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Harry Altman

Define ‖n‖ to be the complexity of n, the smallest number of 1s needed to write n using an arbitrary
combination of addition and multiplication. John Selfridge showed that ‖n‖ ≥ 3 log3 n for all n, leading
this author and Zelinsky to define the defect of n, δ(n), to be the difference ‖n‖− 3 log3 n. Meanwhile,
in the study of addition chains, it is common to consider s(n), the number of small steps of n, defined as
`(n)−blog2 nc, an integer quantity, where `(n) is the length of the shortest addition chain for n. So here
we analogously define D(n), the integer defect of n, an integer version of δ(n) analogous to s(n). Note
that D(n) is not the same as dδ(n)e.

We show that D(n) has additional meaning in terms of the defect well-ordering we considered in
2015, in that D(n) indicates which powers of ω the quantity δ(n) lies between when one restricts to n
with ‖n‖ lying in a specified congruence class modulo 3. We also determine all numbers n with D(n)≤ 1,
and use this to generalize a result of Rawsthorne (1989).

1. Introduction

The complexity of a natural number n, denoted by ‖n‖, is the least number of 1s needed to write it
using any combination of addition and multiplication, with the order of the operations specified using
parentheses grouped in any legal nesting. For instance, n = 11 has a complexity of 8, since it can be
written using eight 1s as

11= (1+ 1+ 1)(1+ 1+ 1)+ 1+ 1,

but not with any fewer than eight. More formally, ‖n‖ is the number of leaves in the smallest arithmetic
formula for n, using addition and multiplication as the gates and 1 as the leaves. This notion was implicitly
introduced by Kurt Mahler and Jan Popken [1953], and was later popularized by Richard Guy [1986;
1987, p. 965; 1989, p. 905; 2004, pp. 399–400].

Integer complexity is approximately logarithmic; it satisfies the bounds

3 log3 n =
3

log 3
log n ≤ ‖n‖ ≤

3
log 2

log n, n > 1.

The lower bound can be deduced from the results of Mahler and Popken, and was explicitly proved by
John Selfridge [Guy 1986]. It is attained with equality for n = 3k for all k ≥ 1. The upper bound can
be obtained by writing n in binary and finding a representation using Horner’s algorithm. It is not sharp,
and the constant 3/log 2 can be improved for large n [Zelinsky ≥ 2019].
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Based on the lower bound, this author and Zelinsky [Altman and Zelinsky 2012] introduced the notion
of the defect of n, denoted by δ(n), which is the difference ‖n‖− 3 log3 n. Subsequent work [Altman
2015] showed that the set of defects is in fact a well-ordered subset of the real line, with order type ωω.

However, it is worth considering the result of Selfridge in more detail:

Theorem 1.1 (Selfridge). For any k ≥ 1, let E(k) be the largest number that can be made with k 1s, i.e.,
the largest n with ‖n‖ ≤ k. Then:

(1) If k = 1, then E(k)= 1.

(2) If k ≡ 0 (mod 3), then E(k)= 3k/3.

(3) If k ≡ 1 (mod 3) and k > 1, then E(k)= 4 · 3(k−4)/3.

(4) If k ≡ 2 (mod 3), then E(k)= 2 · 3(k−2)/3.

(This result is also a special case of the results of [Mahler and Popken 1953].) From this one can of
course derive the lower bound ‖n‖ ≥ 3 log3 n, but what if one wanted an integer version? We make the
following definition:

Definition 1.2. Given a natural number n, we define L(n) to be the largest k such that E(k)≤ n.

With this, we define:

Definition 1.3. For a natural number n, we define the integer defect of n, denoted by D(n), to be the
difference ‖n‖− L(n).

Because of Theorem 1.1, L(n) is quite easy to compute (see Proposition 3.8), and hence if one knows
‖n‖ then D(n) is also easy to compute. Note that while we consider D(n) to be an integer analogue of
δ(n), it is not in general equal to dδ(n)e; see Theorem 3.12 for the precise relation. However it is not
immediately obvious that D(n) has any actual significance. But, in fact, the integer defect of a number
tells you about its position in the well-ordering of defects.

Remark 1.4. L(k) is not the best lower bound we can get from Theorem 1.1; that would instead be
the smallest k such that E(k) ≥ n, which we might denote L ′(n). (L ′(n) could also be defined as the
minimum of ‖m‖ over all m ≥ n.) For reasons that will become clear later, though, we will prefer to
discuss L rather than L ′. In any case, L ′(n) = L(n)+ 1 unless n = E(k) for some k, in which case
L ′(n) = L(n) = k, so one can easily convert any results expressed in the one formulation to the other.
One could consider a similar D′(n) as well, but we will not do that either.

1A. The sets D0, D1, and D2 and the main result. As has been noted above, if we define D to be the
set of all defects, then as a subset of the real line this set is well-ordered and has order type ωω. However,
more specific theorems are proved in [Altman 2015]. We will need the following definition:

Definition 1.5. If a is a congruence class modulo 3, we define

Da
= {δ(n) : ‖n‖ ≡ a (mod 3), n 6= 1}.

Remark 1.6. The number n = 1 is excluded from D1 because it is dissimilar to other numbers whose
complexity is congruent to 1 modulo 3. Unlike other numbers which are 1 modulo 3, the number 1
cannot be written as 3 j + 4 for some j ≥ 0, and so the largest number that can be made with a single 1
is simply 1, rather than 4 · 3 j.
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In fact the sets Da for a = 0, 1, 2 are disjoint, and so together with {1} form a partition of D .
Moreover in [Altman 2015] it was proved:

Theorem 1.7. For a = 0, 1, 2, the sets Da are all well-ordered, each with order type ωω.

D(n) will tell us about the position of δ(n) in these sets, the Da. We show:

Theorem 1.8 (Main theorem). Let n > 1 be a natural number. Let ζ be the order type of D‖n‖ ∩ [0, δ(n)).
Then D(n) is equal to the smallest k such that ζ < ωk.

As mentioned above, D(n) is easy to compute, so this theorem gives a way to easily compute around
where δ(n) falls in the ordering on Da.

We will also prove a version of this theorem for the stable integer defect; see Sections 1D and 3.
It is worth comparing this theorem to what was already known. It was proved in [Altman 2015] that

the limit of the initial ωk elements of D is equal to k. This raises the question — just what is the limit
of the initial ωk elements of Da? It was further shown in [Altman 2015] that when k ≡ a (mod 3) this
limit is equal to k, but what about otherwise?

In this paper we will answer this question:

Theorem 1.9. The limit of the initial ωk elements of Da is equal to k if k− a ≡ 0 (mod 3), it is equal to
k+ δ(2) if k− a ≡ 1 (mod 3), and it is equal to k+ 2δ(2) if k− a ≡ 2 (mod 3).

In fact, Theorem 1.9 will be used to prove Theorem 1.8. See Section 4 for more general statements.
Further generalizations will appear in a future paper [Altman and Arias de Reyna ≥ 2019].

1B. Generalizing Rawsthorne’s theorem. We know how to compute E(k), the highest number of com-
plexity at most k (or exactly k), but what about the next highest? This question was answered by Daniel
Rawsthorne [1989]:

Theorem 1.10 (Rawsthorne). For any k ≥ 8, the highest number of complexity at most k other than E(k)
itself is 8

9 E(k), and this number has complexity exactly k.

In this paper we generalize this result. First, a definition:

Definition 1.11. Given r ≥ 0 and k ≥ 1, we define Er (k) to be the r-th largest number of complexity
at most k. We will 0-index here, so that by definition E0(k)= E(k), and Theorem 1.10 gives a formula
for E1(k).

Then, with this, we show:

Theorem 1.12. Given r ≥ 0, and a, a congruence class modulo 3, there exists Kr,a > 1 and hr,a ∈Q such
that for k ≥ Kr,a , with k ≡ a (mod 3), we have Er (k) = hr,a E(k), and these hr,a and Kr,a are as given
by Tables 1, 2, and 3. Moreover, for such r and k, we have Er (k) > E(k− 1) and therefore ‖Er (k)‖ = k
(and thus for such r and k, Er (k) is not just the r-th largest number with complexity at most k, but the
r-th largest number with complexity exactly k).

Note that Tables 1, 2, and 3 do not list the regular pattern in the hr,a until such point as Kr,a also
becomes regular; for tables based solely on hr,a , see Tables 4, 5, and 6.

