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Generalized simultaneous approximation to m linearly dependent reals

Leonhard Summerer

In order to analyse the simultaneous approximation properties of m reals, the parametric geometry of
numbers studies the joint behaviour of the successive minima functions with respect to a one-parameter
family of convex bodies and a lattice defined in terms of the m given reals. For simultaneous approxima-
tion in the sense of Dirichlet, the linear independence over Q of these reals together with 1 is equivalent
to a certain nice intersection property that any two consecutive minima functions enjoy. This paper
focusses on a slightly generalized version of simultaneous approximation where this equivalence is no
longer in place and investigates conditions for that intersection property in the case of linearly dependent
irrationals.

1. Introduction

In Diophantine approximation the simultaneous approximation to m := n−1 real numbers ξ1, . . . , ξm has
a long tradition, starting with Dirichlet who proved the existence of nontrivial solutions (x, y1, . . . , ym)∈Zn

to the system
|x | ≤ eq ,

|ξ1x − y1| ≤ e−q/m,

...

|ξm x − ym | ≤ e−q/m

(?)

for any parameter q > 0. In other words, if B(q) consists of points (p0, p1, . . . , pm) with |p0| ≤ eq,
|pi | ≤ e−q/m for 1 ≤ i ≤ m, and 3 = 3(ξ) the lattice of points (x, ξ1x − y1, . . . , ξm x − ym) with
(x, y1, . . . , ym) ∈ Zn , Dirichlet’s theorem asserts that there is a nonzero lattice point in B(q), i.e., that
the first minimum λ1(q) with respect to B(q) and 3 is at most 1.

Lately, the successive minima functions λ1(q), . . . , λn(q) have been intensively studied within the
framework of parametric geometry of numbers, culminating in a fundamental paper of D. Roy [2015] in
which he reduces the problem of describing the joint spectrum of a family of exponents of Diophantine
approximation relative to (?) to combinatorial analysis. A main tool for the investigation of the successive
minima functions is the following result from [Schmidt and Summerer 2009]:

Proposition 1.1. Suppose 1, ξ1, . . . , ξm are linearly independent over Q and let λi (q) denote the succes-
sive minima with respect to 3(ξ) and B(q). Then for every s < n there exist arbitrarily large values of q
for which λs(q)= λs+1(q).
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An analogous result holds in the more general situation where a system of exponents (ν0,−ν1, . . . ,−νm)

with νi > 0 for 1≤ i ≤ m and ν0− ν1− · · ·− νm = 0 is considered (see [Schmidt and Summerer 2009],
page 72, Corollary 2.2). Here we normalize to the case ν0 = 1 so that ν1+ · · ·+ νm = 1 and denote by
Bν(q) the box of points (p0, p1, . . . , pm) defined by |p0| ≤ eq , |pi | ≤ e−νi q for 1≤ i ≤m. This modifies
the initial system to

|x | ≤ eq ,

|ξ1x − y1| ≤ e−ν1q ,
...

|ξm x − ym | ≤ e−νmq .

(??)

When A = {i1 < · · ·< is} ⊆ {1, . . . ,m}, let πA : R
n
→ Rs be the map with

πA((p0, p1, . . . , pm))= (pi1, . . . , pis ) ∈ Rs .

Proposition 1.1 and its generalization to successive minima with respect to 3(ξ) and Bν(q) were proved
in [Schmidt and Summerer 2009] by showing that the assumption of Theorem 1.1, page 69 of that paper
is fulfilled for 3(ξ) and Bν(q) if 1, ξ1, . . . , ξm are linearly independent over Q. For the convenience of
the reader we state this result here in the present notation:

Theorem 1.2. Suppose for every s-dimensional space S spanned by lattice points (i.e., points of 3),
there is some A ⊆ {1, . . . ,m} of cardinality s with πA(S)= Rs. Then there are arbitrarily large values
of q with λs(q)= λs+1(q).

