 1, d = q − a.

Algebraic geometry codes (AG-codes below) have good parameters when the ratio of the number
of Fq-rational points on the curve to its genus is high enough. The Drinfeld–Vlădut, bound says that
asymptotically this ratio cannot exceed

√
q − 1. For q = p2h there exist many families of curves over Fq

attaining this bound (see, e.g., Section 5 below), which implies the lower bound

Rq(δ)≥ 1−
1

√
q − 1

for the best asymptotical rate of Fq -linear codes; see, e.g., [Tsfasman et al. 2007, Section 4.5]. If q ≥ 49,
it improves (on some interval) the Gilbert–Varshamov bound.

One can dispense with the above condition P ∩ Supp D =∅ without spoiling the parameters of the
codes C(X, D,P); for instance, if Pi ∈ Supp D we can replace the term f (Pi ) in evP by fi (Pi ) with
fi = t s

i f , where ti is some fixed local parameter at Pi and s is a suitable integer (see [Tsfasman et al.
2007, Section 4.1, pp. 194–197], where the H - and P-constructions are discussed).

3. Constructions D and E

We recall now two constructions from [Barnes and Sloane 1983] and [Bos et al. 1982] (see also Chapter 8
in [Conway and Sloane 1988]), which permit us to construct good lattices from good codes.

3A. Construction D. Let C0 = Fn
2 ⊃ C1 ⊃ · · · ⊃ Ca , a ≥ 1 be a finite decreasing family of linear binary

codes with parameters [n, ki , di ] for Ci , i = 0, . . . , a, where di = 4i (we will need only the case n= 22a+1

and thus δa = da/n = 1
2 ). We can and will consider C0 as a subset of Rn. We choose a basis c1, . . . , cn

for Fn
2 such that c1, . . . , cki span Ci for i = 0, . . . , a and define L as the lattice in Rn generated by (2Z)n

and the vectors {c j · 21−i
} for i = 1, . . . , a, ki+1+ 1≤ j ≤ ki . Then we have [Barnes and Sloane 1983,

Theorem 1]:

Proposition 3.1. The lattice L has minimum distance dL = 2 and its center density satisfies

δ ≥ 2K−n

for K =
∑a

i=1 ki .

Note that we will need only the statement dL = 2, which is easy in view of the minimum distances di

of Ci for i = 0, . . . , a.
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3B. Construction E. Here we need more elaborate techniques.
First we define T -lattices as follows [Barnes and Sloane 1983; Bos et al. 1982]; see also [Litsyn and

Tsfasman 1987]. A lattice 3⊂ Rm is a T -lattice if it satisfies the following four conditions:

(i) The minimal vectors of 3 span 3.

(ii) There is a linear map T from Rm to Rm that sends all the minimal vectors of 3 into elements of 3
which have norm R2 and are at a distance R from 3 for some R > 0.

(iii) There is a positive integer ν dividing m and an element A ∈ Aut(3) such that

(iii)1 T ν
=

1
2 A and

(iii)2
1
2(A

2
− A)=

∑ν−1
i=0 ai T i , ai ∈ Z.

We set b = m/ν and q = 2b.

(iv) 3⊆ T3 and

(iv)1 [T3 :3] = q .

It follows from (iii)1 that T = t P , where t = 21/ν and P is an orthogonal transformation satisfying
Pν = A. If M is the minimal square norm of 3, we have t = R/

√
M , and from (iv)1 we get

(v) tm
= | det T | = 2−b

= q−1.

Note that the square lattice Z2 is a T -lattice with T = (1/
√

2)Rπ/4 for the rotation Rπ/4 through the
angle π/4= 45◦.

Construction E produces from a T -lattice, together with a nested family of linear codes C0 = Fn
2b ⊃

C1 ⊃ · · · ⊃ Ca over F2b , another T -lattice L ⊂ Rmn in the following way.
We suppose that the parameters of the code Ci , 0≤ i ≤a are [n, ki , di ] and we choose a basis c1, . . . , cn

for Fn
2b such that c1, . . . , cki span Ci for i = 0, . . . , a. Define then the lattices3i as follows. Let vi , . . . , vm

be minimal vectors of 3 that span 3. Then T vi , . . . , T vm span T3 and T3/3 is an elementary abelian
group of order q , so that there are b vectors u(1)i = T vr1, . . . , u(1)b = T vrb , for appropriate r1, . . . , rb, such
that T3/3 is isomorphic to the F2-span of u(1)i , . . . , u(1)b . Let

3i = T i3, u(i)j = T ivr j , j = 1, . . . , b, for all i ∈ Z.

The lattice 3i has minimal square norm t2i M , and dist(u(1)i ,3i )≥ t i−1 R.
Define now the maps σi : Fq →3i by

σi

( b∑
j=1

α jω j

)
=

b∑
j=1

α j u
(i)
j

for some generators ω1, . . . , ωb for Fq over F2 and any α j ∈ F2, j = 1, . . . , b; those maps define the
maps σi : F

n
q → Rmn.

The construction. The lattice L ⊂ Rmn consists of all vectors of the form

x = l +
a∑

i=1

bki∑
j=1

α
(i)
j σi (c j )
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for l ∈3n , α(i)j ∈ F2. Note that L is a T -lattice, since it inherits T from 3; the parameter t remains the
same, while b becomes nb; see also Proposition 3.2 below. The main property of this Construction E,
which coincides with Construction D for 3= 2Z, is [Barnes and Sloane 1983, Theorem 3]:

Proposition 3.2. The lattice L is fixed under the transformation Â, which applies A simultaneously to
each component, and its minimum distance equals√

M for M = min
i=1,...,a

{M, di R2i M1−i
}.

Theorem 3 of [Barnes and Sloane 1983] gives also the density of L , but we do not need it.

Applying Construction E to Z2 with a = 1, M = 4, R =
√

2 and the single parity check [2, 1, 2]q
code C1, we get successfully the T -lattices D4, E8,316, 3̄32 in the corresponding dimensions; one can
take this description as a definition for those lattices. Moreover, applying Construction E to D4 and the
single parity check [m,m − 1, 2]4 code for any m ≥ 2 we get a T -lattice 3̃4m in 4m dimensions. The
Leech lattice 324 is also a T -lattice [Bos et al. 1982, p. 177]; note, however that 324 6= 3̃24.

4. Codes with many light vectors

Recall the following principal result of [Ashikhmin et al. 2001].
Denote by Ad is the number of minimum weight vectors in an [n, k, d]q-code Cn , and let Es for

s ∈ N, s ≥ 3 be the function

Es(δ)= H(δ)−
2s

2s − 1
− log

22s

22s − 1
, (4-1)

which has two zeros 0 < δ1 < δ2 < 1− 2−2s and is positive for δ1 < δ < δ2. In particular, for s = 3,
q = 64, δ = 1

2 we have

E3(0.5)= 1
7 − log 64

63 ' 0.1201 . . . , 1
64 E3(0.5)' 0.001877 . . . .