What does Theorem 1.12 have to do with integer defect? Well, the numbers hr,a E(k) appearing in this
theorem are almost exactly the numbers n with D(n)≤ 1; see Proposition 5.6 for a precise statement.
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r hr,0 Kr,0

0 1 3
1 8/9 6
2 64/81 12
3 7/9 12
4 20/27 12
5 19/27 12
6 512/729 18
7 56/81 18
8 55/81 18
9 164/243 18

10 163/243 18
(for n ≥ 6) 2n−1 2/3+2/3n 3n
(for n ≥ 6) 2n 2/3+1/3n 3n

Table 1. Table of hr and Kr for k ≡ 0 (mod 3).

r hr,2 Kr,2

0 1 2
1 8/9 8
2 5/6 8
3 64/81 14
4 7/9 14
5 20/27 14
6 13/18 14
7 19/27 14
8 512/729 20
9 56/81 20

10 37/54 20
11 55/81 20
12 164/243 20
13 109/162 20
14 163/243 20

(for n ≥ 6) 3n−3 2/3+2/3n 3n+2
(for n ≥ 6) 3n−2 2/3+1/(2·3n−1) 3n+2
(for n ≥ 6) 3n−1 2/3+1/3n 3n+2

Table 2. Table of hr and Kr for k ≡ 2 (mod 3).

After all, by Theorem 1.8, the numbers n with D(n)≤ 1 are precisely those n whose δ(n) lie in the
initial ω of D‖n‖. So if one fixes a particular k, then going down the set of n with ‖n‖ = k corresponds
to going up the set of defects δ(n) of n with ‖n‖ = k, and assuming k is large enough relative to how far
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r hr,1 Kr,1

0 1 4
1 8/9 10
2 5/6 10
3 64/81 16
4 7/9 16
5 41/54 16

(for n ≥ 4) n+2 3/4+1/(4·3n) 3n+4

Table 3. Table of hr and Kr for k ≡ 1 (mod 3) with k > 1.

up or down you want to go, this is just looking at Dk. And if we count up one at a time, then — again,
assuming k is sufficiently large relative to how far out we count — we will stay within the initial ω of Dk.
So with a classification of numbers n such that D(n)≤ 1, one can determine the Er (k). (Indeed, one can
also do the reverse.)

Note that Theorem 1.10 also works for k = 6, so if one wants to break it down by the residue of k
modulo 3, one could say it works for k ≥ 6 with k ≡ 0 (mod 3), for k ≥ 8 with k ≡ 2 (mod 3), and for
k ≥ 10 with k ≡ 1 (mod 3). (Indeed, this is what we have done in Tables 1, 2, and 3.) Note how all
three of these correspond to k exactly large enough for E(k) to be divisible by 9, as per the last part of
Theorem 1.12.

One thing worth noting here is that the formulae for E0(k) and E1(k), as originally proven by Selfridge
and Rawsthorne respectively, were both originally proven directly by induction on k, whereas here we
have proven Theorem 1.12 by a different method, namely, analysis of defects (although this analysis of
defects in turn depends on Rawsthorne’s formula for E1(k) to serve as a base case; see [Altman and
Zelinsky 2012]). This raises the question of whether a similar inductive proof for general Er (k) could
be done now that the formulae for them are known. (In fact this author originally proved these formulae
by a different method entirely, that of analyzing certain transformations of expression, so other methods
certainly are possible.)

1C. Low-defect polynomials and numbers of low defect. In order to prove Theorem 1.8, we make use
of the idea of low-defect polynomials from [Altman 2015; 2016]. A low-defect polynomial is a particular
type of multilinear polynomial; see Section 2 for details. In [Altman 2015] it is proved that, given any
positive real number s, one can write down a finite set of low-defect polynomials S such that every
number n with δ(n) < s can be written in the form f (3n1, . . . , 3nd )3nd+1 for some f ∈ S, and that,
moreover, such an n can always be represented “efficiently” in such a fashion. Additionally, one can
choose S such that for any f ∈ S, one has deg f ≤ s. (Note that the degree of a low-defect polynomial is
always equal to the number of variables it is in, since low-defect polynomials are multilinear and always
include a term containing all the variables.)

Using this fact about low-defect polynomials, this author proved in [Altman 2015] that the set D is
well-ordered with order type ωω, as well as the more specific Theorem 1.7 mentioned above, and other
results mentioned above such as that the limit of the initial ωk defects is equal to k. However, this is not
enough to prove the more specific theorems shown in this paper, such as Theorem 1.9. But in [Altman



198 HARRY ALTMAN

2016] an improvement was shown, that we can in fact take S such that for all f ∈ T , one has δ( f )≤ s;
here δ( f ) is a number that bounds δ(n) above for any n represented by f in the fashion described above;
again, see Section 2 for more on this.

On top of that, it was shown in [Altman 2016] that δ( f ) ≥ deg f + δ(m), where m is the leading
coefficient of f . Putting this together, one gets the inequality

deg f + δ(m)≤ s.

It is this stronger inequality that allows us to prove Theorem 1.8, where the inequality deg f ≤ s would
not be enough. To see why this inequality is so helpful, say we are given s and we pick S as described
above. Then if f ∈ S, one of two things must be true: either deg f < bsc, in which case f does not make
much of a contribution to D ∩ [0, s) compared to polynomials of higher degree, or deg f = bsc, in which
case δ(m) is at most the fractional part of s, a number which is less than 1. Since there are only finitely
many defects below any given number less than 1, this puts substantial constraints on m and therefore
on f , in ways that the weaker inequality deg f ≤ s does not. This allows us to prove Theorem 1.9.

Note that the method we use to turn the results of [Altman 2016] into Theorem 1.8 actually has much
more power than we use in this paper, but an exploration of the full power of this method would take us
too far away from the subject of D(n), and so will be detailed in a future paper [Altman and Arias de
Reyna ≥ 2019].

1D. A quick note on stabilization. An important property satisfied by integer complexity is the phenom-
enon of stabilization. Because one has ‖3k

‖= 3k for k> 1, as well as ‖2·3k
‖= 2+3k and ‖4·3k

‖= 4+3k,
one might hope that in general the equation ‖3n‖ = ‖n‖+ 3 holds for all n > 1. Unfortunately that is
not the case; for instance, for n = 107, one has ‖107‖ = 16, but ‖321‖ = 18. Another counterexample
is n = 683, for which one has ‖683‖ = 22, but ‖2049‖ = 23. There are even cases where ‖3n‖< ‖n‖,
such as n = 4721323, which has ‖3n‖ = ‖n‖− 1.

And yet the initial hope is not entirely in vain. In [Altman and Zelinsky 2012], it was proved:

Theorem 1.13. For any natural number n, there exists K ≥ 0 such that, for any k ≥ K ,

‖3kn‖ = 3(k− K )+‖3K n‖.

Based on this, we define:

Definition 1.14. A number m is called stable if ‖3km‖ = 3k+‖m‖ holds for every k ≥ 0. Otherwise it
is called unstable.

So, we can restate Theorem 1.13 by saying, for any n, there is some K such that 3K n is stable.
This allows us to define stable or stabilized analogues of many of the concepts and discussed above,

and prove stabilized analogues of the theorems discussed in Section 1A. See Sections 2A and 3 for
the relevant definitions, and Section 4 for the versions of the main theorems generalized to cover the
stabilized case as well.

1E. Discussion: comparison to addition chains. In order to make sense of Theorem 1.8, it is helpful
to introduce an analogy to addition chains, a different notion of complexity which is similar in spirit
but different in detail. An addition chain for n is defined to be a sequence (a0, a1, . . . , ar ) such that
a0 = 1, ar = n, and, for any 1 ≤ k ≤ r , there exist 0 ≤ i, j < k such that ak = ai + a j ; the number r
is called the length of the addition chain. The shortest length among addition chains for n, called the
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addition chain length of n, is denoted by `(n). Addition chains were introduced by H. Dellac [1894]
and reintroduced by A. Scholz [1937]; extensive surveys on the topic can be found in [Knuth 1998,
Section 4.6.3, pp. 461–485] and [Subbarao 1989].

The notion of addition chain length has obvious similarities to that of integer complexity; each is
a measure of the resources required to build up the number n starting from 1. Both allow the use of
addition, but integer complexity supplements this by allowing the use of multiplication, while addition
chain length supplements this by allowing the reuse of any number at no additional cost once it has been
constructed. (That is to say, while integer complexity is a formula model, addition chains are a circuit
model.) Furthermore, both measures are approximately logarithmic; the function `(n) satisfies

log2 n ≤ `(n)≤ 2 log2 n.

A difference worth noting is that `(n) is actually known to be asymptotic to log2 n, as was proved by
Brauer [1939], but the function ‖n‖ is not known to be asymptotic to 3 log3 n; the value of the quantity
lim supn→∞ ‖n‖/log n remains unknown.

Nevertheless, there are important similarities between integer complexity and addition chains. As
mentioned above, the set of all integer complexity defects is a well-ordered subset of the real numbers,
with order type ωω. We might also define the notion of addition chain defect, defined by

δ`(n) := `(n)− log2 n;

for as shown in [Altman 2018b], the well-ordering theorem for integer complexity has an analogue for
addition chains:

Theorem 1.15 (Addition chain well-ordering theorem). Let D` denote the set {δ`(n) : n ∈ N}. Then
considered as a subset of the real numbers, D` is well-ordered and has order type ωω.