The question of whether the condition in Theorem 1.2 and the condition of linear independence of
1, ξ1, . . . , ξm in Proposition 1.1 are also necessary to guarantee that for given s we have arbitrarily large
values of q with λs(q)= λs+1(q) (in the cases (?) and (??)) was the major motivation for the subsequent
investigations. Regarding the set of exponents, we will without loss of generality suppose that

0< ν1 ≤ ν2 ≤ · · · ≤ νm (1-0)

in addition to ν1+ · · ·+ νm = 1.
It will follow from our exposition that in the standard simultaneous approximation case (?) where

νi = 1/m we have λn−1(q)= λn(q) for some arbitrarily large q if and only if the linear independence
condition is satisfied, in particular:

Corollary 1.3. Suppose ξ1, ξ2, . . . , ξm are real numbers with ξk = ξk+1 for some 1 ≤ k ≤ m, and
ξ1, . . . , ξk−1, ξk+1, . . . , ξm together with 1 are linearly independent over Q, and let λi (q), 1 ≤ i ≤ n,
denote the successive minima with respect to 3(ξ) and B(q). Then λn−1(q) < λn(q) for all sufficiently
large q.

On the other hand, if ξk = ξk+1 and B(q) is replaced by Bν(q) with νm sufficiently large compared
to νm−1, the situation may be different. In fact, for ξ1 = ξ2 in the three-dimensional case (i.e., m = 2) we
will give a bound for ν2 that guarantees λ2(q)= λ3(q) for some arbitrarily large q in Section 4. All these
particular cases of simultaneous approximation to linearly dependent reals fit in the general situation
where for some k and r the real numbers ξk, ξk+1, . . . , ξk+r−1 are linear combinations of 1, ξk+r , . . . , ξm

with rational coefficients. For this setting we will state conditions that guarantee that λn−r (q)= λn−r+1(q)
in Section 2. The proof of this result will be given in Section 3.
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2. Basic notation and statement of the main result

We fix some exponents (1,−ν1, . . . ,−νm) with ν1+· · ·+ νm = 1 satisfying (1-0) in (??) and write B(q)
briefly for the body introduced as Bν(q) in the Introduction. Moreover we choose r ∈ {1, . . . ,m− 1} and
k ∈ {1, . . . ,m−1−r}, set s := n−r and define the sets B := {k, . . . , k+r −1}, C := {0, 1, . . . ,m} \ B,
D := {0, k+ r, . . . ,m} with cardinalities

|B| = r, |C | = s, |D| = s− k+ 1,

as well as C ′ := C \ {0}, D′ := D \ {0}. Also let

νB :=
∑
i∈B

νi , νC ′ :=
∑
i∈C ′

νi ,

so that νB + νC ′ = 1.
We will now consider the case of linearly dependent components ξi , more precisely the case where

ξj = Lj (1, ξ1, . . . , ξm) for j ∈ B, (2-0)

with r linear forms
Lj (p0, p1, . . . , pm)=

∑
i∈D

c( j)
i pi

with rational coefficients c( j)
i so that ξj = c( j)

0 +
∑

i∈D′ c
( j)
i ξi . Further put

c( j)
:=

∑
i∈D

|c( j)
i | as well as c :=max

(
1,max

j∈B
c( j)),

and let d be the least common denominator of the c( j)
i with j ∈ B, i ∈ D. Note that d as well as c depend

only on the coefficients of the system (2-0).
To any m-tuple (ξ1, . . . , ξm) we had already associated the lattice 3 = 3(ξ) of points p(x) :=

(x, ξ1x− y1, . . . , ξm x− ym), with x := (x, y1, . . . , ym)∈Zn , and the successive minima λ1(q), . . . , λn(q)
with respect to B(q). We will write L i (q)= log(λi (q)) for i = 1, . . . , n so that by Minkowski’s second
theorem

L1(q)+ · · ·+ Ln(q)≤ 0. (2-1)

Now let S be the s-dimensional subspace of Rn spanned by the lattice points with yj =Lj (x, y1, . . . , ym)

for j ∈ B. Further we write SC for the s-dimensional space of points with coordinates ηi , where i ∈ C ,
and let 3C

⊆ SC denote the s-dimensional lattice πC(3) consisting of points

(x, ξ1x − y1, . . . , ξk−1x − yk−1, ξk+r x − yk+r , . . . , ξm x − ym),

with (x, y1, . . . , yk−1, yk+r , . . . , ym) ∈ Zs. Let BC(q)⊆ SC be the box with

|η0| ≤ eq , |ηi | ≤ e−νi q (i ∈ C ′).

