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On products of shifts in arbitrary fields

Audie Warren

We adapt the approach of Rudnev, Shakan, and Shkredov (2018) to prove that in an arbitrary field F, for
all A C F finite with |A| < p'/# if p := Char(F) is positive, we have

|A|11/9 |A|11/9

AA+D]> ———— [AA[+ A+ DA+ > ———.
[A(A+ 1) > Tog | ADTS |JAA]+[(A+ DA+ D> (log | A7

This improves upon the exponent of g given by an incidence theorem of Stevens and de Zeeuw.

1. Introduction and main result
For finite A C [, we define the sumset and product set of A as
A+A={a+b:a,be A}, AA={ab:a,be A}.

It is an active area of research to show that one of these sets must be large relative to A. The central
conjecture in this area is the following.

Conjecture 1 (Erd6s—Szemerédi). For all € > 0, and for all A C Z finite, we have
|AA|+ A+ Al > AP

The notation X < Y is used to hide absolute constants; i.e., X < Y if and only if there exists an
absolute constant ¢ > 0 such that X < c¢Y. If X < Y and ¥ <« X we write X < Y. We will let p denote
the characteristic of F throughout (p may be zero). Due to the possible existence of finite subfields in [F,
extra restrictions on | A| relative to p must be imposed if p is positive; all such conditions can be ignored
ifp=0.

Although Conjecture 1 is stated over the integers, it can be considered over fields, the real numbers
being of primary interest. Current progress over R places us at an exponent of % + ¢ for some small ¢, due
to Shakan [2018], building on [Konyagin and Shkredov 2015; Solymosi 2009]. Incidence geometry, and
in particular the Szemerédi—Trotter theorem, are tools often used to prove such results in the real numbers.

Conjecture 1 can also be considered over arbitrary fields F. Over arbitrary fields we replace the
Szemerédi—Trotter theorem with a point-plane incidence theorem of [Rudnev 2018], which was used by
Stevens and de Zeeuw [2017] to derive a point-line incidence theorem. An exponent of g was proved
in 2014 by Roche-Newton, Rudnev, and Shkredov [Roche-Newton et al. 2016]. An application of the
Stevens—de Zeeuw theorem also gives this exponent of g for Conjecture 1, so that g became a threshold
to be broken.
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The g threshold has recently been broken; see [Shakan and Shkredov 2018; Rudnev et al. 2018; Chen
et al. 2018]. The following theorem was proved by Rudnev, Shakan, and Shkredov and is the current
state-of-the-art bound.

Theorem 2 [Rudnev et al. 2018]. Let A C [ be a finite set. If F has positive characteristic p, assume
|A| < p'®/33. Then we have

A+ Al +|AA| > |A|'/O7oW),

Another way of considering the sum-product phenomenon is to consider the set A(A + 1), which we
would expect to be quadratic in size. This encapsulates the idea that a translation of a multiplicatively
structured set should destroy its structure, which is a main theme in sum-product questions. Study
of growth of |[A(A + 1)| began in [Garaev and Shen 2010]; see also [Jones and Roche-Newton 2013;
Zhelezov 2015; Mohammadi 2018]. Current progress for |A(A + 1)| comes from an application of the
Stevens—de Zeeuw theorem, giving the same exponent of g. In this paper we use the multiplicative
analogue of ideas in [Rudnev et al. 2018] to prove the following theorem.

Theorem 3. Let A, B, C, D C [ be finite with the conditions
IC(A+ DAl <|CP, |C(A+ D> <|A|IC]®, |B|<ID|, |Al,|Bl,|C|,|D|< p"*.