Theorem 4.1. Let q = 22s, s = 3, 4, . . . be fixed. Then for any δ1 < δ < δ2 there exists a sequence of
binary linear codes {Cn} of length n = q N, N →∞ and distance dn = nδ/2 such that

log Adn

n
≥

Es(δ)

22s − o(1). (4-2)

Theorem 4.1 is a simple consequence of the following result concerning AG codes. Consider a curve X
of genus g over Fq , where q = 22s, s ≥ 3. Suppose that N ≥ (2s

−1)g, where N = |X (Fq)| is the number
of Fq-rational points of X (e.g., X is a curve from Subsections 5A, 5B below). Let D be an Fq -rational
positive divisor of degree a > 0, and let C = C(X, D, X (Fq)) be the corresponding AG code of length N,
dimension k(C)≥ a− g+ 1, and distance d(C)≥ N − a.

Proposition 4.2. Let δ = (N − a)/N satisfy the inequality δ1 < δ < δ2. Then there exists an Fq -rational
positive divisor with deg(D) = a such that the corresponding AG code C has the minimum distance
d = N − a = δN and for the number Ad of vectors of weight d we have

log Ad ≥ N Es(d)− o(N ).
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Recall that this is proved using an averaging procedure applied to the set of linearly equivalent classes
of Fq-rational positive divisors D with deg(D)= a which form the set JX (Fq) of Fq-rational points on
the Jacobian JX of X . This result is based on the estimate

log |JX (Fq)|

g
= q + (

√
q − 1) log

q
q − 1

+ o(1). (4-3)

In order to deduce Theorem 4.1 from Proposition 4.2 we take the binary simplex code, that is, the
linear code dual to the [n = q − 1, n− 2s, 3] Hamming code and lengthen each vector of this simplex
code by a zero coordinate. This gives a binary linear [q, 2s, q/2]-code C0 in which every nonzero vector
has Hamming weight q/2. Using then a linear bijection ϕ : Fq → C0 and replacing every coordinate by
its image, we obtain from C(D) a linear binary code Cn in Theorem 4.1.

Remark. Proposition 4.2 is valid for any even prime power q ≥ 49, but we do not use this below. Note
also that its proof guarantees in general only the existence of one divisor class D satisfying the conclusion
(and not of exponentially many such divisor classes); however, when the bound is strictly bigger than
k(C), we get exponentially many such divisor classes in JX (Fq).

Effective version. Note that at the expense of a small decline in parameters the above estimate can be
made completely explicit, namely, we have:

Theorem 4.3. Let q = ph be a prime power, let X be a curve of genus g over Fq , let S ⊆ X (Fq), |S| = N,
and let a ∈ N with 1≤ a ≤ N − 1. Then there exists an Fq -rational positive divisor D ≥ 0, deg(D)= a,
such that the corresponding AG code C = C(X, D, S) has the minimum distance d = N − a = δN and
we have

Ad ≥

(N
a

)
(
√

q + 1)2g .

The proof simply replaces the asymptotic inequality (4-3) by a simpler effective inequality

|JX (Fq)| ≤ (
√

q + 1)2g.

Applying Stirling’s formula, we get:

Corollary 4.4. We have
log Ad

N
≥ H(δ)−

2g
N

log(
√

q + 1)−
log(2πad)

2N
−

1
12ad

.

In particular, if N = 2a = 2d ≥ (
√

q − 1)g, then

log Ad

N
> 1−

2 log(
√

q + 1)
√

q − 1
−

2+ 2 log N
N

.

Note, that Theorem 4.3 and Corollary 4.4 are applicable, e.g., for g = 0, where we get an estimate for
the Reed–Solomon codes.

5. Some good families of curves

We recall now some constructions of curves over Fq with many rational points. Let q be a prime power
(we will be interested only by the case q = p2h), and let

Nq(g) :=max{|C(Fq)| : C is a curve of genus g over Fq}.
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Define then

A(q) := lim sup
g→∞

Nq(g)
g
≤
√

q − 1, A−(q) := lim inf
g→∞

Nq(g)
g

as the corresponding upper and lower asymptotic quantities. We begin with some families attaining the
bound for A(q) (the Drinfeld–Vlădut, bound).

5A. Garcia–Stichtenoth tower. The tower Xn , n = 1, 2, . . ., from [Garcia and Stichtenoth 1996] is
defined recursively by the equations

xq
i+1+ xi+1 =

xq
i

xq−1
i + 1

for i = 1, . . . , n− 1. (5-1)

Therefore, the function field Tn := Fq2(Xn) of the curve Xn is given by Tn = Fq2(x1, . . . , xn), where xi ,
i = 1, . . . , n, are related by (5-1). The main result of [Garcia and Stichtenoth 1996] gives the parameters
of that tower.

Theorem 5.1. We have for the genus gn = g(Xn)

gn = (qm
− 1)2 for n = 2m,

gn = (qm
− 1)(qm−1

− 1) for k = 2m− 1,

and the number N (n)= |Xn(Fq2)| of Fq2-rational points of Xn satisfies

N (n)≥ (q − 1)qn.

Let us then describe an optimal tower of Drinfeld curves closely related to the tower Xn .

5B. Drinfeld modular curves. The general reference for Drinfeld modular curves is [Gekeler 1986], but
we use a particular case from [Elkies 2001]; see also [Gekeler 2001].

A tower of Drinfeld curves. For any field L ⊇ Fq , we denote by L{τ } the noncommutative L-algebra
generated by τ and satisfying the relation τa = aqτ for all a ∈ L . Let A = Fq [T ]; then a rank-2 Drinfeld
module ϕ over A is an Fq -algebra homomorphism from A to L{τ } such that

ϕ(T )= l0+ l1τ + l2τ
2
= l0+ gτ +1τ 2

∈ L{τ }, (5-2)

with nonzero discriminant 1=1(ϕ). The map γ : A→ L taking any a ∈ A to the constant term of a is
a ring homomorphism; thus, γ (T )= l0 in (5-2).

If ϕ,ψ are two Drinfeld modules, an isogeny from ϕ to ψ is an element u ∈ L{τ } such that

u ◦ϕa = ψa ◦ u

for all a ∈ A, and its kernel is the A-submodule of L given by

ker(u) := {x ∈ L : u(x)= 0},

which is of finite dimension over Fq unless u = 0. In particular, if u = ϕa then u is an isogeny from
ϕ to itself, called multiplication by a, and its kernel is isomorphic with (A/a A)2 as an A-module for
γ (a) 6= 0; elements of ker(a) are called a-torsion points of ϕ. If γ is not injective then ker γ = Ab for
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some irreducible b ∈ A; ϕ is then said to be supersingular if ker(b)= {0}, and for deg(b)= 1 we have
ϕb = gτ +1τ 2 and ϕb is supersingular if and only if g = 0. An isomorphism between Drinfeld modules
is simply an element u ∈ L∗, and it multiplies each coefficient li in (5-2) by u1−q i

. Let

J (ϕ)=
gq+1

1
.

Then ϕ and ψ with the same γ are isomorphic over L if and only if J (ϕ)= J (ψ). Thus, we can refer to
the J -line as the Drinfeld modular curve X (1) for a given γ . Moreover, for N ∈ A with γ (N ) 6= 0, we
have Drinfeld modular curves X0(N ) parametrizing Drinfeld modules with a choice of torsion subgroup
G ' A/N A (and fixed γ ). If γ (T ) ∈ Fq , we may regard the curves X (1) and X0(N ) as the “reduction
mod (T − γ (T ))” of the corresponding modular curves for γ (T )= T. Below we suppose that γ (T )= 1
and we say that a point on X0(N ) is supersingular if the corresponding Drinfeld module is supersingular;
such points are Fq2-rational.