More commonly, however, it is not δ`(n) that has been studied, but rather s(n), the number of small
steps of n, which is defined to be `(n)− blog2c, or equivalently dδ`(n)e. The quantity D(n) that we
introduce seems to play a role in integer complexity similar to s(n) in the study of addition chains. Now,
unlike with s(n) and δ`(n), D(n) is not simply dδ(n)e; for instance, D(56)= 1 even though δ(56) > 1.
(Although Theorem 3.12 will show how D(n) is in a certain sense almost dδ(n)e.) But, there are further
analogies.

Analogous to Theorem 1.13, we have (from [Altman 2018b]) the following:

Theorem 1.16. For any natural number n, there exists K ≥ 0 such that, for any k ≥ K ,

`(2kn)= (k− K )+ `(2K n).

So we define a number n to be `-stable if, for any k, one has `(2kn)= k+ `(n); then Theorem 1.16
says that, for any n, there is some K such that 2K n is `-stable. This allows us to formulate a stabilized
version of the previous analogy — and of the ones to follow.

In [Altman 2018b], this author conjectured:

Conjecture 1.17. For each whole number k, D`
∩ [0, k] has order type ωk.

In other words, this conjecture states that the limit of the initial ωk addition chain defects is equal to k.
If true, this would mean that s(n) plays the same role for D` as D(n) does for the Da, that s(n) is the
smallest k such that the order type of D`

∩ [0, δ`(n)) is less than ωk.
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Similarly, based on conjectures in [Altman 2018b], one gets analogies between Dst(n) and sst(n) and
how they determine position in Da

st and D`
st, respectively; see Section 3 for definitions of these.

It is worth noting here one important difference between these two cases: in the integer complexity
case, we need to split things into congruence classes modulo 3 based on ‖n‖. This has no analogue in the
addition chain case. This comes from a difference in certain fundamental inequalities that these quantities
obey. Integer complexity obeys ‖3n‖ ≤ ‖n‖+ 3, with equality if and only if δ(3n)= δ(n). The addition
chain analogue of this is that one has `(2n) ≤ `(n)+ 1, with equality if and only if δ`(2n) = δ`(n).
The result [Altman 2018b; Altman and Zelinsky 2012] is that if we have two numbers m and n with
δ`(n)= δ`(m), then one must have m = 2kn for some k ∈ Z, and if we have two numbers m and n with
δ(n) = δ(m), then one must have m = 3kn for some k ∈ Z. However in the latter case we must also
have ‖m‖ ≡ ‖n‖ (mod 3); this is why the sets Da are disjoint. In the addition chain case there is no such
congruence requirement; `(n) and `(m) need only be congruent modulo 1, which is no requirement at
all, so splitting up D` in a similar manner does not make sense. The set D` already covers the one and
only congruence class that exists in the addition chain case.

But it is not only our primary theorem but also our secondary theorem here that has an analogue for
addition chains, and in this case the analogy does not rely on any conjectures. While the hypothesis
that the order type of D`

∩ [0, k] is equal to ωk remains a conjecture, that this holds for k ≤ 2 — and in
particular that it holds for k = 1 — was proven in [Altman 2018b]. This means that just as we can look
at the first ω elements of each Da in order to determine the r -th-highest number of complexity k, we can
look at the first ω elements of D` to determine the r -th-highest number of addition chain length k (or at
most k, which in these cases is the same thing). (Again, here k must be sufficiently large relative to r .
Also, again here we are using the convention that r starts at 0 rather than 1.)

Specifically, it is an easy corollary of the classification of numbers with s(n)≤ 1 [Gioia et al. 1962]
that:

Theorem 1.18. For k ≥ r + 1 (or for k ≥ 0 when r = 0), the r-th-largest number of addition chain
length k is (1/2+ 1/2r+1)2k.

Obviously here the fraction 1/2+1/2r+1 plays the role of the hr , and r+1 plays the role of Kr ; unlike
with integer complexity, there are no irregularities here, just a single straightforward infinite family. (And
note how the analogue of the Kr increases in what is mostly steps of 1, rather than mostly steps of 3 like
the actual Kr , because once again with addition chains there is only one congruence class.) For more
on the analogy between integer complexity and addition chains, particularly with regard to their sets of
defects, one may see [Altman 2016].

Before we continue, it is worth noting that one might also consider a computational model where
one allows addition, multiplication, and the free reuse of already-constructed intermediates; that is to
say, circuits with addition and multiplication, rather than formulas. These are referred to as addition-
multiplication chains, and one may see [Bahig 2008] for more on them.

2. Integer complexity, well-ordering, and low-defect polynomials

In this section we summarize the results of [Altman 2015; 2016; Altman and Zelinsky 2012] that we
will need later regarding the defect δ(n), the stable complexity ‖n‖st and stable defect δst(n) described
below, and low-defect polynomials.
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2A. The defect and stability. First, some basic facts about the defect:

Theorem 2.1. We have:

(1) For all n, δ(n)≥ 0.

(2) For k ≥ 0, δ(3kn)≤ δ(n), with equality if and only if ‖3kn‖= 3k+‖n‖. The difference δ(n)−δ(3kn)
is a nonnegative integer.

(3) A number n is stable if and only if for any k ≥ 0, δ(3kn)= δ(n).

(4) If the difference δ(n)− δ(m) is rational, then n = m3k for some integer k (and so δ(n)− δ(m) ∈ Z).

(5) Given any n, there exists k such that 3kn is stable.

(6) For a given defect α, the set {m : δ(m)= α} has either the form {n3k
: 0≤ k ≤ L} for some n and L ,

or the form {n3k
: 0≤ k} for some n. The latter occurs if and only if α is the smallest defect among

δ(3kn) for k ∈ Z.

(7) If δ(n)= δ(m), then ‖n‖ = ‖m‖ (mod 3).

(8) δ(1)= 1, and for k ≥ 1, δ(3k)= 0. No other integers occur as δ(n) for any n.

(9) If δ(n)= δ(m) and n is stable, then so is m.

Proof. Parts (1)–(8), except part (3), are just Theorem 2.1 from [Altman 2015]. Part (3) is Proposition 12
from [Altman and Zelinsky 2012], and part (9) is Proposition 3.1 from [Altman 2015]. �

We will want to consider the set of all defects:

Definition 2.2. We define the defect set D to be {δ(n) : n ∈ N}, the set of all defects.

We also defined Da , for a a congruence class modulo 3, in Definition 1.5 earlier.
The paper [Altman 2015] also defined the notion of a stable defect:

Definition 2.3. We define a stable defect to be the defect of a stable number, and define Dst to be the set
of all stable defects. Also, for a a congruence class modulo 3, we define Da

st = Da
∩Dst.

Because of part (9) of Theorem 2.1, this definition makes sense; a stable defect α is not just one that
is the defect of some stable number, but one for which any n with δ(n)= α is stable. Stable defects can
also be characterized by the following proposition from [Altman 2015]:

Proposition 2.4. A defect α is stable if and only if it is the smallest β ∈ D such that β ≡ α (mod 1).

We can also define the stable defect of a given number, which we denote by δst(n).

Definition 2.5. For a positive integer n, define the stable defect of n, denoted by δst(n), to be δ(3kn)
for any k such that 3kn is stable. (This is well-defined as if 3kn and 3`n are stable; then k ≥ ` implies
δ(3kn)= δ(3`n), and `≥ k implies this as well.)

Note that the statement “α is a stable defect”, which earlier we were thinking of as “α = δ(n) for some
stable n”, can also be read as the equivalent statement “α = δst(n) for some n”.

Similarly we have the stable complexity:

Definition 2.6. For a positive integer n, define the stable complexity of n, denoted by ‖n‖st, to be
‖3kn‖− 3k for any k such that 3kn is stable.

We then have the following facts relating the notions of ‖n‖, δ(n), ‖n‖st, and δst(n):
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Proposition 2.7. We have:

(1) δst(n)=mink≥0 δ(3kn).

(2) δst(n) is the smallest α ∈ D such that α ≡ δ(n) (mod 1).

(3) ‖n‖st =mink≥0(‖3kn‖− 3k).

(4) δst(n)= ‖n‖st− 3 log3 n.

(5) δst(n)≤ δ(n), with equality if and only if n is stable.

(6) ‖n‖st ≤ ‖n‖, with equality if and only if n is stable.

(7) ‖3n‖st = ‖n‖st+ 3.

(8) If δst(n)= δst(m), then ‖n‖st ≡ ‖m‖st (mod 3).