Then we have
|BI AP |D]P|C|

(log|AD"(log | B)*’

IABIBIC(A+ D]2|ID(B—1)|® >

In our applications of this theorem we have |A| = |B| = |C| = | D| so that the first three conditions are
trivially satisfied. The conditions involving p could likely be improved; however, for sake of exposition
we do not attempt to optimise these. The main proof closely follows [Rudnev et al. 2018] (in the multi-
plicative setting), the central difference being a bound on multiplicative energies in terms of products of
shifts. An application of Theorem 3 beats the threshold of &, matching the % appearing in Theorem 2.
Specifically, we have:

Corollary 4. Let A C F be finite, with |A| < p'/% Then

|A|11/9 |A|11/9
_— AA A+D(A+1 _ .
(og aper 1 AAITIATDA+DI> G0 e

Corollary 4 can be seen by applying Theorem 3 with B=A+1, C = A and D = A + 1 for the first
result,and B = —A, D = C = A + 1 for the second result.

[A(A+ D>

2. Preliminary results

We require some preliminary theorems. The first is the point-line incidence theorem of Stevens and
de Zeeuw.

Theorem 5 [Stevens and de Zeeuw 2017]. Let A and B with |A| > | B| be finite subsets of a field F, and
let L be a set of lines. Assuming |L||B| < p* and |B||A|* < |L|?, we have

I(Ax B, L) < |AI"Y|BP* LY+ L.
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Note that as |A| > | B|, we have |A|'/2|B|?/* < |A|*/*|B|"/?; in particular with the same conditions we
have the above result with the exponents of A and B swapped. Because of this, the condition |A| > | B|
is only needed to specify the second two conditions. We may therefore restate Theorem 5 as:

Theorem 6. Let A and B be finite subsets of a field F, and let L be a set of lines. Assuming
|L|min{|Al, |B]} < p* and |A||B|max{|Al|,|B|} <|L[’,

we have
I(A x B, L) < min{|A|'"2|BP** |AP| B3 L +|L).

This second formulation will be how we apply Theorem 5. Before stating the next two theorems we
require some definitions. For x € [ we define the representation function

rA/D(x):H(a,d)eAxD:%:xH.

Note that for all x we have r4,p(x) < min{|A[, [D[}. This is seen as fixing one of a, d in the equation
a/d = x necessarily determines the other. The set A/D in this definition can be changed to any other
combination of sets, changing the fraction a/d in the definition to match. For n € RT, we define the n-th
moment multiplicative energy of sets A, D C [ as

Ef(A.D)=) rap(x)".

X
When n = 2 we shall simply write E*(A, D), and when A = D we write E;(A) := E; (A, A). By
considering that we have a/a =1 for all a € A, we have the trivial lower bound E;(A) > |A[". When n
is in fact a natural number, E;(A, D) can be considered as the number of solutions to

aq ay ay
—=—=.---=—, a; €A, deD,
dl d2 dn l l
giving the trivial upper bound E(A, D) < |A|"|D] by fixing a; to a, and then choosing a single d;,
which necessarily determines all other d;.
We use Theorem 6 to prove two further results. The first is a bound on the fourth-order multiplicative

energy relative to products of shifts.

Theorem 7. For all finite nonempty A, C, D C F with
|AIPIC(A+1)| < IDIICP, |A]IC(A+ D> <|DI*ICI>, |Al|C|IDI* < p?,

we have

C(A+D*ID]P? |CA+ 1 |D?
EZ(A’D)«mm{I (A+DI?ID]° [C(A+ D] |}log|A|.

IC] ’ IC]
The second result is similar, but for the second moment multiplicative energy.

Theorem 8. For all finite and nonempty A, C, D C [ with
JAZ|IC(A+ 1| < |D|IC)}, |A|IC(A+ D> <|DP|C]}, |A|IC||D|min{|C|, |D|} < p,

we have
|C(A+DP/?|DP?

*
E™(A, D) KL C|172

log |A].
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The set A 4 1 appearing in these theorems can be changed to any translate A 4+ A for A # 0 by noting
that |C(A+1)| = |C(LA + )| and renaming A" = AA. For our purposes, we will use A = +1.

Proof of Theorem 7. Without loss of generality, we can assume that 0 ¢ A, C, D. We begin by proving

C(A+1D* D}
EZ{‘(A,D)<<| ( |C|)|| | log |Al.

