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Integer complexity: the integer defect

Harry Altman

Define ‖n‖ to be the complexity of n, the smallest number of 1s needed to write n using an arbitrary
combination of addition and multiplication. John Selfridge showed that ‖n‖ ≥ 3 log3 n for all n, leading
this author and Zelinsky to define the defect of n, δ(n), to be the difference ‖n‖− 3 log3 n. Meanwhile,
in the study of addition chains, it is common to consider s(n), the number of small steps of n, defined as
`(n)−blog2 nc, an integer quantity, where `(n) is the length of the shortest addition chain for n. So here
we analogously define D(n), the integer defect of n, an integer version of δ(n) analogous to s(n). Note
that D(n) is not the same as dδ(n)e.

We show that D(n) has additional meaning in terms of the defect well-ordering we considered in
2015, in that D(n) indicates which powers of ω the quantity δ(n) lies between when one restricts to n
with ‖n‖ lying in a specified congruence class modulo 3. We also determine all numbers n with D(n)≤ 1,
and use this to generalize a result of Rawsthorne (1989).

1. Introduction

The complexity of a natural number n, denoted by ‖n‖, is the least number of 1s needed to write it
using any combination of addition and multiplication, with the order of the operations specified using
parentheses grouped in any legal nesting. For instance, n = 11 has a complexity of 8, since it can be
written using eight 1s as

11= (1+ 1+ 1)(1+ 1+ 1)+ 1+ 1,

but not with any fewer than eight. More formally, ‖n‖ is the number of leaves in the smallest arithmetic
formula for n, using addition and multiplication as the gates and 1 as the leaves. This notion was implicitly
introduced by Kurt Mahler and Jan Popken [1953], and was later popularized by Richard Guy [1986;
1987, p. 965; 1989, p. 905; 2004, pp. 399–400].

Integer complexity is approximately logarithmic; it satisfies the bounds

3 log3 n =
3

log 3
log n ≤ ‖n‖ ≤

3
log 2

log n, n > 1.

The lower bound can be deduced from the results of Mahler and Popken, and was explicitly proved by
John Selfridge [Guy 1986]. It is attained with equality for n = 3k for all k ≥ 1. The upper bound can
be obtained by writing n in binary and finding a representation using Horner’s algorithm. It is not sharp,
and the constant 3/log 2 can be improved for large n [Zelinsky ≥ 2019].

MSC2010: 11A67.
Keywords: integer complexity, well-ordering, arithmetic formulas.
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194 HARRY ALTMAN

Based on the lower bound, this author and Zelinsky [Altman and Zelinsky 2012] introduced the notion
of the defect of n, denoted by δ(n), which is the difference ‖n‖− 3 log3 n. Subsequent work [Altman
2015] showed that the set of defects is in fact a well-ordered subset of the real line, with order type ωω.

However, it is worth considering the result of Selfridge in more detail:

Theorem 1.1 (Selfridge). For any k ≥ 1, let E(k) be the largest number that can be made with k 1s, i.e.,
the largest n with ‖n‖ ≤ k. Then:

(1) If k = 1, then E(k)= 1.

(2) If k ≡ 0 (mod 3), then E(k)= 3k/3.

(3) If k ≡ 1 (mod 3) and k > 1, then E(k)= 4 · 3(k−4)/3.

(4) If k ≡ 2 (mod 3), then E(k)= 2 · 3(k−2)/3.

(This result is also a special case of the results of [Mahler and Popken 1953].) From this one can of
course derive the lower bound ‖n‖ ≥ 3 log3 n, but what if one wanted an integer version? We make the
following definition:

Definition 1.2. Given a natural number n, we define L(n) to be the largest k such that E(k)≤ n.

With this, we define:

Definition 1.3. For a natural number n, we define the integer defect of n, denoted by D(n), to be the
difference ‖n‖− L(n).

Because of Theorem 1.1, L(n) is quite easy to compute (see Proposition 3.8), and hence if one knows
‖n‖ then D(n) is also easy to compute. Note that while we consider D(n) to be an integer analogue of
δ(n), it is not in general equal to dδ(n)e; see Theorem 3.12 for the precise relation. However it is not
immediately obvious that D(n) has any actual significance. But, in fact, the integer defect of a number
tells you about its position in the well-ordering of defects.

Remark 1.4. L(k) is not the best lower bound we can get from Theorem 1.1; that would instead be
the smallest k such that E(k) ≥ n, which we might denote L ′(n). (L ′(n) could also be defined as the
minimum of ‖m‖ over all m ≥ n.) For reasons that will become clear later, though, we will prefer to
discuss L rather than L ′. In any case, L ′(n) = L(n)+ 1 unless n = E(k) for some k, in which case
L ′(n) = L(n) = k, so one can easily convert any results expressed in the one formulation to the other.
One could consider a similar D′(n) as well, but we will not do that either.

1A. The sets D0, D1, and D2 and the main result. As has been noted above, if we define D to be the
set of all defects, then as a subset of the real line this set is well-ordered and has order type ωω. However,
more specific theorems are proved in [Altman 2015]. We will need the following definition:

Definition 1.5. If a is a congruence class modulo 3, we define

Da
= {δ(n) : ‖n‖ ≡ a (mod 3), n 6= 1}.

Remark 1.6. The number n = 1 is excluded from D1 because it is dissimilar to other numbers whose
complexity is congruent to 1 modulo 3. Unlike other numbers which are 1 modulo 3, the number 1
cannot be written as 3 j + 4 for some j ≥ 0, and so the largest number that can be made with a single 1
is simply 1, rather than 4 · 3 j.
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In fact the sets Da for a = 0, 1, 2 are disjoint, and so together with {1} form a partition of D .
Moreover in [Altman 2015] it was proved:

Theorem 1.7. For a = 0, 1, 2, the sets Da are all well-ordered, each with order type ωω.

D(n) will tell us about the position of δ(n) in these sets, the Da. We show:

Theorem 1.8 (Main theorem). Let n > 1 be a natural number. Let ζ be the order type of D‖n‖ ∩ [0, δ(n)).
Then D(n) is equal to the smallest k such that ζ < ωk.

As mentioned above, D(n) is easy to compute, so this theorem gives a way to easily compute around
where δ(n) falls in the ordering on Da.

We will also prove a version of this theorem for the stable integer defect; see Sections 1D and 3.
It is worth comparing this theorem to what was already known. It was proved in [Altman 2015] that

the limit of the initial ωk elements of D is equal to k. This raises the question — just what is the limit
of the initial ωk elements of Da? It was further shown in [Altman 2015] that when k ≡ a (mod 3) this
limit is equal to k, but what about otherwise?

In this paper we will answer this question:

Theorem 1.9. The limit of the initial ωk elements of Da is equal to k if k− a ≡ 0 (mod 3), it is equal to
k+ δ(2) if k− a ≡ 1 (mod 3), and it is equal to k+ 2δ(2) if k− a ≡ 2 (mod 3).

In fact, Theorem 1.9 will be used to prove Theorem 1.8. See Section 4 for more general statements.
Further generalizations will appear in a future paper [Altman and Arias de Reyna ≥ 2019].

1B. Generalizing Rawsthorne’s theorem. We know how to compute E(k), the highest number of com-
plexity at most k (or exactly k), but what about the next highest? This question was answered by Daniel
Rawsthorne [1989]:

Theorem 1.10 (Rawsthorne). For any k ≥ 8, the highest number of complexity at most k other than E(k)
itself is 8

9 E(k), and this number has complexity exactly k.

In this paper we generalize this result. First, a definition:

Definition 1.11. Given r ≥ 0 and k ≥ 1, we define Er (k) to be the r-th largest number of complexity
at most k. We will 0-index here, so that by definition E0(k)= E(k), and Theorem 1.10 gives a formula
for E1(k).

Then, with this, we show:

Theorem 1.12. Given r ≥ 0, and a, a congruence class modulo 3, there exists Kr,a > 1 and hr,a ∈Q such
that for k ≥ Kr,a , with k ≡ a (mod 3), we have Er (k) = hr,a E(k), and these hr,a and Kr,a are as given
by Tables 1, 2, and 3. Moreover, for such r and k, we have Er (k) > E(k− 1) and therefore ‖Er (k)‖ = k
(and thus for such r and k, Er (k) is not just the r-th largest number with complexity at most k, but the
r-th largest number with complexity exactly k).

Note that Tables 1, 2, and 3 do not list the regular pattern in the hr,a until such point as Kr,a also
becomes regular; for tables based solely on hr,a , see Tables 4, 5, and 6.

What does Theorem 1.12 have to do with integer defect? Well, the numbers hr,a E(k) appearing in this
theorem are almost exactly the numbers n with D(n)≤ 1; see Proposition 5.6 for a precise statement.
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r hr,0 Kr,0

0 1 3
1 8/9 6
2 64/81 12
3 7/9 12
4 20/27 12
5 19/27 12
6 512/729 18
7 56/81 18
8 55/81 18
9 164/243 18

10 163/243 18
(for n ≥ 6) 2n−1 2/3+2/3n 3n
(for n ≥ 6) 2n 2/3+1/3n 3n

Table 1. Table of hr and Kr for k ≡ 0 (mod 3).

r hr,2 Kr,2

0 1 2
1 8/9 8
2 5/6 8
3 64/81 14
4 7/9 14
5 20/27 14
6 13/18 14
7 19/27 14
8 512/729 20
9 56/81 20

10 37/54 20
11 55/81 20
12 164/243 20
13 109/162 20
14 163/243 20

(for n ≥ 6) 3n−3 2/3+2/3n 3n+2
(for n ≥ 6) 3n−2 2/3+1/(2·3n−1) 3n+2
(for n ≥ 6) 3n−1 2/3+1/3n 3n+2

Table 2. Table of hr and Kr for k ≡ 2 (mod 3).

After all, by Theorem 1.8, the numbers n with D(n)≤ 1 are precisely those n whose δ(n) lie in the
initial ω of D‖n‖. So if one fixes a particular k, then going down the set of n with ‖n‖ = k corresponds
to going up the set of defects δ(n) of n with ‖n‖ = k, and assuming k is large enough relative to how far
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r hr,1 Kr,1

0 1 4
1 8/9 10
2 5/6 10
3 64/81 16
4 7/9 16
5 41/54 16

(for n ≥ 4) n+2 3/4+1/(4·3n) 3n+4

Table 3. Table of hr and Kr for k ≡ 1 (mod 3) with k > 1.

up or down you want to go, this is just looking at Dk. And if we count up one at a time, then — again,
assuming k is sufficiently large relative to how far out we count — we will stay within the initial ω of Dk.
So with a classification of numbers n such that D(n)≤ 1, one can determine the Er (k). (Indeed, one can
also do the reverse.)

Note that Theorem 1.10 also works for k = 6, so if one wants to break it down by the residue of k
modulo 3, one could say it works for k ≥ 6 with k ≡ 0 (mod 3), for k ≥ 8 with k ≡ 2 (mod 3), and for
k ≥ 10 with k ≡ 1 (mod 3). (Indeed, this is what we have done in Tables 1, 2, and 3.) Note how all
three of these correspond to k exactly large enough for E(k) to be divisible by 9, as per the last part of
Theorem 1.12.

One thing worth noting here is that the formulae for E0(k) and E1(k), as originally proven by Selfridge
and Rawsthorne respectively, were both originally proven directly by induction on k, whereas here we
have proven Theorem 1.12 by a different method, namely, analysis of defects (although this analysis of
defects in turn depends on Rawsthorne’s formula for E1(k) to serve as a base case; see [Altman and
Zelinsky 2012]). This raises the question of whether a similar inductive proof for general Er (k) could
be done now that the formulae for them are known. (In fact this author originally proved these formulae
by a different method entirely, that of analyzing certain transformations of expression, so other methods
certainly are possible.)

1C. Low-defect polynomials and numbers of low defect. In order to prove Theorem 1.8, we make use
of the idea of low-defect polynomials from [Altman 2015; 2016]. A low-defect polynomial is a particular
type of multilinear polynomial; see Section 2 for details. In [Altman 2015] it is proved that, given any
positive real number s, one can write down a finite set of low-defect polynomials S such that every
number n with δ(n) < s can be written in the form f (3n1, . . . , 3nd )3nd+1 for some f ∈ S, and that,
moreover, such an n can always be represented “efficiently” in such a fashion. Additionally, one can
choose S such that for any f ∈ S, one has deg f ≤ s. (Note that the degree of a low-defect polynomial is
always equal to the number of variables it is in, since low-defect polynomials are multilinear and always
include a term containing all the variables.)

Using this fact about low-defect polynomials, this author proved in [Altman 2015] that the set D is
well-ordered with order type ωω, as well as the more specific Theorem 1.7 mentioned above, and other
results mentioned above such as that the limit of the initial ωk defects is equal to k. However, this is not
enough to prove the more specific theorems shown in this paper, such as Theorem 1.9. But in [Altman
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2016] an improvement was shown, that we can in fact take S such that for all f ∈ T , one has δ( f )≤ s;
here δ( f ) is a number that bounds δ(n) above for any n represented by f in the fashion described above;
again, see Section 2 for more on this.

On top of that, it was shown in [Altman 2016] that δ( f ) ≥ deg f + δ(m), where m is the leading
coefficient of f . Putting this together, one gets the inequality

deg f + δ(m)≤ s.

It is this stronger inequality that allows us to prove Theorem 1.8, where the inequality deg f ≤ s would
not be enough. To see why this inequality is so helpful, say we are given s and we pick S as described
above. Then if f ∈ S, one of two things must be true: either deg f < bsc, in which case f does not make
much of a contribution to D ∩ [0, s) compared to polynomials of higher degree, or deg f = bsc, in which
case δ(m) is at most the fractional part of s, a number which is less than 1. Since there are only finitely
many defects below any given number less than 1, this puts substantial constraints on m and therefore
on f , in ways that the weaker inequality deg f ≤ s does not. This allows us to prove Theorem 1.9.

Note that the method we use to turn the results of [Altman 2016] into Theorem 1.8 actually has much
more power than we use in this paper, but an exploration of the full power of this method would take us
too far away from the subject of D(n), and so will be detailed in a future paper [Altman and Arias de
Reyna ≥ 2019].

1D. A quick note on stabilization. An important property satisfied by integer complexity is the phenom-
enon of stabilization. Because one has ‖3k

‖= 3k for k> 1, as well as ‖2·3k
‖= 2+3k and ‖4·3k

‖= 4+3k,
one might hope that in general the equation ‖3n‖ = ‖n‖+ 3 holds for all n > 1. Unfortunately that is
not the case; for instance, for n = 107, one has ‖107‖ = 16, but ‖321‖ = 18. Another counterexample
is n = 683, for which one has ‖683‖ = 22, but ‖2049‖ = 23. There are even cases where ‖3n‖< ‖n‖,
such as n = 4721323, which has ‖3n‖ = ‖n‖− 1.

And yet the initial hope is not entirely in vain. In [Altman and Zelinsky 2012], it was proved:

Theorem 1.13. For any natural number n, there exists K ≥ 0 such that, for any k ≥ K ,

‖3kn‖ = 3(k− K )+‖3K n‖.

Based on this, we define:

Definition 1.14. A number m is called stable if ‖3km‖ = 3k+‖m‖ holds for every k ≥ 0. Otherwise it
is called unstable.

So, we can restate Theorem 1.13 by saying, for any n, there is some K such that 3K n is stable.
This allows us to define stable or stabilized analogues of many of the concepts and discussed above,

and prove stabilized analogues of the theorems discussed in Section 1A. See Sections 2A and 3 for
the relevant definitions, and Section 4 for the versions of the main theorems generalized to cover the
stabilized case as well.

1E. Discussion: comparison to addition chains. In order to make sense of Theorem 1.8, it is helpful
to introduce an analogy to addition chains, a different notion of complexity which is similar in spirit
but different in detail. An addition chain for n is defined to be a sequence (a0, a1, . . . , ar ) such that
a0 = 1, ar = n, and, for any 1 ≤ k ≤ r , there exist 0 ≤ i, j < k such that ak = ai + a j ; the number r
is called the length of the addition chain. The shortest length among addition chains for n, called the
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addition chain length of n, is denoted by `(n). Addition chains were introduced by H. Dellac [1894]
and reintroduced by A. Scholz [1937]; extensive surveys on the topic can be found in [Knuth 1998,
Section 4.6.3, pp. 461–485] and [Subbarao 1989].

The notion of addition chain length has obvious similarities to that of integer complexity; each is
a measure of the resources required to build up the number n starting from 1. Both allow the use of
addition, but integer complexity supplements this by allowing the use of multiplication, while addition
chain length supplements this by allowing the reuse of any number at no additional cost once it has been
constructed. (That is to say, while integer complexity is a formula model, addition chains are a circuit
model.) Furthermore, both measures are approximately logarithmic; the function `(n) satisfies

log2 n ≤ `(n)≤ 2 log2 n.

A difference worth noting is that `(n) is actually known to be asymptotic to log2 n, as was proved by
Brauer [1939], but the function ‖n‖ is not known to be asymptotic to 3 log3 n; the value of the quantity
lim supn→∞ ‖n‖/log n remains unknown.

Nevertheless, there are important similarities between integer complexity and addition chains. As
mentioned above, the set of all integer complexity defects is a well-ordered subset of the real numbers,
with order type ωω. We might also define the notion of addition chain defect, defined by

δ`(n) := `(n)− log2 n;

for as shown in [Altman 2018b], the well-ordering theorem for integer complexity has an analogue for
addition chains:

Theorem 1.15 (Addition chain well-ordering theorem). Let D` denote the set {δ`(n) : n ∈ N}. Then
considered as a subset of the real numbers, D` is well-ordered and has order type ωω.

More commonly, however, it is not δ`(n) that has been studied, but rather s(n), the number of small
steps of n, which is defined to be `(n)− blog2c, or equivalently dδ`(n)e. The quantity D(n) that we
introduce seems to play a role in integer complexity similar to s(n) in the study of addition chains. Now,
unlike with s(n) and δ`(n), D(n) is not simply dδ(n)e; for instance, D(56)= 1 even though δ(56) > 1.
(Although Theorem 3.12 will show how D(n) is in a certain sense almost dδ(n)e.) But, there are further
analogies.

Analogous to Theorem 1.13, we have (from [Altman 2018b]) the following:

Theorem 1.16. For any natural number n, there exists K ≥ 0 such that, for any k ≥ K ,

`(2kn)= (k− K )+ `(2K n).

So we define a number n to be `-stable if, for any k, one has `(2kn)= k+ `(n); then Theorem 1.16
says that, for any n, there is some K such that 2K n is `-stable. This allows us to formulate a stabilized
version of the previous analogy — and of the ones to follow.

In [Altman 2018b], this author conjectured:

Conjecture 1.17. For each whole number k, D`
∩ [0, k] has order type ωk.

In other words, this conjecture states that the limit of the initial ωk addition chain defects is equal to k.
If true, this would mean that s(n) plays the same role for D` as D(n) does for the Da, that s(n) is the
smallest k such that the order type of D`

∩ [0, δ`(n)) is less than ωk.
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Similarly, based on conjectures in [Altman 2018b], one gets analogies between Dst(n) and sst(n) and
how they determine position in Da

st and D`
st, respectively; see Section 3 for definitions of these.

It is worth noting here one important difference between these two cases: in the integer complexity
case, we need to split things into congruence classes modulo 3 based on ‖n‖. This has no analogue in the
addition chain case. This comes from a difference in certain fundamental inequalities that these quantities
obey. Integer complexity obeys ‖3n‖ ≤ ‖n‖+ 3, with equality if and only if δ(3n)= δ(n). The addition
chain analogue of this is that one has `(2n) ≤ `(n)+ 1, with equality if and only if δ`(2n) = δ`(n).
The result [Altman 2018b; Altman and Zelinsky 2012] is that if we have two numbers m and n with
δ`(n)= δ`(m), then one must have m = 2kn for some k ∈ Z, and if we have two numbers m and n with
δ(n) = δ(m), then one must have m = 3kn for some k ∈ Z. However in the latter case we must also
have ‖m‖ ≡ ‖n‖ (mod 3); this is why the sets Da are disjoint. In the addition chain case there is no such
congruence requirement; `(n) and `(m) need only be congruent modulo 1, which is no requirement at
all, so splitting up D` in a similar manner does not make sense. The set D` already covers the one and
only congruence class that exists in the addition chain case.

But it is not only our primary theorem but also our secondary theorem here that has an analogue for
addition chains, and in this case the analogy does not rely on any conjectures. While the hypothesis
that the order type of D`

∩ [0, k] is equal to ωk remains a conjecture, that this holds for k ≤ 2 — and in
particular that it holds for k = 1 — was proven in [Altman 2018b]. This means that just as we can look
at the first ω elements of each Da in order to determine the r -th-highest number of complexity k, we can
look at the first ω elements of D` to determine the r -th-highest number of addition chain length k (or at
most k, which in these cases is the same thing). (Again, here k must be sufficiently large relative to r .
Also, again here we are using the convention that r starts at 0 rather than 1.)

Specifically, it is an easy corollary of the classification of numbers with s(n)≤ 1 [Gioia et al. 1962]
that:

Theorem 1.18. For k ≥ r + 1 (or for k ≥ 0 when r = 0), the r-th-largest number of addition chain
length k is (1/2+ 1/2r+1)2k.

Obviously here the fraction 1/2+1/2r+1 plays the role of the hr , and r+1 plays the role of Kr ; unlike
with integer complexity, there are no irregularities here, just a single straightforward infinite family. (And
note how the analogue of the Kr increases in what is mostly steps of 1, rather than mostly steps of 3 like
the actual Kr , because once again with addition chains there is only one congruence class.) For more
on the analogy between integer complexity and addition chains, particularly with regard to their sets of
defects, one may see [Altman 2016].

Before we continue, it is worth noting that one might also consider a computational model where
one allows addition, multiplication, and the free reuse of already-constructed intermediates; that is to
say, circuits with addition and multiplication, rather than formulas. These are referred to as addition-
multiplication chains, and one may see [Bahig 2008] for more on them.

2. Integer complexity, well-ordering, and low-defect polynomials

In this section we summarize the results of [Altman 2015; 2016; Altman and Zelinsky 2012] that we
will need later regarding the defect δ(n), the stable complexity ‖n‖st and stable defect δst(n) described
below, and low-defect polynomials.
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2A. The defect and stability. First, some basic facts about the defect:

Theorem 2.1. We have:

(1) For all n, δ(n)≥ 0.

(2) For k ≥ 0, δ(3kn)≤ δ(n), with equality if and only if ‖3kn‖= 3k+‖n‖. The difference δ(n)−δ(3kn)
is a nonnegative integer.

(3) A number n is stable if and only if for any k ≥ 0, δ(3kn)= δ(n).

(4) If the difference δ(n)− δ(m) is rational, then n = m3k for some integer k (and so δ(n)− δ(m) ∈ Z).

(5) Given any n, there exists k such that 3kn is stable.

(6) For a given defect α, the set {m : δ(m)= α} has either the form {n3k
: 0≤ k ≤ L} for some n and L ,

or the form {n3k
: 0≤ k} for some n. The latter occurs if and only if α is the smallest defect among

δ(3kn) for k ∈ Z.

(7) If δ(n)= δ(m), then ‖n‖ = ‖m‖ (mod 3).

(8) δ(1)= 1, and for k ≥ 1, δ(3k)= 0. No other integers occur as δ(n) for any n.

(9) If δ(n)= δ(m) and n is stable, then so is m.

Proof. Parts (1)–(8), except part (3), are just Theorem 2.1 from [Altman 2015]. Part (3) is Proposition 12
from [Altman and Zelinsky 2012], and part (9) is Proposition 3.1 from [Altman 2015]. �

We will want to consider the set of all defects:

Definition 2.2. We define the defect set D to be {δ(n) : n ∈ N}, the set of all defects.

We also defined Da , for a a congruence class modulo 3, in Definition 1.5 earlier.
The paper [Altman 2015] also defined the notion of a stable defect:

Definition 2.3. We define a stable defect to be the defect of a stable number, and define Dst to be the set
of all stable defects. Also, for a a congruence class modulo 3, we define Da

st = Da
∩Dst.

Because of part (9) of Theorem 2.1, this definition makes sense; a stable defect α is not just one that
is the defect of some stable number, but one for which any n with δ(n)= α is stable. Stable defects can
also be characterized by the following proposition from [Altman 2015]:

Proposition 2.4. A defect α is stable if and only if it is the smallest β ∈ D such that β ≡ α (mod 1).

We can also define the stable defect of a given number, which we denote by δst(n).

Definition 2.5. For a positive integer n, define the stable defect of n, denoted by δst(n), to be δ(3kn)
for any k such that 3kn is stable. (This is well-defined as if 3kn and 3`n are stable; then k ≥ ` implies
δ(3kn)= δ(3`n), and `≥ k implies this as well.)

Note that the statement “α is a stable defect”, which earlier we were thinking of as “α = δ(n) for some
stable n”, can also be read as the equivalent statement “α = δst(n) for some n”.

Similarly we have the stable complexity:

Definition 2.6. For a positive integer n, define the stable complexity of n, denoted by ‖n‖st, to be
‖3kn‖− 3k for any k such that 3kn is stable.

We then have the following facts relating the notions of ‖n‖, δ(n), ‖n‖st, and δst(n):
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Proposition 2.7. We have:

(1) δst(n)=mink≥0 δ(3kn).

(2) δst(n) is the smallest α ∈ D such that α ≡ δ(n) (mod 1).

(3) ‖n‖st =mink≥0(‖3kn‖− 3k).

(4) δst(n)= ‖n‖st− 3 log3 n.

(5) δst(n)≤ δ(n), with equality if and only if n is stable.

(6) ‖n‖st ≤ ‖n‖, with equality if and only if n is stable.

(7) ‖3n‖st = ‖n‖st+ 3.

(8) If δst(n)= δst(m), then ‖n‖st ≡ ‖m‖st (mod 3).

Proof. Statements (1)–(6) are just Propositions 3.5, 3.7, and 3.8 from [Altman 2015]. Statement (7)
follows from the definition of stable complexity; if 3kn is stable, then ‖3n‖st = ‖3kn‖ − 3(k − 1) =
‖3kn‖− 3k + 3 = ‖n‖st+ 3. To prove statement (8), note that if δst(n) = δst(m), then by statement (2)
one has δ(n) ≡ δ(m) (mod 1), and so by Theorem 2.1, one has that n = m3k for some k ∈ Z, and so
‖n‖st = ‖m‖st+ 3k. �

Note, by the way, that just as Dst can be characterized either as defects δ(n) with n stable or as defects
δst(n) for any n, Da

st can be characterized either as defects δ(n) with n stable and ‖n‖ ≡ a (mod 3), or
as defects δst(n) for any n with ‖n‖st ≡ a (mod 3).

Three defects that will be particularly important in this paper are the smallest three defects:

Proposition 2.8. D ∩ [0, 2δ(2)] = {0, δ(2), 2δ(2)}.

Proof. Proposition 37 from [Altman and Zelinsky 2012] tells us that the only leaders with defect less
than 3δ(2) are 3, 2, and 4, which respectively have defects 0, δ(2), and 2δ(2). �

2B. Low-defect polynomials. As has been mentioned in Section 1C, we are going to represent the set
of numbers with defect at most r by substituting powers of 3 into certain multilinear polynomials we
call low-defect polynomials. We will associate with each one a “base complexity” to form a low-defect
pair. In this section we will review the basic properties of these polynomials. First, their definition:

Definition 2.9. We define the set P of low-defect pairs as the smallest subset of Z[x1, x2, . . .]×N such
that:

(1) For any constant polynomial k ∈ N⊆ Z[x1, x2, . . .] and any C ≥ ‖k‖, we have (k,C) ∈P.

(2) Given ( f1,C1) and ( f2,C2) in P, we have ( f1⊗ f2,C1+C2) ∈P, where, if f1 is in d1 variables
and f2 is in d2 variables,

( f1⊗ f2)(x1, . . . , xd1+d2) := f1(x1, . . . , xd1) f2(xd1+1, . . . , xd1+d2).

(3) Given ( f,C) ∈P, c ∈ N, and D ≥ ‖c‖, we have ( f ⊗ x1+ c,C + D) ∈P, where ⊗ is as above.

The polynomials obtained this way will be referred to as low-defect polynomials. If ( f,C) is a low-
defect pair, C will be called its base complexity. If f is a low-defect polynomial, we will define its
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absolute base complexity, denoted by ‖ f ‖, to be the smallest C such that ( f,C) is a low-defect pair. We
will also associate to a low-defect polynomial f the augmented low-defect polynomial

f̂ = f ⊗ x1;

if f is in d variables, this is f xd+1.