Let us consider the case N = T k+1; for the curve X̃k := X0(T k+1) of genus g̃k = g(X̃k) we have
[Gekeler 2001, Example 10.2]

g̃k =
(qm
− 1)2

q − 1
for k = 2m,

g̃k =
(qm+1

− 1)(qm
− 1)

q − 1
for k = 2m+ 1,

Ñ (k)=
∣∣X̃k(Fq2)

∣∣≥ qk
+ 4 for k ≥ 2;

thus,

Ñ (k)≥ (q − 1)g̃k for k ≥ 2

and the number of supersingular points on X̃k equals qk.

Elkies [2001] proved that the function field K̃k = Fq(X̃k), k ≥ 2, is given by

K̃k = Fq(x1, . . . , xk) with x j+1(x j+1+ 1)q−1(x j + 1)q−1
= xq

j , j = 1, . . . , k− 1,

and the set of qk supersingular points of X̃k(Fq2) is determined by the conditions 8q+1(x j ) = 0 for
j = 1, . . . , k, where 8q+1(t)= (tq+1

− 1)/(t − 1).
Note also that the Garcia–Stichtenoth curve Xn is a cyclic covering of X̃n of degree q + 1, but we do

not need this fact.

More general Drinfeld curves. We will need also more general Drinfeld modular curves which do not
form a tower and as yet have no explicit equations. However, the family of those curves is optimal
and their genera are explicitly known [Gekeler 2001]. Let M be a monic element of A with M(1) 6= 0,
deg M ≥ 3, and let M =

∏s
i=1 Pri

i be its prime factorization; thus each Pi ∈ A is a monic irreducible
polynomial of degree li and ri ≥ 1 for 1≤ i ≤ s. We put qi := qli and define the arithmetic functions

ε = ε(M)=
s∏

i=1

qri−1
i (qi + 1), κ = κ(M)=

s∏
i=1

(q [ri/2]
i + q [(ri−1)/2]

i ).
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Consider the curve X̃0(M) over Fq which is the Drinfeld modular curve X0(M) with γ (T )= 1. We
have then [Gekeler 1986, Sections 8–10]:

Proposition 5.2. Suppose that at least one degree li is odd. Then:

(i) The curve X̃0(M) is smooth of genus g0(M) given by

g0(M)= 1+
ε− (q + 1)κ − 2s−1(q + 1)(q − 2)

q2− 1
≤

ε

q2− 1
.

(ii) |X̃0(M)(Fq2)| ≥
ε

q + 1
≥ (q − 1)g0(M).

Therefore, for any sequence Mi with deg(Mi )→∞ the family X̃0(Mi ) is asymptotically optimal
over Fq2 .

5C. Curves of every genus with many points. Note the genera of curves in Subsections 5A–5B are of
a special form and thus they give no estimate for the quantity A−(q) measuring the maximal number of
points on curves of every genus. However, in [Elkies et al. 2004] it was shown that A−(q)≥ c log q for
any prime power q and a positive constant c. Moreover, for an even square q the result gets much better:

Theorem 5.3. For q = 22h we have

A−(q)≥
√

q − 1
2+ 1/log q

=
2h
− 1

2+ 1/(2h)
.

Thus A−(q) is, roughly speaking, only half as small as A(q); a similar result holds also for the odd
squares.

6. Proofs

We begin with an easy construction which gives a small positive constant lower bound for the ratio
log(τ l

n)/n, ensuring thus the existence of τ -asymptotically good lattice families. Indeed, let us take
N = 2K+1, d = a = N/2= 2K for some K ≥ 2, and let us apply Theorem 4.1 with s = 3, q = 64 and
the Drinfeld curves X̃k over F8 having at least 8k

= 2K+1, K = 3k− 1, points rational over the field F64.
We get then a binary [N , k, d]-code CK with

log Ad ≥
1

64 E3(0.5)N − o(N )= 1
64

( 1
7 − log 64

63

)
N − o(N ).

We can construct then a decreasing family C0 = FN
2 ⊃ C1 ⊃ · · · ⊃ CK defining inductively CK−i for

i = 1, . . . , K − 1 as generated by CK−i+1 and ci for some binary vector ci ∈ FN
2 with wt(ci ) = 2K−i .

Applying then Construction D we get a lattice L N ⊂ RN with dL = 2, and each minimum weight vector
of CK produces a minimum norm vector in L . Therefore we have

log τ(L N )

N
≥

log Ad

N
≥

1
64

( 1
7 − log 64

63

)
− o(1) > 0.00187− o(1).

This formula implies Corollary 1.2, albeit with a very small c0.

Remark. We do not care here about the density of L , but the constructed family is still asymptotically
good, albeit very poor for its density; however, it is easy to modify the construction to get a better (yet
rather poor) family while conserving the ratio log τ(L N )/N.
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Remark. If we replace in the above construction the Drinfeld curve X̃k by the Garcia–Stichtenoth
curve Xk over F64 which has 63 · 64k

+ O(1) points rational over F64, we can use δ = 32
63 , since the

minimum distance should be a power of 2. This leads to the bound 1
64

(
H
( 32

63

)
−

6
7−log 64

63

)
' 0.001874 . . .

instead of 1
64

( 1
7 − log 64

63

)
' 0.001877 . . . , and in that sense the Garcia–Stichtenoth tower is not optimal

for our construction. The same remark applies to the constructions below, but the deterioration of the
parameters is always very small.

It is then clear how to proceed: we can replace Construction D by Construction E applied to suitable
T -lattices and codes from Theorem 4.3, which we complete in an appropriate manner. The best results are
obtained using the T -lattices 3̃20, 324 (or 3̃24), and 3̃28, which give the lattice families in Theorem 4.1.

More precisely, in the case of 324 we take q = 212
= 4096, the curve X̃k over F64 having N =

212k
= 46k points rational over F212 , put d = a = N/2 and apply Construction E to 324 and the family

C0= FN
2 ⊃C1⊃ · · · ⊃C6k of [N , ki , 4i

]-codes over F212 for i = 0, . . . , 6k, where di = 4i, d6k = d = N/2
and C6k−i is defined inductively for i = 1, . . . , 6k− 1 as generated by C6k−i+1 and ci for some vector
ci ∈ FN

4096 with wt(ci ) = 46k−i. Exactly as above, each minimum-weight vector of C6k gives rise to a
minimum-norm vector of the resulting lattice L24N and applying Corollary 4.4 we get (1-2). If we apply
the same construction to 3̃4m , q = 22m and the curve X̃k over Fq having N = 22mk

= 4mk points rational
over Fq , we get a lattice with

log(τ l
N )

N
≥

1
4m

(
1−

2 log(2m
+ 1)

2m − 1

)
−

2+ 2 log N
N

, (6-1)

which gives (1-1)–(1-3) for m = 5, 6 and 7, respectively (the result is < 0.03 for any other value of m).
Applying in the same way Proposition 4.2 instead of Corollary 4.4 we get the lattices with

log(τ l
N )

N
≥

1
4m

(
1−

2m
2m − 1

− log
22m

22m − 1

)
− o(1) (6-2)

and thus Theorem 1.3 for m = 5, 6 and 7.