Define the set
S;:={x€A/D:1t <rapx) <2t}

By a dyadic decomposition, there is some 7 with
|S.1t* < E}(A, D) < |S;|t*log Al

Note that T <min{|A|, | D|}. Take an element ¢ € S;. It has T representations in A/ D, so there are T ways
to write t = a/d witha € A, d € D. For all ¢ € C, we have

t_a_l ac+c—c _1 o !
d d c T d\ec ’

where @« = c(a + 1) € C(A + 1). This shows that we have |S;|t|C| incidences between the lines

|
L={lyc:deD,ceC), lg. givenbyy:E<£—l>,
C

and the point set P = C(A + 1) x S;. Under the conditions |D||C| min{|S|, |C(A + 1)|} <« p? and
|S:|1C(A+ 1) max{|S;|, |C(A+ )|} < |D|*|C[°, we have

1S 1TIC| < I(P, L) < |C(A+D[V2|S. P/ |1C*|1DI¥* + |D||C].

The conditions are satisfied under the assumptions |D||A||C|min{|D|, |C|} < p>% |A|?|C(A+1)| <
|D||C|? and |A||C(A +1)|?> < |D|?|C|>. Assuming that the leading term is dominant, we have

1S |t*|Cl < [C(A+D*| D
so that as Ef(A, D)/log|A| < |S;|t% we have

C(A+D*|D)?
EZT(A,D)<<| ( |C|)|| | log |Al.

We therefore assume the leading term is not dominant. Suppose |D||C| is dominant so that

IC(A+ D218 P*ICPP* DI < | DI IC). (1)
Multiplying by 7> and simplifying, we have

E*(A, D)3
m«wuwlmsfﬁr”f|D||C|r‘2 = Ej(A, D)

The result now follows if

|D|1/3 |C|1/3T4

C(A+D))? Ll I ool M
| ( + )| |C(A+1)|2/3

log |A|.

ID|'PIC|' Pt IC(A+ DI IDP
|IC(A+ D3 IC]
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We must therefore prove the result in the case that this is not true; we will prove the result under the
assumption
IC(A+DI*IDP - D' |C|' Pt
IC] T lCA+DPBe

which gives (using T < |A|)
IDPICI*AI* < IDPIC(A+DP <% |C* <|AIP[C)*,
so that we have | D| < |A|. We then have (using |C(A +1)| > |C|'/?|A]'/?)
IDI|C| = |C(A+ D' S P/HICIP* D = |c(A + DI 1C)* DI = |AIY*|ClIDP* = |DI|C,

so that the two terms are in fact balanced and the result follows.
Secondly, we prove that

C(A+1DP|DJ?
E:i‘(A,D)<<| ( |C|)|| | log|A.

To do this, we swap the roles of D and S; from above. We define the line set and point set by
L={l.:teS;,ceC}, P=C(A+1)xD.

Any incidence from the previous point and line sets remains an incidence for the new ones, via

Under the conditions
S| 1C| min{|D|, |C(A+ D]} € p*, |D||IC(A+D)|max{|D|,|IC(A+ DI} <IS.PICP, (2

we have
1S |T|Cl < I(P, L) < |C(A+D)PP*S P4 |1C1*|DIY? + 1S, ||C.

If the leading term dominates, the result follows from |S; |74 > E}(A, D)/log|A|. Assume the leading
term is not dominant; that is,

IC(A+DPIDI* < IS.]IC].
Then by using |S;| < |A]|D| and |A|, |C| < |C(A + 1)| we have
|A|IC)*|IDI* < |C(A+ 1) |D|* <|S.||C| < |A||D||C|,

so that |C| = |D| =1 and the result is trivial by E}(A, D) < |A] |ID|* <|A|.

