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On products of shifts in arbitrary fields
Audie Warren

We adapt the approach of Rudnev, Shakan, and Shkredov (2018) to prove that in an arbitrary field [, for
all A C F finite with |A| < p'/# if p := Char(F) is positive, we have

|A|11/9 |A|11/9

AA+D]> ——— JAA|+ A+ DA+ D> ——
[A(A+1D)| > (log | A7 [AA|+[(A+ DA+ 1| > (og [A])7/5

This improves upon the exponent of g given by an incidence theorem of Stevens and de Zeeuw.

1. Introduction and main result
For finite A C [, we define the sumset and product set of A as
A+A={a+b:a,be A}, AA={ab:a,be A}

It is an active area of research to show that one of these sets must be large relative to A. The central
conjecture in this area is the following.

Conjecture 1 (Erd6s—Szemerédi). For all € > 0, and for all A C 7 finite, we have
|AA|+ A+ A| > AP

The notation X < Y is used to hide absolute constants; i.e., X < Y if and only if there exists an
absolute constant ¢ > 0 such that X < cY. If X < Y and ¥ « X we write X < Y. We will let p denote
the characteristic of F throughout (p may be zero). Due to the possible existence of finite subfields in [,
extra restrictions on |A| relative to p must be imposed if p is positive; all such conditions can be ignored
if p=0.

Although Conjecture 1 is stated over the integers, it can be considered over fields, the real numbers
being of primary interest. Current progress over R places us at an exponent of %‘ + ¢ for some small ¢, due
to Shakan [2018], building on [Konyagin and Shkredov 2015; Solymosi 2009]. Incidence geometry, and
in particular the Szemerédi—Trotter theorem, are tools often used to prove such results in the real numbers.

Conjecture 1 can also be considered over arbitrary fields F. Over arbitrary fields we replace the
Szemerédi—Trotter theorem with a point-plane incidence theorem of [Rudnev 2018], which was used by
Stevens and de Zeeuw [2017] to derive a point-line incidence theorem. An exponent of g was proved
in 2014 by Roche-Newton, Rudnev, and Shkredov [Roche-Newton et al. 2016]. An application of the
Stevens—de Zeeuw theorem also gives this exponent of g for Conjecture 1, so that g became a threshold
to be broken.
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The g threshold has recently been broken; see [Shakan and Shkredov 2018; Rudnev et al. 2018; Chen
et al. 2018]. The following theorem was proved by Rudnev, Shakan, and Shkredov and is the current
state-of-the-art bound.

Theorem 2 [Rudnev et al. 2018]. Let A C [ be a finite set. If F has positive characteristic p, assume
|A| < p18/35. Then we have

|A+A|+|AA] > |AN/O—0M),

Another way of considering the sum-product phenomenon is to consider the set A(A + 1), which we
would expect to be quadratic in size. This encapsulates the idea that a translation of a multiplicatively
structured set should destroy its structure, which is a main theme in sum-product questions. Study
of growth of |[A(A 4 1)| began in [Garaev and Shen 2010]; see also [Jones and Roche-Newton 2013;
Zhelezov 2015; Mohammadi 2018]. Current progress for |A(A 4 1)| comes from an application of the
Stevens—de Zeeuw theorem, giving the same exponent of g. In this paper we use the multiplicative
analogue of ideas in [Rudnev et al. 2018] to prove the following theorem.

Theorem 3. Let A, B, C, D C [ be finite with the conditions
IC(A+DIIAI <|CP, |C(A+ D> <|AlICP, |B|<|D|, |Al,|Bl|Cl,|D|< p'*.

Then we have
|BI"*|AP|DIP|C|

(log |[A])! (log | B*

|IABI*|IC(A+ DI*ID(B—1D)|* >

In our applications of this theorem we have |A| = |B| = |C| = | D] so that the first three conditions are
trivially satisfied. The conditions involving p could likely be improved; however, for sake of exposition
we do not attempt to optimise these. The main proof closely follows [Rudnev et al. 2018] (in the multi-
plicative setting), the central difference being a bound on multiplicative energies in terms of products of
shifts. An application of Theorem 3 beats the threshold of £, matching the % appearing in Theorem 2.
Specifically, we have:

Corollary 4. Let A C F be finite, with |A| < p'/* Then

|A|11/9 |A|11/9
——, |AA A+D(A+1 —_—.
(og |A]) 76 |[AA]+[(A+ DA+ D] > (log |A])TTS

Corollary 4 can be seen by applying Theorem 3 with B=A+1, C = A and D = A + 1 for the first
result, and B = —A, D = C = A + 1 for the second result.

|A(A+ D) >

2. Preliminary results

We require some preliminary theorems. The first is the point-line incidence theorem of Stevens and
de Zeeuw.