We begin the proof of Theorem 1.5 with the following:

Proposition 6.1. For any q = ph there exist monic polynomials Mi ∈ Fq [T ] for i = 1, 2, . . . , with
deg Mi+1 ≥ deg Mi , satisfying

lim
i→∞

g̃i+1

g̃i
= 1, g̃i < g̃i+1,

for g̃i := g(X̃0(Mi )) > 0.

To prove this we “densify” the tower {X̃k}, inserting between its consecutive levels some curves from
the family {X̃0(M)}. Indeed, let us consider two consecutive curves X̃2m of genus g̃2m= (qm

− 1)2/(q − 1)
and X̃2m+1 of genus

g̃2m+1 =
(qm+1

− 1)(qm
− 1)

q − 1
= qg̃2m + O(

√
g̃2m),

say, for k = 2m ≥ 100. Set s = s(k) for a suitable nondecreasing unbounded function s : N→ N (to be
chosen afterwards); then the number P(s) of monic irreducible polynomials in A of degree s satisfies

qs
− qs/2

s
≤ P(s)≤

qs

s
.
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We consider then the curves X̃k, j , j = 1, . . . , lk for lk =min{P(s), bk/sc}, defined by

X̃k, j = X0(T k+1− js Ms, j ) for Ms, j =

j∏
i=1

M (s)
i ,

where {M (s)
1 , . . . ,M (s)

P(s)} is the list of all monic degree-s irreducible polynomials in A. The genus of
X̃k, j equals

g̃k, j =
q2m−s j (qs

+ 1) j

q − 1
+ O(

√
g̃2m),

which is increasing with j and g̃k, j+1/g̃k, j tends to 1 for growing k. If g̃k,lk is still less than q2m+1/(q − 1),
we can increase further the genus, taking s+ 1 instead of s and continuing to replace the factors T s+1

consecutively by irreducible polynomials of degree s + 1, until we run out of such polynomials. If
k− s P(s)− (s+ 1)P(s+ 1) > 0 we can continue with the polynomials of degree s+ 2 and so on. The
procedure stops when either we reach the genus g̃2m+1 and we have densified our level, or there are no
factors T l to replace by the next polynomial of degree, say, s+ h, h ≥ 1. We want to show that choosing
s(k) appropriately, we can always reach g̃2m+1 and thus densify our initial tower, which will end the
proof. Indeed, for a given s, using all P(s) degree-s irreducible polynomials, we multiply the genus by
the factor (1+ q−s)P(s)

' exp(1/s). Therefore, using all irreducible polynomials of degrees from s to,
say s+ t , we can multiply the genus by

exp
(

1
s
+ · · ·+

1
s+ t

)
' 1+

t
s
,

where this is possible whenever s P(s)+· · ·+(s+ t)P(s+ t)' qs
+· · ·+qs+t

≤ k. It is then sufficient to
take t/s > q , (s+ t)qs+t

≤ k; for example, we can choose t = (q+1)s, s = log k/(2q log q) to guarantee
those inequalities for sufficiently large k, and the proof is finished (the case of an odd k is similar).

Remark. This proof can replace the sketchy proof of Claim (3.2)–(3.3) in [Shparlinski et al. 1992],
equivalent to Proposition 6.1.

Let us deduce Theorem 1.5 from Proposition 6.1. Let q = 212
= 4096, and let k ∈N satisfy g̃k < n/24≤

g̃k+1 for a given large dimension n; moreover, let 2a g̃k < n/24≤ 2a+1g̃k for some 0≤ a ≤ 11 (recall that
g̃k+1/g̃k ' q). Let us take the curve X0(Mi ) from Proposition 6.1 of genus closest to 2a g̃k and the curve
X0(M j ) of genus closest to 2a+1g̃k . Then we construct, by Proposition 4.2, an [Ni , ki , 2a+12k

= di ]-code
Ci on X0(Mi ) with exponentially many light vectors and the same with an [N j , k j , 2a+1+12k

= d j ]-code
C j on X0(M j ); note that relative distances of both codes are asymptotic to 1

2 and the ratio N j/Ni is
asymptotic to 2. We can then construct the lattices L24Ni and L24N j in dimensions 24Ni and 24N j using
Construction E for the Leech lattice 324 (or 3̃24) and nested families of codes beginning, respectively,
by Ci and C j . The lattices L24Ni and L24N j have then kissing numbers satisfying (1-6). Since 24Ni ≤

n ≤ 24N j ' 48Ni , the kissing number of the lattice L24Ni gives the estimate

log(τ l
n)

n
≥

1
24

( 17
21 − log 4096

4095

)
δ (6-3)

for δ = 24Ni/n ∈ [0.5, 1], and thus we can shorten the code C j by deleting some Fq -rational points from
the corresponding curve to get a code of length n/24 and then apply Construction E with 324. This gives
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the estimate
log(τ l

n)

n
≥

1
24

(
λH

( 1
2λ

)
−

4
21 − log 4096

4095

)
, (6-4)

with λ' 1/(2δ)= n/(24N j ) ∈ [0.5, 1], and taking the minimax we get (1-8).

Remark. Using the lattices 3̃4m together with the codes over F22m with similar properties constructed on
the curves from Theorem 5.3, instead of the above “densified” curves, we get the lattices with somewhat
worse parameters, which are optimal for m = 7 and give the estimate

lim inf
n→∞

log(τ l
N )

N
≥ 0.020715 . . . .
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A note on the set A(A + A)

Pierre-Yves Bienvenu, François Hennecart and Ilya Shkredov

Let p be a large enough prime number. When A is a subset of Fp r {0} of cardinality |A|> (p+ 1)/3,
then an application of the Cauchy–Davenport theorem gives Fp r {0} ⊂ A(A + A). In this note, we
improve on this and we show that |A| ≥ 0.3051p implies A(A+ A)⊇ Fp r {0}. In the opposite direction
we show that there exists a set A such that |A|>

( 1
8 + o(1)

)
p and Fp r {0} 6⊆ A(A+ A).

1. Introduction

The aim of this note is to study the size of the set A(A + A) = {a(b + c) : a, b, c ∈ A} for a subset
A ⊆ Fp r {0}. This sort of problem belongs to the realm of expanding polynomials and sum-product
problems. In the literature, they are usually discussed in the sparse set regime; for instance, Roche-
Newton et al. [2016] and Aksoy Yazici et al. [2017] proved that in the regime where |A| � p2/3, one has
min(|A+ AA|, |A(A+ A)|)� |A|3/2 (see also [Stevens and de Zeeuw 2017]). This implies in particular
that as soon as |A| � p2/3, both sets A(A+ A) and A+ AA occupy a positive proportion of Fp.

Now we focus on the case where A ⊆ Fp occupies already a positive proportion of Fp. Let α = |A|/p,
so we suppose that α > 0 is bounded below by a positive constant, while p tends to infinity. We will see
that in this case the set A(A+ A) contains all but a finite number of elements. Additionally, we prove
that this finite number of elements may be strictly larger than 1, unless α is large enough.

Here are our main results.