So, e.g., (3x1+1)x2+1 is a low-defect polynomial, as are (3x1+1)(3x2+1), (3x1+1)(3x2+1)x3+1,
and 2

(
(73(3x1+ 1)x2+ 6)(2x3+ 1)x4+ 1

)
. In this paper we will only concern ourselves with low-defect

pairs ( f,C) where C = ‖ f ‖, so in the remainder of what follows, we will mostly dispense with the
formalism of low-defect pairs and just discuss low-defect polynomials.

Note that the degree of a low-defect polynomial is also equal to the number of variables it uses;
see Proposition 2.10. Also note that augmented low-defect polynomials are never themselves low-defect
polynomials; as we will see in a moment (Proposition 2.10), low-defect polynomials always have nonzero
constant term, whereas augmented low-defect polynomials always have zero constant term. We can
also observe that low-defect polynomials are in fact read-once polynomials as discussed in for instance
[Volkovich 2016].

Note that we do not really care about what variables a low-defect polynomial is in — if we permute
the variables of a low-defect polynomial or replace them with others, we will still regard the result as a
low-defect polynomial. From this perspective, the meaning of f ⊗ g could be simply regarded as “relabel
the variables of f and g so that they do not share any, then multiply f and g”. Helpfully, the ⊗ operator
is associative not only with this more abstract way of thinking about it, but also in the concrete way it
was defined above.

In [Altman 2015] were proved the following propositions about low-defect polynomials:

Proposition 2.10. Suppose f is a low-defect polynomial of degree d. Then f is a polynomial in the
variables x1, . . . , xd , and it is a multilinear polynomial, i.e., it has degree 1 in each of its variables. The
coefficients are nonnegative integers. The constant term is nonzero, and so is the coefficient of x1 · · · xd ,
which we will call the leading coefficient of f .

Proof. This is Proposition 4.2 from [Altman 2015]. �

Proposition 2.11. If f is a low-defect polynomial of degree d, then

‖ f (3n1, . . . , 3nd )‖ ≤ ‖ f ‖+ 3(n1+ · · ·+ nd),

‖ f̂ (3n1, . . . , 3nd+1)‖ ≤ ‖ f ‖+ 3(n1+ · · ·+ nd+1).

Proof. This is a combination of Proposition 4.5 and Corollary 4.12 from [Altman 2015]. �

The above proposition motivates the following definition:

Definition 2.12. Given a low-defect polynomial f (say of degree d) and a number N, we will say that
f efficiently 3-represents N if there exist nonnegative integers n1, . . . , nd such that

N = f (3n1, . . . , 3nd ) and ‖N‖ = ‖ f ‖+ 3(n1+ · · ·+ nd).

We will say f̂ efficiently 3-represents N if there exist n1, . . . , nd+1 such that

N = f̂ (3n1, . . . , 3nd+1) and ‖N‖ = ‖ f ‖+ 3(n1+ · · ·+ nd+1).
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More generally, we will also say f 3-represents N if there exist nonnegative integers n1, . . . , nd such
that N = f (3n1, . . . , 3nd ), and similarly for f̂ .

Note that previous papers [Altman 2015; 2016; 2018a] instead spoke of a low-defect pair ( f,C)
efficiently 3-representing a number N ; however, as mentioned in those papers, it is only possible for
some ( f,C) to efficiently 3-represent a number N if in fact C = ‖ f ‖, so there is no loss here.

In keeping with the name, numbers 3-represented by low-defect polynomials, or their augmented
versions, have bounded defect. Let us make some definitions first:

Definition 2.13. Given a low-defect polynomial f we define δ( f ), the defect of f , to be ‖ f ‖− 3 log3 m,
where m is the leading coefficient of f .

Definition 2.14. Given a low-defect polynomial f of degree d , we define

δ f (n1, . . . , nd)= ‖ f ‖+ 3(n1+ · · ·+ nd)− 3 log3 f (3n1, . . . , 3nd ).

Then we have:

Proposition 2.15. Let f be a low-defect polynomial of degree d, and let the numbers n1, . . . , nd+1 be
nonnegative integers:

(1) We have
δ( f̂ (3n1, . . . , 3nd+1))≤ δ f (n1, . . . , nd),

and the difference is an integer.

(2) We have
δ f (n1, . . . , nd)≤ δ( f ),

and if d ≥ 1, this inequality is strict.

(3) The function δ f is strictly increasing in each variable, and

δ( f )= sup
n1,...,nd

δ f (n1, . . . , nd).

Proof. This is a combination of Proposition 4.9 and Corollary 4.14 from [Altman 2015] and Proposi-
tion 2.15 from [Altman 2016]. �

Importantly, the set of defects coming from a low-defect polynomial of degree r has order type ap-
proximately ωr ; if rather than the actual defects we use δ f , then this is exact. More formally:

Proposition 2.16. Let f be a low-defect polynomial of degree d. Then:

(1) The image of δ f is a well-ordered subset of R, with order type ωd.

(2) The set of δ(N ) for all N 3-represented by the augmented low-defect polynomial f̂ is a well-ordered
subset of R, with order type at least ωd and at most ωd(bδ( f )c+ 1) < ωd+1. The same is true if f
is used instead of the augmented version f̂ .

Proof. This is a combination of Propositions 6.2 and 6.3 from [Altman 2015]. �

The second part of the above proposition follows from the first by means of theorems about cutting
and pasting of well-ordered sets, ultimately due to [Carruth 1942]. In particular:
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Proposition 2.17. We have:

(1) If S is a well-ordered set and S = S1 ∪ · · · ∪ Sn , and S1 through Sn all have order type less than ωk,
then so does S.

(2) If S is a well-ordered set of order type ωk and S = S1 ∪ · · · ∪ Sn , then at least one of S1 through Sn

also has order type ωk.

Proof. One may see [Carruth 1942] or [de Jongh and Parikh 1977] for proofs of these. �

We will need in particular the following variant:

Proposition 2.18. Suppose α is an ordinal and S is a well-ordered set which can be written as a finite
union S1 ∪ · · · ∪ Sk such that:

(1) The Si all have order types at most ωα.

(2) If a set Si has order type ωα, it is cofinal in S.

Then the order type of S is at most ωα. In particular, if at least one of the Si has order type ωα, then S
has order type ωα.

Proof. A proof of this can be found in [Altman 2018b], where it is Proposition 5.4. �

As was noted above, we have δ( f (3n1, . . . , 3nd ))≤ δ f (n1, . . . , nd). Importantly, though, for certain
low-defect polynomials f , namely, those with δ( f ) < deg f + 1, we can show that equality holds for
“most” choices of (n1, . . . , nd) in a certain sense.

Specifically:

Proposition 2.19. Let f be a low-defect polynomial of degree d with δ( f ) < d + 1. Define its “excep-
tional set” to be

S := {(n1, . . . , nd) : ‖ f (3n1, . . . , 3nd )‖st < ‖ f ‖+ 3(n1+ · · ·+ nd)}.

Then the set {δ( f (3n1, . . . , 3nd )) : (n1, . . . , nd) ∈ S} has order type less than ωd, and therefore so does
the set {δ( f̂ (3n1, . . . , 3nd+1)) : (n1, . . . , nd) ∈ S}. In particular, for a 6≡ ‖ f ‖ (mod 3), the set

{δ( f̂ (3n1, . . . , 3nd+1)) : (n1, . . . , nd+1) ∈ Zd+1
≥0 } ∩Da

has order type less than ωd. Meanwhile, the set

{δ( f (3n1, . . . , 3nd )) : (n1, . . . , nd) /∈ S}

has order type at least ωd, and thus so does the set

{δ( f (3n1, . . . , 3nd )) : (n1, . . . , nd) ∈ Zd
≥0} ∩D

‖ f ‖
st ;

moreover, the supremum of this latter set is equal to δ( f ).

Proof. Most of this is direct from Proposition 7.2 from [Altman 2015]; the only parts not covered in the
statement there are the statement about {δ( f̂ (3n1, . . . , 3nd+1)) : (n1, . . . , nd) ∈ S}, the statement regarding
a 6≡ ‖ f ‖ (mod 3), and the final statement.

The first of these follows directly from the first part, because

δ( f̂ (3n1, . . . , 3nd+1))≤ δ( f (3n1, . . . , 3nd ))
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with the difference being an integer, and that integer can certainly be no more than

δ( f (3n1, . . . , 3nd ))≤ δ( f ).

Thus the set

{δ( f̂ (3n1, . . . , 3nd+1)) : (n1, . . . , nd+1) ∈ Zd+1
≥0 } ∩Da

can be covered by finitely many translates of {δ( f (3n1, . . . , 3nd )) : (n1, . . . , nd) ∈ S} and therefore by
Proposition 2.17 has order type less than ωd.

For the statement about

{δ( f̂ (3n1, . . . , 3nd+1)) : (n1, . . . , nd+1) ∈ Zd+1
≥0 } ∩Da,

with a 6≡ C (mod 3), if ‖ f̂ (3n1, . . . , 3nd )‖ ≡ a 6≡ ‖ f ‖ (mod 3), then in particular this means that

‖ f̂ (3n1, . . . , 3nd+1)‖ 6= ‖ f ‖+ 3(n1+ · · ·+ nd+1),

which means that

‖ f̂ (3n1, . . . , 3nd+1)‖< ‖ f ‖+ 3(n1+ · · ·+ nd+1),

and therefore that

‖ f (3n1, . . . , 3nd )‖st < ‖ f ‖+ 3(n1+ · · ·+ nd),

i.e., that (n1, . . . , nd) ∈ S. Applying what was proved in the previous paragraph now proves the statement.
As for the final statement, the set {δ( f (3n1, . . . , 3nd )) : (n1, . . . , nd)∈Zd

≥0}∩D
‖ f ‖
st contains δ f (N

d
\S)

(one may see the proof in [Altman 2015]) which in turn contains δ f (N
d) \ δ f (S). Since the image

of δ f has order type ωd while δ f (S) has order type less than ωd — similarly to above, this follows
by the initial statement and Proposition 2.17 — it follows that δ f (N

d) \ δ f (S) has order type ωd and
thus is cofinal in the image of δ f , and thus has supremum δ( f ), and the same is true of the larger set
{δ( f (3n1, . . . , 3nd )) : (n1, . . . , nd) ∈ Zd

≥0} ∩D
‖ f ‖
st , which is also bounded above by δ( f ). �

Finally, one more property of low-defect polynomials we will need is the following:

Proposition 2.20. Let f be a low-defect polynomial, and suppose that a is the leading coefficient of f .
Then ‖ f ‖ ≥ ‖a‖+ deg f . In particular, δ( f )≥ δ(a)+ deg f .

Proof. This is Proposition 3.24 from [Altman 2016]. �

With this, we have the basic properties of low-defect polynomials.

Remark 2.21. Note that one reason nothing is lost here by discarding the formalism of low-defect pairs
is that the low-defect pairs ( f,C) we will (implicitly) concern ourselves with in this paper are ones that
satisfy C − 3 log3 m < deg f + 1, where m is the leading coefficient of f . However, by Proposition 2.20,

deg f ≤ δ( f )≤ C − 3 log3 m < deg f + 1;

thus C −‖ f ‖ = (C − 3 log3 m)− δ( f ) < 1 and so C = ‖ f ‖. Thus if we were to use low-defect pairs,
we would only be using pairs where C = ‖ f ‖, so we lose nothing by making this assumption.
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2C. Good coverings. We need one more set of definitions before we can state the theorem that will be
used as the basis of the proof of the main theorem. We define:

Definition 2.22. A natural number n is called a leader if it is the smallest number with a given defect.
By part (6) of Theorem 2.1, this is equivalent to saying that either 3-n, or, if 3 | n, then δ(n) < δ(n/3),
i.e., ‖n‖< 3+‖n/3‖.

Let us also define:

Definition 2.23. For any real s ≥ 0, define the set of s-defect numbers As to be

As := {n ∈ N : δ(n) < s}.

Define the set of s-defect leaders Bs to be

Bs := {n ∈ As : n is a leader}.

These sets are related by the following proposition from [Altman 2015]:

Proposition 2.24. For every n ∈ As , there exists a unique m ∈ Bs and k ≥ 0 such that n = 3km and
δ(n)= δ(m); then ‖n‖ = ‖m‖+ 3k.

Because of this, if we want to describe the set As , it suffices to describe the set Bs . Now we can
define:

Definition 2.25. For a real number s ≥ 0, a finite set S of low-defect polynomials will be called a good
covering for Bs if every n ∈ Bs can be efficiently 3-represented by some polynomial in S (and hence
every n ∈ As can be efficiently represented by some f̂ with f ∈ S) and if for every f ∈ S, we have
δ( f )≤ s, with this being strict if deg f = 0.

This allows us to state the main theorem from [Altman 2016]:

Theorem 2.26. For any real number s ≥ 0, there exists a good covering of Bs .

Proof. This is Theorem 4.9 from [Altman 2016] rewritten in terms of Definition 2.25, and using low-
defect polynomials instead of pairs. (Any low-defect pairs ( f,C) with C > ‖ f ‖, can be filtered out of a
good covering, since such a pair can never efficiently 3-represent anything.) �

Note that by Proposition 2.20, if f is in a good covering of Bs with leading coefficient m, we must
have δ(m)+ deg f ≤ s.

3. The integer defect

In this section we state some basic facts about D(n), what it means, and how it may be computed.
Let us start by giving another interpretation of what D(n) means:

Proposition 3.1. For a natural number n,

D(n)= |{k : n < E(k)≤ E(‖n‖)}|.

That is to say, D(n) measures how far down n is among numbers with complexity ‖n‖, measured
by how many values of E one passes as one counts downwards towards n from the largest number also
having complexity ‖n‖.
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Proof. By definition, L(n) is the largest k such that E(k) ≤ n. Since E(k) is strictly increasing, the
number of k such that n < E(k)≤ E(‖n‖) is equal to the difference ‖n‖− L(n), i.e., D(n). �

So for instance, one has that D(n)= 0 if and only if n is of the form E(k) for some k, i.e., n is the
largest number of its complexity; while D(n) ≤ 1 if and only if n > E(‖n‖− 1), i.e., n is greater than
all numbers of lower complexity. Numbers n with D(n)≤ 1 will be discussed more in Section 5.

As for properties of the integer defect, it behaves largely analogously to the real defect:

Proposition 3.2. We have:

(1) For all n, D(n)≥ 0.

(2) For all n > 1, L(3n)= L(n)+ 3.

(3) For n > 1 and k ≥ 0, one has D(3kn)≤ D(n), with equality if and only if ‖3kn‖ = 3k+‖n‖.

(4) A number n > 1 is stable if and only if for any k ≥ 0, D(3kn)= D(n).

Proof. Statement (1) is just the statement that L(n) ≤ ‖n‖; this follows from the definition of L(n)
as E(‖n‖) ≥ n and so (as E(k) is increasing) one must have L(n) ≤ ‖n‖. And once statement (2) is
established, statements (3) and (4) then follow from that and may be proved in exactly the same way their
analogous statements in Theorem 2.1 are proved. This leaves just statement (2) to be proved. Note that,
for any k > 1, E(k+ 3)= 3E(k). Therefore, for any k > 1, E(k+ 3)≤ 3n if and only if E(k)≤ n, and
so L(3n)= L(n)+ 3; the only possible exception to this would be if one had L(n)= 1, which happens
only when n = 1. �

Note that while the theorem that for any n there is some k such that 3kn is stable was originally proven
using the defect δ(n), it could also just as well be proven using the integer defect D(n).

We can also of course define a stable variant of D(n):

Definition 3.3. For a positive integer n, we define the stable integer defect of n, denoted by Dst(n), to
be D(3kn) for any k such that 3kn is stable.

Note that Proposition 3.2 shows that this is well-defined.

Proposition 3.4. We have:

(1) Dst(n)=mink≥0 D(3kn).

(2) For n > 1, Dst(n)= ‖n‖st− L(n).

(3) Dst(n)≤ D(n), with equality if and only if n is stable or n = 1.

(4) For n > 1, D(n)− Dst(n)= δ(n)− δst(n)= ‖n‖−‖n‖st.

Proof. With the exception of (4), of which no analogue has previously been mentioned, these all follow
from Proposition 3.2 and their proofs are exactly analogous to those of the statements in Proposition 2.7;
meanwhile (4) follows immediately from (2) and the definition of D(n). �

We then also have the analogue of Proposition 3.1:

Proposition 3.5. For a natural number n > 1,

Dst(n)= |{k : n < E(k)≤ E(‖n‖st)}|.



INTEGER COMPLEXITY: THE INTEGER DEFECT 209

Proof. Once again, by definition, L(n) is the largest k such that E(k) ≤ n. And since E(k) is strictly
increasing, the number of k such that n < E(k)≤ E(‖n‖st) is equal to the difference ‖n‖st− L(n), which
by Proposition 3.4 is Dst(n). �

Remark 3.6. It may seem strange that 1 needs to be excluded, given that its special status goes away
when stabilized. However, ‖1‖st = 0, and E(0) is not defined, so n = 1 must still be excluded from the
theorem statement.

Note, by the way:

Proposition 3.7. For any natural number n, D(n)= 0 if and only if Dst(n)= 0.

Proof. It is immediate that a number n with D(n)= 0 is stable and so has Dst(n)= 0 (unless n = 1, in
which case one still has Dst(n)= 0). For the reverse, a number n has Dst(n)= 0 if and only if there is
some k such that D(3kn)= 0. However, as the numbers n with D(n)= 0 are precisely those numbers
of the form 3k , 2 · 3k , and 4 · 3k , we see that if n has Dst(n)= 0, it must itself be of one of these forms,
and thus have D(n)= 0. �

See Corollaries 5.2 and 5.3 for related statements.
Having discussed what D(n) is and how it acts, let us finally discuss how it may be computed. The

quantity D(n) is just the difference ‖n‖− L(n). We know how to compute ‖n‖, although not necessarily
quickly; see [Arias de Reyna and van de Lune 2014] for the currently best-known algorithm for com-
puting complexity, and [Cordwell et al. 2019] for the best-known bounds on its runtime. But the other
half, computing L(n), is very simple and can be done much quicker, because it is given by the following
formula:

Proposition 3.8. For a natural number n,

L(n)=max
{
3blog3 nc, 3

⌊
log3

( 1
2 n
)⌋
+ 2, 3

⌊
log3

( 1
4 n
)⌋
+ 4, 1

}
.

Proof. The quantity L(n) is by definition the largest k such that E(k)≤ n. The largest such k congruent
to 0 modulo 3 is 3blog3 nc (so long as this quantity is positive; otherwise there is none), the largest such
k congruent to 2 modulo 3 is 3

⌊
log3

( 1
2 n
)⌋
+ 2 (with the same caveat), the largest such k > 1 congruent

to 1 modulo 3 is 3
⌊

log3
( 1

4 n
)⌋
+ 4 (again with the same caveat), and of course the largest such k equal

to 1 is 1. So the largest of these is L(n) (and any of them that are not valid positive and thus not a valid
k will not affect the maximum). �

Let us make here a definition that will be useful later:

Definition 3.9. For a natural number n, define R(n) = n/E(‖n‖). We also define Rst(n) to be R(3kn)
for any k such that 3kn is stable, or equivalently (for n > 1) as n/E(‖n‖st).

This is easily related to the defect, as was done in an earlier paper [Altman 2015]:

Proposition 3.10. We have, for n > 1,

δ(n)=


−3 log3 R(n) if ‖n‖ ≡ 0 (mod 3),
−3 log3 R(n)+ 2 δ(2) if ‖n‖ ≡ 1 (mod 3),
−3 log3 R(n)+ δ(2) if ‖n‖ ≡ 2 (mod 3),

and the same relation (without the n > 1 restriction) holds between Rst(n), ‖n‖st, and δst(n).
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Proof. The relation between R(n) and δ(n) is just Proposition A.3 from [Altman 2015], and the proof
for the stable case is exactly analogous. �

Now we see that in addition to being easy to compute L(n), it is also simple to determine D(n)
from δ(n), at least if we know the value of ‖n‖ modulo 3, which technically is implicit in δ(n). First, a
definition:

Definition 3.11. Let a be a congruence class modulo 3 and k be a whole number. Define

ta(k)=


k if k ≡ a (mod 3),
k+ δ(2) if k ≡ a+ 1 (mod 3),
k+ 2δ(2) if k ≡ a+ 2 (mod 3).

Now:

Theorem 3.12. Let n > 1 be a natural number. Then D(n) is equal to the smallest k such that δ(n) ≤
t‖n‖(k). Moreover, if n is any natural number, Dst(n) is equal to the smallest k such that δst(n)≤ t‖n‖st(k).

Since two numbers with the same defect also have the same complexity modulo 3 (and δ(n)= 1 if and
only if n = 1), and the analogous statement is also true of stable complexity and defect, in particular we
have that if δ(n)= δ(m) then D(n)= D(m), and if δst(n)= δst(m) then Dst(n)= Dst(m).

Note in addition that since δ(n)= δ(m) implies δst(n)= δst(m) (see statement (2) in Proposition 2.7)
one has that if δ(n)= δ(m) then Dst(n)= Dst(m).

Theorem 3.12 makes precise how D(n) is “almost dδ(n)e”. It is, as was noted in the Introduction, not
the same, but it is the smallest k such that δ(n)≤ t‖n‖(k), where t‖n‖(k) may not be exactly k but never
differs from it by more than 2δ(2) < 0.215.

Proof. We prove only the nonstabilized case, as the stabilized case is exactly analogous. We assume
n > 1.

From Proposition 3.1, we can see that D(n) is determined by R(n) and the value of ‖n‖ modulo 3.
Specifically,

D(n)=
∣∣∣∣{k : R(n) <

E(k)
E(‖n‖)

≤ 1
}∣∣∣∣,

so D(n) is the number of values of E(k)/E(‖n‖) in (R(n), 1]. What are the values of this? They can be
obtained as products of values E(k)/E(k+ 1); this is equal to 2

3 when k ≡ 1 or 2 (mod 3) (for k > 1)
and to 3

4 when k ≡ 0 (mod 3).
Thus, if ‖n‖ ≡ 0 (mod 3), D(n) will increase whenever R(n) passes a value of the sequence 1, 2

3 , 4
9 , 1

3 ,
2
9 , 4

27 , 1
9 , . . . ; if ‖n‖ ≡ 1 (mod 3), whenever it passes a value of the sequence 1, 3

4 ,
1
2 ,

1
3 ,

1
4 ,

1
6 ,

1
9 , . . . ; and

if ‖n‖ ≡ 2 (mod 3), whenever it passes a value of the sequence 1, 2
3 ,

1
2 ,

1
3 ,

2
9 ,

1
6 ,

1
9 , . . . . (These sequences

are just the sequences obtained by taking products of one of the three shifts of the periodic sequence
2
3 ,

2
3 ,

3
4 ,

2
3 ,

2
3 ,

3
4 , . . .; note that regardless of which shift is used, the repeating part of the sequence always

has a product of 1
3 , and so the product sequences will always consist of three interwoven geometric

sequences each with ratio 1
3 .)

It just remains, then, to convert these values of R(n) to their equivalents in defects, which can be
done with Proposition 3.10. Once this is done one finds that the values of δ(n) where D(n) increases are
precisely those listed in the definition of t‖n‖, which completes the proof. �
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Theorem 3.12 will form half the proof of Theorem 1.8, and its stable analogue, Theorem 4.2; it tells
us that the values of D(n) “switch over” when δ(n) is of the form k, k+ δ(2), or k+ 2δ(2) depending
on the congruence class of k−‖n‖ modulo 3. The other half the proof is, of course, Theorem 1.9 (and
its stable analogue, Theorem 4.1), which will tell us that these changeover points are exactly the limits
of the initial ωk defects in Da (or Da

st).

4. The order interpretation of D(n)

In this section we aim to prove Theorem 1.9 using the methods described in Section 1C; combined
with Theorem 3.12 from the previous section, this will prove Theorem 1.8. Really, we want to prove
generalizations:

Theorem 4.1. For any k ≥ 0 and a, a congruence class modulo 3, the order type of Da
∩ [0, ta(k)] and

the order type of Da
st ∩ [0, ta(k)] are both equal to ωk.

Theorem 4.2. Let n > 1 be a natural number. Let ζ be the order type of D‖n‖ ∩ [0, δ(n)). Then D(n) is
equal to the smallest k such that ζ < ωk . The same is true if we replace δ(n) by δst(n), D‖n‖ by D

‖n‖st
st ,

and D(n) by D(n)st.

Note that the proofs in this section will rely heavily on the results in Sections 2B and 2C. Before we
prove these, though, we will need a slight elaboration on Proposition 2.19:

Proposition 4.3. Let f be a low-defect polynomial of degree d with δ( f ) < d + 1. Then the order type
of the set of all δ(N ) for n 3-represented by f̂ is exactly ωd.

Proof. By Proposition 2.19, {δ( f̂ (3n1, . . . , 3nd )) : (n1, . . . , nd) ∈ S} has order type less than ωd. Mean-
while, also by Proposition 2.19, the set

{δ( f (3n1, . . . , 3nd )) : (n1, . . . , nd) /∈ S}

has order type at least ωd, and is cofinal in [0, δ( f )) (or [0, δ( f )] if deg f = 0) and therefore in the set
of all δ(N ) for n 3-represented by f̂. But in fact, for (n1, . . . , nd) /∈ S, one has δ( f̂ (3n1, . . . , 3nd+1))=

δ f (n1, . . . , nd), and so this set (even when f (3n1, . . . , 3nd ) is replaced by f̂ (3n1, . . . , 3nd+1)) is a subset
of the image of δ f , which by Proposition 2.16 has order type ωd. So the conditions of Proposition 2.18
apply, and the union of these two sets, the set of all δ(n) for N 3-represented by f̂ , has order type at
most ωd. We already know by Proposition 2.16 it has order type at least ωd, so this proves the claim. �

We now prove the main theorems of this section.

Proof of Theorem 4.1. We need to show that the order type of Da
∩ [0, ta(k)] and the order type of

Da
st ∩ [0, ta(k)] are both equal to ωk. This proof breaks down into two parts, an upper bound and a lower

bound. Since Da
st ⊆ Da, it suffices to prove the upper bound for Da

∩ [0, ta(k)] and the lower bound for
Da

st ∩ [0, ta(k)].
We begin with the upper bound. First, we observe that ta(k) is not itself an element of Da for any

k > 0. We can see this as neither k+ δ(2) nor k+ 2δ(2) is a defect for any k > 0 (such a defect would
have to come from some number n satisfying 3`n = 2 or 3`n = 4 for ` > 0, which is impossible), and
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similarly no nonzero integer is a defect except k = 1, which though an element of D is by definition
excluded from all three Da. Thus

Da
∩ [0, ta(k)] = Da

∩ [0, ta(k))

and we may concern ourselves with the order type of the latter.
Now we take a good covering S of Bta(k) as per Theorem 2.26. For any f ∈S with leading coefficient m,

we have the inequality δ(m)+ deg f ≤ δ( f ) ≤ ta(k). In particular, for any f ∈ S, we have deg f ≤
bta(k)c = k.

Suppose now that deg f = k; then there is more we can say. For in this case, we have δ(m)≤ ta(k)−
k ≤ 2δ(2). Thus δ(m) ∈ {0, δ(2), 2δ(2)} by Proposition 2.8. Note that by their respective definitions,
δ( f )≡ δ(m) (mod 1), and, as noted above, δ( f )≥ deg f = k, and so

δ( f )= k+ δ(m) ∈ {k, k+ δ(2), k+ 2δ(2)}.

Note that δ( f )= k+ δ(m) means that

k+‖m‖− 3 log3 m = ‖ f ‖− 3 log3 m

and therefore ‖ f ‖ = k −‖m‖. Moreover, if δ(m) = 0, then m is of the form 3` (for some ` > 0) and
‖m‖ = 3`, while if δ(m)= δ(2) then m is of the form 2 ·3` with ‖m‖ = 2+3`, and if δ(m)= 2δ(2) then
m is of the form 4 · 3` with ‖m‖ = 4+ 3`; from this we can conclude that, modulo 3,

‖ f ‖ ≡


k if δ( f )= k,
k− 2 if δ( f )= k+ δ(2),
k− 1 if δ( f )= k+ 2δ(2).

Now, let
T f = {δ( f̂ (3n1, . . . , 3nd+1)) : n1, . . . , nd+1 ≥ 0} ∩Da,

where d = deg f . Then by the assumption that S is a good covering of Bta(k), we have

Da
∩ [0, ta(k))=

⋃
f ∈S

T f .