Theorem 5 [Stevens and de Zeeuw 2017]. Let A and B with |A| > | B| be finite subsets of a field F, and
let L be a set of lines. Assuming |L||B| < p2 and |B||A|? < |L|3, we have

I(Ax B, L) < |AI"*BP* LY+ L.



ON PRODUCTS OF SHIFTS IN ARBITRARY FIELDS 249

Note that as |A| > | B|, we have |A|'/?|B|3/* < |A]3/#|B|'/?; in particular with the same conditions we
have the above result with the exponents of A and B swapped. Because of this, the condition |A| > | B|
is only needed to specify the second two conditions. We may therefore restate Theorem 5 as:

Theorem 6. Let A and B be finite subsets of a field [, and let L be a set of lines. Assuming

|L|min{|Al, |B|]} < p* and |A||B|max{|Al],|B|} <|L|’,
we have
I(A x B, L) < min{|A|'"2|BP>*,|AP*|B|"Y2)|LPP/* +|L).

This second formulation will be how we apply Theorem 5. Before stating the next two theorems we
require some definitions. For x € F we define the representation function

ra/p(x) = H(a,d)eAxD:;,—Z:xH.

Note that for all x we have r4,p(x) < min{|A[, | D|}. This is seen as fixing one of a, d in the equation
a/d = x necessarily determines the other. The set A/D in this definition can be changed to any other
combination of sets, changing the fraction a/d in the definition to match. For n € RT, we define the n-th
moment multiplicative energy of sets A, D C [ as

EX(A, D) :ZrA/D(x)”.

X
When n = 2 we shall simply write E*(A, D), and when A = D we write E;(A) := E;(A, A). By
considering that we have a/a =1 for all a € A, we have the trivial lower bound E(A) > |A|". When n
is in fact a natural number, E;}(A, D) can be considered as the number of solutions to

a a a
—1_—2::—11, aiEA,diED,
di  d dy
giving the trivial upper bound E; (A, D) < |A["|D| by fixing a; to a, and then choosing a single d;,
which necessarily determines all other d;.
We use Theorem 6 to prove two further results. The first is a bound on the fourth-order multiplicative

energy relative to products of shifts.

Theorem 7. For all finite nonempty A, C, D C F with
|AZIC(A+1)| <|DIICI?, |AlIC(A+ D> <|D]*ICP, |A|IC||D* < p?,

we have

C(A+DJ*|D]? |C(A+1D]?|DJ?
EZ(A,D)«mm{I (A+DI?ID|” |[C(A+ D] '}10 Al

IC] ’ IC|
The second result is similar, but for the second moment multiplicative energy.

Theorem 8. For all finite and nonempty A, C, D C F with
IAIC(A+1)| <|DIIC], |A|IC(A+1)> <|D*|C]3, |A]|C||D|min{|C|, |D|} < p*,

we have 32132
|C(A+ 1)< |D|
E*(A, D) K CIi72 log |A].
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The set A 4 1 appearing in these theorems can be changed to any translate A 4+ X for A # 0 by noting
that |C(A+1)| = |C (LA + 1)| and renaming A" = AA. For our purposes, we will use A = +1.

Proof of Theorem 7. Without loss of generality, we can assume that 0 ¢ A, C, D. We begin by proving

C(A+D? D)
E?{(A,D)<<| ( |C|)|| | log | A.

Define the set
Sc:={x€A/D:1 <ruapx) <2t}

By a dyadic decomposition, there is some 7 with
1S:|t* < E}(A, D) < |S;|t* log |Al.

Note that T <min{|A|, | D|}. Take an element # € S;. It has 7 representations in A/ D, so there are T ways
to write t = a/d witha € A, d € D. For all ¢ € C, we have

t_a_l ac+c—c _1 o 1
d d c T d\c¢ ’

where @« = c(a + 1) € C(A + 1). This shows that we have |S;|7|C| incidences between the lines

1
L={lyc:deD,ceC), lu. givenbyy:E(f—l),
c
and the point set P = C(A + 1) x S;. Under the conditions |D||C|min{|S;|, |C(A + 1)|} K p? and
|S¢1IC(A+ 1) max{|S;|, [C(A+ D[} < |DP’|C|’, we have

S, |TIC| < I (P, L) < |C(A+ DI'Y2[S. P*|C)P* | DI¥* + | D||C|.