Theorem 1.1. Let A ⊆ Fp so that |A| = αp with α ≥ 0.3051. Then for any large enough prime p, we
have A(A+ A)⊇ Fp r {0}.

For smaller densities, we have the following result.

Theorem 1.2. Let A ⊆ Fp r {0} and 0< α < 1 satisfy |A| ≥ αp. Then one has

|A(A+ A)|> p− 1−α−3(1−α)2+ o(1).

We note that similar results were obtained [Hegyvári and Hennecart 2018] for the set AA+A. However,
the constant 0.3051 is replaced by the larger 1

3 in Theorem 1.1, and the term α−3(1−α)2 is replaced by
the larger α−3. Further, the slightly weaker bound |A(A+ A)| ≥ p−α−3 may be extracted from [Sárközy
2005].

In the opposite direction, we have the following result.

This work was performed within the framework of the Labex MILYON (ANR-10-LABX-0070) of Université de Lyon, within
the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).
MSC2010: 11B75.
Keywords: sum-product estimates, arithmetic combinatorics, finite fields.
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Theorem 1.3. There exists A ⊆ Fp r {0} such that |A|>
( 1

8 + o(1)
)

p and A(A+ A)( Fp r {0} for any
large prime p. Additionally, for any ε > 0 there exists a set of size O(p3/4+ε) such that A(A+ A) misses
�(p1/4−ε) elements.

2. Proof of Theorem 1.1

In this section, we shall need the Cauchy–Davenport theorem, which we now state. See for instance
[Nathanson 1996, Theorem 2.2] for a proof.

Lemma 2.1. Let A and B be subsets of Fp. Then |A+ B| ≥min(|A| + |B| − 1, p).

In particular, if |A| + |B|> p, then A+ B = Fp, which is also obvious because A and x − B cannot
be disjoint for any x .

First, we note that if α > 1
2 , then |A+ A| ≥ |A|> p/2 so that A(A+ A)= Fp. But as soon α < 1

2 , we
can easily have A(A+ A)( F∗p, for instance by taking A = {1, . . . , b(p− 1)/2c}.

Here is another almost equally immediate corollary.

Corollary 2.2. Let A ⊆ Fp r {0} satisfy |A|> (p+ 1)/3. Then either A(A+ A)= Fp or Fp r {0}.

Proof. Let B = (A+ A)r {0}. Using Lemma 2.1, we have |A+ A|> (2p− 1)/3 so |B|> (2p− 4)/3,
whence |A| + |B|> p− 1. We infer that for any x ∈ Fp r {0} we have

x B−1
∩ A 6=∅,

which yields AB = Fp r {0}. �

We now prove Theorem 1.1, which reveals that we can lower the density requirement from 1
3 to 0.3051

while maintaining A(A+ A)⊃ Fp r {0}.
To start with, we recall the famous Freiman’s 3k − 4 theorem for the integers, which gives precise

structural information on a set which has quite small, but not necessarily minimal, doubling [Nathanson
1996, Theorem 1.16].

Proposition 2.3. If A ⊂ Z satisfies |A+ A| ≤ 3|A| − 4 then A is contained in an arithmetic progression
of length at most |A+ A| − |A| + 1.

An analogue of this proposition has been developed in Fp, and it is known as the Freiman 2.4-theorem.
A useful lemma in [Freiman 1962] (see also [Nathanson 1996, Theorem 2.9]) was derived in the proof
thereof, and we will need it here. We also include an improvement due to Lev.

We first define the Fourier transform of a function f : Fp→ C by

f̂ (t)=
∑
x∈Fp

f (x)ep(t x)

for any t ∈ Fp, where ep(x)= exp(2iπx/p). The Parseval identity is∑
x∈Fp

f (x)g(x)= 1
p

∑
h∈Fp

f̂ (h)ĝ(h). (1)

The characteristic function of a subset A of Fp is denoted by 1A and for r ∈ Fp we let r A= {ra : a ∈ A}.
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Lemma 2.4. Let A ⊆ Fp with |A| = αp and 0 < γ < 1 satisfy |1̂A(r)| ≥ γ |A| for some r ∈ Fp r {0}.
Then there exists an interval modulo p of length at most p/2 that contains at least α1 p elements of r A
where α1 can be freely chosen as

(i) α1 = (1+ γ )α/2 (see [Freiman 1962]), or

(ii) α1 = α/2+ 1/(2π) arcsin(πγ α) (see [Lev 2005]).

There a few other basic results about Fourier transforms that we will need in the sequel.

Lemma 2.5. Let P be an arithmetic progression in Fp. Then∑
r∈Fp

|1̂P(r)| � p log p.

We now recall Weil’s bound [1948] for Kloosterman sums.

Lemma 2.6. For any (a, b) 6= (0, 0), we have∣∣∣∣ ∑
k∈Fpr{0}

ep(ak+ bk−1)

∣∣∣∣≤ 2
√

p.

We will also need a bound for so-called incomplete Kloosterman sums, whose proof follows easily
from the last two lemmas.

Lemma 2.7. Let P ⊆ Fp r {0} be an arithmetic progression. Then for any r 6= 0 we have

|1̂P−1(r)| �
√

p log p.

Now we start the proof of Theorem 1.1 itself. Let α ≥ 0.3051, let A ⊆ Fp r {0} of size |A| = αp and
set B = (A+ A)r {0}. We assume that there exists x ∈ Fp r {0} such that x 6∈ A(A+ A). Then

x B−1
∩ A =∅, (x A−1

− A)∩ A =∅. (2)

It follows that |A| + |B| ≤ p− 1, since otherwise AB = Fp r {0}. Hence |A+ A| ≤ |B| + 1≤ p− |A|.

We define
r1(y)= |{(a, b) ∈ A× A : y = xa−1

− b}|,

r2(y)= |{(c, d) ∈ A× A : c+ d 6= 0 and y = x(c+ d)−1
}|,

and Ei =
∑

y∈Fp
ri (y)2, i = 1, 2, the corresponding energies. Observe from (2) that∑

y∈Fp
r1(y)+r2(y)>0

1≤ p− |A|.

By Cauchy–Schwarz we get

4|A|4 =
(∑

y∈Fp

(r1(y)+ r2(y))
)2

≤ (p− |A|)×
∑
y∈Fp

(r1(y)+ r2(y))2. (3)

Expanding the later inner sum gives∑
y∈Fp

(r1(y)+ r2(y))2 = E1+ E2+ 2
∑
y∈Fp

r1(y)r2(y).
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Let

γ =max
h 6=0

|1̂A(h)|
|A|

.

We have by Parseval

pE2 =
∑

h

|1̂A(h)|4 = |A|4+
∑
h 6=0

|1̂A(h)|4 ≤ |A|4+ γ 2
|A|2(p|A| − |A|2)

and
pE1 =

∑
h

|1̂x A−1(h)|2 |1̂A(h)|2 = |A|4+
∑
h 6=0

|1̂x A−1(h)|2 |1̂A(h)|2

≤ |A|4+ γ 2
|A|2(p|A| − |A|2).