Proof. Statements (1)–(6) are just Propositions 3.5, 3.7, and 3.8 from [Altman 2015]. Statement (7)
follows from the definition of stable complexity; if 3kn is stable, then ‖3n‖st = ‖3kn‖ − 3(k − 1) =
‖3kn‖− 3k + 3 = ‖n‖st+ 3. To prove statement (8), note that if δst(n) = δst(m), then by statement (2)
one has δ(n) ≡ δ(m) (mod 1), and so by Theorem 2.1, one has that n = m3k for some k ∈ Z, and so
‖n‖st = ‖m‖st+ 3k. �

Note, by the way, that just as Dst can be characterized either as defects δ(n) with n stable or as defects
δst(n) for any n, Da

st can be characterized either as defects δ(n) with n stable and ‖n‖ ≡ a (mod 3), or
as defects δst(n) for any n with ‖n‖st ≡ a (mod 3).

Three defects that will be particularly important in this paper are the smallest three defects:

Proposition 2.8. D ∩ [0, 2δ(2)] = {0, δ(2), 2δ(2)}.

Proof. Proposition 37 from [Altman and Zelinsky 2012] tells us that the only leaders with defect less
than 3δ(2) are 3, 2, and 4, which respectively have defects 0, δ(2), and 2δ(2). �

2B. Low-defect polynomials. As has been mentioned in Section 1C, we are going to represent the set
of numbers with defect at most r by substituting powers of 3 into certain multilinear polynomials we
call low-defect polynomials. We will associate with each one a “base complexity” to form a low-defect
pair. In this section we will review the basic properties of these polynomials. First, their definition:

Definition 2.9. We define the set P of low-defect pairs as the smallest subset of Z[x1, x2, . . .]×N such
that:

(1) For any constant polynomial k ∈ N⊆ Z[x1, x2, . . .] and any C ≥ ‖k‖, we have (k,C) ∈P.

(2) Given ( f1,C1) and ( f2,C2) in P, we have ( f1⊗ f2,C1+C2) ∈P, where, if f1 is in d1 variables
and f2 is in d2 variables,

( f1⊗ f2)(x1, . . . , xd1+d2) := f1(x1, . . . , xd1) f2(xd1+1, . . . , xd1+d2).

(3) Given ( f,C) ∈P, c ∈ N, and D ≥ ‖c‖, we have ( f ⊗ x1+ c,C + D) ∈P, where ⊗ is as above.

The polynomials obtained this way will be referred to as low-defect polynomials. If ( f,C) is a low-
defect pair, C will be called its base complexity. If f is a low-defect polynomial, we will define its
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absolute base complexity, denoted by ‖ f ‖, to be the smallest C such that ( f,C) is a low-defect pair. We
will also associate to a low-defect polynomial f the augmented low-defect polynomial

f̂ = f ⊗ x1;

if f is in d variables, this is f xd+1.

So, e.g., (3x1+1)x2+1 is a low-defect polynomial, as are (3x1+1)(3x2+1), (3x1+1)(3x2+1)x3+1,
and 2

(
(73(3x1+ 1)x2+ 6)(2x3+ 1)x4+ 1

)
. In this paper we will only concern ourselves with low-defect

pairs ( f,C) where C = ‖ f ‖, so in the remainder of what follows, we will mostly dispense with the
formalism of low-defect pairs and just discuss low-defect polynomials.

Note that the degree of a low-defect polynomial is also equal to the number of variables it uses;
see Proposition 2.10. Also note that augmented low-defect polynomials are never themselves low-defect
polynomials; as we will see in a moment (Proposition 2.10), low-defect polynomials always have nonzero
constant term, whereas augmented low-defect polynomials always have zero constant term. We can
also observe that low-defect polynomials are in fact read-once polynomials as discussed in for instance
[Volkovich 2016].

Note that we do not really care about what variables a low-defect polynomial is in — if we permute
the variables of a low-defect polynomial or replace them with others, we will still regard the result as a
low-defect polynomial. From this perspective, the meaning of f ⊗ g could be simply regarded as “relabel
the variables of f and g so that they do not share any, then multiply f and g”. Helpfully, the ⊗ operator
is associative not only with this more abstract way of thinking about it, but also in the concrete way it
was defined above.

In [Altman 2015] were proved the following propositions about low-defect polynomials:

Proposition 2.10. Suppose f is a low-defect polynomial of degree d. Then f is a polynomial in the
variables x1, . . . , xd , and it is a multilinear polynomial, i.e., it has degree 1 in each of its variables. The
coefficients are nonnegative integers. The constant term is nonzero, and so is the coefficient of x1 · · · xd ,
which we will call the leading coefficient of f .

Proof. This is Proposition 4.2 from [Altman 2015]. �

Proposition 2.11. If f is a low-defect polynomial of degree d, then

‖ f (3n1, . . . , 3nd )‖ ≤ ‖ f ‖+ 3(n1+ · · ·+ nd),

‖ f̂ (3n1, . . . , 3nd+1)‖ ≤ ‖ f ‖+ 3(n1+ · · ·+ nd+1).

Proof. This is a combination of Proposition 4.5 and Corollary 4.12 from [Altman 2015]. �

The above proposition motivates the following definition:

Definition 2.12. Given a low-defect polynomial f (say of degree d) and a number N, we will say that
f efficiently 3-represents N if there exist nonnegative integers n1, . . . , nd such that

N = f (3n1, . . . , 3nd ) and ‖N‖ = ‖ f ‖+ 3(n1+ · · ·+ nd).

We will say f̂ efficiently 3-represents N if there exist n1, . . . , nd+1 such that

N = f̂ (3n1, . . . , 3nd+1) and ‖N‖ = ‖ f ‖+ 3(n1+ · · ·+ nd+1).
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More generally, we will also say f 3-represents N if there exist nonnegative integers n1, . . . , nd such
that N = f (3n1, . . . , 3nd ), and similarly for f̂ .

Note that previous papers [Altman 2015; 2016; 2018a] instead spoke of a low-defect pair ( f,C)
efficiently 3-representing a number N ; however, as mentioned in those papers, it is only possible for
some ( f,C) to efficiently 3-represent a number N if in fact C = ‖ f ‖, so there is no loss here.

In keeping with the name, numbers 3-represented by low-defect polynomials, or their augmented
versions, have bounded defect. Let us make some definitions first:

Definition 2.13. Given a low-defect polynomial f we define δ( f ), the defect of f , to be ‖ f ‖− 3 log3 m,
where m is the leading coefficient of f .

Definition 2.14. Given a low-defect polynomial f of degree d , we define

δ f (n1, . . . , nd)= ‖ f ‖+ 3(n1+ · · ·+ nd)− 3 log3 f (3n1, . . . , 3nd ).

Then we have:

Proposition 2.15. Let f be a low-defect polynomial of degree d, and let the numbers n1, . . . , nd+1 be
nonnegative integers:

(1) We have
δ( f̂ (3n1, . . . , 3nd+1))≤ δ f (n1, . . . , nd),

and the difference is an integer.

(2) We have
δ f (n1, . . . , nd)≤ δ( f ),

and if d ≥ 1, this inequality is strict.

(3) The function δ f is strictly increasing in each variable, and

δ( f )= sup
n1,...,nd

δ f (n1, . . . , nd).

Proof. This is a combination of Proposition 4.9 and Corollary 4.14 from [Altman 2015] and Proposi-
tion 2.15 from [Altman 2016]. �

Importantly, the set of defects coming from a low-defect polynomial of degree r has order type ap-
proximately ωr ; if rather than the actual defects we use δ f , then this is exact. More formally:

Proposition 2.16. Let f be a low-defect polynomial of degree d. Then:

(1) The image of δ f is a well-ordered subset of R, with order type ωd.

(2) The set of δ(N ) for all N 3-represented by the augmented low-defect polynomial f̂ is a well-ordered
subset of R, with order type at least ωd and at most ωd(bδ( f )c+ 1) < ωd+1. The same is true if f
is used instead of the augmented version f̂ .

Proof. This is a combination of Propositions 6.2 and 6.3 from [Altman 2015]. �

The second part of the above proposition follows from the first by means of theorems about cutting
and pasting of well-ordered sets, ultimately due to [Carruth 1942]. In particular:
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Proposition 2.17. We have:

(1) If S is a well-ordered set and S = S1 ∪ · · · ∪ Sn , and S1 through Sn all have order type less than ωk,
then so does S.

(2) If S is a well-ordered set of order type ωk and S = S1 ∪ · · · ∪ Sn , then at least one of S1 through Sn

also has order type ωk.

Proof. One may see [Carruth 1942] or [de Jongh and Parikh 1977] for proofs of these. �

We will need in particular the following variant:

Proposition 2.18. Suppose α is an ordinal and S is a well-ordered set which can be written as a finite
union S1 ∪ · · · ∪ Sk such that:

(1) The Si all have order types at most ωα.

(2) If a set Si has order type ωα, it is cofinal in S.

Then the order type of S is at most ωα. In particular, if at least one of the Si has order type ωα, then S
has order type ωα.