This box has volume 2seq−νC q
= 2seνBq. We will also need the successive minima λC

j (q) as well as their
logarithms LC

j (q), 1≤ j ≤ s, that are defined in terms of BC(q) and 3C. Minkowski’s second theorem
then implies

−νBq − n log n < LC
1 (q)+ · · ·+ LC

s (q). (2-2)
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Note that in the present situation the condition of Theorem 1.2 is not fulfilled for the s-dimensional
subspace S defined above. In fact, for any A ⊂ {1, . . . ,m} of cardinality s we have |Ac

| = r and Ac

contains 0. Now S is the span of lattice points with yj = Lj (x, y1, . . . , ym) for j ∈ B and in view of (2-0)
these lattice points have

ξj x − yj = Lj (0, xξ1− y1, . . . , xξm − ym), j ∈ B.

This may be interpreted as a system of r linear equations among the pi = xξi − yi , with i ∈ B ∪ D′. As
0 /∈ B ∪ D′, at most r −1 of these indices are not in A. It follows that the pi with i ∈ (B ∪ D′)∩ A satisfy
at least r − (r − 1) linear relations; hence the projection πA : S→ Rs is not surjective.

However it will turn out that the condition is not necessary for the conclusion λs(q) = λs+1(q) for
arbitrarily large q . More precisely we will show:

Theorem 2.1. Let ξ1, ξ2, . . . , ξm be real numbers satisfying (2-0) and s = n− r as already defined.

(a) The relation

LC
s (q)≤ νkq − log c− 2 log d − 1 (2-3)

implies Ls(q)< Ls+1(q). If (2-3) holds for every large q , and {ξi : i ∈C ′} together with 1 are linearly
independent over Q, then for each j < s there are arbitrarily large values of q with L j (q)= L j+1(q).

(b) Assume that (2-3) is fulfilled for certain arbitrarily large q and that for some (other) arbitrarily
large q we have

LC
s (q)≥ νBq + n2. (2-4)

Then there exist arbitrarily large q with Ls(q)= Ls+1(q).

In the special case where (2-0) is reduced to

ξk = · · · = ξk+r , (2-5)

we have Lj (1, ξ1, . . . , ξm)= ξk+r so that c( j)
k+r = 1 for j = k, . . . , k+ r − 1 and all other coefficients are

zero so that obviously c = d = 1. As (2-5) clearly implies ξk+l = · · · = ξk+r for any l ∈ {1, . . . , r}, we
may as well apply the above results with B̃ := {k+ l, . . . , k+ r − 1} and C̃ := {0, 1, . . . ,m} \ B̃. In this
way we see that the relation

L C̃
s+l(q)≤ νk+lq − 1 (2-6)

implies Ls+l(q) < Ls+l+1(q) and that the fact (2-6) is fulfilled for certain arbitrarily large q together
with

L C̃
s (q)≥ νB̃q + n2 (2-7)

for some other arbitrarily large q guarantees that there exist arbitrarily large q with Ls+l(q)= Ls+l+1(q).
These results highlight the interest of considering parametric geometry of numbers in a more general

context than the classical simultaneous approximation problem as initiated in [Schmidt and Summerer
2009] and investigated in much more detail in [Schmidt ≥ 2019].
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3. Deduction of Theorem 2.1

Assume that (2-0) holds for ξ1, ξ2, . . . , ξm and keep all notation as introduced in Section 2. For points
p(x) in 3∩ S with πC(p(x)) ∈ BC(q) we get for j ∈ B

|ξj x − yj | = |Lj (1, ξ1, . . . , ξm)x −Lj (x, y1, . . . , ym)|

≤ |c( j)
k+r ||ξk+r x − yk+r | + · · · + |c( j)

m ||ξm x − ym |

≤ |c( j)
k+r |e

−νk+r q
+ · · ·+ |c( j)

m |e
−νmq

≤ c( j)e−νk+r q

≤ c( j)e−νj q (3-0)

for large q in view of (1-0). Hence by the definition of c we have p(x) ∈ cB(q). So if λBC(q) contains
s linearly independent points of 3C, then cλB(q) contains s linearly independent points p(x) where
x ∈ d−1Zn and thus dcB(q) contains s linearly independent points p(x) of 3 ∩ S. It follows that
λs(q)≤ dcλC

s (q) and consequently

Ls(q)≤ LC
s (q)+ log c+ log d. (3-1)