We want to show that the conditions of Proposition 2.18 hold for the sets T f , so that we can conclude
that Da

∩ [0, ta(k)) has order type at most ωk. If deg f < k, then, by Proposition 2.16, T f has order type
less than ωk, and thus so does T f ∩Da. Meanwhile, if deg f = k, then since δ( f ) ≤ ta(k) < k + 1, we
can apply Proposition 4.3 to conclude that the set of δ(N ) for N 3-represented by f̂ has order type ωk.
However, if δ( f ) 6= ta(k), then by the previous paragraph and Proposition 2.19, we see that while this
has order type ωk, T f , which is its intersection with Da, has order type less than ωk.

It remains to check, then, that when deg f = k and δ( f ) = ta(k), that the set T f is cofinal in⋃
f ∈S T f =Da

∩[0, ta(k)), or in other words, simply that it is cofinal in [0, ta(k)). But this follows from
Proposition 2.19, which in fact goes further and states that T f ∩Da

st is cofinal in [0, δ( f ))= [0, ta(k)).
Thus, applying Proposition 2.18, we conclude that Da

∩ [0, ta(k)) has order type at most ωk. This
proves the upper bound.

To prove the lower bound, let us consider the low-defect polynomial

f = (· · · ((mx1+ 1)x2+ 1) · · · )xk + 1
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(for a particular m to be chosen shortly) which has ‖ f ‖=‖m‖+k. (The upper bound on ‖ f ‖ is immediate
and the lower bound follows from Proposition 2.20.) For the value of m, we take

m =


3 if k− a ≡ 0 (mod 3),
4 if k− a ≡ 2 (mod 3),
2 if k− a ≡ 1 (mod 3),

so that ‖m‖ ≡ a− k (mod 3) and ‖ f ‖ ≡ a (mod 3), meaning D
‖ f ‖
st = Da

st.
Then δ( f )= ta(k) and so in particular δ( f )< k+1, meaning once again we can apply Proposition 2.19

to conclude that the set

{δ( f (3n1, . . . , 3nk )) : (n1, . . . , nk) ∈ Zk
≥0} ∩D

‖ f ‖
st

has order type at least ωk. Since this set is bounded above by δ( f )= ta(k), and D
‖ f ‖
st = Da

st, we conclude
that the order type of Da

st ∩ [0, ta(k)) is at least ωk. �

In particular this encompasses Theorem 1.9.

Proof of Theorem 1.9. This is just a rephrasing of Theorem 4.1 with the application to Da
st omitted. �

Having proven Theorem 4.1, we can now combine it with Theorem 3.12 to obtain Theorems 4.2
and 1.8:

Proof of Theorem 4.2. By Theorem 3.12, D(n) is equal to the smallest k such that δ(n) ≤ t‖n‖(k).
However, since the order type of D‖n‖ ∩ [0, t‖n‖(k)) is equal to ωk, one has that ζ < ωk if and only if
δ(n) < t‖n‖(k). Thus D(n) is equal to the smallest k such that ζ < ωk. The proof for the stabilized version
is similar. �

Proof of Theorem 1.8. This is just the special case of Theorem 4.2 where we only consider δ(n) and
not δst(n). �

5. Numbers n with D(n) ≤ 1

In the previous section we showed that the numbers with integral defect at most k correspond to the
initial ωk defects in each of D0, D1, and D2. In this section we take a closer look at the initial ω, the
numbers with integral defect at most 1, and use this to generalize Theorem 1.10.

Let us start by listing all the numbers with integral defect at most 1:

Theorem 5.1. A natural number n satisfies D(n)≤ 1 if and only if it can be written in one of the following
forms:

(1) 1, of complexity 1.

(2) 2a3k for a ≤ 10, of complexity 2a+ 3k ( for a, k not both zero).

(3) 2a(2b3`+ 1)3k for a+ b ≤ 2, of complexity 2(a+ b)+ 3(`+ k)+ 1 ( for b, ` not both zero).

Proof. By Theorem 3.12, any n with D(n)≤ 1 must have δ(n)≤ 1+ 2δ(2). Theorem 31 from [Altman
and Zelinsky 2012] gives a classification of all numbers n with δ(n) < 12δ(2), together with their com-
plexities; since 12δ(2) > 1+ 2δ(2), any n with D(n)≤ 1 may be found among these. (One may also use
the algorithms from [Altman 2018a] to find such a classification.) It is then a straightforward matter to
determine which of the n listed there have D(n)≤ 1. �
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This has an important corollary:

Corollary 5.2. For any natural number n, D(n)= 1 if and only if Dst(n)= 1.

Proof. From Theorem 5.1, we see that if D(n) ≤ 1 then we also have D(3kn) ≤ 1, and if D(3kn) ≤ 1
then we have D(n) ≤ 1; this shows that D(n) ≤ 1 if and only if Dst(n) ≤ 1. Combining this with
Proposition 3.7 proves the claim. �

From this we can conclude:

Corollary 5.3. For any natural number n > 1, if D(n)≤ 2 then n is stable (and so Dst(n)≤ 2).

Proof. If D(n) = 0 or D(n) = 1, this is Proposition 3.7 or Corollary 5.2, respectively. If D(n) = 2,
then for any k ≥ 0, if we had D(3kn) < 2, then, by Proposition 3.7 and Corollary 5.2, we would have
D(n) < 2, contrary to assumption; thus D(3kn)= 2 for all k ≥ 0, i.e., n is stable (by Proposition 3.4). �

Note that the converse, that if Dst(n) ≤ 2 then D(n) ≤ 2, does not hold; for instance, we can con-
sider 107, which has Dst(107)= 2 but D(107)= 3, or 683, which has Dst(683)= 2 but D(683)= 4. (It
is easy to verify that these numbers have stable integer defect at most 2 because D(321)= D(2049)= 2;
that these numbers do then have stable integer defect equal to 2 and not any lower can then be inferred
from Corollary 5.3. Alternately, the stable complexity, and thus stable integer defect, may be computed
with the algorithms from [Altman 2018a].)

However, for our purposes, the most important consequence of Corollary 5.2 is the following rephras-
ing of it:

Proposition 5.4. Let k > 1 be a natural number and suppose h is a value of R corresponding to a defect
in the initial ω of Dk. Then if hE(k) is a natural number n, one has ‖n‖= k, and, moreover, n> E(k−1).

Proof. Suppose hE(k) is a natural number n. We must have n > 1 because having h = 1/E(k) for
k > 1 would by Proposition 3.10 correspond to a defect which is a nonzero integer, and these (by
Proposition 2.7) do not exist.

Then there is, by definition of h, some number m > 1 with ‖m‖ ≡ k (mod 3) and R(m) = h, i.e.,
m = hE(‖m‖). Since ‖m‖ ≡ k (mod 3) we see that m = n3` for some ` ∈ Z, where ` = (‖m‖− k)/3.
But also we have D(m) ≤ 1. Therefore, whether ` ≥ 0 or ` ≤ 0, we must have Dst(n) ≤ 1, and so, by
Proposition 3.7 and Corollary 5.2, we have D(n)≤ 1. Then by Proposition 3.2, we have ‖m‖ = ‖n‖+3`.
From the definition of ` we also have ‖m‖ = k + 3` and thus we conclude that ‖n‖ = k. And since
D(n)= 1 this means (by Proposition 3.1) that n > E(k− 1). �

We can now prove Theorem 1.12:

Proof of Theorem 1.12. Suppose we want to determine the r-th largest number of complexity k. This
is equivalent to determining the r-th largest value of R(n) = n/E(k) that occurs among numbers n
of complexity k, which is equivalent to determining the r-th smallest defect δ(n) that occurs among
numbers n of complexity k.

Now, we can easily determine the initial values α0, . . . , αr of Dk ; let h0, . . . , hr be the corresponding
values of the function R, as given by Proposition 3.10. (For instance, for a way of getting h0, . . . , hr

directly rather than going by means of defects, one may take the numbers n given in Theorem 5.1, group
them by the residues of ‖n‖ modulo 3, and then sort them in decreasing order by R(n); note that the
values of R(n) obtained this way for any one congruence class of ‖n‖ modulo 3 will have reverse order
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r h corresponding leader

0 1 3= 3120
= 2130

+1
1 8/9 8= 23

= 21(31
+1)

2 64/81 64= 26

3 7/9 7= 2131
+1

4 20/27 20= 21(32
+1)

5 19/27 19= 2132
+1

6 512/729 512= 29

(for n ≥ 4) 2n−1 2/3+2/3n 21(3n−1
+1)

(for n ≥ 4) 2n 2/3+1/3n 213n−1
+1

Table 4. Table of hr for k ≡ 0 (mod 3).

r h corresponding leader

0 1 2= 21

1 8/9 16= 24
= 22(31

+1)
2 5/6 5= 2230

+1
3 64/81 128= 27

4 7/9 14= 21(2131
+1)

5 20/27 40= 22(32
+1)

6 13/18 13= 2231
+1

7 19/27 38= 21(2132
+1)

8 512/729 1024= 210

(for n ≥ 4) 3n−3 2/3+2/3n 22(3n−1
+1)

(for n ≥ 4) 3n−2 2/3+1/(2·3n−1) 223n−1
+1

(for n ≥ 4) 3n−1 2/3+1/3n 21(213n−1
+1)

Table 5. Table of hr for k ≡ 2 (mod 3).

type ω.) One may see Tables 4, 5, and 6 for tables of the resulting values of h. Then certainly, the r -th
largest number of complexity k is at most hr E(k), because the set of values of R(n) occurring for n with
‖n‖ = k is a subset of the values of R(n) occurring for n > 1 with ‖n‖ ≡ k (mod 3). However, it will
only be exactly the r -th largest number of complexity k if all of h1 through hr do indeed occur for some
n with ‖n‖ = k.

But, by Proposition 5.4, this is equivalent to just requiring that all of the numbers h0 E(k), . . . , hr E(k)
are indeed whole numbers (and moreover when this does occur one will have hi E(k) > E(k− 1)). In
other words, this is the same as requiring

k ≥


−3 mins≤r v3(hs) if k ≡ 0 (mod 3),
−3 mins≤r v3(hs)+ 4 if k ≡ 1 (mod 3),
−3 mins≤r v3(hs)+ 2 if k ≡ 2 (mod 3).
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r h corresponding leader

0 1 4= 22
= 31
+1

1 8/9 32= 25

2 5/6 10= 32
+1

3 64/81 256= 28

(for n ≥ 2) n+2 3/4+1/(4·3n) 3n+1
+1

Table 6. Table of hr for k ≡ 1 (mod 3) with k > 1.

So we have our hr,a , and we can take Kr,a to be given by this formula. (Although since for K0,0 it
may not may make much sense to take K0,0 = 0, one may wish to take K0,0 = 3 instead, as we have
done in Table 1.)

Combining this with Tables 4, 5, and 6 yields Tables 1, 2, and 3, and proves the theorem. �

Remark 5.5. While in the proof of Theorem 1.12 we have referred to facts proved in Section 4, none of
the techniques deployed in that section are necessary for the proof. For instance, one can easily verify
the values of the Da(ω) by directly determining the initial ω elements without needing to determine it
for all ωk ; indeed Tables 4, 5, and 6 essentially do this directly from Theorem 5.1.

As a final note, it is worth making formal a statement mentioned in Section 1B, that the numbers
hE(k) coming from Theorem 1.12 are almost exactly the n with D(n)≤ 1:

Proposition 5.6. A number n has D(n) ≤ 1 if and only if there are some ` ≥ 0, k ≥ 1, and r ≥ 0 such
that k ≥ Kr,k and 3`n = hr,k E(k).

Proof. We already know that if k ≥ Kr,k then, if we let m = hr,k E(k), that m > E(k− 1)= E(‖m‖− 1),
i.e., D(m)≤ 1, and so if m = 3`n, then D(n)≤ 1 by Corollary 5.2.

Conversely, if D(n)≤ 1, let h= R(n); then by the construction of the hr,a in the proof of Theorem 1.12,
and the fact that the values of R(n) for numbers n with ‖n‖ in a fixed congruence class modulo 3 have
reverse order type ω, there is some r such that h = hr,‖n‖. We may then take any k ≥ Kr,‖n‖ with
k ≡ ‖n‖ (mod 3); then 3`n = hr,‖n‖E(k)= hr,k E(k) for `= (k−‖n‖)/3. �
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Generalized simultaneous approximation to m linearly dependent reals

Leonhard Summerer

In order to analyse the simultaneous approximation properties of m reals, the parametric geometry of
numbers studies the joint behaviour of the successive minima functions with respect to a one-parameter
family of convex bodies and a lattice defined in terms of the m given reals. For simultaneous approxima-
tion in the sense of Dirichlet, the linear independence over Q of these reals together with 1 is equivalent
to a certain nice intersection property that any two consecutive minima functions enjoy. This paper
focusses on a slightly generalized version of simultaneous approximation where this equivalence is no
longer in place and investigates conditions for that intersection property in the case of linearly dependent
irrationals.

1. Introduction

In Diophantine approximation the simultaneous approximation to m := n−1 real numbers ξ1, . . . , ξm has
a long tradition, starting with Dirichlet who proved the existence of nontrivial solutions (x, y1, . . . , ym)∈Zn

to the system
|x | ≤ eq ,

|ξ1x − y1| ≤ e−q/m,

...

|ξm x − ym | ≤ e−q/m

(?)

for any parameter q > 0. In other words, if B(q) consists of points (p0, p1, . . . , pm) with |p0| ≤ eq,
|pi | ≤ e−q/m for 1 ≤ i ≤ m, and 3 = 3(ξ) the lattice of points (x, ξ1x − y1, . . . , ξm x − ym) with
(x, y1, . . . , ym) ∈ Zn , Dirichlet’s theorem asserts that there is a nonzero lattice point in B(q), i.e., that
the first minimum λ1(q) with respect to B(q) and 3 is at most 1.

Lately, the successive minima functions λ1(q), . . . , λn(q) have been intensively studied within the
framework of parametric geometry of numbers, culminating in a fundamental paper of D. Roy [2015] in
which he reduces the problem of describing the joint spectrum of a family of exponents of Diophantine
approximation relative to (?) to combinatorial analysis. A main tool for the investigation of the successive
minima functions is the following result from [Schmidt and Summerer 2009]:

Proposition 1.1. Suppose 1, ξ1, . . . , ξm are linearly independent over Q and let λi (q) denote the succes-
sive minima with respect to 3(ξ) and B(q). Then for every s < n there exist arbitrarily large values of q
for which λs(q)= λs+1(q).

The author was supported by FWF grant I 3466-N35.
MSC2010: 11H06, 11J13.
Keywords: parametric geometry of numbers, successive minima, simultaneous approximation.
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An analogous result holds in the more general situation where a system of exponents (ν0,−ν1, . . . ,−νm)

with νi > 0 for 1≤ i ≤ m and ν0− ν1− · · ·− νm = 0 is considered (see [Schmidt and Summerer 2009],
page 72, Corollary 2.2). Here we normalize to the case ν0 = 1 so that ν1+ · · ·+ νm = 1 and denote by
Bν(q) the box of points (p0, p1, . . . , pm) defined by |p0| ≤ eq , |pi | ≤ e−νi q for 1≤ i ≤m. This modifies
the initial system to

|x | ≤ eq ,

|ξ1x − y1| ≤ e−ν1q ,
...

|ξm x − ym | ≤ e−νmq .

(??)

When A = {i1 < · · ·< is} ⊆ {1, . . . ,m}, let πA : R
n
→ Rs be the map with

πA((p0, p1, . . . , pm))= (pi1, . . . , pis ) ∈ Rs .

Proposition 1.1 and its generalization to successive minima with respect to 3(ξ) and Bν(q) were proved
in [Schmidt and Summerer 2009] by showing that the assumption of Theorem 1.1, page 69 of that paper
is fulfilled for 3(ξ) and Bν(q) if 1, ξ1, . . . , ξm are linearly independent over Q. For the convenience of
the reader we state this result here in the present notation:

Theorem 1.2. Suppose for every s-dimensional space S spanned by lattice points (i.e., points of 3),
there is some A ⊆ {1, . . . ,m} of cardinality s with πA(S)= Rs. Then there are arbitrarily large values
of q with λs(q)= λs+1(q).

The question of whether the condition in Theorem 1.2 and the condition of linear independence of
1, ξ1, . . . , ξm in Proposition 1.1 are also necessary to guarantee that for given s we have arbitrarily large
values of q with λs(q)= λs+1(q) (in the cases (?) and (??)) was the major motivation for the subsequent
investigations. Regarding the set of exponents, we will without loss of generality suppose that

0< ν1 ≤ ν2 ≤ · · · ≤ νm (1-0)

in addition to ν1+ · · ·+ νm = 1.
It will follow from our exposition that in the standard simultaneous approximation case (?) where

νi = 1/m we have λn−1(q)= λn(q) for some arbitrarily large q if and only if the linear independence
condition is satisfied, in particular:

Corollary 1.3. Suppose ξ1, ξ2, . . . , ξm are real numbers with ξk = ξk+1 for some 1 ≤ k ≤ m, and
ξ1, . . . , ξk−1, ξk+1, . . . , ξm together with 1 are linearly independent over Q, and let λi (q), 1 ≤ i ≤ n,
denote the successive minima with respect to 3(ξ) and B(q). Then λn−1(q) < λn(q) for all sufficiently
large q.

On the other hand, if ξk = ξk+1 and B(q) is replaced by Bν(q) with νm sufficiently large compared
to νm−1, the situation may be different. In fact, for ξ1 = ξ2 in the three-dimensional case (i.e., m = 2) we
will give a bound for ν2 that guarantees λ2(q)= λ3(q) for some arbitrarily large q in Section 4. All these
particular cases of simultaneous approximation to linearly dependent reals fit in the general situation
where for some k and r the real numbers ξk, ξk+1, . . . , ξk+r−1 are linear combinations of 1, ξk+r , . . . , ξm

with rational coefficients. For this setting we will state conditions that guarantee that λn−r (q)= λn−r+1(q)
in Section 2. The proof of this result will be given in Section 3.
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2. Basic notation and statement of the main result

We fix some exponents (1,−ν1, . . . ,−νm) with ν1+· · ·+ νm = 1 satisfying (1-0) in (??) and write B(q)
briefly for the body introduced as Bν(q) in the Introduction. Moreover we choose r ∈ {1, . . . ,m− 1} and
k ∈ {1, . . . ,m−1−r}, set s := n−r and define the sets B := {k, . . . , k+r −1}, C := {0, 1, . . . ,m} \ B,
D := {0, k+ r, . . . ,m} with cardinalities

|B| = r, |C | = s, |D| = s− k+ 1,

as well as C ′ := C \ {0}, D′ := D \ {0}. Also let

νB :=
∑
i∈B

νi , νC ′ :=
∑
i∈C ′

νi ,

so that νB + νC ′ = 1.
We will now consider the case of linearly dependent components ξi , more precisely the case where

ξj = Lj (1, ξ1, . . . , ξm) for j ∈ B, (2-0)

with r linear forms
Lj (p0, p1, . . . , pm)=

∑
i∈D

c( j)
i pi

with rational coefficients c( j)
i so that ξj = c( j)

0 +
∑

i∈D′ c
( j)
i ξi . Further put

c( j)
:=

∑
i∈D

|c( j)
i | as well as c :=max

(
1,max

j∈B
c( j)),

and let d be the least common denominator of the c( j)
i with j ∈ B, i ∈ D. Note that d as well as c depend

only on the coefficients of the system (2-0).
To any m-tuple (ξ1, . . . , ξm) we had already associated the lattice 3 = 3(ξ) of points p(x) :=

(x, ξ1x− y1, . . . , ξm x− ym), with x := (x, y1, . . . , ym)∈Zn , and the successive minima λ1(q), . . . , λn(q)
with respect to B(q). We will write L i (q)= log(λi (q)) for i = 1, . . . , n so that by Minkowski’s second
theorem

L1(q)+ · · ·+ Ln(q)≤ 0. (2-1)

Now let S be the s-dimensional subspace of Rn spanned by the lattice points with yj =Lj (x, y1, . . . , ym)

for j ∈ B. Further we write SC for the s-dimensional space of points with coordinates ηi , where i ∈ C ,
and let 3C

⊆ SC denote the s-dimensional lattice πC(3) consisting of points

(x, ξ1x − y1, . . . , ξk−1x − yk−1, ξk+r x − yk+r , . . . , ξm x − ym),

with (x, y1, . . . , yk−1, yk+r , . . . , ym) ∈ Zs. Let BC(q)⊆ SC be the box with

|η0| ≤ eq , |ηi | ≤ e−νi q (i ∈ C ′).

This box has volume 2seq−νC q
= 2seνBq. We will also need the successive minima λC

j (q) as well as their
logarithms LC

j (q), 1≤ j ≤ s, that are defined in terms of BC(q) and 3C. Minkowski’s second theorem
then implies

−νBq − n log n < LC
1 (q)+ · · ·+ LC

s (q). (2-2)
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Note that in the present situation the condition of Theorem 1.2 is not fulfilled for the s-dimensional
subspace S defined above. In fact, for any A ⊂ {1, . . . ,m} of cardinality s we have |Ac

| = r and Ac

contains 0. Now S is the span of lattice points with yj = Lj (x, y1, . . . , ym) for j ∈ B and in view of (2-0)
these lattice points have

ξj x − yj = Lj (0, xξ1− y1, . . . , xξm − ym), j ∈ B.

This may be interpreted as a system of r linear equations among the pi = xξi − yi , with i ∈ B ∪ D′. As
0 /∈ B ∪ D′, at most r −1 of these indices are not in A. It follows that the pi with i ∈ (B ∪ D′)∩ A satisfy
at least r − (r − 1) linear relations; hence the projection πA : S→ Rs is not surjective.

However it will turn out that the condition is not necessary for the conclusion λs(q) = λs+1(q) for
arbitrarily large q . More precisely we will show:

Theorem 2.1. Let ξ1, ξ2, . . . , ξm be real numbers satisfying (2-0) and s = n− r as already defined.

(a) The relation

LC
s (q)≤ νkq − log c− 2 log d − 1 (2-3)

implies Ls(q)< Ls+1(q). If (2-3) holds for every large q , and {ξi : i ∈C ′} together with 1 are linearly
independent over Q, then for each j < s there are arbitrarily large values of q with L j (q)= L j+1(q).

(b) Assume that (2-3) is fulfilled for certain arbitrarily large q and that for some (other) arbitrarily
large q we have

LC
s (q)≥ νBq + n2. (2-4)

Then there exist arbitrarily large q with Ls(q)= Ls+1(q).

In the special case where (2-0) is reduced to

ξk = · · · = ξk+r , (2-5)

we have Lj (1, ξ1, . . . , ξm)= ξk+r so that c( j)
k+r = 1 for j = k, . . . , k+ r − 1 and all other coefficients are

zero so that obviously c = d = 1. As (2-5) clearly implies ξk+l = · · · = ξk+r for any l ∈ {1, . . . , r}, we
may as well apply the above results with B̃ := {k+ l, . . . , k+ r − 1} and C̃ := {0, 1, . . . ,m} \ B̃. In this
way we see that the relation

L C̃
s+l(q)≤ νk+lq − 1 (2-6)

implies Ls+l(q) < Ls+l+1(q) and that the fact (2-6) is fulfilled for certain arbitrarily large q together
with

L C̃
s (q)≥ νB̃q + n2 (2-7)

for some other arbitrarily large q guarantees that there exist arbitrarily large q with Ls+l(q)= Ls+l+1(q).
These results highlight the interest of considering parametric geometry of numbers in a more general

context than the classical simultaneous approximation problem as initiated in [Schmidt and Summerer
2009] and investigated in much more detail in [Schmidt ≥ 2019].



GENERALIZED SIMULTANEOUS APPROXIMATION TO m LINEARLY DEPENDENT REALS 223

3. Deduction of Theorem 2.1

Assume that (2-0) holds for ξ1, ξ2, . . . , ξm and keep all notation as introduced in Section 2. For points
p(x) in 3∩ S with πC(p(x)) ∈ BC(q) we get for j ∈ B

|ξj x − yj | = |Lj (1, ξ1, . . . , ξm)x −Lj (x, y1, . . . , ym)|

≤ |c( j)
k+r ||ξk+r x − yk+r | + · · · + |c( j)

m ||ξm x − ym |

≤ |c( j)
k+r |e

−νk+r q
+ · · ·+ |c( j)

m |e
−νmq

≤ c( j)e−νk+r q

≤ c( j)e−νj q (3-0)

for large q in view of (1-0). Hence by the definition of c we have p(x) ∈ cB(q). So if λBC(q) contains
s linearly independent points of 3C, then cλB(q) contains s linearly independent points p(x) where
x ∈ d−1Zn and thus dcB(q) contains s linearly independent points p(x) of 3 ∩ S. It follows that
λs(q)≤ dcλC

s (q) and consequently

Ls(q)≤ LC
s (q)+ log c+ log d. (3-1)

In combination with (2-3) that we assume in (a), (3-1) yields

Ls(q)≤ νkq − log d − 1. (3-2)

On the other hand, points in 3 outside S have yj0 6= Lj (x, y1, . . . , ym) for at least one j0 ∈ B, so that
|Lj (x, y1, . . . , ym)− yj0 | ≥ d−1. This implies

|ξj0 x − yj0 | = |Lj0(1, ξ1, . . . , ξm)x − yj0 |

= |Lj0(1, ξ1, . . . , ξm)x −Lj0(x, y1, . . . , ym)+Lj0(x, y1, . . . , ym)− yj0 |

≥ |Lj0(x, y1, . . . , ym)− yj0 | − |Lj0(1, ξ1, . . . , ξm)x −Lj0(x, y1, . . . , ym)|

≥ d−1
− c( j0)e−νj0 q

and hence |ξj0 x − yj0 | ≥ d−1
− ce−νkq by the definition of c and (1-0). Denoting by λx(q) the least λ > 0

with p(x) ∈ λB(q) and writing L x(q)= log λx(q), we thus have

λx(q)= inf
x∈λB(q)

λ≥ d−1eνkq
− c

for p(x) ∈3 \ S, so that any lattice point outside S has

L x(q) > νkq − log d − 1 (3-3)

for sufficiently large q, so that certainly

Ls+1(q) > νkq − log d − 1. (3-4)

Together (3-2) and (3-4) imply Ls(q) < Ls+1(q), i.e., the first assertion of (a).
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To prove the second assertion of (a) and part (b) we introduce the function

G(q) := min
x∈3\S

L x(q),

which by (3-3) satisfies
G(q) > νkq − log d − 1, (3-5)

and is continuous and piecewise linear. In particular, for those q for which (2-3) holds we have LC
s (q) <

G(q) and thus
L j (q)= LC

j (q) (3-6)

for all j ≤ s.
Now assume that (2-3), hence (3-6), holds for all large q. If {ξi : i ∈ C ′} together with 1 are linearly

independent over Q then Proposition 1.1 applied to simultaneous approximation of {ξi : i ∈ C ′}, i.e.,
successive minima defined with respect to 3C and BC(q), implies the existence of arbitrarily large q
with LC

j (q)= LC
j+1(q) for any j < s. In combination with (3-6) the second assertion of (a) follows.

In general, given any q , at least one of L1(q), . . . , Ls+1(q) will stem from a point p(x) outside S, say
L l(q)= L x(q) with p(x) 6∈ S, where l is chosen minimal subject to this property. Note that the definition
of l implies that (3-6) now holds for i = 1, . . . , l − 1.

If l = s+ 1, it follows from (2-2) that

LC
1 (q)+ · · ·+ LC

s (q) >−νBq − n2 (3-7)

and by the definition of G combined with (2-4)

Ls+1(q)= G(q) > LC
s (q) > νBq + n2 (3-8)

holds for certain arbitrarily large q = q0. Together (3-6)–(3-8) would imply

L1(q0)+ · · ·+ Ls+1(q0) > 0,

and as 0< Ls+1(q0)≤ Ls+2(q0)+ · · ·+ Ln(q0) this would contradict (2-1).
If l ≤ s then (2-1) yields

L1(q)+ · · ·+ L l−1(q)+ (n− l + 1)G(q)≤ 0,

which can be rephrased as

(n− l + 1)G(q)≤−L1(q)− · · ·− L l−1(q)

=−LC
1 (q)− · · ·− LC

l−1(q) (by (3-6))

< LC
l (q)+ · · ·+ LC

s (q)+ νBq + n2 (by (2-2))

≤ (s+ 1− l)LC
s (q)+ νBq + n2.