Moreover
p
∑
y∈Fp

r1(y)r2(y)=
∑

h

1̂x A−1(h)1̂A(−h)r̂2(h)

≤ |A|4+max
h 6=0
|r̂2(h)|

∑
h 6=0

|1̂x A−1(h)||1̂A(h)|

≤ |A|4+max
h 6=0
|r̂2(h)|(p|A| − |A|2),

by Parseval and Cauchy–Schwarz. For h 6= 0,

r̂2(h)=
∑

c,d∈A
c+d 6=0

ep(hx(c+ d)−1)=
1
p

∑
r

∑
z 6=0

∑
c,d∈A

ep(r(c+ d − z))ep(hxz−1);

hence by the Parseval identity (1) and Lemma 2.6

|r̂2(h)| ≤
1
p

∑
r

|1̂A(r)|2
∣∣∣∣∑

z 6=0

ep(hxz−1)

∣∣∣∣�√p|A|;

similar arguments were used in [Moshchevitin 2007, Theorem 4]. We thus obtain from (3) and the above
bounds

2α ≤ (1−α)(2α+ γ 2(1−α)+ o(1)).

This finally gives the lower bound

γ ≥

√
2α

1−α
+ o(1).

We are in position to apply Lemma 2.4(i). Let A1 ⊂ A be such that |A1| ≥ (1+ γ )|A|/2 and r A1 is
included in an interval of length p/2 for some r 6= 0. This shows that A1 is 2-Freiman isomorphic1 to a
subset A′1 of Z. So we seek to apply Proposition 2.3 to A′1. We get

α1 =
|A1|

p
≥ f (α)+ o(1) :=

(1+ (
√

2− 1)α)α
2(1−α)

+ o(1), (4)

c1 =
|A1+ A1|

|A1|
≤
|A+ A|
|A1|

≤
(1−α)p
α1 p

≤
1−α
f (α)

+ o(1). (5)

1That is, there exists a bijection f : A1→ A′1 such that a+b= c+d⇐⇒ f (a)+ f (b)= f (c)+ f (d) for all a, b, c, d ∈ A1.
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In order to have c1 < 3, it is sufficient to have

α >
7−

√
9+ 24

√
2

10− 6
√

2
= 0.29513 . . . ,

which is satisfied since we have assumed α ≥ 0.3051. We thus obtain that A1 (resp. A1+ A1) is contained
inside an arithmetic progression P1 (resp. Q1 = P1+ P1) of length |P1| = |A1+ A1| − |A1| + 1 (resp.
2|P1| − 1).

We define B1 = (A1+ A1)r {0} and Q∗1 = Q1 r {0}. We need to estimate

T = 1
p

∑
r mod p

∑
a∈P1
b∈Q∗1

ep(r(a− b−1x))≥
|P1||Q∗1|

p
−

1
p

∑
0<|r |<p/2

|1̂P1(r)||1̂Q∗1
−1(r x)|,

which counts the solutions (a, b) ∈ P1× Q∗1 to the equation a = b−1x .
Now |1̂P1(r)| � p/|r | by Lemma 2.5 and |1̂Q∗1

−1(r x0)| �
√

p log p by Lemma 2.7 because Q∗1 is the
union of at most two arithmetic progressions.

As a result, we have

T ≥
|P1||Q∗1|

p
+ O(
√

p(log p)2).

The number of solutions to a= b−1x with a ∈ P1r A1 or b ∈ Q∗1rB1 is at most |P1|−|A1|+|Q∗1|−|B1|.
Since by assumption there is no solution to a = b−1x with (a, b) ∈ A1× B1 we get

T ≤ |P1| − |A1| + |Q∗1| − |B1|

yielding
|P1||Q∗1|

p
≤ |P1| − |A1| + |Q∗1| − |B1| + O(

√
p(log p)2).

This implies
(|B1| − |A1|)

2

p
≤ |B1| − 2|A1| + O(

√
p(log p)2),

whence
α1(c1− 1)2 ≤ c1− 2+ o(1).

Because of (4), this gives
f (α)× (c1− 1)2− c1+ 2≤ o(1). (6)

The left-hand side of this inequality defines a function of c1 which is decreasing in the range 2≤ c1 ≤

1+ 1/(2 f (α)), a contradiction. We check easily that α+ f (α)≥ 1
2 whenever α ≥ 0.3. Hence for such α

1−α
f (α)

≤ 1+
1

2 f (α)
.

We thus obtain from (5) and (6)

f (α)
(

1−α
f (α)

− 1
)2

−
1−α
f (α)

+ 2≤ o(1),
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which reduces to

(1−α− f (α))2− (1−α− 2 f (α))≤ o(1).

In view of the definition of f (α) in (4), we get by expanding the above formula

(11− 6
√

2)α3
− (22− 6

√
2)α2
+ 17α− 4≤ o(1),

giving α < 0.305091 + o(1), a contradiction for all p large enough. This concludes the proof of
Theorem 1.1. �

Remark 2.8. Using instead the sharpest result (ii) of Lemma 2.4 leads to a slight improvement: if
|A| ≥ 0.30065p then Fp r {0} ⊆ A(A+ A) for any large p. The improvement is very small and uses
nonalgebraic expressions, which is why we decided not to exploit it.

3. Proof of Theorem 1.2

We will now use multiplicative characters of Fp. We denote by X the set of all multiplicative characters
modulo p and by χ0 the trivial character. In this context Parseval’s identity is the statement that

1
p−1

∑
χ∈X

∣∣∣∣ ∑
x∈Fpr{0}

f (x)χ(x)
∣∣∣∣2 = ∑

x∈Fpr{0}

| f (x)|2. (7)

We state and prove a lemma which is a multiplicative analogue of a lemma of Vinogradov [1955], see
also [Sárközy 2005, Lemma 7], according to which∣∣∣∣ ∑

(x,y)∈A×B

ep(xy)
∣∣∣∣≤√p|A||B|. (8)

Lemma 3.1. For any subsets A, B of Fp r {0} and any nontrivial character χ ∈ X, we have∣∣∣∣ ∑
(y,z)∈A×B

χ(y+ z)
∣∣∣∣≤ (|A||B|p)1/2(1−

|B|
p

)1/2

.

We now prove Theorem 1.2. Let A be a subset of Fp r {0} and α = |A|/p. We estimate the number
of nonzero elements in A(A+ A) by estimating the number N of solutions to

x(y+ z)= x ′(y′+ z′) 6= 0, x, y, z, x ′, y′, z′ ∈ A,

which we can rewrite as x ′x−1(y+ z)−1(y′+ z′)= 1. This number is

N = 1
p−1

∑
χ∈X

∣∣∣∣ ∑
y,z∈A

χ(z+ y)
∑
x∈A

χ(x)
∣∣∣∣2

≤
|A|6

p− 1
+max
χ 6=χ0

∣∣∣∣ ∑
y,z∈A

χ(y+ z)
∣∣∣∣2× 1

p−1

∑
χ 6=χ0

∣∣∣∣∑
x∈A

χ(x)
∣∣∣∣2;
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hence by Lemma 3.1 and Parseval’s identity (7)

N ≤
|A|6

p− 1
+ p|A|2(1−α)

(
|A| −

|A|2

p− 1

)
≤
|A|6

p− 1
+ p|A|3(1−α)2

≤
|A|6

p− 1
(1+ p2

|A|−3(1−α)2)

≤
|A|6

p− 1
(1+ p−1α−3(1−α)2).