In combination with (2-3) that we assume in (a), (3-1) yields

Ls(q)≤ νkq − log d − 1. (3-2)

On the other hand, points in 3 outside S have yj0 6= Lj (x, y1, . . . , ym) for at least one j0 ∈ B, so that
|Lj (x, y1, . . . , ym)− yj0 | ≥ d−1. This implies

|ξj0 x − yj0 | = |Lj0(1, ξ1, . . . , ξm)x − yj0 |

= |Lj0(1, ξ1, . . . , ξm)x −Lj0(x, y1, . . . , ym)+Lj0(x, y1, . . . , ym)− yj0 |

≥ |Lj0(x, y1, . . . , ym)− yj0 | − |Lj0(1, ξ1, . . . , ξm)x −Lj0(x, y1, . . . , ym)|

≥ d−1
− c( j0)e−νj0 q

and hence |ξj0 x − yj0 | ≥ d−1
− ce−νkq by the definition of c and (1-0). Denoting by λx(q) the least λ > 0

with p(x) ∈ λB(q) and writing L x(q)= log λx(q), we thus have

λx(q)= inf
x∈λB(q)

λ≥ d−1eνkq
− c

for p(x) ∈3 \ S, so that any lattice point outside S has

L x(q) > νkq − log d − 1 (3-3)

for sufficiently large q, so that certainly

Ls+1(q) > νkq − log d − 1. (3-4)

Together (3-2) and (3-4) imply Ls(q) < Ls+1(q), i.e., the first assertion of (a).
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To prove the second assertion of (a) and part (b) we introduce the function

G(q) := min
x∈3\S

L x(q),

which by (3-3) satisfies
G(q) > νkq − log d − 1, (3-5)

and is continuous and piecewise linear. In particular, for those q for which (2-3) holds we have LC
s (q) <

G(q) and thus
L j (q)= LC

j (q) (3-6)

for all j ≤ s.
Now assume that (2-3), hence (3-6), holds for all large q. If {ξi : i ∈ C ′} together with 1 are linearly

independent over Q then Proposition 1.1 applied to simultaneous approximation of {ξi : i ∈ C ′}, i.e.,
successive minima defined with respect to 3C and BC(q), implies the existence of arbitrarily large q
with LC

j (q)= LC
j+1(q) for any j < s. In combination with (3-6) the second assertion of (a) follows.

In general, given any q , at least one of L1(q), . . . , Ls+1(q) will stem from a point p(x) outside S, say
L l(q)= L x(q) with p(x) 6∈ S, where l is chosen minimal subject to this property. Note that the definition
of l implies that (3-6) now holds for i = 1, . . . , l − 1.

If l = s+ 1, it follows from (2-2) that

LC
1 (q)+ · · ·+ LC

s (q) >−νBq − n2 (3-7)

and by the definition of G combined with (2-4)

Ls+1(q)= G(q) > LC
s (q) > νBq + n2 (3-8)

holds for certain arbitrarily large q = q0. Together (3-6)–(3-8) would imply

L1(q0)+ · · ·+ Ls+1(q0) > 0,

and as 0< Ls+1(q0)≤ Ls+2(q0)+ · · ·+ Ln(q0) this would contradict (2-1).
If l ≤ s then (2-1) yields

L1(q)+ · · ·+ L l−1(q)+ (n− l + 1)G(q)≤ 0,

which can be rephrased as

(n− l + 1)G(q)≤−L1(q)− · · ·− L l−1(q)

=−LC
1 (q)− · · ·− LC

l−1(q) (by (3-6))

< LC
l (q)+ · · ·+ LC

s (q)+ νBq + n2 (by (2-2))

≤ (s+ 1− l)LC
s (q)+ νBq + n2.