The conditions are satisfied under the assumptions |D||A||C| min{|D]|, |C|} K pL AP IC(A+ D) <
|D||C)3 and |A||C(A +1)|> < |D|?|C|>. Assuming that the leading term is dominant, we have

1S IT*Cl < IC(A+ DI IDP
so that as E; (A, D)/log|A| K |S; |t we have

|IC(A+1)*|DP?
IC|

We therefore assume the leading term is not dominant. Suppose |D||C| is dominant so that

Ef(A, D) K

log |A].

[CA+ D218 P*CP* DI < DI IC). (1)
Multiplying by 73 and simplifying, we have

,E}(A, D)?
log |A[3

The result now follows if

|D|1/3| |1/3.[4

C(A+D* IS P <|D||ICIt"? = EIAD)K———r
<|CA+DP S P2 <D |C| $A D)< s

|C(A+1)] log|Al.

IDI'PIC| Pt |C(A+DPIDP
IC(A+DI?? IC|
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We must therefore prove the result in the case that this is not true; we will prove the result under the
assumption
|IC(A+D)?|DP? - |D|'3|C|'3¢*
IC| T cA+nPE3Y

which gives (using 7 < |A|)
IDPICI*A* < IDPPIC(A+ D® <*|C|* < 1A CT*,
so that we have |D| < |A|. We then have (using |C(A + 1)| > |C|'/?]|A|'/?)
ID||C| = |C(A+ DIV P4 ICP*IDP* = |+ DIV ICIP* DI = 1Al |IDI* = | D|Cl,

so that the two terms are in fact balanced and the result follows.
Secondly, we prove that

C(A+ 1P |DJ?
EI(A,D)<<| ( |C|)| kd log |A].

To do this, we swap the roles of D and S; from above. We define the line set and point set by
L={l,:teS;,ceC}, P=C(A+1)xD.

Any incidence from the previous point and line sets remains an incidence for the new ones, via
1/« 1/«
d\c t\c

|S¢||Clmin{| D, |C(A+ DI} < p?,  |DI|C(A+ D)|max{|D|, |[C(A+ DI} < |S:PICPP,  (2)

Under the conditions

we have
1S 1TIC| < I(P, L) < |C(A+D)P*|S P4 |1C*|1DY? + 18, ||C.

If the leading term dominates, the result follows from |S: T4 > E} (A, D)/log|A|. Assume the leading
term is not dominant; that is,

IC(A+DP|IDP* < 1S.]IC].
Then by using |S;| < |A||D| and |A|, |C| < |C(A + 1)| we have
|A||ICI*|DI* < |C(A+ 1)’ |D|* <|S.||C| < |A||D||C],

so that |C| = |D| =1 and the result is trivial by E} (A, D) < |A] |ID|* < |Al.

We now check the conditions (2) for using Theorem 5. The first condition in (2) is satisfied if
|A||C||D|> <« p?, which is true under our assumptions. The second depends on max{|D|, |C(A + 1)|},
which we assume is | D| (if not the first term in Theorem 7 gives stronger information, which we have
already proved). Assuming the second condition does not hold, we have

1S:*|CI> < IDP*IC(A+ D).
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Multiplying by 7! and bounding 7 < |A|, we get

|AI*IDI?3|C(A+ D)3 .

Ef(A, D) K Ci

og|Al. (3)

We may now assume the bound

IC(A+ 1) |D|? - |AI*IDI*3|C(A + 1)|'/3
IC| - IC| '

“4)

Indeed, if we were to have

A [IDPPPIC(A+ D' _lc@d+ DD
IC| IC]

then we may apply this bound in (3) and the result follows. Assuming (4), we have
[APIDI* <|C(A+DI*IDI* < A",

So that |D| < |A|. In turn, this implies |A| > |D| > |C(A + 1)| > |A|, so that |A| = |C(A+ 1)| = |D|.
Returning to (3), this gives
|AI*IDIPP|C(A+1)|' _lcA+ P |IDP?