Proof. A proof of this can be found in [Altman 2018b], where it is Proposition 5.4. �

As was noted above, we have δ( f (3n1, . . . , 3nd ))≤ δ f (n1, . . . , nd). Importantly, though, for certain
low-defect polynomials f , namely, those with δ( f ) < deg f + 1, we can show that equality holds for
“most” choices of (n1, . . . , nd) in a certain sense.

Specifically:

Proposition 2.19. Let f be a low-defect polynomial of degree d with δ( f ) < d + 1. Define its “excep-
tional set” to be

S := {(n1, . . . , nd) : ‖ f (3n1, . . . , 3nd )‖st < ‖ f ‖+ 3(n1+ · · ·+ nd)}.

Then the set {δ( f (3n1, . . . , 3nd )) : (n1, . . . , nd) ∈ S} has order type less than ωd, and therefore so does
the set {δ( f̂ (3n1, . . . , 3nd+1)) : (n1, . . . , nd) ∈ S}. In particular, for a 6≡ ‖ f ‖ (mod 3), the set

{δ( f̂ (3n1, . . . , 3nd+1)) : (n1, . . . , nd+1) ∈ Zd+1
≥0 } ∩Da

has order type less than ωd. Meanwhile, the set

{δ( f (3n1, . . . , 3nd )) : (n1, . . . , nd) /∈ S}

has order type at least ωd, and thus so does the set

{δ( f (3n1, . . . , 3nd )) : (n1, . . . , nd) ∈ Zd
≥0} ∩D

‖ f ‖
st ;

moreover, the supremum of this latter set is equal to δ( f ).

Proof. Most of this is direct from Proposition 7.2 from [Altman 2015]; the only parts not covered in the
statement there are the statement about {δ( f̂ (3n1, . . . , 3nd+1)) : (n1, . . . , nd) ∈ S}, the statement regarding
a 6≡ ‖ f ‖ (mod 3), and the final statement.

The first of these follows directly from the first part, because

δ( f̂ (3n1, . . . , 3nd+1))≤ δ( f (3n1, . . . , 3nd ))
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with the difference being an integer, and that integer can certainly be no more than

δ( f (3n1, . . . , 3nd ))≤ δ( f ).

Thus the set

{δ( f̂ (3n1, . . . , 3nd+1)) : (n1, . . . , nd+1) ∈ Zd+1
≥0 } ∩Da

can be covered by finitely many translates of {δ( f (3n1, . . . , 3nd )) : (n1, . . . , nd) ∈ S} and therefore by
Proposition 2.17 has order type less than ωd.

For the statement about

{δ( f̂ (3n1, . . . , 3nd+1)) : (n1, . . . , nd+1) ∈ Zd+1
≥0 } ∩Da,

with a 6≡ C (mod 3), if ‖ f̂ (3n1, . . . , 3nd )‖ ≡ a 6≡ ‖ f ‖ (mod 3), then in particular this means that

‖ f̂ (3n1, . . . , 3nd+1)‖ 6= ‖ f ‖+ 3(n1+ · · ·+ nd+1),

which means that

‖ f̂ (3n1, . . . , 3nd+1)‖< ‖ f ‖+ 3(n1+ · · ·+ nd+1),

and therefore that

‖ f (3n1, . . . , 3nd )‖st < ‖ f ‖+ 3(n1+ · · ·+ nd),

i.e., that (n1, . . . , nd) ∈ S. Applying what was proved in the previous paragraph now proves the statement.
As for the final statement, the set {δ( f (3n1, . . . , 3nd )) : (n1, . . . , nd)∈Zd

≥0}∩D
‖ f ‖
st contains δ f (N

d
\S)

(one may see the proof in [Altman 2015]) which in turn contains δ f (N
d) \ δ f (S). Since the image

of δ f has order type ωd while δ f (S) has order type less than ωd — similarly to above, this follows
by the initial statement and Proposition 2.17 — it follows that δ f (N

d) \ δ f (S) has order type ωd and
thus is cofinal in the image of δ f , and thus has supremum δ( f ), and the same is true of the larger set
{δ( f (3n1, . . . , 3nd )) : (n1, . . . , nd) ∈ Zd

≥0} ∩D
‖ f ‖
st , which is also bounded above by δ( f ). �

Finally, one more property of low-defect polynomials we will need is the following:

Proposition 2.20. Let f be a low-defect polynomial, and suppose that a is the leading coefficient of f .
Then ‖ f ‖ ≥ ‖a‖+ deg f . In particular, δ( f )≥ δ(a)+ deg f .

Proof. This is Proposition 3.24 from [Altman 2016]. �

With this, we have the basic properties of low-defect polynomials.

Remark 2.21. Note that one reason nothing is lost here by discarding the formalism of low-defect pairs
is that the low-defect pairs ( f,C) we will (implicitly) concern ourselves with in this paper are ones that
satisfy C − 3 log3 m < deg f + 1, where m is the leading coefficient of f . However, by Proposition 2.20,

deg f ≤ δ( f )≤ C − 3 log3 m < deg f + 1;

thus C −‖ f ‖ = (C − 3 log3 m)− δ( f ) < 1 and so C = ‖ f ‖. Thus if we were to use low-defect pairs,
we would only be using pairs where C = ‖ f ‖, so we lose nothing by making this assumption.
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2C. Good coverings. We need one more set of definitions before we can state the theorem that will be
used as the basis of the proof of the main theorem. We define:

Definition 2.22. A natural number n is called a leader if it is the smallest number with a given defect.
By part (6) of Theorem 2.1, this is equivalent to saying that either 3-n, or, if 3 | n, then δ(n) < δ(n/3),
i.e., ‖n‖< 3+‖n/3‖.

Let us also define:

Definition 2.23. For any real s ≥ 0, define the set of s-defect numbers As to be

As := {n ∈ N : δ(n) < s}.

Define the set of s-defect leaders Bs to be

Bs := {n ∈ As : n is a leader}.

These sets are related by the following proposition from [Altman 2015]:

Proposition 2.24. For every n ∈ As , there exists a unique m ∈ Bs and k ≥ 0 such that n = 3km and
δ(n)= δ(m); then ‖n‖ = ‖m‖+ 3k.

Because of this, if we want to describe the set As , it suffices to describe the set Bs . Now we can
define:

Definition 2.25. For a real number s ≥ 0, a finite set S of low-defect polynomials will be called a good
covering for Bs if every n ∈ Bs can be efficiently 3-represented by some polynomial in S (and hence
every n ∈ As can be efficiently represented by some f̂ with f ∈ S) and if for every f ∈ S, we have
δ( f )≤ s, with this being strict if deg f = 0.

This allows us to state the main theorem from [Altman 2016]:

Theorem 2.26. For any real number s ≥ 0, there exists a good covering of Bs .

Proof. This is Theorem 4.9 from [Altman 2016] rewritten in terms of Definition 2.25, and using low-
defect polynomials instead of pairs. (Any low-defect pairs ( f,C) with C > ‖ f ‖, can be filtered out of a
good covering, since such a pair can never efficiently 3-represent anything.) �

Note that by Proposition 2.20, if f is in a good covering of Bs with leading coefficient m, we must
have δ(m)+ deg f ≤ s.

3. The integer defect

In this section we state some basic facts about D(n), what it means, and how it may be computed.
Let us start by giving another interpretation of what D(n) means:

Proposition 3.1. For a natural number n,

D(n)= |{k : n < E(k)≤ E(‖n‖)}|.

That is to say, D(n) measures how far down n is among numbers with complexity ‖n‖, measured
by how many values of E one passes as one counts downwards towards n from the largest number also
having complexity ‖n‖.
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Proof. By definition, L(n) is the largest k such that E(k) ≤ n. Since E(k) is strictly increasing, the
number of k such that n < E(k)≤ E(‖n‖) is equal to the difference ‖n‖− L(n), i.e., D(n). �

So for instance, one has that D(n)= 0 if and only if n is of the form E(k) for some k, i.e., n is the
largest number of its complexity; while D(n) ≤ 1 if and only if n > E(‖n‖− 1), i.e., n is greater than
all numbers of lower complexity. Numbers n with D(n)≤ 1 will be discussed more in Section 5.

As for properties of the integer defect, it behaves largely analogously to the real defect:

Proposition 3.2. We have:

(1) For all n, D(n)≥ 0.

(2) For all n > 1, L(3n)= L(n)+ 3.

(3) For n > 1 and k ≥ 0, one has D(3kn)≤ D(n), with equality if and only if ‖3kn‖ = 3k+‖n‖.

(4) A number n > 1 is stable if and only if for any k ≥ 0, D(3kn)= D(n).