For q = q0 with (2-4) this yields (n− l + 1)G(q)≤ (s− l + 2)LC
s (q0); therefore

G(q0) <
s− l + 2
n− l + 1

LC
s (q0)≤ LC

s (q0)
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for some arbitrarily large q0 since s ≤ n−1 by definition. By assumption there are also arbitrarily large q1

with (2-3) for which we have LC
s (q1) < G(q1), as already noticed. Since LC

s as well as G are continuous,
there will be some q in (q0, q1) with

LC
s (q)= G(q). (3-9)

Since S has dimension s, we have Ls+1(q) ≥ G(q) for every q. There are s linearly independent
lattice points p(x) in S with L x(q) ≤ LC

s (q), as well as a lattice point x 6∈ S with L x(q) = G(q), so
that by (3-9) we have Ls+1(q)≤ G(q); hence Ls+1(q)= G(q). Also there are fewer than s independent
lattice points p(x) with L x(q) < LC

s (q) so that Ls(q)= LC
s (q). Therefore Ls(q)= Ls+1(q); hence (b)

is proved.

4. Another version of Theorem 2.1

In order to apply Theorem 2.1 it is essential to be able to check whether the conditions (2-3) and (2-4) are
fulfilled for the given ξi and the given exponents. For this purpose, let us first replace the functions LC

s (q)
defined with respect to BC(q) by functions L̂C

s (q) defined with respect to a set B̂C(q) of volume 2s.
Define ρ and σ by

ρ(s− νB)= s and σ = ρ− 1. (4-0)

For i ∈ C set µi := ρνi + σ so that∑
i∈C

µi = ρνC + (s− 1)σ

= ρ(1− νB + s− 1)+ 1− s = ρ(s− νB)− s+ 1= 1

by (4-0). The box B̂C(q) is now defined by

|η0| ≤ eq , |ηi | ≤ e−µi q (i ∈ C ′),

which may also be written as

|η0| ≤ e−σq+ρq , |ηi | ≤ e−σq−ρνi q (i ∈ C ′).

Thus B̂C(q) is e−σqBC(ρq). The corresponding quantities L̂C
j (q) for 1≤ j ≤ s have

L̂C
j (q)= σq + LC

j (ρq).

Therefore (2-3) becomes

L̂C
s (q)≤ σq + ρνkq − log c− 2 log d − 1

= (ρ(1+ νk)− 1)q − log c− 2 log d − 1

=
sνk + νB

s− νB
q − log c− 2 log d − 1.

Moreover (2-4) becomes

L̂C
s (q)≥ σq + ρνBq + n2

= (ρ(1+ νB)− 1)q + n2
=
(s+ 1)νB

s− νB
q + n2.

We may thus rewrite Theorem 2.1 as:



226 LEONHARD SUMMERER

Corollary 4.1. Let ξ1, ξ2, . . . , ξm be real numbers satisfying (2-0).

(a) The relation

L̂C
s (q)≤

sνk + νB

s− νB
q − log c− 2 log d − 1 (4-1)

implies Ls(q)< Ls+1(q). If (4-1) holds for every large q , and {ξi : i ∈C ′} together with 1 are linearly
independent over Q, then for each j < s there are arbitrarily large values of q with L j (q)= L j+1(q).

(b) Assume that (4-1) is fulfilled for certain arbitrarily large q and that for some (other) arbitrarily
large q we have

L̂C
s (q)≥

(s+ 1)νB

s− νB
q + n2. (4-2)

Then there exist arbitrarily large q with Ls(q)= Ls+1(q).

In this reformulation of the main result, the conditions to check, i.e., (4-1) and (4-2), are concerned
with the functions L̂C

i (q), whose behaviour is rather well understood in the case where they stem from a
classical simultaneous approximation problem in lower dimension, hence when all µi , i ∈ C are equal,
which amounts to all νi , i ∈ C , are equal.