For q = q0 with (2-4) this yields (n− l + 1)G(q)≤ (s− l + 2)LC
s (q0); therefore

G(q0) <
s− l + 2
n− l + 1

LC
s (q0)≤ LC

s (q0)
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for some arbitrarily large q0 since s ≤ n−1 by definition. By assumption there are also arbitrarily large q1

with (2-3) for which we have LC
s (q1) < G(q1), as already noticed. Since LC

s as well as G are continuous,
there will be some q in (q0, q1) with

LC
s (q)= G(q). (3-9)

Since S has dimension s, we have Ls+1(q) ≥ G(q) for every q. There are s linearly independent
lattice points p(x) in S with L x(q) ≤ LC

s (q), as well as a lattice point x 6∈ S with L x(q) = G(q), so
that by (3-9) we have Ls+1(q)≤ G(q); hence Ls+1(q)= G(q). Also there are fewer than s independent
lattice points p(x) with L x(q) < LC

s (q) so that Ls(q)= LC
s (q). Therefore Ls(q)= Ls+1(q); hence (b)

is proved.

4. Another version of Theorem 2.1

In order to apply Theorem 2.1 it is essential to be able to check whether the conditions (2-3) and (2-4) are
fulfilled for the given ξi and the given exponents. For this purpose, let us first replace the functions LC

s (q)
defined with respect to BC(q) by functions L̂C

s (q) defined with respect to a set B̂C(q) of volume 2s.
Define ρ and σ by

ρ(s− νB)= s and σ = ρ− 1. (4-0)

For i ∈ C set µi := ρνi + σ so that∑
i∈C

µi = ρνC + (s− 1)σ

= ρ(1− νB + s− 1)+ 1− s = ρ(s− νB)− s+ 1= 1

by (4-0). The box B̂C(q) is now defined by

|η0| ≤ eq , |ηi | ≤ e−µi q (i ∈ C ′),

which may also be written as

|η0| ≤ e−σq+ρq , |ηi | ≤ e−σq−ρνi q (i ∈ C ′).

Thus B̂C(q) is e−σqBC(ρq). The corresponding quantities L̂C
j (q) for 1≤ j ≤ s have

L̂C
j (q)= σq + LC

j (ρq).

Therefore (2-3) becomes

L̂C
s (q)≤ σq + ρνkq − log c− 2 log d − 1

= (ρ(1+ νk)− 1)q − log c− 2 log d − 1

=
sνk + νB

s− νB
q − log c− 2 log d − 1.

Moreover (2-4) becomes

L̂C
s (q)≥ σq + ρνBq + n2

= (ρ(1+ νB)− 1)q + n2
=
(s+ 1)νB

s− νB
q + n2.

We may thus rewrite Theorem 2.1 as:
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Corollary 4.1. Let ξ1, ξ2, . . . , ξm be real numbers satisfying (2-0).

(a) The relation

L̂C
s (q)≤

sνk + νB

s− νB
q − log c− 2 log d − 1 (4-1)

implies Ls(q)< Ls+1(q). If (4-1) holds for every large q , and {ξi : i ∈C ′} together with 1 are linearly
independent over Q, then for each j < s there are arbitrarily large values of q with L j (q)= L j+1(q).

(b) Assume that (4-1) is fulfilled for certain arbitrarily large q and that for some (other) arbitrarily
large q we have

L̂C
s (q)≥

(s+ 1)νB

s− νB
q + n2. (4-2)

Then there exist arbitrarily large q with Ls(q)= Ls+1(q).

In this reformulation of the main result, the conditions to check, i.e., (4-1) and (4-2), are concerned
with the functions L̂C

i (q), whose behaviour is rather well understood in the case where they stem from a
classical simultaneous approximation problem in lower dimension, hence when all µi , i ∈ C are equal,
which amounts to all νi , i ∈ C , are equal.

In particular, when all νi are equal this leads to the deduction Corollary 1.3: (2-0) reduces to the
equation ξk= ξk+1, which is of the form (2-5) and we have B={k}; hence C ′={1, . . . , k−1, k+1, . . . ,m}
and thus s = n− 1=m. Moreover in the case of classical simultaneous approximation one has νi = 1/m
for i = 1, . . . ,m so that relation (4-1) reads

L̂C
m(q)≤

1+ 1/m
m− 1/m

q − 1=
1

m− 1
q − 1. (4-3)

We claim that this relation holds for all sufficiently large q, so that assertion (a) of Corollary 4.1 yields
Lm(q)= Ln−1(q) < Ln(q) for all large q . Indeed for the simultaneous approximation of m− 1 linearly
independent reals, here these are ξ1, . . . , ξk−1, ξk+1, . . . , ξm , one always has L̂C

m(q) < q/(m− 1)− g(q)
for some function g tending to infinity (see [Schmidt and Summerer 2009], page 77, equation (4.9)),
which implies (4-3).

Our next example deals with a case where not all the νi are identical and shows the existence of
ξ1, . . . , ξm and exponents ν1, . . . , νm for which the intersection properties of the successive minima
functions with respect to Bν(q) differ from those with respect to B(q).

We consider the case m = 2 of simultaneous approximation to (ξ, ξ), where ξ is an irrational number
with ω(ξ) > 1. Here ω(ξ) is the supremum of all η such that there are arbitrarily large values of Q
for which |ξ x − y| ≤ Q−η has a nontrivial integer solution (x, y) with |x | ≤ Q. Then the (single)
approximation constant

ϕ̄2(ξ)=
ω− 1
ω+ 1

(as defined in [Schmidt and Summerer 2013], page 3) has ϕ̄2(ξ) > 0. By Corollary 1.3 applied in the
case ξ1 = ξ2 = ξ , i.e., for classical simultaneous approximation to (ξ, ξ), we have λ1(q) = λ2(q) for
some arbitrarily large q since ξ is irrational, whereas λ2(q) < λ3(q) for all sufficiently large q.
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We claim that this will not be the case for approximation relative to exponents (ν1, ν2) provided ν2 is
sufficiently large.

Corollary 4.2. Let ξ be an irrational number with ϕ̄2(ξ) > 0 and let (ν1, ν2) be a system of exponents
with

ν2 >
3− ϕ̄2(ξ)

3+ ϕ̄2(ξ)
.

Then for s ∈ {1, 2} there exist arbitrarily large q = q(s) with Ls(q)= Ls+1(q).

Proof. For s = 1 this is clear by the irrationality of ξ . So let s = 2 and apply Corollary 4.1 with B = {1}
and C = {2} so that s = 2 and νB = 1− ν2. Note that by the definition of ϕ̄2(ξ) and B̂C(q) we have
lim supq→∞ L̂C

2 (q)/q = ϕ̄2(ξ).
Moreover c = d = 1 so that (4-1) reads

L̂C
2 (q)≤

3− 3ν2

1+ ν2
q − 1,

which is certainly fulfilled for some arbitrarily large q as 3− 3ν2 > 0 and lim infq→∞ L̂C
2 (q)/q = 0 for

single approximation.
On the other hand (4-2) becomes

L̂C
2 (q)≥

3− 3ν2

1+ ν2
q + n2,

which is fulfilled for certain arbitrarily large q provided

3− 3ν2

1−+nu2
< ϕ̄2(ξ) ⇐⇒ ν2 >

3− ϕ̄2(ξ)

3+ ϕ̄2(ξ)
.

So part (b) of Corollary 4.1 implies L2(q)= L3(q) for some arbitrarily large q as desired. �

It remains to say a few words on the case where the νi , i ∈ C , are distinct. Then the µi will be as well
and it is not clear how to check conditions (4-1) and (4-2) when the functions L̂C

s (q) do not stem from
classical simultaneous approximation. However in [Schmidt ≥ 2019] a very precise description of the
possible behaviour of the successive minima functions defined with respect to 3(ξ) and Bν(q) is sketched.
In order to show the existence of real numbers for which those successive minima functions follow a
prescribed behaviour, an appropriate analogue of Roy’s results [2015, Theorem 1.3, Corollary 1.4] for
generalized systems of exponents would be needed. This would considerably broaden the range of
applications of the results in this paper.
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On the distribution of values of Hardy’s Z-functions in short intervals
II: The q-aspect

Ramdin Mawia

We continue our investigations regarding the distribution of positive and negative values of Hardy’s Z -
functions Z(t, χ) in the interval [T, T + H ] when the conductor q and T both tend to infinity. We show
that for q 6 T η, H = T ϑ , with ϑ > 0, η> 0 satisfying 1

2+
1
2η<ϑ 6 1, the Lebesgue measure of the set of

values of t ∈ [T, T + H ] for which Z(t, χ) > 0 is� (ϕ(q)2/4ω(q)q2)H as T →∞, where ω(q) denotes
the number of distinct prime factors of the conductor q of the character χ , and ϕ is the usual Euler totient.
This improves upon our earlier result. We also include a corrigendum for the first part of this article.

1. Introduction

Let χ be a primitive Dirichlet character of conductor q > 1. In this paper, we continue our investigations in
[Mawia 2017] concerning the distribution of positive and negative values of Hardy’s Z -function Z(t, χ)
for t in the interval [T, T + H ]. Let us recall some basic facts concerning the function Z(t, χ). First of
all, Hardy’s Z -function Z(t, χ) corresponding to the Dirichlet L-function L(s, χ) is defined by

Z(t, χ) :=9
( 1

2 + i t, χ
)−1/2L

( 1
2 + i t, χ

)
,

where

9(s, χ)=w(χ)

(
π

q

)s−1/2
0((1− s+ a)/2)
0((s+ a)/2)

is the factor from the functional equation L(s,χ)=9(s,χ)L(1−s, χ̄). Here the quantity a=(1−χ(−1))/2
measures the parity of the character χ and the number

w(χ)=
τ(χ)

ia
√

q
, with τ(χ)=

∑
a (mod q)

χ(a)e
(

a
q

)
,

is called the root number of χ . It is immediately seen from the definition that Z(t, χ) is a real-valued
function of the real variable t and that |Z(t, χ)| =

∣∣L( 1
2 + i t, χ

)∣∣, so that the real zeros of Z(t, χ)
correspond to the zeros of L(s, χ) on the critical line. One of the main interests of Hardy’s Z -functions
comes from this fact. For a brief introduction to Hardy’s Z -function for ζ(s), see [Karatsuba and Voronin
1992, III, §4]; a more comprehensive theory is developed in [Ivić 2013].

Although it is a well-known tool in the computations and study of the distributions of zeros of the
Riemann zeta function (see for example [Karatsuba 1981]), research into its fine structures is a rather
recent development, due mainly to results of Ivić [2004; 2010; 2017a; 2017b; 2017c], Korolev [2007;

MSC2010: 11M06, 11M26.
Keywords: Hardy’s function, Hardy–Selberg function, Dirichlet L-function, value distribution.
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2008; 2017] and Jutila [2009; 2011]. Our interest here, following [Gonek and Ivić 2017] and later
[Mawia 2017] is in the distribution of positive and negative values of Z(t, χ). In [Mawia 2017], we
proved the following result:

Theorem. Consider a fixed primitive Dirichlet character χ of conductor q > 1. For 26 H 6 T, let

I+(T, H ;χ)= {T 6 t 6 T + H : Z(t, χ) > 0},

I−(T, H ;χ)= {T 6 t 6 T + H : Z(t, χ) < 0}.

Fix 0< ε < 1
4 and let T 3/4+ε 6 H 6 T. Then we have

µ(I+(T, H ;χ))� H and µ(I−(T, H ;χ))� H,

where µ is the Lebesgue measure on the line.

It should be remarked that the constants in the above result depend on the conductor q, as will be
clear in the course of this paper. Our main concern here will be to take into account the variation of the
conductor q and see to what extent results of the above type hold true when q is allowed to vary. For
example, one may ask questions of the following type: does the above result remain valid when q is not
held fixed but allowed to vary, say up to q 6 T, or for that matter, as q→∞ independently of T ? The
main result we prove in this article is the following.

Theorem 1. Let q 6 T η, H = T ϑ with 1
2 +

1
2η < ϑ 6 1. Then, as T →∞ we have

µ(I±(T, H ;χ))�
ϕ(q)2

4ω(q)q2 H

uniformly in q, T and H, where the implied constants depend only on η, ϑ .

Thus, this result says that the main result of [Mawia 2017] holds for q almost as big as T and improves
the interval as well by reducing 3

4 to 1
2 . Note in particular that when q tends to infinity through integers

with a bounded number of prime factors, ϕ(q)2/4ω(q)q2
� 1 and hence µ(I±(T, H ;χ))� H as T →∞

and q→∞ along integers with a bounded number of prime factors, say q→∞ via primes, for example.
To prove this result, although the main argument for the result is the same as in [Mawia 2017], we

have to explicitly show the dependence on q of the error terms in all our lemmas there, and that makes the
argument more delicate. The improvement on the interval comes mainly from an application of the first
derivative bound rather than the second derivative bound for exponential integrals in Lemmas 7 and 8.
Following [Gonek and Ivić 2017], our main tool will be a study of various mollified integrals of Z(t, χ),
using the mollifiers BX (s, χ) analogous to the ones introduced for ζ(s) by Selberg [1942]. An obvious
merit of this mollifier may be illustrated as follows. By following the steps of [Gonek and Ivić 2017] but
without using the mollifiers they used, and applying the well-known bounds∫ 2T

T
Z(t) dt � T 7/8,

∫ 2T

T
|Z(t)| dt � T,

∫ 2T

T
Z(t)2 dt =

∫ 2T

T

∣∣ζ ( 1
2 + i t

)∣∣2 dt � T log T,

one only obtains µ(I+(T, 2T ))� T/ log T, which is rather weak. In this light, it would be interesting to
use other mollifiers and see what they yield. However, the mollifiers introduced by Selberg seem to be
most effective in several circumstances. The function F(t)= Z(t)

∣∣BX
( 1

2 + i t
)∣∣2, which is a mollification
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of Z(t), and is the main object in our lemmas for proving the above theorem, is also called the Hardy–
Selberg function [Karatsuba and Voronin 1992, III, §5], and we shall follow this nomenclature introduced
by Karatsuba [1984].

Once the lemmas on the mollified integrals are proved, the proof of the main result, Theorem 1 above,
is the same as in [Gonek and Ivić 2017] (which is repeated in [Mawia 2017, §2]), so we content ourselves
here with a precise formulation and proof of the requisite lemmas.

This paper is organised as follows. In Section 2, we restate and prove some lemmas on approximations
of L(s, χ) by Dirichlet polynomials, and on the coefficients αn(χ) of our mollifiers. The three main
lemmas essential for proving the above theorem are then proved in Section 3. Also, throughout this
paper, we use, without comment, bounds on several sums which are either standard or which appeared
already in [Mawia 2017], although they may not be obvious.

Corrigendum to [Mawia 2017]. There are a couple of minor errors in [Mawia 2017] which are not
difficult to correct. They stem from an erroneous statement of the Riemann–Siegel formula for Z(t, χ),
which is equation (5) in Lemma 3, p. 39. The error is that the variable n in the sum for 2(t, χ) should
run up to n 6

√
qt/(2π), not up to n 6

√
qT/(2π). The correct statement is given in (2-1) of Lemma 2

below. A consequence of this error is that our treatment of the integrals in equation (10), p. 44 was
erroneous. This problem is addressed in Lemma 9 below. Next, immediately before equation (11) on
p. 45, “the first O-term in (3)” and “the first two integrals in (3)” should be replaced by “the first O-term
in (10)” and “the first two integrals in (10)” respectively. Finally, from equation (12), p. 45 onwards the
conditions kn = lm and kn 6= lm in the summation should be replaced by the conditions km = ln and
km 6= ln respectively, and the fraction kn/ lm should be replaced throughout by ln/km. As is clear, one
does not need to change the subsequent argument.

2. Preliminary lemmas

As in [Mawia 2017], our main tool will be a form of the “Riemann–Siegel formula” for Z(t, χ), a version
of which is stated in Lemma 3 in [Mawia 2017]; the proof of the “approximate functional equation” from
which this can be derived is given in [Chandrasekharan and Narasimhan 1963; Suetuna 1932; Tchudakoff
1947]. The proof of the original Riemann–Siegel formula can be found in [Siegel 1932] (see also [Siegel
1966, pp. 275–310]). A more precise form for the terms of the asymptotic series for the remainder in the
approximate functional equation for L(s, χ) is given in [Siegel 1943]. It should be remarked here that
sharper forms of this formula are available, at least for the case q = 1 (see for example [Borwein et al.
2000; Gabcke 1979]); the approximate formula [Karatsuba and Voronin 1992, III, §4, Theorem 1] is also
of interest, and similar formulas exist for the derivatives of Z(t) as well [Karatsuba 1981]. We need a
version which is uniform in both q- and t-aspects. Such an approximate functional equation for L(s, χ)
is proved in [Lavrik 1968] (Corollary 1 to Theorem 1), from which it is easy to deduce the following
corresponding result for Z(t, χ):

Lemma 2. We have the following approximate equation for Z(t, χ):

Z(t, χ)=2(t, χ)+2(t, χ)+ O((q/t)1/4 log(2t)), (2-1)
where

2(t, χ)=w(χ)−1/2e(π ia/4)−(π i/8)
(

qt
2πe

)i t/2 ∑
n6
√

qt/(2π)

χ(n)
n1/2+i t . (2-2)
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Here and in the following, we will restrict ourselves to t > 0, since the values of the Z-function for
L(s, χ) at t < 0 correspond to the values of the Z-function for L(s, χ̄) at t > 0; precisely, we have
Z(−t, χ)= Z(t, χ̄).

As has already been noted in the corrigendum above, the expression (5) of Lemma 3 in [Mawia 2017]
is erroneous and should be replaced by the above expression (2-1). As a result we have to modify our
argument for proving [Mawia 2017, Lemma 8] accordingly; see Lemma 9 below.

Next, we shall need the following approximate functional equation for L(s, |χ |), whose proof is similar
to the analogous formula for ζ(s).

Lemma 3. Let x > 1 be a positive real number. We have

L(s, |χ |)=
∑
n6x

|χ(n)|
ns −

ϕ(q)
q

x1−s

1− s
+ O(2ω(q)|s|x−σ )

uniformly for σ > σ0 > 0. Also, as s→ 1, we have

(s− 1)L(s, |χ |)=
ϕ(q)

q
+ O(2ω(q)|s− 1|).

Here, ω(q) denotes the number of distinct prime factors of q.

Proof. For σ > 1, we have

L(s, |χ |)=
∑
n6x

|χ(n)|
ns +

∑
n>x

|χ(n)|
ns .

One writes the sum
∑

x<n6y |χ(n)|n
−s as an integral

∫ y
x u−s dA(u), where A(u)=

∑
n6u |χ(n)| counts

the number of positive integers 6 u which are coprime to q . Integrating by parts, we get that∑
x<n6y

|χ(n)|
ns =

A(y)
ys −

A(x)
x s +

ϕ(q)
q

y1−s
− x1−s

1− s
s+ s

∫ y

x

A(u)−ϕ(q)u/q
us+1 du.

Letting y→∞, the resulting equation is valid for σ > σ0 > 0. Noting that A(u)= ϕ(q)u/q + O(2ω(q)),
the result follows. We observe here that in the formulas in this lemma, 2ω(q) 6 d(q)� qε. Note that
2ω(q)� 1 if we let q tend to infinity along positive integers with a bounded number of distinct prime
factors, which is the case for q→∞ via primes, for example. �

We remark here that we do not need any condition on the relative size of the imaginary part t of s and
the length x of the approximating Dirichlet polynomial, unlike in the case of the slightly more refined
result for ζ(s) found, for instance, in [Karatsuba and Voronin 1992, III, §2] or [Ivić 1985, §1.5], where
the condition |t |6 πx is required.

We will again need a couple of lemmas regarding the Dirichlet coefficients of L(s, χ)−1/2, which we
denote by αn(χ), following [Selberg 1942]. Recall that it may be explicitly expressed as

αn(χ)= (−1)e1+···+ek

( 1
2
e1

)
· · ·

( 1
2
ek

)
χ(n), (2-3)

where n= pe1
1 · · · p

ek
k is the factorisation of n. It is a multiplicative sequence satisfying |αn(χ)|6 1 for all

n > 1. Although not necessary for our applications, it is easily seen from the above explicit expression
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that its sign is essentially the same as µ(rad(n)), where rad(n) is the radical of n, the product of the
distinct prime factors of n. Precisely, we have αn(χ)= µ(rad(n))|αn(χ)|χ(n). We recall other notation
already used in [Mawia 2017]. For 16 n 6 X let

βn ≡ βn(χ)= αn(χ)

(
1−

log n
log X

)
and define the mollifying functions BX (s, χ) by BX (s, χ)=

∑
n6X βnn−s, which correspond to the sums

η(t) used by Selberg [1942]. We write

BX (s, χ)2 =
∑

n6X2

bn(χ)n−s, (2-4)

where bn(χ) =
∑

d | n βd(χ)βn/d(χ) with the sum running through those divisors d of n which satisfy
both d 6 X and n/d 6 X ; note that |bn(χ)|6 d(n), where d(n) is the usual divisor function.

We shall need the following analogue of Lemma 11 in [Selberg 1942].

Lemma 4. Let % be a positive integer and 06 γ 6 1, write

f (s)= f (s; γ, %, χ)=
1

√
(s+ iγ )L(1+ s+ iγ, |χ |)

∏
p | %

(1− |χ(p)|p−1−s−iγ )−1/2

and let, for r = 2, 3,

f (s)=
r−1∑
j=0

f ( j)(0)
j !

s j
+ sr Rr (s).

Then for s = i t , −26 t 6 2 and j = 0, 1, 2, we have

f ( j)(0)�
2ω(q)q1/2

ϕ(q)1/2
∏
p | %

(1+ |χ(p)|p−3/4),

Rr (i t)�
2ω(q)q1/2

ϕ(q)1/2
∏
p | %

(1+ |χ(p)|p−3/4).

Using this, one can prove the following, which is an analogue of [Selberg 1942, Lemma 12].

Lemma 5. Let 1 6 d 6 X , 0 6 γ 6 2−ω(q)ϕ(q)/(q
√

log X) and % be a positive integer. Then, for
r = 1, 2,∑
n6X/d
(n,%)=1

αn(|χ |)

n1+iγ

(
log

X
dn

)r

= cr

√
qγ
ϕ(q)

∏
p | %

(1− |χ(p)|p−1−iγ )−1/2
(

log
X
d

)r

+ O
(

2ω(q)q1/2

ϕ(q)1/2
(log X)r−1/2

∏
p | %

(1+ |χ(p)|p−3/4)

)
, (2-5)

where cr is an absolute constant. Here and in the following, (m, n) denotes the gcd of two integers m
and n.

We shall also need the following lemma, analogous to Lemma 13 in [Selberg 1942].
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Lemma 6. Let X > 3, 16 d 6 X and 06 γ 6 qε/ log X and let % be a positive integer. Then∑
n6X/d
(n,%)=1

αn(|χ |)

n

(
log

X
dn

)
sin(γ log nd)

γ
�

2ω(q)q1/2

ϕ(q)1/2
(log X)3/2

∏
p | %

(1+ |χ(p)|p−3/4),

where, for γ = 0, the left-hand side should be interpreted as its limit as γ → 0+.

Proof. For γ in this range, the O-term in Lemma 5 dominates the main term in absolute value, so we
get, for r = 1, 2,∑

n6X/d
(n,%)=1

αn(|χ |)

n1+iγ t

(
log

X
dn

)r

= O
(

2ω(q)q1/2

ϕ(q)1/2
(log X)r−1/2

∏
p | %

(1+ |χ(p)|p−3/4)

)

for 0 6 t 6 1. Multiplying the formula for r = 1 by log X and subtracting the equation for r = 2, we
obtain ∑

n6X/d
(n,%)=1

αn(|χ |)

n1+iγ t

(
log

X
dn

)
log dn = O

(
2ω(q)q1/2

ϕ(q)1/2
(log X)3/2

∏
p | %

(1+ |χ(p)|p−3/4)

)
.

Multiplying the formula by d−iγ t and integrating with respect to t between 0 and 1 and taking the real
part, we get the lemma. �

3. Lemmas on the Hardy–Selberg function

In this section, we study the integrals of Z(t, χ) mollified using BX
( 1

2 + i t, χ
)
, namely the integrals of

the function Z(t, χ)
∣∣BX

( 1
2 + i t, χ

)∣∣2, which, as we remarked earlier, is also called the Hardy–Selberg
function, and was introduced and made use of in [Karatsuba 1984] to study the distribution of zeros of
ζ(s) in short intervals of the critical line. Note that it depends on the parameter X as well. Our first
lemma concerns the integral

∫ T+H
T Z(t, χ)

∣∣BX
( 1

2 + i t, χ
)∣∣2 dt , which should be o(H), expecting some

cancellation due to the sign changes of Z(t, χ), and in view of the fact that BX
( 1

2 + i t, χ
)

looks like the
partial sum of L

(1
2 + i t, χ

)−1/2 up to length X . The following lemma confirms this for a suitable range
of H, and it supersedes Lemma 6 in [Mawia 2017].

Lemma 7. Let q 6 T η, X = T θ , H = T ϑ , with 0< η, θ, ϑ 6 1. Then, as T →∞,∫ T+H

T
Z(t, χ)

∣∣BX
( 1

2 + i t, χ
)∣∣2 dt = O(q1/4T 1/2 X log2 T + q1/4T−1/4 H X log X)

and hence the integral is o(H) for 1
2 +

1
4η+ θ < ϑ 6 1, η+ 4θ < 1.

Proof. Note first that this integral is� d(q)q3/16(log q)2 H max(H 1/4, T 1/4)X for all values of q and H,
using Heath-Brown’s hybrid bound [1978, Theorem 1]. This is certainly interesting for small values
of H, but is bigger than our bound for H in the above range. This is only natural, as any application of
known bounds on L

( 1
2 + i t, χ

)
does not take into account the variations of Z(t, χ).

The proof of the lemma follows the same lines as in [Mawia 2017], where we use the definition of
Z(t, χ) and move the contour to the segment going from 1

2+iT to c+iT to c+i(T+H) to 1
2+i(T+H),
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with c = 1+ 1/ log T. For the integral on the horizontal segments, we use the trivial convexity bound
[Iwaniec and Kowalski 2004, (5.20)] for L(s, χ), which is

L(σ + i t, χ)� (qt)(1−σ)/2+ε (06 σ 6 1, t > 1),

and the inequalities (easily seen from equations (8) and (9) in [Mawia 2017])

BX (s, χ)BX (1− s, χ̄)� X log X, 9(s, χ)−1/2
� (qT )(σ−1/2)/2

for s in the horizontal segments, so that the overall contribution of the integral along the horizontal
segments is

�

∫ c

1/2
(qT )(1−σ)/2+ε(X log X)(qT )(σ−1/2)/2 dσ � X (qT )1/4+ε .

Note that a bound sharper than the convexity bound (such as the Burgess bound or the hybrid bounds
of Heath-Brown [1978; 1980]) will improve this lemma, but not the main theorem, as the main barrier
comes from Lemma 9. The integral along the vertical segment is

w(χ)−1/2
∫ T+H

T

(∑
n>1

χ(n)n−c−i t
)(∑

k6X

βk(χ)k−c−i t
)(∑

`6X

β`(χ̄)`
c+i t−1

)

×

(
qt
2π

)(c+i t−1/2)/2

e−i(t+π(1−2a)/4)/2(1+ O(1/t)) dt,

of which the O-term has a contribution

�

∫ T+H

T
(log2 T )X1−(1/ log T )(qt)(c−1/2)/2t−1 dt � q1/4 X H T−3/4 log2 T .

Here, we have used the bounds∣∣∣∣∑
n>1

χ(n)n−c−i t
∣∣∣∣6 L(c, |χ |)= ζ(c)

∏
p | q

(1− p−c)� log T,

BX (c+ i t, χ)� log T, BX (1− c− i t, χ̄)� X.

Omitting the constant coefficients, the remaining expression can be rewritten as

6 :=
∑
n>1

k,`6X

χ(n)βk(χ)β`(χ̄)`
c−1

(nk)c

∫ T+H

T

(
qt
2π

)(c−1/2)/2

exp
(

i t
2

log
(

qt`2

2πen2k2

))
dt.