We let ρ(w)= |{(x, y, z) ∈ A× A× A : w = x(y+ z)}| for w ∈ Fp. Then

N =
∑

w∈A(A+A)r{0}

ρ(w)2 and
∑

w∈A(A+A)r{0}

ρ(w)≥ |A|6− |A|4.

Finally N is related to |A(A+ A)| by the Cauchy–Schwarz inequality as follows:

|A(A+ A)| ≥ |A(A+ A)r {0}| ≥ (|A|6− |A|4)N−1

≥ (p− 1)(1−α−2 p−2)(1+ p−1α−3(1−α)2)−1

> p− 1−α−3(1−α)2+ o(1).

This concludes the proof of Theorem 1.2. �

4. Proof of Theorem 1.3

First we need a lemma.

Lemma 4.1. Let c < 1
2 and p be large enough. Let P = {1, . . . , dcpe}. Then the set (P + P)−1 of the

inverses (modulo p) of nonzero elements of P + P has at most 2c2 p+ O(
√

p(log p)2) common elements
with P; that is,

|(P + P)−1
∩ P| ≤ 2c2 p+ O(

√
p(log p)2).

Proof. We note that P + P = {2, . . . , 2dcpe} ⊂ Fp r {0}.
Now we observe that

|P ∩ (P + P)−1
| =

∑
x∈P

y∈P+P
x=y−1

1= 1
p

∑
t∈Fp

∑
x∈P

y∈P+P

ep(t (x − y−1))=
1
p

∑
t∈Fp

∑
x∈P

ep(t x)
∑

y∈P+P

ep(−t y−1).

Using Lemmas 2.5 and 2.7, we find that

|P ∩ (P + P)−1
| =
|P||P + P|

p
+

1
p

∑
t∈Fpr{0}

1̂P(t)1̂(P+P)−1(−t)

= 2c2 p+ O(
√

p(log p)2). �

Now we prove Theorem 1.3.
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Let c< 1
2 (to be determined later) and p be large enough. Let P={1, . . . , dcpe}. Let A= Pr(P+P)−1.

It satisfies A∩(A+A)−1
=∅, i.e., 1 6= A(A+A), and has cardinality at least cp−2c2 p−O(

√
p(log p)2).

To optimise, we take c= 1
4 , in which case |A| ≥ p/8−O(

√
p(log p)2). For any ε > 0, for p large enough,

this is at least
( 1

8 − ε
)

p, whence the first part of the theorem.

For the second part, we note that Lemma 4.1 provides a bound for the cardinality |P ∩ x(P + P)−1
|

for any x , so for any k ≤ p−1 we can get a set a of size cp−2kc2 p−O(k
√

p(log p)2) so that A(A+ A)
misses 0 and k nonzero elements. The main term is optimised for c = 1/(4k), where it is worth p/(8k).
Taking k of size p1/4(log p)−3/2, the error term is significantly smaller than the main term (for large
p), so we obtain a set A of size �(p3/4(log p)3/2) for which A(A+ A) misses at least p1/4(log p)−3/2

elements. This is even a slightly stronger statement than claimed. �

5. Final remarks

5A. Let p be an odd prime, a, b ∈ Fp r {0} and assume that ba−1
= c2 is a square. Let A ⊂ Fp r {0}.

Then a 6∈ A(A+ A) if and only if b 6∈ cA(cA+ cA)= c2 A(A+ A). Moreover |cA| = |A|.
We define

m p =max{|A| : A ⊆ Fp r {0} and A(A+ A) 6⊇ Fp r {0}}.

From the above remark we have

m p =max{|A| : A ⊆ Fp r {0} and 1 6∈ A(A+ A) or r 6∈ A(A+ A)},

where r is any fixed nonsquare residue modulo p. By Theorems 1.1 and 1.3 we have

3.277 . . .≤ lim inf
p→∞

p
m p
≤ lim sup

p→∞

p
m p
≤ 8.

5B. Let p> 3 be a prime number. The set I of residues modulo p in the interval {r ∈Fp : p/3< r < 2p/3}
is sum-free (i.e., a+ b 6= c for any a, b, c ∈ I ) and achieves the largest cardinality for those sets, namely
|I | = b(p+ 1)/3c, as it can be deduced from the Cauchy–Davenport theorem combined with the fact
that |I ∩ (I + I )| = 0.

Let
A = {x ∈ I : x−1

∈ I }.

Then A= A−1 and A is sum-free. It readily follows that 1 6∈ A(A+ A). Moreover, since I is an arithmetic
progression, the events x ∈ I and x−1

∈ I are independent, so we may observe that A has cardinality
∼ p/9 as p tends to infinity (it can be formally proved using Fourier analysis). This raises the next
question:

What is the largest size of a sum-free set A ⊂ Fp r {0} such that A = A−1?

From Theorem 1.1, we deduce the following statement.

Corollary 5.1. Let A ⊂ Fp r {0} be a sum-free set such that A = A−1. Then |A| < 0.3051p for any
sufficiently large prime number p.

This is related to the question of how large a sum-free multiplicative subgroup of F∗p can be. Alon and
Bourgain [2014] showed that it can be at least �(p1/3).
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5C. Let A⊂ Fp r {0} with α = |A|/p� 1, and let us set As = A∩ (A+ s). Let 0< ε < 1 be defined by

E+(A)=
∑

s∈A−A

|As |
2
= (1− ε)|A|3,

and S be the subset of A− A given by

S = {s ∈ A− A : |As |> (1− ε− p−1/3)|A|}.
Then

E+(A)≤ (1− ε− p−1/3)|A|
∑
s 6∈S

|As | + |A|2 |S| = (1− ε− p−1/3)|A|3+ |A|2 |S|,

from which we deduce
|S| ≥ |A|p−1/3. (9)

Assume that A = A−1 and let N be the number of solutions to the equation

(a− s)(b− t)= 1, (s, a, t, b) ∈ S× As × S× At .

For fixed s, t ∈ S, we have

|(A− s)∩ (At − t)−1
| = |As | + |At | − |(A− s)∩ (At − t)−1

|

≥ 2(1− ε− o(1))|A| − |A| = (1− 2ε− o(1))|A|

since As − s ⊂ A and (At − t)−1
⊂ A−1

= A. This yields

N ≥ (1− 2ε− o(1))|A||S|2. (10)

On the other hand, defining r(x)= |{(a, s) ∈ A× S : x(a− s)= 1}|, we have

N ≤ 1
p

∑
h

1̂A(h)1̂S(−h)r̂(−h)≤
|A|2 |S|2

p
+max

h 6=0
|r̂(h)| × 1

p

∑
h

|1̂A(h)1̂S(h)|.

By adapting (8) we get maxh 6=0 |r̂(h)| ≤
√

p|A||S| and by Cauchy–Schwarz and Parseval we derive
N ≤ |A|2 |S|2/p+ O(

√
p|A||S|). Combined with (10), this gives

α+ O(
√

p|S|−1)≥ 1− 2ε− o(1),

yielding by (9) that ε ≥ (1−α)/2+ o(1). Hence when A = A−1,

E+(A)≤
1+α+ o(1)

2
|A|3.

Together with Theorem 1.1, this implies the following result.