E;(A, D) K Ci log |A| 7

log |Al,

and the result is proved. (]
Proof of Theorem 8. The proof follows similarly to that of Theorem 7. We again define the lines and

points

1
L=1{l.:deD,ceC), zd,cgivenbyy=3<f—1>, P=CA+1) x5,
C

where in this case the set S; is rich with respect to E*(A, D), so that
1S, |72 < E*(A, D) < |S;|t% log |Al.

With the conditions |A||C||D| min{|D|, |C|} < p* and |S;||C(A+1)| max{|S,|, |C(A+ D]} <|D]*|C|?
(which are satisfied under our assumptions), we have, by Theorem 6,

1S |T|C| < I(P, L) < |S:|"*|cA+1)[¥*|D¥*|C)¥* +|D]|C|.
If the leading term dominates, we have

IC(A+ P2 |DP?
|C|1/2

1S |7 «

and the result follows from E*(A, D)/log|A| < |S; |72 We therefore assume that the leading term does
not dominate; that is,

1S 12 1C(A+ 1) D) < |Dl|C).
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Multiplying through by 7 and squaring, we get the bound
|D|2|C| /212
|IC(A+ 1DJ*/?
Much as before, we may now assume the bound
IDP2IC(A+ DP2 _|D|Y2|C) e
|C|1/2 T |CA+ D

as assuming otherwise yields the result via (5). The bound (6) then gives

E*(A, D) K og|Al. (5)

(6)

IDI|IC(A+DP <|C|z>.
Bounding 7 < |A] and |C||A|> < |C(A + 1)|?, we have |D| = 1. Similarly, bounding 2 < |A||D| and
IC(A+1)|? > |C|?|A|, we find |C| = 1, so that the result is trivial. O

3. Proof of Theorem 3

We follow a multiplicative analogue of the argument in [Rudnev et al. 2018]. Without loss of generality
we may assume A, B C [*. For some § > 0, define a popular set of products as

A}

P:=1xc AB: xX) >
{ rap(x) > |AB|S
Let P¢:= AB\ P. Note that by writing

[{(a,b) e Ax B:abe P}|+|{(a,b) e Ax B:abe P} =|A||B|
and noting that

[{(a,b) € Ax B:ab e P}| < |Pc||A||B| < |A||B|’
|[AB|§ — &
we have
|{(“’b)EAXB:abEP}Iz(1—§)|A||B|.

We also define a popular subset of A with respect to P as
A':=laeA:|{beB:abe P} = 3|B|}.
We have
. _ : . _1
|{(a,b)eAxB.abeP}|_Zl{b.abeP}l—i— Z |{b.abeP}|z<1 8>|A||B|' @)
acA’ acA\A’
Suppose that |[A\ A’| = ¢|A| for some ¢ > 0, so that |[A’| = (1 — ¢)|A|. Noting that
2
> lbrabe P <(1—0)lAlIBl. ) |ib:abe P}l < SIAlBI.
acA’ acA\A’
we have by (7)
A= ABI+Z1ABI = (1- 3 )1Al1Bl = c < 3,

so that |A"] > (1 —3/8)|A]|.



254 AUDIE WARREN

We use a multiplicative version of Lemma 8 in [Rudnev et al. 2018]. The proof we present is an
expanded version of the proof present in that paper.

Lemma 9. For all finite A C F, there exists A} C A with |Ay| > |A| such that
EI/_?,(A/]) > EI/3(A1)~

Proof. We give an algorithm which shows such a subset exists, as otherwise we have a contradiction. We
recursively define

Ai=A;_,, Ap=A, i<loglA|

where A’ is defined relative to A;. Using the same arguments as above, we have |A!| > (1 —3/8)|A;].
We shall set § =log |A|. We have the chain of inequalities

3 3N
|Ai|=A;_| > (1— [Aiq]| == 11— |Al.
log |A| log |A|

Note that assuming |A| > 16 (if this is not true then the result is trivial), we have

3 i 3 log |A] 1 4
1-— >(1-— > =
log|Al) — log |A] —\4

since the function (1 — 3/z)? is increasing for z > 3. We now have

4
1
4il = (Z) Al 14|

at all steps i. We assume that at all steps, we have

E}5(A)
/3371

Ejs(A) < ——
as otherwise we have Ej'{/3 (A) > EI/3 (A;) and we are done. After log|A| steps, we have a set A; with

EI/3(k) E;T/g (Ak—l) EI/3(A)
< <

* /
|[Akl > [Al, E}j3(A)) < 1 16 TS TgloglAl

But then we have
Ej;3(A) > Ef;3(ADAE A > |APPH2 = |A]105,

which is a contradiction. Therefore at some step we have an A; satisfying the lemma. O

We now return to the proof of Theorem 3, with § =log |A| applied in the definition of P. We apply
Lemma 9 to A to find a large subset A; C A with EZ/3(A/1) > EI/3(A1)’ |A1| > |A|. Noting that proving
the result for A; implies it for A, we shall rename A; as A for simplicity.