To simplify matters, we will henceforward write 1/4 in place of (c− 1/2)/2 and 1 in place of c, since
in any case (c− 1/2)/2= 1/4+ 1/(2 log T ) and the error incurred in our sums due to this simplification
is clearly negligible. Let us further use the following notation:

F(t)=
(

qt
2π

)1/4

, f (t)=
t
2

log
(

qt`2

2πen2k2

)
, τ =

√
qT
2π
,

τ0 =

√
q(T − T 3/4)

2π
, τ1 =

√
q(T + H)

2π
, τ2 =

√
q(T + H + T 3/4)

2π
.
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For each k, `6 X and n<τ0`/k (resp. n>τ2`/k), the derivative f ′(t) of f (t) has no zeros, is monotonic,
and satisfies f ′(t)> αT−1/4 (resp. f ′(t)6−βT−1/4) for some absolute constants α, β > 0, so using the
first derivative test for exponential integrals [Ivić 1985, Lemma 2.1], we immediately see that the above
sum for n in either one of these ranges is� q1/4T 1/2 X log2 T. For τ0`/k 6 n 6 τ2`/k, the derivative
f ′(t) vanishes at t0 = 2πn2k2/q`2, and t0 may or may not lie in [T, T +H ]. Let a and b be real numbers

with T − T 3/4 6 a 6 T 6 b 6 T + H + T 3/4. Assume a 6 t0 6 b (without loss). Following the proof of
Lemma 2 from Chapter III, Section 1.3 of [Karatsuba and Voronin 1992] we get∫ b

a
F(t) exp(i f (t)) dt =

2
√

2π
q1/2

(
nk
`

)3/2

exp
(
−π i

n2k2

q`2

)
+ O(qT )1/4

+ O
(

q−1/2
(

nk
`

)3/2

min
{

1,
1

√
f (t0)− f (a)

})
+ O

(
q−1/2

(
nk
`

)3/2

min
{

1,
1

√
f (b)− f (t0)

})
.

It follows that the integral is always� q−1/2(nk/`)3/2+ (qT )1/4. Therefore, the part of 6 contributed
by n in the range τ`/k 6 n 6 τ1`/k (in which case T 6 t0 6 T + H ) is

�

∑
k,`6X

∑
τ`/k6n6τ1`/k

{
(nk)1/2
√

q`3/2 +
q1/4T 1/4

nk

}
� q1/4T−1/4 H X log X + q1/4T−3/4 H X2

� q1/4T−1/4 H X log X.

Finally, we have to consider the ranges τ0`/k 6 n < τ`/k and τ1`/k < n 6 τ2`/k (in which two cases
t0 does not lie in [T, T + H ]). Since the two cases are analogous, we only treat the first. We note that∫ T+H

T
F(t) exp(i f (t)) dt =

(∫ T+H

t0
−

∫ T

t0

)
F(t) exp(i f (t)) dt � q−1/2

(
nk
`

)3/2

+ (qT )1/4.

Hence the contribution of this range to 6 is

�

∑
k,`6X

∑
τ0`/k6n<τ`/k

{
(nk)1/2
√

q`3/2 +
(qT )1/4

nk

}
� q1/4T 1/2 X log X + q1/4 X log X � q1/4T 1/2 X log X. �

Remark. The referee has pointed out that one may directly apply Lemma 2 from Chapter III, Section 1.3
of [Karatsuba and Voronin 1992] in the treatment of the integral

∫ b
a F(t) exp(i f (t)) in the last part of the

above proof, since for n in the given range, we have t0 = 2πn2k2/q`2
� T.

Next, the following lemma replaces Lemma 7 in [Mawia 2017] when q→∞ with T.

Lemma 8. Let q 6 T η, X = T θ , H = T ϑ , with 0 < η, θ, ϑ 6 1, such that 1
4 +

1
4η+ θ < ϑ 6 1. Then

we have ∫ T+H

T
|Z(t, χ)|

∣∣BX
( 1

2 + i t, χ
)∣∣2 dt > H + O(q1/4T 1/4 X) (T →∞).
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Proof. The proof is as in [Mawia 2017], but to take q into account, we use a different approximation for
L
( 1

2 + i t, χ
)
. Using Corollary 1 to Theorem 1 in [Lavrik 1968], we have the approximation

L
( 1

2 + i t, χ
)
= ξ(t, χ)+9

( 1
2 + i t, χ

)
ξ̄ (t, χ)+ O

((
q
T

)1/4

log(2T )
)
,

valid for T 6 t 6 2T, where 9
( 1

2 + i t, χ
)

is the usual factor from the functional equation (mentioned in
the first paragraph of the Introduction) and

ξ(t, χ)=
∑

n6
√

qt/(2π)

χ(n)
n1/2+i t .

Using this, we get∫ T+H

T
|Z(t, χ)|

∣∣BX
( 1

2 + i t, χ
)∣∣2 dt =

∫ T+H

T

∣∣L( 1
2 + i t, χ

)∣∣∣∣BX
( 1

2 + i t, χ
)∣∣2 dt

>

∣∣∣∣∫ T+H

T
L
(1

2 + i t, χ
)
BX
( 1

2 + i t, χ
)2 dt

∣∣∣∣
=

∣∣∣∣∫ T+H

T
ξ(t, χ)BX

( 1
2 + i t, χ

)2 dt

+

∫ T+H

T
9
( 1

2 + i t, χ
)
ξ̄ (t, χ)BX

( 1
2 + i t, χ

)2 dt
∣∣∣∣

+ O
((

q
T

)1/4

log(2T )
∫ T+H

T

∣∣∣∣∑
n6X

βn(χ)n−1/2−i t
∣∣∣∣2dt

)
.

Let us first treat the O-term. Using the mean value theorem for Dirichlet polynomials (see Theorem 5.2
of [Ivić 1985]), the integral inside the O-term is easily seen to be

H
∑
n6X

|βn(χ)|
2

n
+ O

(∑
n6X

|βn(χ)|
2
)
= O(H log X)+ O(X)= O(H log X).

Hence the O-term is ((q/T )1/4 log(2T )H log X). We now estimate the integral∫ T+H

T
ξ(t, χ)BX

(1
2 + i t, χ

)2 dt.

Using the expansion (2-4) for BX
( 1

2 + i t, χ
)2, we see that this integral is (we write τ1 =

√
q(T + H)/2π

and T (m)=max(T, 2πm2/q))

=

∫ T+H

T

∑
m6
√

qt/(2π)

χ(m)m−1/2−i t
∑

n6X2

bn(χ)n−1/2−i t dt

= H +
∑

m6τ1;n6X2

mn>1

χ(m)bn(χ)
√

mn

∫ T+H

T (m)
(mn)−i t dt

= H + O
( ∑

m6τ1;n6X2

mn>1

d(n)
√

mn log(mn)

)
= H + O(

√
τ1 X).
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Next we look at the integral
∫ T+H

T 9
( 1

2 + i t, χ
)
ξ̄ (t, χ)BX

( 1
2 + i t, χ

)2 dt . First, applying Stirling’s
approximation, we have

0
(1

4 −
1
2 i t + 1

2a
)

0
(1

4 +
1
2 i t + 1

2a
) = (2e

t

)i t

eπ i(1/4−a/2)
(

1+ O
(

1
T

))
for T 6 t 6 2T. Using this, we see that∫ T+H

T
9
( 1

2 + i t, χ
)
ξ̄ (t, χ)BX

(1
2 + i t, χ

)2 dt

=w(χ)
∑

m6τ1;n6X2

χ̄(m)bn(χ)
√

mn

∫ T+H

T (m)

(
2πem
qnt

)i t

dt + O
(

H
T
√
τ1 X log X

)
.

We will apply a first derivative bound for exponential integrals [Ivić 1985, Lemma 2.1]. Write f (t)=
t log(qnt/(2πem)). Then f ′(t)= log(qnt/(2πm)), which is monotonic. Since

qnt
2πm

>
qT

2πτ1
� (qT )1/2,

we see that f ′(t)�η log T, as q 6 T η. Therefore, the first derivative test gives
∫ T+H

T (m) exp(i f (t)) dt �
1/ log T. Consequently,

w(χ)
∑

m6τ1;n6X2

χ̄(m)bn(χ)
√

mn

∫ T+H

T (m)

(
2πem
qnt

)i t

dt �
1

log T

∑
m6τ1;n6X2

d(n)
√

mn

�

√
τ1

log T
X log X � q1/4T 1/4 X.

The result follows. �

The following lemma is the most difficult part of the proof, and, as remarked earlier, the proof we
gave in [Mawia 2017] had a minor error as the approximate functional equation we used was erroneous.
But as will become clear, the proof remains substantially the same. To further reduce the length of the
interval in the main theorem, it will be necessary to improve this lemma.

Lemma 9. Let q 6 T η, X = T θ , with 0< θ < 1
8 and H = T ϑ with 1

2 +
1
2η+ 2θ < ϑ 6 1. Then∫ T+H

T
Z(t, χ)2

∣∣BX
( 1

2 + i t, χ
)∣∣4 dt �

4ω(q)q2

ϕ(q)2
H (T →∞).

Proof. We would like to point out first that this bound is much sharper in all aspects than we would get
from a direct application of the Burgess bound or the hybrid bounds of [Heath-Brown 1978]. For, using
Theorem 1 of [Heath-Brown 1978], we have∫ T+H

T
Z(t, χ)2

∣∣BX
( 1

2 + i t, χ
)∣∣4 dt � d(q)2q3/8(log q)4 H max(H 1/2, T 1/2)X2,

which is always bigger than our bound, for H in the stated range. As remarked earlier, this is due to the
fact that the variations of Z(t, χ) are not taken into account when one applies bounds on

∣∣L( 1
2 + i t, χ

)∣∣.
However, the merit of this bound is that it holds for any values of q and H without restriction.
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We will now start the proof of the lemma. We will write, as before, τ =
√

qT/(2π). Using the
approximate equation (2-1) of Lemma 2, we have∫ T+H

T
Z(t, χ)2

∣∣BX
(1

2 + i t, χ
)∣∣4 dt

=

∫ T+H

T
2(t, χ)2

∣∣BX
(1

2 + i t, χ
)∣∣4 dt

+

∫ T+H

T
2(t, χ)2

∣∣BX
( 1

2 + i t, χ
)∣∣4 dt + 2

∫ T+H

T
|2(t, χ)|2

∣∣BX
( 1

2 + i t, χ
)∣∣4 dt

+ O
((

q
T

)1/4

log(2T )
∫ T+H

T
|2(t, χ)|

∣∣BX
( 1

2 + i t, χ
)∣∣4 dt

)
+ O

((
q
T

)1/2

log2(2T )
∫ T+H

T

∣∣BX
( 1

2 + i t, χ
)∣∣4 dt

)
. (3-1)

Using the trivial bound
∣∣BX

( 1
2 + i t, χ

)∣∣6∑n6X 1/
√

n�
√

X , we see that the two O-terms are respec-
tively

O
((

q
T

)1/4

log(2T )X2
∫ T+H

T
|2(t, χ)| dt

)
and O

((
q
T

)1/2

H X2 log2(2T )
)
.

At this point, we apply the Cauchy–Schwarz inequality and get∫ T+H

T
|2(t, χ)| dt 6

√
H
(∫ T+H

T

∣∣∣∣ ∑
n6
√

qt/(2π)

χ(n)
n1/2+i t

∣∣∣∣2 dt
)1/2

(3-2)

using the expression (2-2). The error in [Mawia 2017] lies in the subsequent application of the mean
value theorem for Dirichlet polynomials at this point, which is not applicable in this form, since the
summation is up to n 6

√
qt/(2π), and not up to n 6

√
qT/(2π) (t being the variable of integration,

whereas T is the lower limit of the integral). However, this is easy to rectify. One method to correct this
error is to use an analogue of Lemma 6 in [Selberg 1942], where the sum runs up to n 6

√
T/(2π) but

the error is of size T−3/20 instead of T−1/4. We however follow another route. Let us write for brevity
T (m, n)=max(T, 2πm2/q, 2πn2/q) and τ1 =

√
q(T + H)/(2π). We then have∫ T+H

T

∣∣∣∣ ∑
n6
√

qt/(2π)

χ(n)
n1/2+i t

∣∣∣∣2 dt =
∑

m,n6τ1

χ(m)χ̄(n)
√

mn

∫ T+H

T (m,n)

(
n
m

)i t

dt

= H
∑
n6τ

|χ(n)|
n
+

∑
m,n6τ
m 6=n

χ(m)χ̄(n)
√

mn log(n/m)

((
n
m

)i(T+H)

−

(
n
m

)iT)

+

∑
τ<n6τ1

|χ(n)|
n

(
T + H −

2πn2

q

)
+

∑
τ<m,n6τ1

m 6=n

χ(m)χ̄(n)
√

mn log(n/m)

((
n
m

)i(T+H)

−

(
n
m

)iT (m,n))
.
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Obviously, the first and third terms are� H log(qT ). It is also easy to see that the second and last terms in
the above expression are� (qT )1/2 log(qT ) (see Lemma 1 in [Selberg 1942]). It follows from (3-2) that∫ T+H

T |2(t, χ)| dt � H
√

log(qT ) and the first O-term in (3-1) is O((q/T )1/4 H X2
√

log(qT ) log(2T )).
The main difficulty is in the treatment of the first three terms on the right side of (3-1). Since the first

two integrals are bounded in absolute value by the third integral, it is enough to look at the third integral,
namely

J =
∫ T+H

T
|2(t, χ)|2

∣∣BX
( 1

2 + i t, χ
)∣∣4 dt.

Using the expressions (2-4) and (2-1), we have

J =
∑

k,`6τ1
m,n6X2

χ(k)χ̄(`)bm(χ)bn(χ̄)
√

k`mn

∫ T+H

T (k,`)

(
`n
km

)i t

dt

= H
∑

k,`6τ ;m,n6X2

km=`n

χ(k)χ̄(`)bm(χ)bn(χ̄)
√

k`mn
(3-3)

+

(∑
1
+

∑
2
+

∑
3

)
χ(k)χ̄(`)bm(χ)bn(χ̄)

√
k`mn

(T + H − T (k, `)) (3-4)

+

∑
k,`6τ1;m,n6X2

km 6=`n

χ(k)χ̄(`)bm(χ)bn(χ̄)

i
√

k`mn log(`n/km)

((
`n
km

)i(T+H)

−

(
`n
km

)iT (k,`))
, (3-5)

where ∑
1
=

∑
τ<k,`6τ1;m,n6X2

km=`n

,
∑

2
=

∑
k6τ<`6τ1;m,n6X2

km=`n

,
∑

3
=

∑
`6τ<k6τ1;m,n6X2

km=`n

.

We shall treat the above sums one by one, starting from the easiest, namely (3-5), to the hardest, that
is, (3-3). Using the fact that |bn(χ)|6 d(n)� T ε for n 6 τ1 X2, and applying [Selberg 1942, Lemma 1],
we see that the sum in (3-5) above is O(q1/2T 1/2+εX2) for any ε > 0.

Let us now look at the first sum in (3-4), namely the sum enclosed by
∑

1. We want to show that it is�
H. This sum is essentially the same as the sum in (3-3), except that the range of k, ` is different. Although
we can adapt the proof given in [Mawia 2017] that the sum in (3-3) is� 1, we give a simpler proof for
this sum when ϑ < 1. Since T + H − T (k, `)6 H for k, ` in the given range, it is enough to show that∑

τ<k,`6τ1;m,n6X2

km=`n

d(m)d(n)
√

k`mn
� 1.

Note first that ∑
τ<k,`6τ1;m,n6X2

km=`n

d(m)d(n)
√

k`mn
=

∑
m,n6X2

d(m)d(n)
mn

g
∑

τ(m,n)<ν6τ1(m,n)

1
ν
, (3-6)

where τ(m, n) = gτ/min(m, n), τ1(m, n) = gτ1/max(m, n) and g = (m, n) in each term. Since the
sum on the right is symmetric in m and n, it is enough to look at the sum for m 6 n 6 X2, which we do



ON THE DISTRIBUTION OF VALUES OF HARDY’S Z -FUNCTIONS IN SHORT INTERVALS, II 241

henceforward. Observe that the inner sum is zero unless m/n > τ/τ1, in which case, the inner sum is of
size� log(mτ1/(nτ))+(m+n)/(gτ) (the term log(mτ1/(nτ)) comes from the main term of the harmonic
sum, whereas the term (m+n)/(gτ) comes from the error term) and in the outer sum, for each n6 X2, the
variable m ranges over nτ/τ1 < m 6 n. Using the fact that d(m)d(n)� T ε, we see that the sum (3-6) is

� T ε
∑

n6X2

1
n

∑
nτ/τ1<m6n

g
m

log
mτ1

nτ
+

∑
m,n6X2

d(m)d(n)
τ

(
1
m
+

1
n

)

� H T−1+ε
∑

n6X2

∑
nτ/τ1<m6n

g
mn
+

X2 log3 X
τ

� H 2T−2+ε(log X)3+
X2 log3 X

τ
� 1

for small enough ε, as long as ϑ < 1 and θ < 1
4 +

1
4η (this latter condition is satisfied since θ < 1

8 by
assumption). This completes the proof when ϑ < 1. When ϑ = 1, we can adapt the treatment of the sum
(3-3), given in the ensuing paragraphs. It is to be noted that, although similar in appearance, the sum
(3-4) needs a much less delicate treatment than the sum in (3-3) due to the restriction τ < k, `6 τ1.

Next we look at the sums enclosed by
∑

2 and
∑

3 in (3-4). Since the two sums are similar, it suffices
to look at one of them, say

∑
2. Comparing it with

∑
1, we expect it to be roughly of the same size,

as the range of ` is the same although k runs through a set of smaller integers, and we have exactly the
same terms in the two sums. We observe that the sum

∑
2 is smaller in absolute value than

H
∑

m,n6X2

d(m)d(n)
mn

g
∑

gτ/m<ν6min{gτ/n,gτ1/m}

1
ν
,

by following the same steps as in the treatment of
∑

1 . This sum can now be estimated as (3-6).
It remains to treat the sum in (3-3). This sum was shown in [Mawia 2017] to be� 1 when q is fixed;

the case when q is not fixed will be treated shortly. We first remark that in the treatment given of this
sum in [Mawia 2017], the positions of k and l have to be interchanged throughout, so that the integral
in the first line of equation (12) on p. 45 should be

∫ T+H
T (ln/km)i t dt , and the conditions kn = lm and

kn 6= lm should be replaced throughout by the conditions km = ln and km 6= ln respectively.
We now consider the same sum when q is not fixed. Note first that∑

k,`6τ ;m,n6X2

km=`n

χ(k)χ̄(`)bm(χ)bn(χ̄)
√

k`mn
=

∑
m,n6X2

bm(|χ |)bn(|χ |)

mn
g
∑
ν6τ0

|χ(ν)|

ν
, (3-7)

where τ0 = gτ/max(m, n) and g= (m, n) in each term. As in [Mawia 2017], let us first define, for γ > 0,

S(γ )=<
{
τ iγ

∑
n j6X

βn1(|χ |)βn2(|χ |)βn3(|χ |)βn4(|χ |)

n1n2n3n4

g1+iγ

(n1n3)iγ

∑
ν6τ1

|χ(ν)|

ν1+iγ

}
,

where we have written τ1 = gτ/max(n1n2, n3n4) with g now standing for (n1n2, n3n4). Note that the
right side of (3-7) is equal to S(0). We will show that S(γ )= O(4ω(q)q2/ϕ(q)2) for 0< γ 6 1/ log T ;
it will follow by continuity that S(0)= O(4ω(q)q2/ϕ(q)2) as well. As remarked in [Mawia 2017], the
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proof is essentially contained in the proof that K (γ )= O(1) in [Selberg 1942, pp. 27–31]. Following
the same reduction steps as in [Mawia 2017], we arrive at the expression

S(γ )=<{τ iγ L(1+ iγ, |χ |)S2(γ )}+ O(|S2(γ )| log T )+ O(2ω(q)(qT )−1/2 X2 log4 T ), (3-8)

with

S2(γ )=
∑

n j6X

βn1(|χ |)βn2(|χ |)βn3(|χ |)βn4(|χ |)

n1n2n3n4

g1+iγ

(n1n3)iγ
. (3-9)

Note that we have used Lemma 3 in the course of the reduction. Let us look at the first O-term in (3-8).
We showed in [Mawia 2017] that S2(γ ) is equal to

S2(γ )=
∑

d6X2

ϕiγ (d)S3(γ ; d)2, (3-10)

where

S3(γ ; d)=
∑

m,n6X
d |mn

βm(|χ |)βn(|χ |)

mn1+iγ

(see the second displayed equation on p. 48), and that S3(γ ; d) is further equal to

S3(γ ;d)=
1

log2 X

∑
d1,d26X2

d|d1d2|d∞

αd1(|χ |)αd2(|χ |)

d1d1+iγ
2

{ ∑
n6X/d1
(n,d)=1

αn(|χ |)

n
log

X
d1n

}{ ∑
n6X/d2
(n,d)=1

αn(|χ |)

n1+iγ log
X

d2n

}
, (3-11)

where, in the above sum, the only primes dividing d1, d2 are the prime factors of d , which is often symbol-
ically written as d1 | d∞, d2 | d∞. We will now apply Lemma 5 with r = 1. Note that for 06 γ 6 1/ log X ,
the O-term dominates the “main” term in (2-5). Using this fact in (3-11), we see that

S3(γ ; d)�
2ω(q)q

ϕ(q) log X

∑
d1,d26X2

d | d1d2 | d∞

1
d1d2

∏
p | d

(1+ |χ(p)|p−3/4)2

�
2ω(q)q

dϕ(q) log X

∏
p | d

(1+ p−3/4)3. (3-12)

Using this in (3-10), we arrive at

S2(γ )�
4ω(q)q2

ϕ(q)2 log2 X

∑
d6X2

|ϕiγ (d)|
d2

∏
p | d

(1+ p−3/4)6

�
4ω(q)q2

ϕ(q)2 log X
.

Plugging this into (3-8), we have

S(γ )=<{τ iγ L(1+ iγ, |χ |)S2(γ )}+ O
(

4ω(q)q2

ϕ(q)2

)
.
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The treatment of the first term here is somewhat delicate. Using Lemma 3, we have L(1+ iγ, |χ |) =
ϕ(q)/qiγ + O(2ω(q)), so that

S(γ )= =
{
τ iγ ϕ(q)

qγ
S2(γ )

}
+ O

(
4ω(q)q2

ϕ(q)2

)
. (3-13)

Using the fact that the inequality |=(ab2)| = |y(u2
− v2)+ 2yuv| 6 |=a||b|2 + 2|a||b||=b| holds for

a = x + iy, b = u+ iv, we have, in view of (3-10) and (3-13),

|S(γ )|6
∑

d6X2

∣∣∣∣=(τ iγϕiγ (d)ϕ(q)
qγ

)∣∣∣∣|S3(γ ; d)|2

+ 2
∑

d6X2

|ϕiγ (d)||S3(γ ; d)|
∣∣∣∣=( S3(γ ; d)

γ

)∣∣∣∣+ O
(

4ω(q)q2

ϕ(q)2

)
. (3-14)

Let us look at the terms one by one. First of all, we observe that∣∣∣∣=(τ iγϕiγ (d)ϕ(q)
qγ

)∣∣∣∣= ∣∣∣∣=(τ iγϕ(q)
qγ

d1+iγ
∑
c | d

µ(c)
c1+iγ

)∣∣∣∣
= d

ϕ(q)
q

∣∣∣∣∑
c | d

µ(c)
c

sin(γ log(τd/c))
γ

∣∣∣∣
6 d

ϕ(q)
q

log(τd)
∏
p | d

(1+ p−3/4).

Using the bound (3-12) for S3(γ ; d), we see that the first term in (3-14) is

�
2ω(q)q log(τ X2)

ϕ(q) log2 X

∑
d6X2

1
d

∏
p | d

(1+ p−3/4)7�
2ω(q)q
ϕ(q)

. (3-15)

Similarly, using Lemmas 5 and 6 and the expression

=

(
S3(γ ; d)
γ

)
=

1

log2 X

∑
d1,d26X

d | d1d2 | d∞

αd1(|χ |)αd2(|χ |)

d1d2

{ ∑
n6X/d1
(n,d)=1

αn(|χ |)

n
log

X
d1n

}{ ∑
n6X/d2
(n,d)=1

αn(|χ |)

n
log

X
d2n

sin(γ log(d2n))
γ

}
,

we get that the second term in (3-14) is

�
2ω(q)q
ϕ(q)

. (3-16)

It follows from (3-14), (3-15) and (3-16) that S(γ )� 4ω(q)q2/ϕ(q)2. �
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On products of shifts in arbitrary fields

Audie Warren

We adapt the approach of Rudnev, Shakan, and Shkredov (2018) to prove that in an arbitrary field F, for
all A ⊂ F finite with |A|< p1/4 if p := Char(F) is positive, we have

|A(A+ 1)| �
|A|11/9

(log |A|)7/6
, |AA| + |(A+ 1)(A+ 1)| �

|A|11/9

(log |A|)7/6
.

This improves upon the exponent of 6
5 given by an incidence theorem of Stevens and de Zeeuw.

1. Introduction and main result

For finite A ⊆ F, we define the sumset and product set of A as

A+ A = {a+ b : a, b ∈ A}, AA = {ab : a, b ∈ A}.

It is an active area of research to show that one of these sets must be large relative to A. The central
conjecture in this area is the following.

Conjecture 1 (Erdős–Szemerédi). For all ε > 0, and for all A ⊆ Z finite, we have

|AA| + |A+ A| � |A|2−ε .

The notation X � Y is used to hide absolute constants; i.e., X � Y if and only if there exists an
absolute constant c > 0 such that X � cY. If X � Y and Y � X we write X � Y. We will let p denote
the characteristic of F throughout (p may be zero). Due to the possible existence of finite subfields in F,
extra restrictions on |A| relative to p must be imposed if p is positive; all such conditions can be ignored
if p = 0.

Although Conjecture 1 is stated over the integers, it can be considered over fields, the real numbers
being of primary interest. Current progress over R places us at an exponent of 4

3+c for some small c, due
to Shakan [2018], building on [Konyagin and Shkredov 2015; Solymosi 2009]. Incidence geometry, and
in particular the Szemerédi–Trotter theorem, are tools often used to prove such results in the real numbers.

Conjecture 1 can also be considered over arbitrary fields F. Over arbitrary fields we replace the
Szemerédi–Trotter theorem with a point-plane incidence theorem of [Rudnev 2018], which was used by
Stevens and de Zeeuw [2017] to derive a point-line incidence theorem. An exponent of 6

5 was proved
in 2014 by Roche-Newton, Rudnev, and Shkredov [Roche-Newton et al. 2016]. An application of the
Stevens–de Zeeuw theorem also gives this exponent of 6

5 for Conjecture 1, so that 6
5 became a threshold

to be broken.
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The 6
5 threshold has recently been broken; see [Shakan and Shkredov 2018; Rudnev et al. 2018; Chen

et al. 2018]. The following theorem was proved by Rudnev, Shakan, and Shkredov and is the current
state-of-the-art bound.

Theorem 2 [Rudnev et al. 2018]. Let A ⊂ F be a finite set. If F has positive characteristic p, assume
|A|< p18/35. Then we have

|A+ A| + |AA| � |A|11/9−o(1).

Another way of considering the sum-product phenomenon is to consider the set A(A+ 1), which we
would expect to be quadratic in size. This encapsulates the idea that a translation of a multiplicatively
structured set should destroy its structure, which is a main theme in sum-product questions. Study
of growth of |A(A+ 1)| began in [Garaev and Shen 2010]; see also [Jones and Roche-Newton 2013;
Zhelezov 2015; Mohammadi 2018]. Current progress for |A(A+ 1)| comes from an application of the
Stevens–de Zeeuw theorem, giving the same exponent of 6

5 . In this paper we use the multiplicative
analogue of ideas in [Rudnev et al. 2018] to prove the following theorem.

Theorem 3. Let A, B,C, D ⊂ F be finite with the conditions

|C(A+ 1)||A| ≤ |C |3, |C(A+ 1)|2 ≤ |A||C |3, |B| ≤ |D|, |A|, |B|, |C |, |D|< p1/4.

Then we have

|AB|8 |C(A+ 1)|2 |D(B− 1)|8�
|B|13
|A|5 |D|3 |C |

(log |A|)17(log |B|)4
.

In our applications of this theorem we have |A| = |B| = |C | = |D| so that the first three conditions are
trivially satisfied. The conditions involving p could likely be improved; however, for sake of exposition
we do not attempt to optimise these. The main proof closely follows [Rudnev et al. 2018] (in the multi-
plicative setting), the central difference being a bound on multiplicative energies in terms of products of
shifts. An application of Theorem 3 beats the threshold of 6

5 , matching the 11
9 appearing in Theorem 2.