Proposition 5.2. Let A⊂ F∗p be as in Corollary 5.1. Then for large enough p the additive energy satisfies

E+(A)≤ 0.6526|A|3.

By considering similarly the multiplicative energy of A, it is possible to get the following sum-product
upper bound for an arbitrary A ⊂ Fp:

2E+(A)+ E×(A)≤ (2+α+ o(1))|A|3.
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On a theorem of Hildebrand

Carsten Dietzel

We give a short proof that for each multiplicative subgroup H of finite index in Q+, the set of integers a
with a, a+ 1 ∈ H is an IP-set. This generalizes a theorem of Hildebrand concerning completely multi-
plicative functions taking values in the k-th roots of unity.

A theorem of Hildebrand [1991, Theorem 2], which was essential in answering a question of Lehmer,
Lehmer and Mills [Lehmer et al. 1963] on consecutive power residues can be formulated as follows:

Theorem 1 (Hildebrand). Fix some k ∈ Z+. If f : Z+→ C is a completely multiplicative function (i.e.,
f (mn)= f (m) f (n) for all m, n ∈ Z+) taking its values in the k-th roots of unity then the set of a ∈ Z+

fulfilling f (a)= f (a+ 1)= 1 is nonempty.

Remark 2. Hildebrand actually proved more; i.e., there is a constant c(k), independent of the specific
multiplicative function f , and an a ∈ Z+ such that a ≤ c(k) and f (a) = f (a+ 1) = 1. By a standard
compactness argument, these versions can be seen to be equivalent. It should, however, be noted that
from Hildebrand’s proof one can get an effective value for c(k) (as was pointed out by the anonymous
referee).

It makes sense to restate Hildebrand’s result as follows:

Theorem 3 (Hildebrand). Let H ≤Q+ be a (multiplicative) subgroup such that Q+/H is cyclic of finite
order. Let H∗ := H ∩Z+. Then H∗ ∩ (H∗− 1) is nonempty.

The original proof made use of analytic methods and was rather long. We will give a short elementary
proof of a more general theorem.

However, before we can state (and prove) our generalization we need some notation and the set-
theoretical version of Hindman’s theorem:

We denote by Pfin(Z+) the set of finite, nonempty subsets of Z+.
For A, B ∈ Pfin(Z+) write A ≺ B if max A < min B.
Furthermore, for a sequence A1 ≺ A2 ≺ · · · in Pfin(Z+), we define

FU((Ai )i∈Z+)=

{⋃
i∈I

Ai : I ⊆ Z+, 0 < |I |<∞
}
.

Similarly, for a sequence a1, a2, . . . in Z+, we define

FS((ai )i∈Z+)=

{∑
i∈I

ai : I ⊆ Z+, 0 < |I |<∞
}
.

MSC2010: 11B75.
Keywords: IP-set, multiplicative subgroup.
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We call a set M ⊆ Z+ an IP-set [Hindman and Strauss 2012, Definition 16.3] if there is a sequence
a1, a2, . . . in Z+ such that FS((ai )i∈Z+)⊆ M.

If a set A is the disjoint union of subsets B1, . . . , Bn ⊆ A, that is, B1 ∪ · · · ∪ Bn = A and Bi ∩ Bj =∅
for 1≤ i < j ≤ n, we denote this relation by A = B1 t · · · t Bn .

Now Hindman’s theorem on partitions of Pfin(Z+) [Hindman and Strauss 2012, Corollary 5.17] can
be stated as follows:

Theorem 4 (Hindman). For any finite partition Pfin(Z+)=M1tM2t· · ·tMn there are sets A1≺ A2≺· · ·

and 1≤ j ≤ k such that
FU((Ai )i∈Z+)⊆ Mj .

We can now state our generalization of Hildebrand’s theorem:

Theorem 5. Let H ≤ Q+ be a (multiplicative) subgroup of finite index.1Let H∗ := H ∩ Z+. Then
H∗ ∩ (H∗− 1) is an IP-set.

Hildebrand’s proof of Theorem 3 is an application of Ramsey’s theorem on special sets, i.e., finite
sets {n1 < n2 < · · ·< nr } such that n j − ni = gcd(ni , n j ) holds for 1≤ i < j ≤ r .

We will use a similar concept:

Definition 6. For a sequence sn and a finite subset A ⊂ Z+, set

sA :=
∑
n∈A

sn.

A block-divisible sequence is a strictly decreasing sequence sn in Z+ such that for A, B ∈ Pfin(Z+),
sA divides sB whenever A ≺ B.

For our proof, any block-divisible sequence will work. Thus, we only need to confirm the existence
of block-divisible sequences:

Lemma 7. There is a block-divisible sequence in Z+.

Proof. We construct a sequence as follows:

s0 := 1, sn+1 :=
∏

A⊆{0,...,n}
A 6=∅

sA.

Ignoring the s0 at the beginning, we end up with a strictly increasing sequence fulfilling the desired
divisibility condition. �

Now we can show our main result:

Proof of Theorem 5. Let N ′i (1≤ i ≤ k) be the (multiplicative) cosets of H in Q+.
These give a finite partition Z+ = N1 t N2 t · · · t Nk , where Ni = N ′i ∩Z+.
We now fix a block-divisible sequence sn (whose existence is guaranteed by Lemma 7) and define a

partition Pfin(Z+)= M1 tM2 t · · · tMk by declaring A ∈ Mi if and only if sA ∈ Ni .
By Theorem 4 there is a sequence A1 ≺ A2 ≺ · · · such that FU(A1, A2, . . .) is contained in one Mi

for some 1≤ i ≤ k.
1Note that we do not require Q+/H to be cyclic.
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By the definition of block-divisibility, sA1 divides sA for all A ∈ FU(A2, A3, . . .) and, consequently,
for all A ∈ FU(A1, A2, . . .), too.

Thus, defining bi := sAi , the members of FS(b1, b2, . . .) all lie in the same coset of H and are divisible
by b1. Therefore, setting ai := bi/b1, one has

FS(a1, a2, . . .)= FS(1, a2, a3, . . .)⊆ H∗.

Furthermore, FS(1, a2, a3, . . .)= FS(a2, a3, . . .)∪ (FS(a2, a3, . . .)+ 1)⊆ H∗.
We conclude that FS(a2, a3, . . .)⊆ H∗ ∩ (H∗− 1). �

Remark 8. We use the terminology of Theorem 5 to summarize the state of possible generalizations:
There are (multiplicative) subgroups H of arbitrary even index in Q+ such that H∗∩(H∗−1)∩(H∗−2)

is empty, as has been shown by Lehmer and Lehmer [1962, p. 103].
Graham [1964] proved that there are subgroups of arbitrary (finite) index in Q+ such that H∗ ∩ · · · ∩

(H∗− 3) is empty.
However, if Q+/H is of odd order k, it is still an open question if H∗ ∩ (H∗ − 1) ∩ (H∗ − 2) is

necessarily nonempty. Only in the case k = 3 is this set known to be always nonempty, as has been shown
computationally by Lehmer, Lehmer, Mills and Selfridge [Lehmer et al. 1962]. Maybe the combinatorial
methods presented in this article may help in resolving this problem!

Remark 9. Some ideas shown in this article are based on notes of the author, [Dietzel 2013], which
have not been submitted to any journal.
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