Proof. Statement (1) is just the statement that L(n) ≤ ‖n‖; this follows from the definition of L(n)
as E(‖n‖) ≥ n and so (as E(k) is increasing) one must have L(n) ≤ ‖n‖. And once statement (2) is
established, statements (3) and (4) then follow from that and may be proved in exactly the same way their
analogous statements in Theorem 2.1 are proved. This leaves just statement (2) to be proved. Note that,
for any k > 1, E(k+ 3)= 3E(k). Therefore, for any k > 1, E(k+ 3)≤ 3n if and only if E(k)≤ n, and
so L(3n)= L(n)+ 3; the only possible exception to this would be if one had L(n)= 1, which happens
only when n = 1. �

Note that while the theorem that for any n there is some k such that 3kn is stable was originally proven
using the defect δ(n), it could also just as well be proven using the integer defect D(n).

We can also of course define a stable variant of D(n):

Definition 3.3. For a positive integer n, we define the stable integer defect of n, denoted by Dst(n), to
be D(3kn) for any k such that 3kn is stable.

Note that Proposition 3.2 shows that this is well-defined.

Proposition 3.4. We have:

(1) Dst(n)=mink≥0 D(3kn).

(2) For n > 1, Dst(n)= ‖n‖st− L(n).

(3) Dst(n)≤ D(n), with equality if and only if n is stable or n = 1.

(4) For n > 1, D(n)− Dst(n)= δ(n)− δst(n)= ‖n‖−‖n‖st.

Proof. With the exception of (4), of which no analogue has previously been mentioned, these all follow
from Proposition 3.2 and their proofs are exactly analogous to those of the statements in Proposition 2.7;
meanwhile (4) follows immediately from (2) and the definition of D(n). �

We then also have the analogue of Proposition 3.1:

Proposition 3.5. For a natural number n > 1,

Dst(n)= |{k : n < E(k)≤ E(‖n‖st)}|.
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Proof. Once again, by definition, L(n) is the largest k such that E(k) ≤ n. And since E(k) is strictly
increasing, the number of k such that n < E(k)≤ E(‖n‖st) is equal to the difference ‖n‖st− L(n), which
by Proposition 3.4 is Dst(n). �

Remark 3.6. It may seem strange that 1 needs to be excluded, given that its special status goes away
when stabilized. However, ‖1‖st = 0, and E(0) is not defined, so n = 1 must still be excluded from the
theorem statement.

Note, by the way:

Proposition 3.7. For any natural number n, D(n)= 0 if and only if Dst(n)= 0.

Proof. It is immediate that a number n with D(n)= 0 is stable and so has Dst(n)= 0 (unless n = 1, in
which case one still has Dst(n)= 0). For the reverse, a number n has Dst(n)= 0 if and only if there is
some k such that D(3kn)= 0. However, as the numbers n with D(n)= 0 are precisely those numbers
of the form 3k , 2 · 3k , and 4 · 3k , we see that if n has Dst(n)= 0, it must itself be of one of these forms,
and thus have D(n)= 0. �

See Corollaries 5.2 and 5.3 for related statements.
Having discussed what D(n) is and how it acts, let us finally discuss how it may be computed. The

quantity D(n) is just the difference ‖n‖− L(n). We know how to compute ‖n‖, although not necessarily
quickly; see [Arias de Reyna and van de Lune 2014] for the currently best-known algorithm for com-
puting complexity, and [Cordwell et al. 2019] for the best-known bounds on its runtime. But the other
half, computing L(n), is very simple and can be done much quicker, because it is given by the following
formula:

Proposition 3.8. For a natural number n,

L(n)=max
{
3blog3 nc, 3

⌊
log3

( 1
2 n
)⌋
+ 2, 3

⌊
log3

( 1
4 n
)⌋
+ 4, 1

}
.

Proof. The quantity L(n) is by definition the largest k such that E(k)≤ n. The largest such k congruent
to 0 modulo 3 is 3blog3 nc (so long as this quantity is positive; otherwise there is none), the largest such
k congruent to 2 modulo 3 is 3

⌊
log3

( 1
2 n
)⌋
+ 2 (with the same caveat), the largest such k > 1 congruent

to 1 modulo 3 is 3
⌊

log3
( 1

4 n
)⌋
+ 4 (again with the same caveat), and of course the largest such k equal

to 1 is 1. So the largest of these is L(n) (and any of them that are not valid positive and thus not a valid
k will not affect the maximum). �

Let us make here a definition that will be useful later:

Definition 3.9. For a natural number n, define R(n) = n/E(‖n‖). We also define Rst(n) to be R(3kn)
for any k such that 3kn is stable, or equivalently (for n > 1) as n/E(‖n‖st).

This is easily related to the defect, as was done in an earlier paper [Altman 2015]:

Proposition 3.10. We have, for n > 1,

δ(n)=


−3 log3 R(n) if ‖n‖ ≡ 0 (mod 3),
−3 log3 R(n)+ 2 δ(2) if ‖n‖ ≡ 1 (mod 3),
−3 log3 R(n)+ δ(2) if ‖n‖ ≡ 2 (mod 3),

and the same relation (without the n > 1 restriction) holds between Rst(n), ‖n‖st, and δst(n).
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Proof. The relation between R(n) and δ(n) is just Proposition A.3 from [Altman 2015], and the proof
for the stable case is exactly analogous. �

Now we see that in addition to being easy to compute L(n), it is also simple to determine D(n)
from δ(n), at least if we know the value of ‖n‖ modulo 3, which technically is implicit in δ(n). First, a
definition:

Definition 3.11. Let a be a congruence class modulo 3 and k be a whole number. Define

ta(k)=


k if k ≡ a (mod 3),
k+ δ(2) if k ≡ a+ 1 (mod 3),
k+ 2δ(2) if k ≡ a+ 2 (mod 3).

Now:

Theorem 3.12. Let n > 1 be a natural number. Then D(n) is equal to the smallest k such that δ(n) ≤
t‖n‖(k). Moreover, if n is any natural number, Dst(n) is equal to the smallest k such that δst(n)≤ t‖n‖st(k).

Since two numbers with the same defect also have the same complexity modulo 3 (and δ(n)= 1 if and
only if n = 1), and the analogous statement is also true of stable complexity and defect, in particular we
have that if δ(n)= δ(m) then D(n)= D(m), and if δst(n)= δst(m) then Dst(n)= Dst(m).

Note in addition that since δ(n)= δ(m) implies δst(n)= δst(m) (see statement (2) in Proposition 2.7)
one has that if δ(n)= δ(m) then Dst(n)= Dst(m).

Theorem 3.12 makes precise how D(n) is “almost dδ(n)e”. It is, as was noted in the Introduction, not
the same, but it is the smallest k such that δ(n)≤ t‖n‖(k), where t‖n‖(k) may not be exactly k but never
differs from it by more than 2δ(2) < 0.215.

Proof. We prove only the nonstabilized case, as the stabilized case is exactly analogous. We assume
n > 1.

From Proposition 3.1, we can see that D(n) is determined by R(n) and the value of ‖n‖ modulo 3.
Specifically,

D(n)=
∣∣∣∣{k : R(n) <

E(k)
E(‖n‖)

≤ 1
}∣∣∣∣,

so D(n) is the number of values of E(k)/E(‖n‖) in (R(n), 1]. What are the values of this? They can be
obtained as products of values E(k)/E(k+ 1); this is equal to 2

3 when k ≡ 1 or 2 (mod 3) (for k > 1)
and to 3

4 when k ≡ 0 (mod 3).
Thus, if ‖n‖ ≡ 0 (mod 3), D(n) will increase whenever R(n) passes a value of the sequence 1, 2

3 , 4
9 , 1

3 ,
2
9 , 4

27 , 1
9 , . . . ; if ‖n‖ ≡ 1 (mod 3), whenever it passes a value of the sequence 1, 3

4 ,
1
2 ,

1
3 ,

1
4 ,

1
6 ,

1
9 , . . . ; and

if ‖n‖ ≡ 2 (mod 3), whenever it passes a value of the sequence 1, 2
3 ,

1
2 ,

1
3 ,

2
9 ,

1
6 ,

1
9 , . . . . (These sequences

are just the sequences obtained by taking products of one of the three shifts of the periodic sequence
2
3 ,

2
3 ,

3
4 ,

2
3 ,

2
3 ,

3
4 , . . .; note that regardless of which shift is used, the repeating part of the sequence always

has a product of 1
3 , and so the product sequences will always consist of three interwoven geometric

sequences each with ratio 1
3 .)

It just remains, then, to convert these values of R(n) to their equivalents in defects, which can be
done with Proposition 3.10. Once this is done one finds that the values of δ(n) where D(n) increases are
precisely those listed in the definition of t‖n‖, which completes the proof. �
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Theorem 3.12 will form half the proof of Theorem 1.8, and its stable analogue, Theorem 4.2; it tells
us that the values of D(n) “switch over” when δ(n) is of the form k, k+ δ(2), or k+ 2δ(2) depending
on the congruence class of k−‖n‖ modulo 3. The other half the proof is, of course, Theorem 1.9 (and
its stable analogue, Theorem 4.1), which will tell us that these changeover points are exactly the limits
of the initial ωk defects in Da (or Da

st).