Specifically, we have:

Corollary 4. Let A ⊆ F be finite, with |A|< p1/4. Then

|A(A+ 1)| �
|A|11/9

(log |A|)7/6
, |AA| + |(A+ 1)(A+ 1)| �

|A|11/9

(log |A|)7/6
.

Corollary 4 can be seen by applying Theorem 3 with B = A+ 1, C = A and D = A+ 1 for the first
result, and B =−A, D = C = A+ 1 for the second result.

2. Preliminary results

We require some preliminary theorems. The first is the point-line incidence theorem of Stevens and
de Zeeuw.

Theorem 5 [Stevens and de Zeeuw 2017]. Let A and B with |A| ≥ |B| be finite subsets of a field F, and
let L be a set of lines. Assuming |L||B| � p2 and |B||A|2 ≤ |L|3, we have

I (A× B, L)� |A|1/2 |B|3/4 |L|3/4+ |L|.
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Note that as |A| ≥ |B|, we have |A|1/2 |B|3/4 ≤ |A|3/4 |B|1/2; in particular with the same conditions we
have the above result with the exponents of A and B swapped. Because of this, the condition |A| ≥ |B|
is only needed to specify the second two conditions. We may therefore restate Theorem 5 as:

Theorem 6. Let A and B be finite subsets of a field F, and let L be a set of lines. Assuming

|L|min{|A|, |B|} � p2 and |A||B|max{|A|, |B|} ≤ |L|3,
we have

I (A× B, L)�min{|A|1/2 |B|3/4, |A|3/4 |B|1/2}|L|3/4+ |L|.

This second formulation will be how we apply Theorem 5. Before stating the next two theorems we
require some definitions. For x ∈ F we define the representation function

rA/D(x)=
∣∣∣{(a, d) ∈ A× D : a

d
= x

}∣∣∣.
Note that for all x we have rA/D(x)≤min{|A|, |D|}. This is seen as fixing one of a, d in the equation
a/d = x necessarily determines the other. The set A/D in this definition can be changed to any other
combination of sets, changing the fraction a/d in the definition to match. For n ∈ R+, we define the n-th
moment multiplicative energy of sets A, D ⊆ F as

E∗n(A, D)=
∑

x

rA/D(x)n.

When n = 2 we shall simply write E∗(A, D), and when A = D we write E∗n(A) := E∗n(A, A). By
considering that we have a/a = 1 for all a ∈ A, we have the trivial lower bound E∗n(A)≥ |A|

n. When n
is in fact a natural number, E∗n(A, D) can be considered as the number of solutions to

a1

d1
=

a2

d2
= · · · =

an

dn
, ai ∈ A, di ∈ D,

giving the trivial upper bound E∗n(A, D) ≤ |A|n|D| by fixing a1 to an and then choosing a single di ,
which necessarily determines all other di .

We use Theorem 6 to prove two further results. The first is a bound on the fourth-order multiplicative
energy relative to products of shifts.

Theorem 7. For all finite nonempty A,C, D ⊂ F with

|A|2 |C(A+ 1)| ≤ |D||C |3, |A||C(A+ 1)|2 ≤ |D|2 |C |3, |A||C ||D|2� p2,

we have

E∗4(A, D)�min
{
|C(A+ 1)|2 |D|3

|C |
,
|C(A+ 1)|3 |D|2

|C |

}
log |A|.

The second result is similar, but for the second moment multiplicative energy.

Theorem 8. For all finite and nonempty A, C , D ⊂ F with

|A|2 |C(A+ 1)| ≤ |D||C |3, |A||C(A+ 1)|2 ≤ |D|2 |C |3, |A||C ||D|min{|C |, |D|} � p2,

we have

E∗(A, D)�
|C(A+ 1)|3/2 |D|3/2

|C |1/2
log |A|.
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The set A+ 1 appearing in these theorems can be changed to any translate A+ λ for λ 6= 0 by noting
that |C(A+ 1)| = |C(λA+ λ)| and renaming A′ = λA. For our purposes, we will use λ=±1.

Proof of Theorem 7. Without loss of generality, we can assume that 0 /∈ A,C, D. We begin by proving

E∗4(A, D)�
|C(A+ 1)|2 |D|3

|C |
log |A|.

Define the set
Sτ := {x ∈ A/D : τ ≤ rA/D(x) < 2τ }.

By a dyadic decomposition, there is some τ with

|Sτ |τ 4
� E∗4(A, D)� |Sτ |τ 4 log |A|.

Note that τ ≤min{|A|, |D|}. Take an element t ∈ Sτ . It has τ representations in A/D, so there are τ ways
to write t = a/d with a ∈ A, d ∈ D. For all c ∈ C , we have

t =
a
d
=

1
d

(
ac+ c− c

c

)
=

1
d

(
α

c
− 1

)
,

where α = c(a+ 1) ∈ C(A+ 1). This shows that we have |Sτ |τ |C | incidences between the lines

L = {ld,c : d ∈ D, c ∈ C}, ld,c given by y =
1
d

(
x
c
− 1
)
,

and the point set P = C(A+ 1)× Sτ . Under the conditions |D||C |min{|Sτ |, |C(A+ 1)|} � p2 and
|Sτ ||C(A+ 1)|max{|Sτ |, |C(A+ 1)|} ≤ |D|3 |C |3, we have

|Sτ |τ |C | ≤ I (P, L)� |C(A+ 1)|1/2 |Sτ |3/4 |C |3/4 |D|3/4+ |D||C |.

The conditions are satisfied under the assumptions |D||A||C |min{|D|, |C |} � p2, |A|2 |C(A+ 1)| ≤
|D||C |3, and |A||C(A+ 1)|2 ≤ |D|2 |C |3. Assuming that the leading term is dominant, we have

|Sτ |τ 4
|C | � |C(A+ 1)|2 |D|3

so that as E∗4(A, D)/log |A| � |Sτ |τ 4, we have

E∗4(A, D)�
|C(A+ 1)|2 |D|3

|C |
log |A|.

We therefore assume the leading term is not dominant. Suppose |D||C | is dominant so that

|C(A+ 1)|1/2 |Sτ |3/4 |C |3/4 |D|3/4 ≤ |D||C |. (1)

Multiplying by τ 3 and simplifying, we have

|C(A+1)|2
E∗4(A, D)3

log |A|3
�|C(A+1)|2 |Sτ |3τ 12

≤|D||C |τ 12
=⇒ E∗4(A, D)�

|D|1/3 |C |1/3τ 4

|C(A+ 1)|2/3
log |A|.

The result now follows if
|D|1/3 |C |1/3τ 4

|C(A+ 1)|2/3
�
|C(A+ 1)|2 |D|3

|C |
.
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We must therefore prove the result in the case that this is not true; we will prove the result under the
assumption

|C(A+ 1)|2 |D|3

|C |
≤
|D|1/3 |C |1/3τ 4

|C(A+ 1)|2/3
,

which gives (using τ ≤ |A|)

|D|8 |C |4 |A|4 ≤ |D|8 |C(A+ 1)|8 ≤ τ 12
|C |4 ≤ |A|12

|C |4,

so that we have |D| ≤ |A|. We then have (using |C(A+ 1)| ≥ |C |1/2 |A|1/2)

|D||C | ≥ |C(A+ 1)|1/2 |Sτ |3/4 |C |3/4 |D|3/4 ≥ |C(A+ 1)|1/2 |C |3/4 |D|3/4 ≥ |A|1/4 |C ||D|3/4 ≥ |D||C |,

so that the two terms are in fact balanced and the result follows.
Secondly, we prove that

E∗4(A, D)�
|C(A+ 1)|3 |D|2

|C |
log |A|.

To do this, we swap the roles of D and Sτ from above. We define the line set and point set by

L = {lt,c : t ∈ Sτ , c ∈ C}, P = C(A+ 1)× D.

Any incidence from the previous point and line sets remains an incidence for the new ones, via

t =
1
d

(
α

c
− 1
)
⇐⇒ d =

1
t

(
α

c
− 1
)
.

Under the conditions

|Sτ ||C |min{|D|, |C(A+ 1)|} � p2, |D||C(A+ 1)|max{|D|, |C(A+ 1)|} ≤ |Sτ |3 |C |3, (2)

we have
|Sτ |τ |C | ≤ I (P, L)� |C(A+ 1)|3/4 |Sτ |3/4 |C |3/4 |D|1/2+ |Sτ ||C |.

If the leading term dominates, the result follows from |Sτ |τ 4
� E∗4(A, D)/log |A|. Assume the leading

term is not dominant; that is,
|C(A+ 1)|3 |D|2 ≤ |Sτ ||C |.

Then by using |Sτ | ≤ |A||D| and |A|, |C | ≤ |C(A+ 1)| we have

|A||C |2 |D|2 ≤ |C(A+ 1)|3 |D|2 ≤ |Sτ ||C | ≤ |A||D||C |,

so that |C | = |D| = 1 and the result is trivial by E∗4(A, D)≤ |A||D|4 ≤ |A|.
We now check the conditions (2) for using Theorem 5. The first condition in (2) is satisfied if
|A||C ||D|2� p2, which is true under our assumptions. The second depends on max{|D|, |C(A+ 1)|},
which we assume is |D| (if not the first term in Theorem 7 gives stronger information, which we have
already proved). Assuming the second condition does not hold, we have

|Sτ |3 |C |3 < |D|2 |C(A+ 1)|.
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Multiplying by τ 12 and bounding τ ≤ |A|, we get

E∗4(A, D)�
|A|4 |D|2/3 |C(A+ 1)|1/3

|C |
log |A|. (3)

We may now assume the bound

|C(A+ 1)|3 |D|2

|C |
≤
|A|4 |D|2/3 |C(A+ 1)|1/3

|C |
. (4)

Indeed, if we were to have

|A|4 |D|2/3 |C(A+ 1)|1/3

|C |
<
|C(A+ 1)|3 |D|2

|C |

then we may apply this bound in (3) and the result follows. Assuming (4), we have

|A|8 |D|4 ≤ |C(A+ 1)|8 |D|4 ≤ |A|12.

So that |D| ≤ |A|. In turn, this implies |A| ≥ |D| ≥ |C(A+ 1)| ≥ |A|, so that |A| = |C(A+ 1)| = |D|.
Returning to (3), this gives

E∗4(A, D)�
|A|4 |D|2/3 |C(A+ 1)|1/3

|C |
log |A| =

|C(A+ 1)|3 |D|2

|C |
log |A|,

and the result is proved. �

Proof of Theorem 8. The proof follows similarly to that of Theorem 7. We again define the lines and
points

L = {ld,c : d ∈ D, c ∈ C}, ld,c given by y =
1
d

(
x
c
− 1
)
, P = C(A+ 1)× Sτ ,

where in this case the set Sτ is rich with respect to E∗(A, D), so that

|Sτ |τ 2
� E∗(A, D)� |Sτ |τ 2 log |A|.

With the conditions |A||C ||D|min{|D|, |C |}� p2 and |Sτ ||C(A+1)|max{|Sτ |, |C(A+1)|} ≤ |D|3 |C |3

(which are satisfied under our assumptions), we have, by Theorem 6,

|Sτ |τ |C | ≤ I (P, L)� |Sτ |1/2 |C(A+ 1)|3/4 |D|3/4 |C |3/4+ |D||C |.

If the leading term dominates, we have

|Sτ |τ 2
�
|C(A+ 1)|3/2 |D|3/2

|C |1/2

and the result follows from E∗(A, D)/log |A| � |Sτ |τ 2. We therefore assume that the leading term does
not dominate; that is,

|Sτ |1/2 |C(A+ 1)|3/4 |D|3/4 |C |3/4 ≤ |D||C |.
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Multiplying through by τ and squaring, we get the bound

E∗(A, D)�
|D|1/2 |C |1/2τ 2

|C(A+ 1)|3/2
log |A|. (5)

Much as before, we may now assume the bound

|D|3/2 |C(A+ 1)|3/2

|C |1/2
≤
|D|1/2 |C |1/2τ 2

|C(A+ 1)|3/2
, (6)

as assuming otherwise yields the result via (5). The bound (6) then gives

|D||C(A+ 1)|3 ≤ |C |τ 2.

Bounding τ ≤ |A| and |C ||A|2 ≤ |C(A+ 1)|3, we have |D| = 1. Similarly, bounding τ 2
≤ |A||D| and

|C(A+ 1)|3 ≥ |C |2 |A|, we find |C | = 1, so that the result is trivial. �

3. Proof of Theorem 3

We follow a multiplicative analogue of the argument in [Rudnev et al. 2018]. Without loss of generality
we may assume A, B ⊆ F∗. For some δ > 0, define a popular set of products as

P :=
{

x ∈ AB : rAB(x)≥
|A||B|
|AB|δ

}
.

Let Pc
:= AB \ P. Note that by writing

|{(a, b) ∈ A× B : ab ∈ P}| + |{(a, b) ∈ A× B : ab ∈ Pc
}| = |A||B|

and noting that

|{(a, b) ∈ A× B : ab ∈ Pc
}|< |Pc

|
|A||B|
|AB|δ

≤
|A||B|
δ

,

we have
|{(a, b) ∈ A× B : ab ∈ P}| ≥

(
1− 1

δ

)
|A||B|.

We also define a popular subset of A with respect to P as

A′ :=
{
a ∈ A : |{b ∈ B : ab ∈ P}| ≥ 2

3 |B|
}
.

We have

|{(a, b) ∈ A× B : ab ∈ P}| =
∑
a∈A′
|{b : ab ∈ P}| +

∑
a∈A\A′

|{b : ab ∈ P}| ≥
(
1− 1

δ

)
|A||B|. (7)

Suppose that |A \ A′| = c|A| for some c ≥ 0, so that |A′| = (1− c)|A|. Noting that∑
a∈A′
|{b : ab ∈ P}| ≤ (1− c)|A||B|,

∑
a∈A\A′

|{b : ab ∈ P}| ≤ 2c
3
|A||B|,

we have by (7)

(1− c)|A||B| + 2c
3
|A||B| ≥

(
1− 1

δ

)
|A||B| =⇒ c ≤ 3

δ
,

so that |A′| ≥ (1− 3/δ)|A|.
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We use a multiplicative version of Lemma 8 in [Rudnev et al. 2018]. The proof we present is an
expanded version of the proof present in that paper.

Lemma 9. For all finite A ⊂ F, there exists A1 ⊆ A with |A1| � |A| such that

E∗4/3(A
′

1)� E∗4/3(A1).

Proof. We give an algorithm which shows such a subset exists, as otherwise we have a contradiction. We
recursively define

Ai = A′i−1, A0 = A, i ≤ log |A|,

where A′i is defined relative to Ai . Using the same arguments as above, we have |A′i | ≥ (1− 3/δ)|Ai |.
We shall set δ = log |A|. We have the chain of inequalities

|Ai | = |A′i−1| ≥

(
1−

3
log |A|

)
|Ai−1| ≥ · · · ≥

(
1−

3
log |A|

)i

|A|.

Note that assuming |A| ≥ 16 (if this is not true then the result is trivial), we have(
1−

3
log |A|

)i

≥

(
1−

3
log |A|

)log |A|

≥

(
1
4

)4

since the function (1− 3/z)z is increasing for z > 3. We now have

|Ai | ≥

(
1
4

)4

|A| � |A|

at all steps i . We assume that at all steps, we have

E∗4/3(A
′

i ) <
E∗4/3(Ai )

4
,

as otherwise we have E∗4/3(A
′

i )� E∗4/3(Ai ) and we are done. After log |A| steps, we have a set Ak with

|Ak | � |A|, E∗4/3(A
′

k) <
E∗4/3(k)

4
<

E∗4/3(Ak−1)

16
< · · ·<

E∗4/3(A)

4log |A| .

But then we have
E∗4/3(A) > E∗4/3(A

′

k)4
log |A|

� |A|4/3+2
= |A|10/3,

which is a contradiction. Therefore at some step we have an Ai satisfying the lemma. �

We now return to the proof of Theorem 3, with δ = log |A| applied in the definition of P. We apply
Lemma 9 to A to find a large subset A1⊂ A with E∗4/3(A

′

1)� E∗4/3(A1), |A1|� |A|. Noting that proving
the result for A1 implies it for A, we shall rename A1 as A for simplicity.

We use a dyadic decomposition to find a set Q ⊂ A′/A′ such that

|Q|14/3
� E∗4/3(A

′)� |Q|14/3 log |A|

for some 1> 0.
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We will bound the size of the set

N =
{
(a, a′, b, b′) ∈ (A′)2× B2

:
a
a′
∈ Q, ab, ab′, a′b, a′b′ ∈ P

}
.

By summing over all a, a′ ∈ A′ with a/a′ ∈ Q, we have

|N | =
∑

a,a′∈A′
a/a′∈Q

|{b ∈ B : ab, a′b ∈ P}|2

and we see that as |{b∈ B :ab∈ P}|≥ 2
3 |B| for all a∈ A′, by considering the intersection of {b∈ B :ab∈ P}

and {b ∈ B : a′b ∈ P}, we have |{b ∈ B : ab, a′b ∈ P}| ≥ 1
3 |B| for all a, a′ ∈ A′. Using that elements

q ∈ Q have at least 1 representations in A′/A′, we have |N | ≥ 1
9 |B|

2
|Q|1.

We now find an upper bound on |N |. Define an equivalence relation on A2
× B2 via

(a, a′, b, b′)∼ (c, c′, d, d ′) ⇐⇒ there exists λ such that a = λc, a′ = λc′, b =
d
λ
, b′ =

d ′

λ
.

Note that the conditions
a
a′
∈ Q, ab, a′b, ab′, a′b′ ∈ P (8)

are invariant in the class (i.e., if one class element satisfies these conditions, then they all do), as λ cancels
in each condition. Let X denote the set of equivalence classes [a, a′, b, b′], where the conditions (8) are
satisfied. We can bound |N | by the sum of the size of each equivalence class [a, a′, b, b′] in X :

|N | ≤
∑

X

|[a, a′, b, b′]|.

By the Cauchy–Schwarz inequality and completing the sum over all equivalence classes, we have

|Q|212
|B|4� |N |2 ≤ |X |

∑
[a,a′,b,b′]

|[a, a′, b, b′]|2. (9)

We must now bound the two quantities on the right-hand side of this equation. We first claim that∑
[a,a′,b,b′]

|[a, a′, b, b′]|2 ≤
∑

x

rA/A(x)2rB/B(x)2. (10)

To see this, note that the left-hand side of (10) counts pairs of elements of equivalence classes. Take any
two elements (a, a′, b, b′), (c, c′, d, d ′) ∈ A2

× B2 from the same equivalence class. By definition, we
may write (c, c′, d, d ′)= (λa, λa′, b/λ, b′/λ). As 0 /∈ A, B, the 8-tuple (a, a′, b, b′, c, c′, d, d ′) satisfies

λ=
c
a
=

c′

a′
=

b
d
=

b′

d ′

for some λ ∈ R, and thus corresponds to a contribution to the quantity rA/A(λ)
2rB/B(λ)

2, and thus also
corresponds to a contribution to the sum

∑
x rA/A(x)2rB/B(x)2. We also see that different pairs from

equivalence classes necessarily give different 8-tuples, and so the claim is proved. We use Cauchy–
Schwarz on the right-hand side of (10) to bound it by a product of fourth energies:∑

x

rA/A(x)2rB/B(x)2 ≤ E∗4(A)
1/2 E∗4(B)

1/2.
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We use Theorem 7 to bound these energies. We bound via

E∗4(A)�
|C(A+ 1)|2 |A|3

|C |
log |A|, E∗4(B)�

|D(B− 1)|2 |B|3

|D|
log |B|,

with conditions

|C(A+ 1)||A| ≤ |C |3, |C(A+ 1)|2 ≤ |A||C |3, |A|3 |C | � p2,

|D(B− 1)||B| ≤ |D|3, |D(B− 1)|2 ≤ |B||D|3, |B|3 |D| � p2,

which are all satisfied under our assumptions. Returning to (9), we now have

|Q|212
|B|4� |X |

|C(A+ 1)||A|3/2 |D(B− 1)||B|3/2

|C |1/2 |D|1/2
(log |A| log |B|)1/2. (11)

We now bound |X |, the number of equivalence classes where the conditions (8) are satisfied. Note that
any (a, a′, b, b′) belonging to an equivalence class in X maps to a solution of the equation

w =
s
t
=

u
v
, (12)

with w ∈ Q, s, t, u, v ∈ P, by taking w = a/a′, s = ab, t = a′b, u = ab′, v = a′b′. Note that taking
two solutions (a, a′, b, b′) and (c, c′, d, d ′) that are not from the same equivalence class necessarily gives
us two different solutions to (12) via the map above. Therefore we may bound |X | by the number of
solutions to (12).

|X | ≤
∣∣∣∣{(w, s, t, u, v) ∈ Q× P4

: w=
s
t
=

u
v

}∣∣∣∣= ∣∣∣∣{(s, t, u, v) ∈ P4
:

s
t
=

u
v
∈ Q

}∣∣∣∣.
The popularity of P allows us to bound this by

|X | ≤
|AB|4(log |A|)4

|A|4 |B|4

∣∣∣∣{(a1, a2, a3, a4, b1, b2, b3, b4) ∈ A4
× B4

:
a1b1

a2b2
=

a3b3

a4b4
∈ Q

}∣∣∣∣.
We dyadically pigeonhole the set B A/A in relation to the number of solutions to r/a = r ′/a′ ∈ Q, with
r, r ′ ∈ B A/A, a, a′ ∈ A, to find popular subsets R1, R2 ⊆ B A/A in terms of these solutions. We have

|X | ≤
|AB|4(log |A|)4

|A|4 |B|4

2 log |A|∑
i=1

∑
x∈AB/A

2i
≤rAB/A(x)<2i+1

rAB/A(x)
∣∣∣∣{(a3, a4, b1, b3, b4)∈ A2

× B3
:

x
b1
=

a3b3

a4a4
∈ Q

}∣∣∣∣.
We use the pigeonhole principle to give us 11 > 0 and R1 ⊆ AB/A such that

|X | �11
|AB|4(log |A|)5

|A|4 |B|4

∣∣∣∣{(r1, a3, a4, b2, b3, b4) ∈ R1× A2
× B3

:
r1

b2
=

a3b3

a4b4
∈ Q

}∣∣∣∣.
We perform a similar dyadic decomposition to get 1′1 > 0 and R2 ⊆ AB/A such that

|X | �111
′

1
|AB|4(log |A|)6

|A|4 |B|4

∣∣∣∣{(r1, r2, b2, b4) ∈ R1× R2× B2
:

r1

b2
=

r2

b4
∈ Q

}∣∣∣∣.
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These decompositions now allow us to bound via fourth energies, as follows:

|X | �111
′

1
|AB|4(log |A|)6

|A|4 |B|4

∣∣∣∣{(r1, r2, b2, b4) ∈ R1× R2× B2
:

r1

b2
=

r2

b4
∈ Q

}∣∣∣∣
=111

′

1
|AB|4(log |A|)6

|A|4 |B|4
∑
q∈Q

rR1/B(q)rR2/B(q)

≤111
′

1
|AB|4(log |A|)6

|A|4 |B|4

(∑
q∈Q

rR1/B(q)2
)1/2(∑

q∈Q

rR2/B(q)2
)1/2

≤111
′

1|Q|
1/2 |AB|4(log |A|)6

|A|4 |B|4
E∗4(B, R1)

1/4 E∗4(B, R2)
1/4, (13)

where the third and fourth lines follow from applications of the Cauchy–Schwarz inequality. We will
now show that given |B||D||Ri |

2
� p2 and |B| ≤ |D| (which are true under our assumptions), we have

E∗4(B, Ri )�
|D(B− 1)|3 |Ri |

2

|D|
log |B|. (14)

Firstly, with the additional conditions

|B|2 |D(B− 1)| ≤ |Ri ||D|3, |B||D(B− 1)|2 ≤ |Ri |
2
|D|3 (15)

we may bound these fourth energies by Theorem 7 to get (14). We can therefore assume one of these
conditions does not hold.

Firstly, suppose that |B|2 |D(B− 1)|> |Ri ||D|3. We will use the trivial bound

E∗4(B, Ri )≤ |Ri |
4
|B|.

Note that it would be enough to prove

E∗4(B, Ri )≤
|D(B− 1)|3 |Ri |

2

|D|
,

which would follow from

|Ri |
4
|B| ≤

|D(B− 1)|3 |Ri |
2

|D|
, (16)

which is true if and only if |Ri |
2
|B||D| ≤ |D(B − 1)|3. Using our assumed bound |B|2 |D(B − 1)| >

|Ri ||D|3, we know

|Ri |
2
|B||D|<

|B|5 |D(B− 1)|2

|D|5
.

By the assumption |B| ≤ |D|, we have

|Ri |
2
|B||D|<

|B|5 |D(B− 1)|2

|D|5
≤ |D(B− 1)|3,

and so by (16) the bound on the fourth energy holds.
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Now assume the second condition from (15) does not hold; that is, |B||D(B−1)|2 > |Ri |
2
|D|3. Again,

we use the trivial bound
E∗4(B, Ri )≤ |Ri |

4
|B|.

We have

|Ri |
4
|B| ≤

|D(B− 1)|3 |Ri |
2

|D|
⇐⇒ |Ri |

2
|B||D| ≤ |D(B− 1)|3,

so it is enough to prove |Ri |
2
|B||D| ≤ |D(B− 1)|3, as before. Using the assumption |B||D(B− 1)|2 >

|Ri |
2
|D|3, we have

|Ri |
2
|B||D|<

|B|2 |D(B− 1)|2

|D|2

and it follows from our assumption |B| ≤ |D| that

|B|2 |D(B− 1)|2

|D|2
≤ |D(B− 1)|3.

Therefore we have |Ri |
2
|B||D|< |D(B− 1)|3 and so the bound on the fourth energy holds. Returning

to (13), we use (14) to bound |X | as

|X | �111
′

1|Q|
1/2 |AB|4(log |A|)6

|A|4 |B|4
E∗4(B, R1)

1/4 E∗4(B, R2)
1/4

�111
′

1|R1|
1/2
|R2|

1/2
|Q|1/2

|AB|4 |D(B− 1)|3/2

|A|4 |B|4 |D|1/2
(log |A|)6(log |B|)1/2. (17)

As |Ri |1i ≤
∑

x∈Ri
rB A/A(x), the product |R1|

1/2
|R2|

1/2111
′

1 can be bounded by

|R1|
1/2
|R2|

1/2111
′

1 ≤

(∑
x∈R1

rB A/A(x)2
∑
x∈R2

rB A/A(x)2
)1/2

,

where it is important to note that rB A/A(x) gives a triple (b, a, a′). For i = 1, 2, we have∑
x∈Ri

rB A/A(x)2 ≤
∣∣∣∣{(a1, a2, a3, a4, b1, b2) ∈ A4

× B2
:

b1a1

a2
=

b2a3

a4

}∣∣∣∣.
Following a similar dyadic decomposition as before, we find a pair of subsets S1, S2 ⊆ A/A with respect
to these solutions, and some 12,1

′

2 > 0 with∑
x∈Ri

rB A/A(x)2�121
′

2(log |A|)2
∣∣{(s1, s2, b1, b2) ∈ S1× S2× B2

: s1b1 = s2b2}
∣∣

≤121
′

2(log |A|)2
∑

x

rS1 B(x)rS2 B(x)

≤121
′

2(log |A|)2 E∗(B, S1)
1/2 E∗(B, S2)

1/2,

where the third inequality is given by the Cauchy–Schwarz inequality. We will use an argument similar
to that above to prove that with the two conditions |B||D||Si |min{|D|, |Si |} � p2 and |B| ≤ |D| (which
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are satisfied under our assumptions), we have

E∗(B, Si )�
|Si |

3/2
|D(B− 1)|3/2

|D|1/2
log |B|. (18)

Under the extra conditions

|B|2 |D(B− 1)| ≤ |Si ||D|3, |B||D(B− 1)|2 ≤ |Si |
2
|D|3 (19)

we can bound this energy by Theorem 8 to get (18). We therefore assume the first condition from (19)
does not hold; that is, |B|2 |D(B− 1)|> |Si ||D|3. We bound the energy via the trivial estimate

E∗(B, Si )≤ |B||Si |
2.

It is now enough to show that

|B||Si |
2
≤
|Si |

3/2
|D(B− 1)|3/2

|D|1/2
, which is true if and only if |B||D|1/2 |Si |

1/2
≤ |D(B− 1)|3/2.