We now check the conditions (2) for using Theorem 5. The first condition in (2) is satisfied if
|A||C||D|* <« p?, which is true under our assumptions. The second depends on max{|D|, |C(A + 1)|},
which we assume is |D| (if not the first term in Theorem 7 gives stronger information, which we have
already proved). Assuming the second condition does not hold, we have

1S:I°IC1* < IDI*IC(A+1)].
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Multiplying by 7! and bounding t < |A|, we get

A*IDPR|C(A+ 1))/
E}(A, D) < AP |'C|( 1 1og 14l @)

We may now assume the bound

IC(A+ DI |IDP? - |AI*IDPPPIC(A+ D'
IC] B IC| ‘

“

Indeed, if we were to have

|AI*IDPPPIC(A+ D' _lcAa+ DI IDP?
IC] IC]|

then we may apply this bound in (3) and the result follows. Assuming (4), we have
[APIDI* <|C(A+ DI*IDI* < 1A,

So that |D| < |A|. In turn, this implies |A| > |D| > |C(A + 1)| > |A]|, so that |A| = |C(A+ 1)| = |D|.
Returning to (3), this gives

AJ*IDP3|C(A + 1)]'/3 [C(A+ DP|D]?
log|A] =

E;(A, D) K
4 IC]| IC]|

log |A],

and the result is proved. 0
Proof of Theorem 8. The proof follows similarly to that of Theorem 7. We again define the lines and
points

1
L={lg.:deD,ceC}, I, givenbyy:E()—c—l), P=C(A+1) xS,
c

where in this case the set S; is rich with respect to E*(A, D), so that
1S, |72 < E*(A, D) < |S;|t% log |A].

With the conditions |A||C||D|min{|D|, |C|} < p* and |S;||C(A+1)| max{|S;|, |C(A+ D]} <|D]*|C|?
(which are satisfied under our assumptions), we have, by Theorem 6,

S 1TIC| < I(P, L) < |S:|"|C(A+ )P D4 C1P* + |D||C].
If the leading term dominates, we have

2 IC(A+ DD

and the result follows from E*(A, D)/log|A| < |S; |72 We therefore assume that the leading term does
not dominate; that is,

1S:1"*1C(A+ DI¥*|DP*|CP* < |DJ|C.
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Multiplying through by 7 and squaring, we get the bound
|D|1/2|C|1/2T2
E*(A,D —— = log |A|.
(4, D) < 5y loe 14l
Much as before, we may now assume the bound
IDP?|C(A+1)P? - |D|'?|C|'/?2?
2 T Ic@A+ PR

as assuming otherwise yields the result via (5). The bound (6) then gives

ID|IC(A+ 1) <|C|7%

253

&)

(6)

Bounding t < |A] and |C||A|> < |C(A+ 1)|?, we have |D| = 1. Similarly, bounding 2 < |A||D| and

IC(A+ 1> > |C|?|A|, we find |C| = 1, so that the result is trivial.

3. Proof of Theorem 3

O

We follow a multiplicative analogue of the argument in [Rudnev et al. 2018]. Without loss of generality

we may assume A, B C [*. For some é > 0, define a popular set of products as

|Al|B|
IAB|S |

P .= {x €AB :rag(x) >

Let P¢:= AB\ P. Note that by writing

{(a,b) e Ax B:abe P}|+|{(a,b) € Ax B:abe P°}| =|A||B|
and noting that

[{(a,b) € A x B:ab e P°}| <|P| |A]IB] < IAHBl,
AB]S —
we have
{(a.b) € Ax B:abe P)| > (1 - %>|A||B|.

We also define a popular subset of A with respect to P as

A':=laeA:|{beB:abe P} > 3|B|}.
We have

(@b)eAxB:abeP)|=Y |(b:abe P} + Y |{b:abeP}|z(1—§>|A||B|.

acA’ acA\A'
Suppose that |A\ A’| = ¢|A| for some ¢ > 0, so that |A’| = (1 — ¢)|A|. Noting that
2
Z I{b:ab e P}| < (1—0)|Al|B], Z I{b:ab e P}| < ?ClAHBI,
acA’ acA\A’'
we have by (7)
2¢ 1 3
(=0l AlIBI+ S [Al1BI = (1— 5 )AlIB| = c < 5,

so that [A’| > (1 —3/8)|A|.

)
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We use a multiplicative version of Lemma 8 in [Rudnev et al. 2018]. The proof we present is an
expanded version of the proof present in that paper.