We use a dyadic decomposition to find a set Q C A’/A’ such that

10|AY3 < Ej 5(A)) < 10| log | Al

for some A > 0.
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We will bound the size of the set
N = {(a, d, b, b) e (A)? x B?: aﬁ €0, ab,ab,a'b,d'b e P}.
By summing over all a, a’ € A’ with a/a’ € Q, we have

IN|= ) |{beB:ab,a'be P}
a,a €A’
ala'eQ
and we see thatas |{be B:abe P}|> %lBl for all a € A’, by considering the intersection of {b € B :ab € P}
and (b€ B :a’'b € P}, we have |{b € B :ab,a’b € P}| > %lBl for all a, a’ € A’. Using that elements
g € Q have at least A representations in A’/A’, we have |N| > $|B|2|Q|A.
We now find an upper bound on |N|. Define an equivalence relation on A2 x B? via
/ / / / . / / d / d/
(a,a’,b,b")~ (c,c',d,d) <= thereexists A suchthata =Ac, a’ =Ac, b= e b = o
Note that the conditions

g €0, ab,db,ab,a'b € P @)

are invariant in the class (i.e., if one class element satisfies these conditions, then they all do), as A cancels
in each condition. Let X denote the set of equivalence classes [a, d’, b, b'], where the conditions (8) are
satisfied. We can bound |N| by the sum of the size of each equivalence class [a, a’, b, b'] in X:

INI <D lla,d’ b, b]l.
X

By the Cauchy—Schwarz inequality and completing the sum over all equivalence classes, we have

IQPA*IBI* < INP <X ) lla.d" b, b ©)
[a,a’,b,b']

We must now bound the two quantities on the right-hand side of this equation. We first claim that

D lla.d b BN <Y ragax)repx)”. (10)
la,a’,b,b'] x

To see this, note that the left-hand side of (10) counts pairs of elements of equivalence classes. Take any
two elements (a, a’, b, b'), (c,c’,d,d") € A> x B? from the same equivalence class. By definition, we
may write (¢, ¢, d,d") = (ha, Aa’,b/1,b'/)). As 0 ¢ A, B, the 8-tuple (a,a’, b, b, c, c’,d, d") satisfies

c ¢ b b

)\, = - — = — = —

a a d d
for some A € R, and thus corresponds to a contribution to the quantity 74/, A(M)2rp / 5(M)2, and thus also
corresponds to a contribution to the sum ) 74,4 (x)*rg / g(x)% We also see that different pairs from
equivalence classes necessarily give different 8-tuples, and so the claim is proved. We use Cauchy—
Schwarz on the right-hand side of (10) to bound it by a product of fourth energies:

> raa)’res(x)? < Ef(A)'PE(B).

X
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We use Theorem 7 to bound these energies. We bound via

C(A+ DA D(B —1)?|B|?
|C( |C|)|| | log | Al. E;’;(B)<<| ( |D|)|I |

Ej(A) < log |B|,

with conditions
IC(A+DIIAI<ICP,  IC(A+DIP<]AlICP,  |APICI < p?,
ID(B—DI|B|<|DP, |D(B-1*<I|BIIDP, [BP|D|< p?
which are all satisfied under our assumptions. Returning to (9), we now have

|IC(A+ DIIAP?|ID(B = 1)||BP?

12
IC|1/2|D[1/2 (log|Allog|B|)"/~. (11)

Q1A% |BI* <« |X|

We now bound | X|, the number of equivalence classes where the conditions (8) are satisfied. Note that
any (a, d’, b, b") belonging to an equivalence class in X maps to a solution of the equation

w=>=4 (12)
t v

with w € Q, s,t,u,v € P, by taking w = a/a’, s = ab, t =da’'b, u = ab’, v=a’b’. Note that taking

two solutions (a, a’, b, b’) and (c, ¢/, d, d’) that are not from the same equivalence class necessarily gives

us two different solutions to (12) via the map above. Therefore we may bound |X| by the number of

solutions to (12).