Using our assumption |B|2 |D(B− 1)|> |Si ||D|3, we have

|B||D|1/2 |Si |
1/2 <

|B|2 |D(B− 1)|1/2

|D|
.

Our assumption that |B| ≤ |D| then gives

|B|2 |D(B− 1)|1/2

|D|
≤ |B||D(B− 1)|1/2 ≤ |D(B− 1)|3/2,

so that |B||D|1/2 |Si |
1/2 < |D(B − 1)|3/2, and the bound (18) holds. Next we assume that the second

condition in (19) does not hold; that is, |B||D(B− 1)|2 > |Si |
2
|D|3. We again use the trivial bound

E∗(B, Si )≤ |B||Si |
2.

Comparing this to our desired bound, we have

|B||Si |
2
≤
|Si |

3/2
|D(B− 1)|3/2

|D|1/2
⇐⇒ |B||D|1/2 |Si |

1/2
≤ |D(B− 1)|3/2,

so that the desired bound would follow from the second inequality above. Using our assumption that
|B||D(B− 1)|2 > |Si |

2
|D|3, we know

|B||D|1/2 |Si |
1/2 <

|B|5/4 |D(B− 1)|1/2

|D|1/4
,

and by our assumption that |B| ≤ |D|, we have

|B|5/4 |D(B− 1)|1/2

|D|1/4
≤ |D(B− 1)|3/2,

so that we have |B||D|1/2 |Si |
1/2 < |D(B− 1)|3/2 as needed.
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In all cases the bound on E∗(B, Si ) holds, so that we find

[|R1|
1/2
|R2|

1/2111
′

1]
2
�12

21
′2
2 E∗(B, S1)E∗(B, S2)(log |A|)4

�
12

21
′2
2 |S1|

3/2
|S2|

3/2
|D(B− 1)|3

|D|
(log |A|)4(log |B|)2

≤
E∗4/3(A)

3
|D(B− 1)|3

|D|
(log |A|)4(log |B|)2,

where the final inequality follows as 12 and 1′2 correspond to representations of elements of S1 and S2

in A/A, so that

|S1|
3/212

2 = (|S1|1
4/3
2 )3/2 ≤

(∑
x

rA/A(x)4/3
)3/2

≤ E∗4/3(A)
3/2,

and similarly for S2. Combining the bounds (11), (17), and the above, we have

|Q|3/212
|B|13/2

|A|5/2 |D|3/2 |C |1/2� |AB|4 |C(A+ 1)||D(B− 1)|4 E∗4/3(A)
3/2(log |A|)17/2(log |B|)2,

which simplifies to

E∗4/3(A
′)3 |B|13

|A|5 |D|3 |C | � |AB|8 |C(A+ 1)|2 |D(B− 1)|8 E∗4/3(A)
3(log |A|)17(log |B|)4.

We know by Lemma 9 that E4/3(A′)� E4/3(A), so we have

|B|13
|A|5 |D|3 |C | � |AB|8 |C(A+ 1)|2 |D(B− 1)|8(log |A|)17(log |B|)4

as needed. �
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The mean square discrepancy in the circle problem

Steven M. Gonek and Alex Iosevich

We study the mean square of the error term in the Gauss circle problem. A heuristic argument based
on the consideration of off-diagonal terms in the mean square of the relevant Voronoi-type summation
formula leads to a precise conjecture for the mean square of this discrepancy.

1. Introduction

Let r(n) denote the number of representations of the integer n as a sum of two squares of integers and
let

P(x)=
∑
n≤x

′

r(n)−πx + 1, (1-1)

where the prime superscript on the summation means that r(x) is counted with weight 1
2 if x is an integer.

Finding the best estimate of the discrepancy P(x) is known as Gauss’ circle problem. It is trivial that
P(x)� x1/2, and it is conjectured that P(x)� x1/4+ε, where here and throughout ε denotes a small
positive number that may be different at each occurrence. In the opposite direction, G. H. Hardy [1915;
1916b] proved that P(x)=�+(x1/4) and P(x)=�−((x log x)1/4), and this has been improved slightly by
a number of mathematicians; for example, see [Soundararajan 2003]. Here the notation f (x)=�+(g(x))
means there is a sequence of real numbers xn→∞ and a positive constant c such that f (xn)≥ c|g(xn)|

for all n. Similarly, f (x)=�−(g(x)) means there is a sequence xn→∞ and a positive constant c such
that f (xn)≤−c|g(xn)| for all n.

In spite of more than a century of effort, for example, by Sierpiński [1906], van der Corput [1923],
Kolesnik [1985], Iwaniec and Mozzochi [1988], and Huxley [2003], Gauss’s circle problem has resisted
solution. In an attempt to understand it better, mathematicians have considered several variants of the
problem that exploit the fact that the average of P(x) is easier to analyze. For example, there has been
considerable interest in the mean square of the discrepancy∫ X

0
P(x)2 dx .

It is known that ∫ X

0
P(x)2 dx = C X3/2

+ Q(X), (1-2)

The work of Gonek was partially supported by NSF grant DMS-1200582. The work of Iosevich was partially supported by
NSF Grant DMS-1045404.
MSC2010: 11P21.
Keywords: lattice points, circle problem, discrepancy estimates.
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where

C =
1

3π2

∞∑
n=1

r2(n)
n3/2 =

16
3π2

ζQ(i)
( 3

2

)2

ζ(3)
(1+ 2−3/2)−1

= 1.69396 . . . (1-3)

and Q(X) is a function that is o(X3/2). H. Cramér [1922] proved that Q(X)� X5/4+ε, E. Landau [1923]
that Q(X)� X1+ε, A. Walfisz [1927] that Q(X)� X log3 X , and I. Kátai [1965] that Q(X)� X log2 X ;
see also the work of E. Preissmann [1988] for another proof. W. G. Nowak [2004] proved the estimate

Q(X)� X (log X)3/2 log log X,

and Y.-K. Lau and K.-M. Tsang [2009] proved that

Q(X)� X log X log log X, (1-4)

the best estimate to date of which we are aware.
Our goal here is to conjecture a precise formula for Q(X). We will then use this to determine how

large and how small Q(X) can be, and to uncover a previously unobserved phenomenon described below.

Conjecture. There is a constant 0< ϑ < 1 such that as X→∞,

Q(X)= C(X)X − X + O(Xϑ), (1-5)
where

C(X)= lim
N→∞

1
2π3

∑
1≤m,n≤N

r(n)r(m) cos(2π(
√

m+
√

n)
√

X)
(mn)3/4(

√
m+
√

n)
.

That is, ∫ X

0
P(x)2 dx = C X3/2

+C(X)X − X + O(Xϑ), (1-6)

where C is given by (1-3).

The phenomenon referred to above is the presence of the slowly oscillating function C(X) in (1-6).
This points to why it is so difficult to determine the exact size of Q(X). A. Ivić [1996; 2001] has shown
that the Laplace transform of P(x)2 is∫

∞

0
P(x)2e−x/T dx = 1

4

(T
π

)3/2 ∞∑
n=1

r2(n)n−3/2
− T + O(T 2/3+ε).

Comparing this with (1-6), we see that the Laplace transform does not “see” the oscillating term C(X).
It is not obvious that the limit defining C(X) exists. We prove this in:

Proposition 1. For X ≥ 0, N ≥ 1 let

CN (X)=
1

2π3

∑
1≤m,n≤N

r(n)r(m) cos(2π(
√

m+
√

n)
√

X)
(mn)3/4(

√
m+
√

n)
. (1-7)

Then for X ≥ 1,
C(X)= lim

N→∞
CN (X)

exists. Moreover, for X ≥ 1 we have

|C(X)−CN (X)| �
X log N

N 1/4 . (1-8)
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In Section 9 we shall use Proposition 1 to prove:

Theorem 2. As X→∞,

|C(X)| ≤
(16
π
+ o(1)

)
log X. (1-9)

Hence, if the Conjecture is true,

|Q(X)| ≤
(16
π
+ o(1)

)
X log X. (1-10)

The upper bound (1-10) suggests that (1-4) is too large by a factor of at least log log X . However, we
suspect that even (1-10) is larger than the true upper bound. It is possible that the lower bound for Q(X)
provided by the next theorem is closer to the actual upper bound.

Theorem 3. We have

lim sup
X→∞

C(X)
log log X

≥
1

2π
.

Hence, if the Conjecture is true, then

Q(X)=�+(X log log X). (1-11)

In view of the Conjecture one might ask whether one can model CN (X) by the sum

1
2π3

∑
m,n≤N

r(n)r(m) cos(2πXm,n)

(mn)3/4(
√

m+
√

n)
(X4
≤ N ≤ X A),

where the Xm,n are independent identically distributed random variables. This would be reasonable
if the approximately N 2/2 numbers {

√
m +
√

n}m≤n≤N were linearly independent over the rationals.
Using estimates of H. L. Montgomery and A. Odlyzko [1988] for large deviations of sums of random
variables, one could then show that this sum is likely to be no larger than O(log log X). Unfortunately,
the numbers {

√
m+
√

n}m≤n are highly linearly dependent over the rationals in the sense that a relatively
sparse subset of these numbers spans the set. For example, the 2N − 1 numbers

√
n+
√

2,
√

n+
√

3
(n = 1, 2, . . . , N ) allow us to write an arbitrary one of the approximately N 2 elements

√
k +
√

l as
(
√

k+
√

2)+ (
√

l +
√

3)− (
√

2+
√

3). Thus, such a model might not be very accurate.
Our method may also be applied to other well-known problems. For example, it may be used to

conjecture a formula for the term F(X) in∫ X

0
1(x)2 dx =

X3/2

6π2

∞∑
n=1

d(n)2

n3/2 + F(X), (1-12)

the mean square of the error term in the Dirichlet divisor problem, where

1(x)=
∑
n≤x

′

d(n)− x(log x + 2γ − 1)− 1
4 ,

d(n) =
∑

d|n 1, and γ is Euler’s constant. This will be the subject of a forthcoming paper by the first
author and Dr. Fan Ge. The important feature shared by the circle and divisor problems that makes our
method applicable is, of course, the existence of a Voronoi-type summation formula for their error terms.
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2. Proof of Proposition 1

Before proving Proposition 1, we gather several formulae and a lemma.
Hardy [1916a] proved that for x > 0

P(x)= x1/2
∞∑

n=1

r(n)
n1/2 J1(2π

√
nx), (2-1)

where J1 is a Bessel function of the first kind. Using the approximation

J1(u)=
( 2
πu

)1/2(
cos
(

u− 3π
4

)
−

3
8u

sin
(

u− 3π
4

))
+ O(u−5/2), (2-2)

valid for u ≥ 1, we deduce that

P(x)=
x1/4

π

∞∑
n=1

r(n)
n3/4 cos

(
2π
√

nx − 3π
4

)
−

3x−1/4

16π2

∞∑
n=1

r(n)
n5/4 sin

(
2π
√

nx − 3π
4

)
+ O(x−3/4) (2-3)

for x ≥ 1. From this we obtain

P1(x) :=
∫ x

0
P(u) du =

x3/4

π2

∞∑
n=1

r(n)
n5/4 sin

(
2π
√

nx − 3π
4

)
+ O(x1/4) (2-4)

for x ≥ 1. Note that
P1(x)� x3/4 (2-5)

for x ≥ 1 follows immediately from this.

Lemma 4. Let 1≤ A < B and let 0< ε < 1. Then uniformly for x ≥ 1 and for y real,∑
A≤k≤B

r(k)
k3/4 cos(x

√
k+ y)�

x2

A1/2 +
1

A1/4 + xε−1/2 min
(

x
A1/2‖(x/2π)2‖

, log
B
A

)
. (2-6)

The implied constant depends at most on ε.

Proof. Denote the left-hand side of (2-6) by S. Then by (1-1) we may write

S = π
∫ B

A
u−3/4 cos(x

√
u+ y) du+

∫ B

A−
u−3/4 cos(x

√
u+ y) d P(u)= S1+ S2.

Now

S1 =
2π
x

∫ B

A
u−1/4 d(sin(x

√
u+ y))

=
2π sin(x

√
u+ y)

xu1/4

∣∣∣∣B
A
+
π

2x

∫ B

A

sin(x
√

u+ y)
u5/4 du� A−1/4x−1.

Using P(u)� u1/2, we see that

S2 =
P(u) cos(x

√
u+ y)

u3/4

∣∣∣∣B
A−
+

∫ B

A

P(u)
u7/4

( 3
4 cos(x

√
u+ y)+ 1

2 x
√

u sin(x
√

u+ y)
)

du

=
x
2

∫ B

A−

P(u)
u5/4 sin(x

√
u+ y) du+ O(A−1/4).
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Thus, for x ≥ 1, we have

S =
x
2

∫ B

A−

P(u)
u5/4 sin(x

√
u+ y) du+ O(A−1/4).

Let P1(u) be as in (2-4). Then by (2-5)

S =
x
2

∫ B

A−

sin(x
√

u+ y)
u5/4 d P1(u)+ O(A−1/4)

=
x
2

(
P1(u)

sin(x
√

u+ y)
u5/4

∣∣∣∣B
A−
+

∫ B

A
P1(u)

( 5
4 sin(x

√
u+ y)

u9/4 −
x
2

cos(x
√

u+ y)
u7/4

)
du
)
+ O(A−1/4)

=−

(
x
2

)2 ∫ B

A
P1(u)

cos(x
√

u+ y)
u7/4 du+ O(x A−1/2)+ O(A−1/4).

Next we insert the formula for P1(x) from (2-4) into the last integral. The O(u1/4) term in (2-4) con-
tributes O(x2/A1/2), so we obtain

S =−
x2

4π2

∞∑
n=1

r(n)
n5/4

∫ B

A

sin
(
2π
√

nu− 3π
4

)
cos(x

√
u+ y)

u
du+ O(x2 A−1/2)+ O(A−1/4).

Writing the numerator in the integrand as a sum of two sines, we have

S =−
x2

8π2

∞∑
n=1

r(n)
n5/4 (I1(n)+ I2(n))+ O(x2 A−1/2)+ O(A−1/4), (2-7)

where

I1(n)=
∫ B

A
u−1 sin

(
(x + 2π

√
n)
√

u+ y− 3π
4

)
du,

I2(n)=
∫ B

A
u−1 sin

(
(−x + 2π

√
n)
√

u− y− 3π
4

)
du.

Integration by parts shows that

I1(n)�
1

A1/2(x + 2π
√

n)
,

I2(n)�
1

A1/2|x − 2π
√

n|
.

We also trivially have I2(n)� log B/A. It follows that

x2
∞∑

n=1

r(n)I1(n)
n5/4 �

x
A1/2

and

x2
∞∑

n=1

r(n)I2(n)
n5/4 � x2

∞∑
n=1

r(n)
n5/4 min

(
1

A1/2|x − 2π
√

n|
, log

B
A

)
.
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The terms in the last sum with n ≤ 1
2(x/2π)

2 or n > 2(x/2π)2 contribute

�
x2

A1/2

( ∑
n≤ 1

2 (x/2π)
2

+

∑
n>2(x/2π)2

)
r(n)(x + 2π

√
n)

n5/4|x2− 4π2n|

�
x2

A1/2

(
1
x

∑
n≤ 1

2 (x/2π)
2

r(n)
n5/4 +

∑
n>2(x/2π)2

r(n)
n7/4

)

�
x2

A1/2 (x
−1
+ x−3/2 log x)�

x
A1/2 .

The remaining terms give

�
x2

A1/2

∑
1
2 (x/2π)

2<n≤2(x/2π)2

n 6=[(x/2π)2], [(x/2π)2]+1

r(n)
n5/4

x
|(x/2π)2− n|

+ xε−1/2 min
(

x
A1/2‖(x/2π)2‖

, log
B
A

)

�
x1/2+ε

A1/2 + xε−1/2 min
(

x
A1/2‖(x/2π)2‖

, log
B
A

)
.

Thus, from (2-7) we conclude that

S�
x2

A1/2 +
1

A1/4 + xε−1/2 min
(

x
A1/2‖(x/2π)2‖

, log
B
A

)
.

This completes the proof of Lemma 4. �

We now prove Proposition 1. By definition

CN (X)=
1

4π3

∑
m≤N

r(m)2 cos(4π
√

X
√

m)
m2 +

1
π3

∑
1≤m<n≤N

r(m) r(n) cos(2π
√

X(
√

m+
√

n))
(mn)3/4 (

√
m+
√

n)
.

The second sum on the right equals∑
1<n≤N

r(n)n−5/4
∑

1≤m≤n−1

r(m) cos(2π
√

X(
√

m+
√

n))
m3/4(1+

√
m/n)

.

Thus, for M > N we have

|CM(X)−CN (X)| ≤
∑

N<m≤M

r(m)2

m2 +
∑

N<n≤M

r(n)
n5/4

∣∣∣∣ ∑
1≤m≤n−1

r(m) cos(2π
√

X(
√

m+
√

n))
m3/4(1+

√
m/n)

∣∣∣∣.
By partial summation, the sum over m within absolute values equals

Sn−1

1+
√
(n− 1)/n

+

∑
1≤m≤n−2

Sm

(
1

1+
√

m/n
−

1
1+
√
(m+ 1)/n

)
,

where

Sm = Sm(n)=
∑

1≤k≤m

r(k) cos(2π
√

X(
√

k+
√

n))
k3/4 .
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Thus, for X ≥ 1 we have∑
1≤m≤n−1

r(m) cos(2π
√

X(
√

m+
√

n))
m3/4(1+

√
m/n)

� max
1≤m≤n−1

|Sm(n)| ·
(

1
1+
√
(n− 1)/n

+

∑
1≤m≤n−2

(
1

1+
√

m/n
−

1
1+
√
(m+ 1)/n

))
≤ max

1≤m≤n−1
|Sm(n)|.

Now by Lemma 4 with x = 2π
√

X , y = 2π
√

nX , A = 1, and B = m− 1, we see that

Sm(n)�ε X + X ε−1/4 log m

for any 0< ε < 1. Therefore, since r(n)� d(n), we find that for M > N,

|CM(X)−CN (X)| �
∑

N<m≤M

r(m)2

m2 +
∑

N<n≤M

r(n)
n5/4

∣∣∣∣ ∑
1≤m≤n−1

r(m) cos(2π
√

X(
√

m+
√

n))
m3/4(1+

√
m/n)

∣∣∣∣
�ε

(log N )3

N
+

∑
N<n≤M

d(n)
n5/4

(
X +

log n
X1/4−ε

)

�ε

(log N )3

N
+

X log N
N 1/4 +

(log N )2

N 1/4 X1/4−ε �
X (log N )

N 1/4 .

In the last inequality, we have taken ε = 1
8 , which allows us to make the implied constant absolute. It

now follows from Cauchy’s criterion that limN→∞ CN (X) exists as N →∞. The second assertion of
Proposition 1 follows immediately from the last inequality.

3. Beginning of the argument

To avoid technical difficulties, we shall estimate

I(X)=
∫ X

X/2
P(x)2 dx

rather than ∫ X

0
P(x)2 dx,

and then add the results for (X/2, X ], (X/4, X/2], (X/8, X/4] . . . . Hardy [1916a] proved that

P(x)= x1/2
∞∑

n=1

r(n)
n1/2 J1(2π

√
nx) (x > 0), (3-1)

where

J1(y)=
1
π

∫ π

0
cos(nx − y sin x) dx

is a Bessel function of the first kind. To estimate I(X) we use a truncated version of (3-1) due to Ivić
[1996], which we state as:
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Lemma 5. Let X ≥ 2 and X ≤ N ≤ X A with A > 1. For x > 0 define R(x, N ) by

P(x)= x1/2
∑
n≤N

r(n)
n1/2 J1(2π

√
nx)+ R(x, N ). (3-2)

Then for X/2≤ x ≤ X and any ε > 0, we have

R(x, N )�

{
xε always,( x

N

)1/2 xε

‖x‖
+ x3/4

( x
N

)1/2
+

( x
N

)1/4
if x 6∈ Z.

If we take X/2≤ x ≤ X and impose the condition that X4
≤ N ≤ X A in Lemma 5, then

R(x, N )�min
{

xε,
( x

N

)1/2 xε

‖x‖
+

( x
N

)1/4}
and we easily see that ∫ X

X/2
|R(x, N )|2 dx � X3/2+εN−1/2.

From (1-2) and the known bounds for Q(X), the mean square of the main term in (3-2) over [X/2, X ] is
O(X3/2). Thus, by the Cauchy–Schwarz inequality the contribution of the cross term to the mean square
of (3-2) is O(X3/2+ε/2 N−1/4). Thus, if N ≥ X4,

I(X)=
∫ X

X/2

(
x1/2

∑
n≤N

r(n)
n1/2 J1(2π

√
nx)
)2

dx + O(X1/2+ε).

Of course, if we take N even larger, the error term will be smaller.
Next we use the approximation

J1(u)=
( 2
πu

)1/2(
cos
(

u− 3π
4

)
−

3
8u

sin
(

u− 3π
4

))
+ O(u−5/2), (3-3)

which is valid for u ≥ 1, and find that

I(X)=
1
π2

∫ X

X/2

(
x1/4

∑
n≤N

r(n)
n3/4 cos

(
2π
√

nx − 3π
4

)
−

3
16πx1/4

∑
n≤N

r(n)
n5/4 sin

(
2π
√

nx − 3π
4

)
+ O

(
1

x3/4

∑
n≤N

r(n)
n7/4

))2

dx + O(X1/2+ε)

=
1
π2

∫ X

X/2
(A1(x)− A2(x)+ A3(x))2 dx + O(X1/2+ε). (3-4)

The sums in A2(x) and A3(x) are O(1) uniformly in N and x so∫ X

X/2
A2(x)2 dx � X1/2 and

∫ X

X/2
A3(x)2 dx � X−1/2.

By (1-2) we therefore have ∫ X

X/2
A1(x)2 dx � X3/2.
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From these estimates and the Cauchy–Schwarz inequality we now have

I(X)=
1
π2

∫ X

X/2
A1(x)2− 2A1(x)A2(x) dx + O(X1/2+ε). (3-5)

Note that if we were to apply the Cauchy–Schwarz inequality to the integral of A1(x)A2(x), we would
obtain the estimate O(X) for this term, which is the expected size of the lowest-order term in our main
term. By isolating this term and treating it with a little more care, we shall show that it is in fact
O(X1/2 log X).

The sums in the definitions of A1(x) and A2(x) contain trigonometric rather than Bessel functions.
This makes it convenient to again work with integrals over [0, X ] rather than [X/2, X ], and then to take
the difference of the results for [0, X ] and [0, X/2] at the end of the argument. To proceed we use the
identity

cos a cos b =< 1
2 [exp(i(a− b))+ exp(i(a+ b))]

and obtain

1
π2

∫ X

0
A1(x)2 dx =<

1
2π2

∑
m,n≤N

r(n)r(m)
(mn)3/4

∫ X

0
x1/2 exp(2π i

√
x(
√

n−
√

m)) dx

+<
i

2π2

∑
m,n≤N

r(n)r(m)
(mn)3/4

∫ X

0
x1/2 exp(2π i

√
x(
√

n+
√

m)) dx

= I(X)+ J(X). (3-6)

When y 6= 0, a substitution and two integrations by parts shows that∫ X

0
x1/2 exp(2π iy

√
x) dx = e2π iy

√
X
(

X
iπy
+

√
X

π2 y2 −
1

i2π3 y3

)
+

1
i2π3 y3 .

When y = 0 the integral equals 2
3 X3/2 trivially. Thus

I(X)=
X3/2

3π2

∑
n≤N

r(n)2

n3/2 +
1

2π2

∑
m 6=n≤N

r(n)r(m)
(mn)3/4

iX (
√

m−
√

n),

J(X)=
1

2π2

∑
m,n≤N

r(n)r(m)
(mn)3/4

jX (
√

m+
√

n),

where

iX (y)=
X sin(2πy

√
X)

πy
+

√
X cos(2πy

√
X)

π2 y2 −
sin(2πy

√
X)

2π3 y3 ,

jX (y)=
X cos(2πy

√
X)

πy
−

√
X sin(2πy

√
X)

π2 y2 +
1− cos(2πy

√
X)

2π3 y3 .

(3-7)

Similarly, using

cos a sin b =−= 1
2 [exp(i(a− b))− exp(i(a+ b))],



272 STEVEN M. GONEK AND ALEX IOSEVICH

we obtain

1
π2

∫ X

0
A1(x)A2(x) dx =−=

3
32π3

∑
m,n≤N

r(n)r(m)
n3/4m5/4

∫ X

0
exp(2π i

√
x(
√

n−
√

m)) dx

+=
3i

32π3

∑
m,n≤N

r(n)r(m)
n3/4m5/4

∫ X

0
exp(2π i

√
x(
√

n+
√

m)) dx

= K(X)+L(X). (3-8)

When y 6= 0, ∫ X

0
exp(2π iy

√
x) dx = e2π iy

√
X
(√

X
iπy
+

1
2π2 y2

)
−

1
2π2 y2 ,

whereas when y = 0 the integral equals X . Thus

K(X)=
3

32π3

∑
m 6=n≤N

r(n)r(m)
n3/4m5/4 kX (

√
n−
√

m),

L(X)=
3

32π3

∑
m,n≤N

r(n)r(m)
n3/4m5/4 lX (

√
n+
√

m),

where

kX (y)=

√
X cos(2πy

√
X)

πy
−

sin(2πy
√

X)
2π2 y2 ,

lX =

√
X sin(2πy

√
X)

πy
+

cos(2πy
√

X)− 1
2π2 y2 .

In Sections 4–7 we estimate I(X), J(X),K(X), and L(X). Our main terms come from I(X), which
also requires the lengthiest treatment.

4. Calculation of I(X)

We write

I(X)=
X3/2

3π2

∑
n≤N

r(n)2

n3/2 +
1

2π2

∑
m 6=n≤N

r(n)r(m)
(mn)3/4

iX (
√

m−
√

n)= ID+ IO. (4-1)

Setting

C =
1

3π2

∞∑
n=1

r(n)2

n3/2 ,

we see that since r(n)�ε nε for any ε > 0 and N ≥ X4,

ID = C X3/2
+ Oε(X3/2 N−1/2+ε)= C X3/2

+ O(1). (4-2)

To evaluate IO(X) we write m = n+ h and use the symmetry in m and n to see that

IO =
1
π2

∑
n<N

∑
1≤h≤N−n

r(n)r(n+ h)
(n(n+ h))3/4

iX (
√

n+ h−
√

n).
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We replace
√

n+ h−
√

n by the approximation h/(2
√

n), and replace n+ h by n in the denominator to
obtain

IO ≈
1
π2

∑
n<N

∑
1≤h≤N−n

r(n)r(n+ h)
n3/2 iX (h/(2

√
n)); (4-3)

here and below A ≈ B means that A = B+ E , with E an error term of order less than B. This is the first
place in the argument where we have abandoned rigor. F. Chamizo [1999, Corollary 5.3] has shown that∑

n≤x

r(n)r(n+ h)= c(h)x + E(x, h),

where

c(h)=
8(−1)h

h

(∑
d|h

(−1)dd
)

(4-4)

and
E(x, h)�ε x145/196+ε

uniformly for h ≤ x . This suggests that we may replace r(n)r(n+h) in (4-3) by c(h). We shall ignore the
error terms; in a rigorous analysis, these would swamp our expected main terms. However, it is plausible
to assume that the error terms for various h are independent and largely cancel one another. Supposing
this to be the case and replacing the sum over n by an integral, we find that

IO ≈
1
π2

∫ N

0

( ∞∑
h=1

c(h)iX (h/(2
√

u))
)

du
u3/2 .

From the definition of c(h) in (4-4) we see that

IO ≈
8
π2

∫ N

0

( ∞∑
h=1

(−1)h

h

(∑
d|h

(−1)dd
)

iX (h/(2
√

u))
)

du
u3/2

=
8
π2

∫ N

0

∞∑
k=1

∞∑
d=1

(−1)d(k+1)

k
iX (dk/(2

√
u))

du
u3/2 . (4-5)

By (3-7) the sum over d is
∞∑

d=1

(−1)d(k+1)iX (dk/(2
√

u))

=
2X
√

u
k

∞∑
d=1

(−1)d(k+1) sin(πdk
√

X/u)
πd

+
4u
√

X
k2

∞∑
d=1

(−1)d(k+1) cos(πdk
√

X/u)
π2d2

−
4u3/2

k3

∞∑
d=1

(−1)d(k+1) sin(πdk
√

X/u)
π3d3 .