4. The order interpretation of D(n)

In this section we aim to prove Theorem 1.9 using the methods described in Section 1C; combined
with Theorem 3.12 from the previous section, this will prove Theorem 1.8. Really, we want to prove
generalizations:

Theorem 4.1. For any k ≥ 0 and a, a congruence class modulo 3, the order type of Da
∩ [0, ta(k)] and

the order type of Da
st ∩ [0, ta(k)] are both equal to ωk.

Theorem 4.2. Let n > 1 be a natural number. Let ζ be the order type of D‖n‖ ∩ [0, δ(n)). Then D(n) is
equal to the smallest k such that ζ < ωk . The same is true if we replace δ(n) by δst(n), D‖n‖ by D

‖n‖st
st ,

and D(n) by D(n)st.

Note that the proofs in this section will rely heavily on the results in Sections 2B and 2C. Before we
prove these, though, we will need a slight elaboration on Proposition 2.19:

Proposition 4.3. Let f be a low-defect polynomial of degree d with δ( f ) < d + 1. Then the order type
of the set of all δ(N ) for n 3-represented by f̂ is exactly ωd.

Proof. By Proposition 2.19, {δ( f̂ (3n1, . . . , 3nd )) : (n1, . . . , nd) ∈ S} has order type less than ωd. Mean-
while, also by Proposition 2.19, the set

{δ( f (3n1, . . . , 3nd )) : (n1, . . . , nd) /∈ S}

has order type at least ωd, and is cofinal in [0, δ( f )) (or [0, δ( f )] if deg f = 0) and therefore in the set
of all δ(N ) for n 3-represented by f̂. But in fact, for (n1, . . . , nd) /∈ S, one has δ( f̂ (3n1, . . . , 3nd+1))=

δ f (n1, . . . , nd), and so this set (even when f (3n1, . . . , 3nd ) is replaced by f̂ (3n1, . . . , 3nd+1)) is a subset
of the image of δ f , which by Proposition 2.16 has order type ωd. So the conditions of Proposition 2.18
apply, and the union of these two sets, the set of all δ(n) for N 3-represented by f̂ , has order type at
most ωd. We already know by Proposition 2.16 it has order type at least ωd, so this proves the claim. �

We now prove the main theorems of this section.

Proof of Theorem 4.1. We need to show that the order type of Da
∩ [0, ta(k)] and the order type of

Da
st ∩ [0, ta(k)] are both equal to ωk. This proof breaks down into two parts, an upper bound and a lower

bound. Since Da
st ⊆ Da, it suffices to prove the upper bound for Da

∩ [0, ta(k)] and the lower bound for
Da

st ∩ [0, ta(k)].
We begin with the upper bound. First, we observe that ta(k) is not itself an element of Da for any

k > 0. We can see this as neither k+ δ(2) nor k+ 2δ(2) is a defect for any k > 0 (such a defect would
have to come from some number n satisfying 3`n = 2 or 3`n = 4 for ` > 0, which is impossible), and
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similarly no nonzero integer is a defect except k = 1, which though an element of D is by definition
excluded from all three Da. Thus

Da
∩ [0, ta(k)] = Da

∩ [0, ta(k))

and we may concern ourselves with the order type of the latter.
Now we take a good covering S of Bta(k) as per Theorem 2.26. For any f ∈S with leading coefficient m,

we have the inequality δ(m)+ deg f ≤ δ( f ) ≤ ta(k). In particular, for any f ∈ S, we have deg f ≤
bta(k)c = k.

Suppose now that deg f = k; then there is more we can say. For in this case, we have δ(m)≤ ta(k)−
k ≤ 2δ(2). Thus δ(m) ∈ {0, δ(2), 2δ(2)} by Proposition 2.8. Note that by their respective definitions,
δ( f )≡ δ(m) (mod 1), and, as noted above, δ( f )≥ deg f = k, and so

δ( f )= k+ δ(m) ∈ {k, k+ δ(2), k+ 2δ(2)}.

Note that δ( f )= k+ δ(m) means that

k+‖m‖− 3 log3 m = ‖ f ‖− 3 log3 m

and therefore ‖ f ‖ = k −‖m‖. Moreover, if δ(m) = 0, then m is of the form 3` (for some ` > 0) and
‖m‖ = 3`, while if δ(m)= δ(2) then m is of the form 2 ·3` with ‖m‖ = 2+3`, and if δ(m)= 2δ(2) then
m is of the form 4 · 3` with ‖m‖ = 4+ 3`; from this we can conclude that, modulo 3,

‖ f ‖ ≡


k if δ( f )= k,
k− 2 if δ( f )= k+ δ(2),
k− 1 if δ( f )= k+ 2δ(2).

Now, let
T f = {δ( f̂ (3n1, . . . , 3nd+1)) : n1, . . . , nd+1 ≥ 0} ∩Da,

where d = deg f . Then by the assumption that S is a good covering of Bta(k), we have

Da
∩ [0, ta(k))=

⋃
f ∈S

T f .

We want to show that the conditions of Proposition 2.18 hold for the sets T f , so that we can conclude
that Da

∩ [0, ta(k)) has order type at most ωk. If deg f < k, then, by Proposition 2.16, T f has order type
less than ωk, and thus so does T f ∩Da. Meanwhile, if deg f = k, then since δ( f ) ≤ ta(k) < k + 1, we
can apply Proposition 4.3 to conclude that the set of δ(N ) for N 3-represented by f̂ has order type ωk.
However, if δ( f ) 6= ta(k), then by the previous paragraph and Proposition 2.19, we see that while this
has order type ωk, T f , which is its intersection with Da, has order type less than ωk.

It remains to check, then, that when deg f = k and δ( f ) = ta(k), that the set T f is cofinal in⋃
f ∈S T f =Da

∩[0, ta(k)), or in other words, simply that it is cofinal in [0, ta(k)). But this follows from
Proposition 2.19, which in fact goes further and states that T f ∩Da

st is cofinal in [0, δ( f ))= [0, ta(k)).
Thus, applying Proposition 2.18, we conclude that Da

∩ [0, ta(k)) has order type at most ωk. This
proves the upper bound.

To prove the lower bound, let us consider the low-defect polynomial

f = (· · · ((mx1+ 1)x2+ 1) · · · )xk + 1
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(for a particular m to be chosen shortly) which has ‖ f ‖=‖m‖+k. (The upper bound on ‖ f ‖ is immediate
and the lower bound follows from Proposition 2.20.) For the value of m, we take

m =


3 if k− a ≡ 0 (mod 3),
4 if k− a ≡ 2 (mod 3),
2 if k− a ≡ 1 (mod 3),

so that ‖m‖ ≡ a− k (mod 3) and ‖ f ‖ ≡ a (mod 3), meaning D
‖ f ‖
st = Da

st.
Then δ( f )= ta(k) and so in particular δ( f )< k+1, meaning once again we can apply Proposition 2.19

to conclude that the set

{δ( f (3n1, . . . , 3nk )) : (n1, . . . , nk) ∈ Zk
≥0} ∩D

‖ f ‖
st

has order type at least ωk. Since this set is bounded above by δ( f )= ta(k), and D
‖ f ‖
st = Da

st, we conclude
that the order type of Da

st ∩ [0, ta(k)) is at least ωk. �

In particular this encompasses Theorem 1.9.

Proof of Theorem 1.9. This is just a rephrasing of Theorem 4.1 with the application to Da
st omitted. �

Having proven Theorem 4.1, we can now combine it with Theorem 3.12 to obtain Theorems 4.2
and 1.8:

Proof of Theorem 4.2. By Theorem 3.12, D(n) is equal to the smallest k such that δ(n) ≤ t‖n‖(k).
However, since the order type of D‖n‖ ∩ [0, t‖n‖(k)) is equal to ωk, one has that ζ < ωk if and only if
δ(n) < t‖n‖(k). Thus D(n) is equal to the smallest k such that ζ < ωk. The proof for the stabilized version
is similar. �

Proof of Theorem 1.8. This is just the special case of Theorem 4.2 where we only consider δ(n) and
not δst(n). �

5. Numbers n with D(n) ≤ 1

In the previous section we showed that the numbers with integral defect at most k correspond to the
initial ωk defects in each of D0, D1, and D2. In this section we take a closer look at the initial ω, the
numbers with integral defect at most 1, and use this to generalize Theorem 1.10.

Let us start by listing all the numbers with integral defect at most 1:

Theorem 5.1. A natural number n satisfies D(n)≤ 1 if and only if it can be written in one of the following
forms:

(1) 1, of complexity 1.