1X| <

{(w,s,t,u,v)e QxP4:w=;=%H= H(s,t,u,v)eP“:?:%e QH

The popularity of P allows us to bound this by

|AB|*(log |A]*
|AI*|BI*

b b
1X| < 4-“‘—‘—““6QH.

{(al, az, a3, as, by, by, b3, by) € A* x B*:

arby  asbs
We dyadically pigeonhole the set BA/A in relation to the number of solutions to r/a =r'/a’ € Q, with
r,r' € BA/A, a,a’ € A, to find popular subsets Ry, R C BA/A in terms of these solutions. We have

log [A|

2
|AB|*(log |A])*
1X| < 22l o8 2l) E E rap/a(x)
i—1

1A
|AI1BI x€AB/A

2 <rap/a(x)<2*!

b
{(a3,a4,b1,b3,b4)eA2xB3:i: @393 Q”
b1  asay

We use the pigeonhole principle to give us A} > 0 and Ry € AB/A such that

|AB|*(log |A])°

X A
| X| < A A B

b
(r1, a3, aq, b, b3, bs) € R x A2 x B3 L B3 €0l
b2 Cl4b4

We perform a similar dyadic decomposition to get A} > 0 and R, € AB/A such that

|ABI*(log |A]°
X AN — =" 7
X< A e B

(r17r2,b2,b4)€R1XRngz;r_lzr_ZEQ .
by by
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These decompositions now allow us to bound via fourth energies, as follows:

|ABI*(log |A])°®
X AN — = 7
X< A e B

_ o [ABI*log|A)¢
= 218 4\ R4
|A|*|B]

(Fl,rz,bz,b4)ER1XszBZ:r—lzr—zeQ
by, by

Z YR /B(@)TRy/B(q)
q€Q

|AB[*(log |A])° 2 2
EAIA&W Z"R./B(CI)Z in’Rz/B(Q)2
qeQ qeQ
12| AB|* (log | A]°

< ALA]
= 1 1|Q| |A|4|B|4

Ej(B, R)*E;(B, R)'*, (13)

where the third and fourth lines follow from applications of the Cauchy—Schwarz inequality. We will

now show that given |B||D||R; |> < p? and |B| < |D| (which are true under our assumptions), we have
ID(B — D*|R;|?

E}(B, R) < D log | B. (14)

Firstly, with the additional conditions
|BI*|D(B—1)| <|R;||DI*, |B|ID(B—1)*<|Ri|*|D|’ (15)

we may bound these fourth energies by Theorem 7 to get (14). We can therefore assume one of these
conditions does not hold.
Firstly, suppose that |B|?|D(B — 1)| > |R;||D|>. We will use the trivial bound
Ej(B,R) < |Ri|*|BI.

Note that it would be enough to prove

D(B — 1) |R;|?
E:{(B,Ri)§| ( ) IR ’
|D]
which would follow from
4 |ID(B — D]*|R;|?
|R:|"|B| < , (16)

|D|

which is true if and only if |R;|?|B||D| < |D(B — 1)|%. Using our assumed bound |B|?|D(B — 1)| >
|R;||D|3, we know

|B|D(B —1)|?
|Ri|*|B||D| < -
| D
By the assumption |B| < |D|, we have
|B’|D(B —1)|?
IR IBIID| < = i = ID(B = DF,

and so by (16) the bound on the fourth energy holds.
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Now assume the second condition from (15) does not hold; that is, | B|[D(B — 1)|> > |R;|? | D|. Again,
we use the trivial bound
E;(B, R) < |R;|*|B|.

We have
|D(B — D |R;|?
IR;|*|B| < D — & |R/*IB|ID| < |D(B-1P,

so it is enough to prove |R;|?|B||D| < |D(B — 1)|3, as before. Using the assumption |B||D(B — 1)|> >
|R;|>| D, we have

|BI*ID(B = 1)J?
|Ri|*|B||D| < >
|D|
and it follows from our assumption |B| < |D| that
B|?|D(B —1)|?
|B|7|D( )| < DB =D,

|D|?