Using (A-7) of the Appendix to express these sums in terms of Bernoulli polynomials, we find that if k
is odd, the right-hand side equals

−
2X
√

u
k

B1({k
√

X/4u})+
4u
√

X
k2 B2({k

√
X/4u})−

8u3/2

3k3 B3({k
√

X/4u}),
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and if k is even, it equals

−
2X
√

u
k

B1
({

k
√

X/4u+ 1
2

})
+

4u
√

X
k2 B2

({
k
√

X/4u+ 1
2

})
−

8u3/2

3k3 B3
({

k
√

X/4u+ 1
2

})
.

Inserting these into (4-5), we obtain

IO ≈
8
π2

∫ N

0

∞∑
k=1
k odd

(
−

2X
√

u
k2 B1({k

√
X/4u})+

4u
√

X
k3 B2({k

√
X/4u})−

8u3/2

3k4 B3({k
√

X/4u})
)

du
u3/2

+
8
π2

∫ N

0

∞∑
k=1

k even

(
−

2X
√

u
k2 B1({k

√
X/4u+ 1

2})+
4u
√

X
k3 B2

({
k
√

X/4u+ 1
2

})
−

8u3/2

3k4 B3
({

k
√

X/4u+ 1
2

})) du
u3/2

= IO,odd+ IO,even. (4-6)

In both integrals we make the substitution x = k
√

X/4u so that 2
√

u/k =
√

X/x and du/u3/2
=

−4 dx/(k
√

X). We then find that

IO,odd =
32X
π2

∞∑
k=1
k odd

1
k2

∫
∞

k
√

X/4N

(
−

B1({x})
x
+

B2({x})
x2 −

B3({x})
3x3

)
dx,

IO,even =
32X
π2

∞∑
k=1

k even

1
k2

∫
∞

k
√

X/4N

(
−

B1
({

x + 1
2

})
x

+
B2
({

x + 1
2

})
x2 −

B3
({

x + 1
2

})
3x3

)
dx .

4.1. Calculation of IO,odd. We have

IO,odd =
32X
π2

∞∑
k=1
k odd

1
k2

∫
∞

k
√

X/4N

(
−

B1({x})
x
+

B2({x})
x2 −

B3({x})
3x3

)
dx .

We split the sum over k into two sums according to whether k ≤ 2
√

N/X or
k > 2

√
N/X . For terms in the second sum we have∫

∞

k
√

X/4N

B j ({x})
x j dx � (k

√
X/4N )− j .

Hence, the contribution from the second sum is

� X
3∑

j=1

∑
k>2
√

N/X

1
k j+2 (N/X) j/2

� X3/2 N−1/2.

Thus

IO,odd =
32X
π2

∑
k≤2
√

N/X
k odd

1
k2

∫
∞

k
√

X/4N

(
−

B1({x})
x
+

B2({x})
x2 −

B3({x})
3x3

)
dx + O(X3/2 N−1/2).
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In the remaining sum k
√

X/4N ≤ 1 and we split the integral into two parts, one over [k
√

X/4N , 1]
and the other over [1,∞). By (A-6) of the Appendix the first integral is∫ 1

k
√

X/4N

( 1
2 − x

x
+

x2
− x + 1

6

x2 −
x3
−

3
2 x2
+

1
2 x

3x3

)
dx =− 1

3 + O(k
√

X/N ).

By Lemma 8∫
∞

1

(
−

B1({x})
x
+

B2({x})
x2 −

B3({x})
3x3

)
dx =−

( 1
2 log 2π−1

)
+
(
log 2π− 11

6

)
−

1
3

( 3
2 log 2π− 11

4

)
=

1
12 .

Hence

IO,odd =
32X
π2

∑
k≤2
√

N/X
k odd

1
k2

(
−

1
4 + O(k

√
X/N )

)
+ O(X3/2 N−1/2).

The contribution of the O-term in the sum is O(X3/2 N−1/2 log(N/X)). Hence

IO,odd =−
8X
π2

∑
k≤2
√

N/X
k odd

1
k2 + O(X3/2 N−1/2 log(N/X))

=−
8X
π2

∞∑
k=1
k odd

1
k2 + O(X3/2 N−1/2 log(N/X)). (4-7)

4.2. Calculation of IO,even. The treatment of IO,even is similar to that of IO,odd so we will skip some of
the details. We have

IO,even =
32X
π2

∞∑
k=1

k even

1
k2

∫
∞

k
√

X/4N

(
−

B1
({

x + 1
2

})
x

+
B2
({

x + 1
2

})
x2 −

B3
({

x + 1
2

})
3x3

)
dx .

Our first step is to split the sum over k according to whether k ≤
√

N/X or k >
√

N/X (note that the
division for odd k was at 2

√
N/X ). As before, the total contribution from the tail is X3/2 N−1/2. Thus,

IO,even=
32X
π2

∑
k≤
√

N/X
k even

1
k2

∫
∞

k
√

X/4N

(
−

B1
({

x + 1
2

})
x

+
B2
({

x + 1
2

})
x2 −

B3
({

x + 1
2

})
3x3

)
dx+O(X3/2 N−1/2).

Observe that for each k in the sum we have k
√

X/4N ≤ 1
2 . We may therefore split the integral over the

intervals
[
k
√

X/4N , 1
2

]
and

[ 1
2 ,∞

)
. By (A-6) the first integral equals

∫ 1/2

k
√

X/4N

(
−

x
x
+

(
x + 1

2

)2
−
(
x + 1

2

)
+

1
6

x2 −

(
x + 1

2

)3
−

3
2

(
x + 1

2

)2
+

1
2

(
x + 1

2

)
3x3

)
dx

=−

∫ 1/2

k
√

X/4N

1
3 dx =− 1

6 + O(k
√

X/N ).
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By Lemma 8∫
∞

1/2

(
−

B1
({

x + 1
2

})
x

+
B2
({

x + 1
2

})
x2 −

B3
({

x + 1
2

})
3x3

)
dx

=−
(
−

1
2 +

1
2 log 2

)
+
(
−

2
3 + log 2

)
−

1
3

(
−1+ 3

2 log 2
)
=

1
6 .

Hence,

IO,even =
32X
π2

∑
k≤
√

N/X
k even

1
k2

(
−

1
6 +

1
6 + O(k

√
X/N )

)
+ O(X3/2 N−1/2)

� X3/2 N−1/2 log(N/X). (4-8)

4.3. Completion of the calculation of I(X). By (4-6), (4-7), and (4-8), we see that

IO =−
8X
π2

∞∑
k=1
k odd

1
k2 + O(X3/2 N−1/2 log(N/X)).

Combining this with (4-1) and (4-2), we see that

I(X)= C X3/2
−

8X
π2

∞∑
k=1
k odd

1
k2 + O(X3/2 N−1/2 log(N/X)),

where

C =
1

3π2

∞∑
n=1

r(n)2

n3/2 .

It is easy to see that
∞∑

k=1
k odd

1
k2 =

3
4
ζ(2)= π

2

8
.

Using this and the assumption that X4
≤ N ≤ X A, we find that

I(X)= C X3/2
− X + O(X1/2 log X). (4-9)

5. Calculation of J(X)

Our treatment of J(X) is easier. We have

J(X)=
1

2π2

∑
m,n≤N

r(n)r(m)
(mn)3/4

jX (
√

m+
√

n),

where

jX (y)=
X cos(2πy

√
X)

πy
−

√
X sin(2πy

√
X)

π2 y2 +
1− cos(2πy

√
X)

2π3 y3 .

The second and third terms of jX contribute

�

∑
m,n≤N

r(n)r(m)
(mn)3/4

( √
X

(
√

m+
√

n)2
+

1
(
√

m+
√

n)3

)
.
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Since (
√

m+
√

n)2 > 2
√

mn, this is

�
√

X
∑

m,n≤N

r(n)r(m)
(mn)5/4

+

∑
m,n≤N

r(n)r(m)
(mn)3/2

�
√

X .

Hence, recalling (1-7),

J(X)=
X

2π3

∑
m,n≤N

r(n)r(m)
(mn)3/4

cos(2π(
√

m+
√

n)
√

X)
(
√

m+
√

n)
+ O(X1/2)

= XCN (X)+ O(X1/2). (5-1)

6. Estimation of K(X)

We have

K(X)=
3

32π3

∑
m 6=n≤N

r(n)r(m)
n3/4m5/4 kX (

√
n−
√

m),

where

kX (y)=

√
X cos(2πy

√
X)

πy
−

sin(2πy
√

X)
2π2 y2 .

Thus

K(X)�
∑

m 6=n≤N

r(n)r(m)
n3/4m5/4

( √
X

|
√

n−
√

m|
+

1
(
√

n−
√

m)2

)
.

We split the sum over m and n according to whether m < n or m > n so that

K(X)�
(∑

n<N

∑
n<m≤N

+

∑
m<N

∑
m<n≤N

)
· · · = K1+ K2.

In K1 we write m = n+ h and further split the sum over h as

K1 =
∑
n<N

( ∑
1≤h≤n/2

+

∑
n/2<h≤N−n

)
r(n)r(n+ h)

n3/4(n+ h)5/4

( √
X

|
√

n+ h−
√

n|
+

1
(
√

n+ h−
√

n)2

)
= K11+ K12.

In K11 we use
√

n+ h−
√

n� h/
√

n and r(n)� nε and find for ε small enough that

K11�
∑
n<N

∑
1≤h≤n/2

r(n)r(n+ h)
n3/4(n+ h)5/4

(√
nX
h
+

n
h2

)

�
√

X
∑
n<N

1
n3/2−2ε

∑
1≤h≤n/2

1
h
+

∑
n<N

1
n1−2ε

∑
1≤h≤n/2

1
h2

�
√

X + N 2ε
�
√

X .
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In K12 we use the inequalities
√

n+ h−
√

n�
√

h, (n+ h)5/4� h5/4 and r(n)� nε and find that

K12�
∑
n<N

∑
n/2<h≤N−n

1
n3/4−εh5/4−ε

(√
X
h
+

1
h

)

�
√

X
∑
n<N

1
n3/4−ε

∑
n/2<h≤N−n

1
h7/4−ε +

∑
n<N

1
n3/4−ε

∑
n/2<h≤N−n

1
h9/4−ε

�
√

X
∑
n<N

1
n3/2−2ε +

∑
n<N

1
n2−2ε �

√
X .

Hence, K1 = K11+ K12 = O(
√

X).
We treat K2 in the same way and find that it is also O(

√
X). Thus

K(X)�
√

X .

7. Estimation of L(X)

We treat L(X) as we did the last two terms in J(X). We have

L(X)=
3

32π3

∑
m,n≤N

r(n)r(m)
n3/4m5/4 lX (

√
n+
√

m),

where

lX =

√
X sin(2πy

√
X)

πy
+

cos(2πy
√

X)− 1
2π2 y2 .

Using the inequality (
√

m+
√

n) > 2
√

mn, we find that

L(X)�
∑

m,n≤N

r(n)r(m)
n3/4m5/4

( √
X

(mn)1/4
+

1
(mn)1/2

)
�
√

X
∑
n≤N

r(n)
n

∑
m≤N

r(m)
m3/2 + 1

�
√

X log X.

8. Completion of the argument for the Conjecture

By (3-6), (4-9), and (5-1)

1
π2

∫ X

0
A1(x)2 dx = I(X)+ J(X)= C X3/2

− X +CN (X)+ O(X1/2+ε).

By (3-8) and the estimates of the last two sections

1
π2

∫ X

0
A1(x)A2(x) dx = K (X)+ L(X)�

√
X log X.
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It now follows from (3-5) that

I(X)=
∫ X

X/2
P(x)2 dx = C(X3/2

− (X/2)3/2)− X/2+ (CN (X)−CN (X/2))+ O(X1/2+ε),

where

C =
1

3π2

∞∑
n=1

r2(n)n−3/2.

We add this result (with the same value of N ∈ [X4, X A
]) for the intervals (X/2, X ], (X/4, X/2], . . . ,

(X/2r , X/2r−1
], where r = [3 log X/4 log 2]. Then

X1/4
≤

X
2r < 2X1/4.

Now (X1/4)3/2 = X3/8
� X1/2+ε , so

X/2r CN (X/2r )� X/2r log N � X1/2+ε .

Hence ∫ X

X/2r
P(x)2 dx = C X3/2

− X +CN (X)+ O(X1/2+ε). (8-1)

Finally, ∫ X/2r

0
P(x)2� (X/2r )3/2� X3/8,

so the integral on the left-hand side of (8-1) may be extended over the entire interval [0, X ]. This
completes the argument for the Conjecture.

9. Proof of Theorem 2

For N ≥ 1 and x ∈ R we have

CN (x2)=
1

2π3

∑
m,n≤N

r(n)r(m) cos(2π(
√

m+
√

n)x)
(mn)3/4(

√
m+
√

n)
.

Clearly

max
x∈R
|CN (x2)| = CN (0)=

1
2π3

∑
m,n≤N

r(n)r(m)
(mn)3/4(

√
m+
√

n)
. (9-1)

Lemma 6. For N ≥ 2 we have
2
π

log N + O(1)≤ CN (0)≤
4
π

log N + O(1).

Proof. Let ∑
n≤x

r(n)= πx + E(x),

where E(x)� x1/3. By Riemann–Stieltjes integration, for y < z we have∑
y<n≤z

r(n)
nσ
= π

z1−σ
− y1−σ

1− σ
+

E(u)
uσ

∣∣∣∣z
y
+ σ

∫ z

y

E(u)
u1+σ du.
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Here the case σ = 1 is interpreted as a limit. In particular,∑
n≤z

r(n)
n
= π log z+ O(1) (9-2)

and ∑
y<n≤z

r(n)
nσ
= π

z1−σ
− y1−σ

1− σ
+ O(max(y1/3−σ , z1/3−σ )). (9-3)

Using this and the symmetry in m and n in the double sum defining CN (x2), we find that

CN (0)=
1
π3

∑
1≤n<N

r(n)
n3/4

( ∑
n<m≤N

r(m)
m3/4(

√
m+
√

n)

)
+ O(1).

Now
1
2

∑
n<m≤N

r(m)
m5/4 ≤

∑
n<m≤N

r(m)
m3/4(

√
m+
√

n)
≤

∑
n<m≤N

r(m)
m5/4 ,

so by (9-3) we have

2πn−1/4
+ O(n−11/12)≤

∑
n<m≤N

r(m)
m3/4(

√
m+
√

n)
≤ 4πn−1/4

+ O(n−11/12).

Thus,

CN (0)≤
1
π3

∑
1≤n<N

r(n)
n3/4 (4πn−1/4

+ O(n−11/12))=
4
π

log N + O(1).

Similarly,

CN (0)≥
2
π

log N + O(1).

This completes the proof of the lemma. �

To prove Theorem 2, we note that by (1-8)

|C(X)| = |CN (X)| + O
(

X log N
N 1/4

)
.

Thus, by (9-1) and Lemma 6

|C(X)| ≤ 4
π

log N + O
(

X log N
N 1/4

)
+ O(1).

Taking N = X4 log X , say, we obtain

|C(X)| ≤
(16
π
+ o(1)

)
log X.

This proves the first assertion of Theorem 2. The second follows from this and the Conjecture.
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10. Proof of Theorem 3

We base the proof of Theorem 3 on a variant of a lemma of [Soundararajan 2003].
For each n= (m, n) ∈ Z2 let an and λn be nonnegative real numbers with the λn arranged in nonde-

creasing order. Assume that
∑

n an <∞ and set

F(x)=
∑

n
an cos(2πλnx).

Lemma 7. Let L ≥ 2 be an integer and let 3 ≥ 2 be a real number. Let M be a subset of the double
indices n for which λn ≤3/2, and let M be the cardinality of M. Then for any real number Y ≥ 2 there
exists an x such that Y/2≤ x ≤ (6L)M+1Y and

F(x)≥ 1
8

∑
n∈M

an−
1

L − 1

∑
n

λn≤3

an−
4

π23Y

∑
n

an. (10-1)

Proof. Let K (u)= (sinπu/πu)2 be Fejér’s kernel and let k(y)=max(0, 1−|y|) be its Fourier transform.
Then the Fourier transform of 3K (3u) is k(y/3)=max(0, 1− |y|/3). Consider the integral∫

∞

−∞

3K (3u)F(u+ x) du = 1
2

∑
n

an

∫
∞

−∞

3K (3u)(e2π iλn(x+u)
+ e−2π iλn(x+u)) du

=
1
2

∑
n

ane2π iλnx k(−λn/3)+
1
2

∑
n

ane−2π iλnx k(λn/3)

=

∑
n

an cos(2πλnx)k(λn/3),

where the last equality holds because k(−y)= k(y). Defining

G(x)=
∑

n
an cos(2πλnx)k(λn/3),

we may write this as ∫
∞

−∞

3K (3u)F(u+ x) du = G(x).

Since F,G, and K are real-valued functions, and K and 3 are nonnegative, we find next that

G(x)=
∫ Y/2

−Y/2
3K (3u)F(u+ x) du+

∫
|u|>Y/2

3K (3u)F(u+ x) du

≤ max
|u|≤Y/2

F(u+ x)
∫
∞

−∞

3K (3u) du+
∫
|u|>Y/2

1
π23u2 |F(u+ x)| du

≤ max
|u|≤Y/2

F(u+ x)+
4

π23Y

(∑
n

an

)
. (10-2)

Now let M be a subset of indices n with λn ≤ 3/2, and let M be its cardinality. By Dirichlet’s
theorem there is an x0 with Y ≤ x0 ≤ (6L)M Y such that ‖x0λn‖ ≤ 1/(6L) for each n ∈M. Consider∑

|l|≤L

G(x0 l)k(l/L)= 1
2

∑
n

ank(λn/3)
∑
|l|≤L

k(l/L) cos(2πλnx0 l).
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The sum over l equals
1
L

(
sin(πLλnx0)

sin(πλnx0)

)2

,

which is nonnegative. We may therefore drop any terms we wish to from the sum over n to obtain a
lower bound. Moreover, for each n ∈M, cos(2πλnx0 l)≥ cos(2πl/(6L))≥ cos(π/3)≥ 1

2 , so∑
|l|≤L

k(l/L) cos(2πλnx0 l)≥ 1
2

∑
|l|≤L

k(l/L)= L
2
.

Thus ∑
|l|≤L

G(x0 l)k(l/L)≥ L
4

∑
n∈M

ank(λn/3).

Since G(−x0 l)= G(x0 l), there is an 1≤ l0 ≤ L such that

G(0)+ 2G(x0 l0)
∑

1≤l≤L

k(l/L)≥ L
4

∑
n∈M

ank(λn/3).

The sum over l equals (L − 1)/2, so we see that for this l0

G(x0 l0)≥
1
4

∑
n∈M

ank(λn/3)−
1

L−1

∑
n

λn≤3

an.

From this and (10-2) we obtain

max
|u|≤Y/2

F(u+ x0 l0)≥
1
4

∑
n∈M

ank(λn/3)−
1

L−1

∑
n

λn≤3

an−
4

π23Y

∑
n

an.

Now M⊂ [0,3/2], so k(λn/3)≥
1
2 . Furthermore, for |u| ≤ Y/2 we have

x0 l0+ u ≥ Y − Y/2= Y/2,

x0 l0+ u ≤ (6L)M Y L + X/2≤ (6L)M+1Y.

Thus, there is an x with Y/2≤ x ≤ (6L)M+1Y such that

F(x)≥ 1
8

∑
n∈M

an−
1

L−1

∑
n

λn≤3

an−
4

π23Y

∑
n

an.

This completes the proof of Lemma 7. �

We now prove Theorem 3. Let

CN (X)=
1

2π3

∑
m,n≤N

r(n)r(m) cos(2π(
√

m+
√

n)
√

X)
(mn)3/4(

√
m+
√

n)

with X4
≤ N ≤ X A. We replace X by x2 and will first show that for all large Z , there exists an x with

Z1/2
≤ x ≤ Z3/2 such that

CN (x2)≥
( 8
π
+ o(1)

)
log log x . (10-3)

Since Z ≤ X ≤ Z3, we also need N ≥ (Z3)4 = Z12. We take N = [Z12(log Z)4].
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Write

CN (x2)=
1

2π3 F(x)=
1

2π3

∑
n

an cos(2πλnx),

with λn = λm,n =
√

m+
√

n, m, n ≤ N, and

an = am,n =
r(m)r(n)

(mn)3/4(
√

m+
√

n)
.

We apply Lemma 7 to F(x) with

M= {(m, n) : λm,n ≤3/2}

and 3 to be determined later. Observe that M = |M| � 34. If L , Y ≥ 2 with L an integer, then by
Lemma 7 there is an x with Y/2≤ x ≤ (6L)M+1Y such that∑
m,n≤N

r(m)r(n)
(mn)3/4(

√
m+
√

n)
cos(2π(

√
m+
√

n)x)

≥
1
8

∑
n∈M

r(m)r(n)
(mn)3/4(

√
m+
√

n)
−

1
L−1

∑
n

λm,n≤3

r(m)r(n)
(mn)3/4(

√
m+
√

n)

−
4

π23Y

∑
n

r(m)r(n)
(mn)3/4(

√
m+
√

n)
. (10-4)

By arguments similar to those in the proof of Lemma 6 we have∑
n

λm,n≤3

r(m)r(n)
(mn)3/4(

√
m+
√

n)
≤ 2

∑
√

n≤3−1

r(n)
n3/4

∑
√

n<
√

m≤3−
√

n

r(m)
m5/4 + O(1)

≤ 2
∑

n≤(3−1)2

r(n)
n3/4

∑
n<m≤(3−

√
n)2

r(m)
m5/4 + O(1)

≤ 8π
∑

n≤(3−1)2

r(n)
n
+ O(1)

≤ 16π2 log3+ O(1).

As in the last section, half of this, namely 8π2 log3+O(1), is a lower bound. Applying similar reasoning
to all three sums in (10-4), we find that there is an x such that Y/2≤ x ≤ (6L)M+1Y for which∑

m,n≤N

r(m)r(n)
(mn)3/4(

√
m+
√

n)
cos(2π(

√
m+
√

n)x)≥ π2 log3− O
(

log3
L

)
− O

(
log Y
3Y

)
.

We now choose Y = 2Z1/2, L = [log Z ]. Then

(6L)M+1
≤ exp(O(34 log log Z)).
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We need this to be at most Z/2, and it will be if we take 3= (log Z)1/4/(log log Z)2 with Z sufficiently
large. With these choices of the parameters, we see that there exists an x with Z1/2

≤ x ≤ Z3/2 such that

CN (x2)=
1

2π3

∑
m,n≤N

r(m)r(n)
(mn)3/4(

√
m+
√

n)
cos(2π(

√
m+
√

n)x)≥ (1+ o(1)) 1
2π

log log Z .

Recalling that X = x2, we find that there is an X ∈ [Z , Z3
] such that

CN (X)≥ (1+ o(1)) 1
2π

log log X.

Since N = [Z12(log Z)4] � X12 and Z ≥ X1/3, we see from (1-8) that

C(X)= CN (X)+ O
(

X log N
N 1/4

)
= CN (X)+ O(1). (10-5)

Theorem 3 now follows.

Appendix: Facts about Bernoulli polynomials

We collect the formulas we need about Bernoulli polynomials Bk(x) here. Appendix B of [Montgomery
and Vaughan 2007] is a convenient reference.

The first three Bernoulli polynomials are

B1(x)= x − 1
2 , B2(x)= x2

− x + 1
6 , and B3(x)= x3

−
3
2 x2
+

1
2 x . (A-6)

If we let {x} denote the fractional part of the real number x and replace x by {x} in B j , the resulting
functions are periodic with period 1. They therefore have Fourier series expansions, and these are given by

B j ({x})=−
j !

(2π i) j

∞∑
n=−∞

n 6=0

e2π inx

n j ( j = 1, 2, 3).

These hold for all real x , except in the case of B1 we need x 6∈Z. With this stipulation we immediately have
∞∑

n=1

sin(2πnx)
πn

=−B1({x})= 1
2 −{x},

∞∑
n=1

cos(2πnx)
π2n2 = B2({x})= {x}2−{x}+ 1

6 ,

∞∑
n=1

sin(2πnx)
π3n3 =

2
3 B3({x})= 2

3{x}
3
−{x}2+ 1

3{x}.

(A-7)

We collect the other formulas we need in:

Lemma 8. We have∫
∞

1

B1({x})
x

dx = 1
2 log 2π − 1,

∫
∞

1

B2({x})
x2 dx = log 2π − 11

6 ,∫
∞

1

B3({x})
x3 dx = 3

2 log 2π − 11
4 ,
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and ∫
∞

1/2

B1
({

x + 1
2

})
x

dx =− 1
2 +

1
2 log 2,

∫
∞

1/2

B2
({

x + 1
2

})
x2 dx =− 2

3 + log 2,∫
∞

1/2

B3
({

x + 1
2

})
x3 dx =−1+ 3

2 log 2.

Proof. From [Montgomery and Vaughan 2007, p. 503 and exercise 23 on p. 508],1 we find that∫
∞

1

B2({x})
x2 dx = log 2π − 11

6 . (A-8)

We integrate the left-hand side by parts and find that∫
∞

1

B2({x})
x2 dx =

B2({x})
−x

∣∣∣∣∞
1
+

∫
∞

1

B ′2({x})
x

dx .

Now B ′k(x)= k Bk−1(x) for k ≥ 1, see [Montgomery and Vaughan 2007, p. 495], and B2(0)= 1
6 by (A-6).

Hence, by (A-8), ∫
∞

1

B1({x})
x

dx = 1
2 log 2π − 1.

Similarly, we find that ∫
∞

1

B3({x})
x3 dx = 3

2

∫
∞

1

B2({x})
x2 dx = 3

2 log 2π − 11
4 .

This establishes the first three formulas of the lemma.
The second set of formulas can be treated in the same way. However, we have not found a ready

reference for the value of ∫
∞

1/2

B1
({

x + 1
2

})
x

dx =
∫
∞

1

B1({x})

x − 1
2

dx,

so we derive it from scratch.
By Riemann–Stieltjes integration∑

1≤n≤N

log
(
n−1

2

)
=

∫ N

1
log
(
x−1

2

)
dx+

∫ N

1−
log
(
x− 1

2

)
d
(
[x]−x+1

2

)
=
((

N−1
2

)
log
(
N− 1

2

)
−
(
N−1

2

))
−
(1

2 log 1
2−

1
2

)
+
(
[x]−x+1

2

)
log
(
x− 1

2

)∣∣N
1−−

∫ N

1

[x]−x+1
2

x−1
2

dx

= N log
(
N−1

2

)
−N+1+

∫ N

1

B1({x})

x− 1
2

dx . (A-9)

1Note that B1(x) in exercise 23(a) should read B1({x}).
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On the other hand, ∑
1≤n≤N

log
(
n− 1

2

)
= log

( ∏
1≤n≤N

2n− 1
2

)
= log

(
(2N )!
22N N !

)
.

By Stirling’s formula, log n! = n log n− n+ 1
2 log 2πn+ O(1/n), so∑

1≤n≤N

log
(
n−1

2

)
=
(
2N log2N−2N+1

2 log4πN
)
−2N log2−

(
N log N−N+1

2 log2πN
)
+O(1/N )

= N log N−N+1
2 log2+O(1/N ).

Combining this and (A-9) we obtain∫ N

1

B1({x})

x − 1
2

dx =
(
N log N − N + 1

2 log 2+ O(1/N )
)
−
(
N log

(
N − 1

2

)
− N + 1

)
= N log

N

N − 1
2

+
1
2 log 2− 1+ O(1/N ).

Letting N →∞, we deduce that∫
∞

1/2

B1
({

x + 1
2

})
x

dx =
∫
∞

1

B1({x})

x − 1
2

dx =− 1
2 +

1
2 log 2.

We now argue as above to find the value of the remaining two integrals. Integration by parts using
B ′j (x)= j B j−1(x) reveals that

∫
∞

1/2

B j
({

x + 1
2

})
x j dx =

B j ({1})2 j−1

( j − 1)
+

j
j − 1

∫
∞

1/2

B j−1
({

x + 1
2

})
x j−1 dx .

Thus, using (A-6) we find that∫
∞

1/2

B3
({

x + 1
2

})
x3 dx = 3

2

∫
∞

1/2

B2
({

x + 1
2

})
x2 dx,∫

∞

1/2

B2({x + 1
2})

x2 dx = 1
3 + 2

∫
∞

1/2

B1({x + 1
2})

x
dx

Thus, the B2 integral equals − 2
3 + log 2 and the B3 integral equals −1+ 3

2 log 2. This completes the proof
of the lemma. �
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