(2) 2a3k for a ≤ 10, of complexity 2a+ 3k ( for a, k not both zero).

(3) 2a(2b3`+ 1)3k for a+ b ≤ 2, of complexity 2(a+ b)+ 3(`+ k)+ 1 ( for b, ` not both zero).

Proof. By Theorem 3.12, any n with D(n)≤ 1 must have δ(n)≤ 1+ 2δ(2). Theorem 31 from [Altman
and Zelinsky 2012] gives a classification of all numbers n with δ(n) < 12δ(2), together with their com-
plexities; since 12δ(2) > 1+ 2δ(2), any n with D(n)≤ 1 may be found among these. (One may also use
the algorithms from [Altman 2018a] to find such a classification.) It is then a straightforward matter to
determine which of the n listed there have D(n)≤ 1. �
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This has an important corollary:

Corollary 5.2. For any natural number n, D(n)= 1 if and only if Dst(n)= 1.

Proof. From Theorem 5.1, we see that if D(n) ≤ 1 then we also have D(3kn) ≤ 1, and if D(3kn) ≤ 1
then we have D(n) ≤ 1; this shows that D(n) ≤ 1 if and only if Dst(n) ≤ 1. Combining this with
Proposition 3.7 proves the claim. �

From this we can conclude:

Corollary 5.3. For any natural number n > 1, if D(n)≤ 2 then n is stable (and so Dst(n)≤ 2).

Proof. If D(n) = 0 or D(n) = 1, this is Proposition 3.7 or Corollary 5.2, respectively. If D(n) = 2,
then for any k ≥ 0, if we had D(3kn) < 2, then, by Proposition 3.7 and Corollary 5.2, we would have
D(n) < 2, contrary to assumption; thus D(3kn)= 2 for all k ≥ 0, i.e., n is stable (by Proposition 3.4). �

Note that the converse, that if Dst(n) ≤ 2 then D(n) ≤ 2, does not hold; for instance, we can con-
sider 107, which has Dst(107)= 2 but D(107)= 3, or 683, which has Dst(683)= 2 but D(683)= 4. (It
is easy to verify that these numbers have stable integer defect at most 2 because D(321)= D(2049)= 2;
that these numbers do then have stable integer defect equal to 2 and not any lower can then be inferred
from Corollary 5.3. Alternately, the stable complexity, and thus stable integer defect, may be computed
with the algorithms from [Altman 2018a].)

However, for our purposes, the most important consequence of Corollary 5.2 is the following rephras-
ing of it:

Proposition 5.4. Let k > 1 be a natural number and suppose h is a value of R corresponding to a defect
in the initial ω of Dk. Then if hE(k) is a natural number n, one has ‖n‖= k, and, moreover, n> E(k−1).

Proof. Suppose hE(k) is a natural number n. We must have n > 1 because having h = 1/E(k) for
k > 1 would by Proposition 3.10 correspond to a defect which is a nonzero integer, and these (by
Proposition 2.7) do not exist.

Then there is, by definition of h, some number m > 1 with ‖m‖ ≡ k (mod 3) and R(m) = h, i.e.,
m = hE(‖m‖). Since ‖m‖ ≡ k (mod 3) we see that m = n3` for some ` ∈ Z, where ` = (‖m‖− k)/3.
But also we have D(m) ≤ 1. Therefore, whether ` ≥ 0 or ` ≤ 0, we must have Dst(n) ≤ 1, and so, by
Proposition 3.7 and Corollary 5.2, we have D(n)≤ 1. Then by Proposition 3.2, we have ‖m‖ = ‖n‖+3`.
From the definition of ` we also have ‖m‖ = k + 3` and thus we conclude that ‖n‖ = k. And since
D(n)= 1 this means (by Proposition 3.1) that n > E(k− 1). �

We can now prove Theorem 1.12:

Proof of Theorem 1.12. Suppose we want to determine the r-th largest number of complexity k. This
is equivalent to determining the r-th largest value of R(n) = n/E(k) that occurs among numbers n
of complexity k, which is equivalent to determining the r-th smallest defect δ(n) that occurs among
numbers n of complexity k.

Now, we can easily determine the initial values α0, . . . , αr of Dk ; let h0, . . . , hr be the corresponding
values of the function R, as given by Proposition 3.10. (For instance, for a way of getting h0, . . . , hr

directly rather than going by means of defects, one may take the numbers n given in Theorem 5.1, group
them by the residues of ‖n‖ modulo 3, and then sort them in decreasing order by R(n); note that the
values of R(n) obtained this way for any one congruence class of ‖n‖ modulo 3 will have reverse order
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r h corresponding leader

0 1 3= 3120
= 2130

+1
1 8/9 8= 23

= 21(31
+1)

2 64/81 64= 26

3 7/9 7= 2131
+1

4 20/27 20= 21(32
+1)

5 19/27 19= 2132
+1

6 512/729 512= 29

(for n ≥ 4) 2n−1 2/3+2/3n 21(3n−1
+1)

(for n ≥ 4) 2n 2/3+1/3n 213n−1
+1

Table 4. Table of hr for k ≡ 0 (mod 3).

r h corresponding leader

0 1 2= 21

1 8/9 16= 24
= 22(31

+1)
2 5/6 5= 2230

+1
3 64/81 128= 27

4 7/9 14= 21(2131
+1)

5 20/27 40= 22(32
+1)

6 13/18 13= 2231
+1

7 19/27 38= 21(2132
+1)

8 512/729 1024= 210

(for n ≥ 4) 3n−3 2/3+2/3n 22(3n−1
+1)

(for n ≥ 4) 3n−2 2/3+1/(2·3n−1) 223n−1
+1

(for n ≥ 4) 3n−1 2/3+1/3n 21(213n−1
+1)

Table 5. Table of hr for k ≡ 2 (mod 3).

type ω.) One may see Tables 4, 5, and 6 for tables of the resulting values of h. Then certainly, the r -th
largest number of complexity k is at most hr E(k), because the set of values of R(n) occurring for n with
‖n‖ = k is a subset of the values of R(n) occurring for n > 1 with ‖n‖ ≡ k (mod 3). However, it will
only be exactly the r -th largest number of complexity k if all of h1 through hr do indeed occur for some
n with ‖n‖ = k.

But, by Proposition 5.4, this is equivalent to just requiring that all of the numbers h0 E(k), . . . , hr E(k)
are indeed whole numbers (and moreover when this does occur one will have hi E(k) > E(k− 1)). In
other words, this is the same as requiring

k ≥


−3 mins≤r v3(hs) if k ≡ 0 (mod 3),
−3 mins≤r v3(hs)+ 4 if k ≡ 1 (mod 3),
−3 mins≤r v3(hs)+ 2 if k ≡ 2 (mod 3).
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r h corresponding leader

0 1 4= 22
= 31
+1

1 8/9 32= 25

2 5/6 10= 32
+1

3 64/81 256= 28

(for n ≥ 2) n+2 3/4+1/(4·3n) 3n+1
+1

Table 6. Table of hr for k ≡ 1 (mod 3) with k > 1.

So we have our hr,a , and we can take Kr,a to be given by this formula. (Although since for K0,0 it
may not may make much sense to take K0,0 = 0, one may wish to take K0,0 = 3 instead, as we have
done in Table 1.)

Combining this with Tables 4, 5, and 6 yields Tables 1, 2, and 3, and proves the theorem. �

Remark 5.5. While in the proof of Theorem 1.12 we have referred to facts proved in Section 4, none of
the techniques deployed in that section are necessary for the proof. For instance, one can easily verify
the values of the Da(ω) by directly determining the initial ω elements without needing to determine it
for all ωk ; indeed Tables 4, 5, and 6 essentially do this directly from Theorem 5.1.

As a final note, it is worth making formal a statement mentioned in Section 1B, that the numbers
hE(k) coming from Theorem 1.12 are almost exactly the n with D(n)≤ 1:

Proposition 5.6. A number n has D(n) ≤ 1 if and only if there are some ` ≥ 0, k ≥ 1, and r ≥ 0 such
that k ≥ Kr,k and 3`n = hr,k E(k).

Proof. We already know that if k ≥ Kr,k then, if we let m = hr,k E(k), that m > E(k− 1)= E(‖m‖− 1),
i.e., D(m)≤ 1, and so if m = 3`n, then D(n)≤ 1 by Corollary 5.2.

Conversely, if D(n)≤ 1, let h= R(n); then by the construction of the hr,a in the proof of Theorem 1.12,
and the fact that the values of R(n) for numbers n with ‖n‖ in a fixed congruence class modulo 3 have
reverse order type ω, there is some r such that h = hr,‖n‖. We may then take any k ≥ Kr,‖n‖ with
k ≡ ‖n‖ (mod 3); then 3`n = hr,‖n‖E(k)= hr,k E(k) for `= (k−‖n‖)/3. �
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