Therefore we have |R;|?|B||D| < |D(B — 1)| and so the bound on the fourth energy holds. Returning
to (13), we use (14) to bound | X| as

1/2]AB|*(log |A])°

1/4 1/4
Apf Ea (B R0 *E;(B. Ry

|X| < A1AYQ]

|AB|*|D(B - )P/

log |A|)®(log | B]) /2. 17
A gD g lAD dog |B) (17

K ALALIR V2| Ry Q12

As |Ri|A; <) rgasa(x), the product |R;|'/? |R2|1/2A1A’1 can be bounded by

12
|R\|2|Ro|' A0 A < (Z rpaja(x)’ Y VBA/A(X)Z) :

XER) XER)y

)CER,‘

where it is important to note that 74,4 (x) gives a triple (b, a, a’). Fori =1, 2, we have

Z rpasa(x)? <

XER,'

bia bra
{(al,az,a3,a4,b1,b2)eA4XB2: 1 1: 2 %H
ap aq

Following a similar dyadic decomposition as before, we find a pair of subsets S;, S, € A/A with respect
to these solutions, and some Aj, A’2 > (0 with

> rpasa(x)? < AgAy(log [A])[{(s1, 52, b1, b2) € S x Sy x B 1 5161 = s,b3) |
XER;

< Ay A (log |AD? Y " rs s (X)rs,p(x)

X

< AyAS(log |AD*E*(B, S)'E*(B, $2)'/?,

where the third inequality is given by the Cauchy—Schwarz inequality. We will use an argument similar
to that above to prove that with the two conditions |B||D||S;| min{|D|, |S;|} < p? and |B| < |D| (which
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are satisfied under our assumptions), we have

|S:1*2|D(B —1)*/*
E*(B, i) < — D7 log | B|. (18)

Under the extra conditions
|BI*|D(B—1)| <[S;|IDI?, |B|ID(B—DJ*<|S;*|D]? (19)

we can bound this energy by Theorem 8 to get (18). We therefore assume the first condition from (19)
does not hold; that is, | B|*|D(B — 1)| > |S;||D|>. We bound the energy via the trivial estimate

E*(B, S;) <|B||Si|*.
It is now enough to show that

1S;1*2|D(B — 1)|*/?
|D|1/2

|B||Si|? < ., which is true if and only if |B||D|"?|8;|'/* < |D(B —1)|*/>.

Using our assumption |B|*|D(B — 1)| > |S;||D|>, we have

|BI*ID(B —1)|'/?

|B||D|"?|8:|'? <
D

Our assumption that |B| < | D] then gives

|BI>|D(B —1)|'/?

D <|B||D(B —1)|'* < |D(B —1)|*?,

so that |B||D|'/?1S;|'/* < |D(B — 1)|*/?, and the bound (18) holds. Next we assume that the second
condition in (19) does not hold; that is, | B||[D(B — 1)|? > |S;|*| D|>. We again use the trivial bound

E*(B,S)) <|BIIS;I.
Comparing this to our desired bound, we have

15:P21D(B — D2

1/2,¢.11/2 _1y13/2
e < |B|ID|""*|Si|"/= < ID(B— D],

|B||S:|* <

so that the desired bound would follow from the second inequality above. Using our assumption that
|B||D(B —1)|*> > |S;|*|D|3, we know

|BPP/4|D(B —1)|'/?

1/2) ¢ 172
|BI|D|'?|5;]"/? < g

’

and by our assumption that |B| < |D|, we have

|BP*ID(B —1)|'?

D7 <|D(B -1,

so that we have |B||D|"/2|S;|'/? < |D(B — 1)|*/? as needed.
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In all cases the bound on E*(B, §;) holds, so that we find
[R "2 |Ro|' 2 A1 AP < AJARE*(B, S1)E*(B, $y)(log |A)*
ASAR ISP 18,12 IDB — 1P
|D|
_ Eip’ DB - DP
- |D|

(log|A])*(log | B])?

(log | Al)*(log | B|)?,

where the final inequality follows as A, and A, correspond to representations of elements of S; and 5,
in A/A, so that

3/2
1117283 = (151145°)*2 < (Z rA/A<x>4/3) < Ej;5(A)P°2,

X

and similarly for $,. Combining the bounds (11), (17), and the above, we have
|Q12A? BB |AP? DI |CI'? < |ABI*|C(A+1)||D(B — D[*E} (A (log |AD"/*(log | B])?,
which simplifies to
E;;5(AY’|BIP|AP|DP|C| < |AB*IC(A + DI*|D(B — DIPE} ;5(A)’ (log | A (log | B])*.
We know by Lemma 9 that E4/3(A") > E4/3(A), so we have
|BI|APIDP|C| < [ABI*|C(A+1)?ID(B — 1)|*(log |A) ' (log | B|)*

as needed. O
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