In particular, when all νi are equal this leads to the deduction Corollary 1.3: (2-0) reduces to the
equation ξk= ξk+1, which is of the form (2-5) and we have B={k}; hence C ′={1, . . . , k−1, k+1, . . . ,m}
and thus s = n− 1=m. Moreover in the case of classical simultaneous approximation one has νi = 1/m
for i = 1, . . . ,m so that relation (4-1) reads

L̂C
m(q)≤

1+ 1/m
m− 1/m

q − 1=
1

m− 1
q − 1. (4-3)

We claim that this relation holds for all sufficiently large q, so that assertion (a) of Corollary 4.1 yields
Lm(q)= Ln−1(q) < Ln(q) for all large q . Indeed for the simultaneous approximation of m− 1 linearly
independent reals, here these are ξ1, . . . , ξk−1, ξk+1, . . . , ξm , one always has L̂C

m(q) < q/(m− 1)− g(q)
for some function g tending to infinity (see [Schmidt and Summerer 2009], page 77, equation (4.9)),
which implies (4-3).

Our next example deals with a case where not all the νi are identical and shows the existence of
ξ1, . . . , ξm and exponents ν1, . . . , νm for which the intersection properties of the successive minima
functions with respect to Bν(q) differ from those with respect to B(q).

We consider the case m = 2 of simultaneous approximation to (ξ, ξ), where ξ is an irrational number
with ω(ξ) > 1. Here ω(ξ) is the supremum of all η such that there are arbitrarily large values of Q
for which |ξ x − y| ≤ Q−η has a nontrivial integer solution (x, y) with |x | ≤ Q. Then the (single)
approximation constant

ϕ̄2(ξ)=
ω− 1
ω+ 1

(as defined in [Schmidt and Summerer 2013], page 3) has ϕ̄2(ξ) > 0. By Corollary 1.3 applied in the
case ξ1 = ξ2 = ξ , i.e., for classical simultaneous approximation to (ξ, ξ), we have λ1(q) = λ2(q) for
some arbitrarily large q since ξ is irrational, whereas λ2(q) < λ3(q) for all sufficiently large q.
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We claim that this will not be the case for approximation relative to exponents (ν1, ν2) provided ν2 is
sufficiently large.

Corollary 4.2. Let ξ be an irrational number with ϕ̄2(ξ) > 0 and let (ν1, ν2) be a system of exponents
with

ν2 >
3− ϕ̄2(ξ)

3+ ϕ̄2(ξ)
.

Then for s ∈ {1, 2} there exist arbitrarily large q = q(s) with Ls(q)= Ls+1(q).

Proof. For s = 1 this is clear by the irrationality of ξ . So let s = 2 and apply Corollary 4.1 with B = {1}
and C = {2} so that s = 2 and νB = 1− ν2. Note that by the definition of ϕ̄2(ξ) and B̂C(q) we have
lim supq→∞ L̂C

2 (q)/q = ϕ̄2(ξ).
Moreover c = d = 1 so that (4-1) reads

L̂C
2 (q)≤

3− 3ν2

1+ ν2
q − 1,

which is certainly fulfilled for some arbitrarily large q as 3− 3ν2 > 0 and lim infq→∞ L̂C
2 (q)/q = 0 for

single approximation.
On the other hand (4-2) becomes

L̂C
2 (q)≥

3− 3ν2

1+ ν2
q + n2,

which is fulfilled for certain arbitrarily large q provided

3− 3ν2

1−+nu2
< ϕ̄2(ξ) ⇐⇒ ν2 >

3− ϕ̄2(ξ)

3+ ϕ̄2(ξ)
.

So part (b) of Corollary 4.1 implies L2(q)= L3(q) for some arbitrarily large q as desired. �

It remains to say a few words on the case where the νi , i ∈ C , are distinct. Then the µi will be as well
and it is not clear how to check conditions (4-1) and (4-2) when the functions L̂C

s (q) do not stem from
classical simultaneous approximation. However in [Schmidt ≥ 2019] a very precise description of the
possible behaviour of the successive minima functions defined with respect to 3(ξ) and Bν(q) is sketched.
In order to show the existence of real numbers for which those successive minima functions follow a
prescribed behaviour, an appropriate analogue of Roy’s results [2015, Theorem 1.3, Corollary 1.4] for
generalized systems of exponents would be needed. This would considerably broaden the range of
applications of the results in this paper.
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