Lemma 9. For all finite A C [, there exists A| C A with |Ay| > |A| such that
E};3(A)) > Ej5(Ay).

Proof. We give an algorithm which shows such a subset exists, as otherwise we have a contradiction. We
recursively define

Al'=A;—1’ A0=Aa lfloglAL

where A is defined relative to A;. Using the same arguments as above, we have [A}| > (1 —3/8)|A;].
We shall set § = log|A|. We have the chain of inequalities

3 3N
A=A = (1— |Ai—1]|>--->(1— |Al.
log |A] log |A]

Note that assuming |A| > 16 (if this is not true then the result is trivial), we have

3 i 3 log |A| N
1— >(1- > (=
log|Al) — log |A| —\4

since the function (1 —3/z)? is increasing for z > 3. We now have

4
1
il = (Z) 41> 4]

at all steps i. We assume that at all steps, we have

E}5(AD)
4,3\
Efj(A) < = —,
as otherwise we have EIB(A;) > EI/3 (A;) and we are done. After log|A| steps, we have a set Ay with
Ey5(k)  E};5(Ak-1) E}5(A)
" , 4/3 4/3 4/3

But then we have

which is a contradiction. Therefore at some step we have an A; satisfying the lemma. (]

We now return to the proof of Theorem 3, with § =log |A| applied in the definition of P. We apply
Lemma 9 to A to find a large subset A; C A with EI/3 (AD > EI/} (A1), |A1] > |A]. Noting that proving
the result for A implies it for A, we shall rename A; as A for simplicity.

We use a dyadic decomposition to find a set Q C A’/ A’ such that

101AY? < Ejj5(A) < 101AY  log |A]

for some A > 0.
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We will bound the size of the set
N = {(a, b, b') e (A)? x B?: ai €0, ab,ab,a'b,d'b e P}.
By summing over all a, a’ € A’ with a/a’ € Q, we have

IN|= )" [{beB:ab,a'be P}
a,a'eA’
aja'eQ
and we see thatas |{be B:ab e P}| > %lBl for all a € A’, by considering the intersection of {b € B :ab € P}
and (b€ B:a'b € P}, we have |{b € B :ab,a’b € P}| > %lBl for all a, a’ € A’. Using that elements
g € Q have at least A representations in A’/ A’, we have |N| > %|B|2 |Q|A.
We now find an upper bound on |N|. Define an equivalence relation on A2 x B? via
/ / / / . / / d / d/
(a,a’,b,b’) ~(c,c',d,d) <= thereexists A such that a = Ac, a’ = Ac/, b=x, b =x.
Note that the conditions

% €Q, ab,d'b,ab,d'beP (8)

are invariant in the class (i.e., if one class element satisfies these conditions, then they all do), as A cancels
in each condition. Let X denote the set of equivalence classes [a, d’, b, b'], where the conditions (8) are
satisfied. We can bound |N| by the sum of the size of each equivalence class [a, d’, b, b'] in X:

IN| <) lla.d’ b, b]l.
X

By the Cauchy—Schwarz inequality and completing the sum over all equivalence classes, we have

QPA%IBIF < INP <X ) lla.d" b, b ©)
[a,a’,b,b']

We must now bound the two quantities on the right-hand side of this equation. We first claim that

> lla.d. b b1 < raa(x)res(n’. (10)
[a,a’,b,b'] x
To see this, note that the left-hand side of (10) counts pairs of elements of equivalence classes. Take any
two elements (a, a’, b, b'), (c, ¢, d,d") € A> x B? from the same equivalence class. By definition, we
may write (¢, ¢, d,d") = (Aa, Aa’,b/1,b'/1). As 0 ¢ A, B, the 8-tuple (a,a’, b, b/, c, ¢, d, d") satisfies

c ¢ b b

)\‘ = —_— = = = —

a a d d
for some A € R, and thus corresponds to a contribution to the quantity r4/, A(M)?rp / 5(2)2, and thus also
corresponds to a contribution to the sum Zx rA/A (x)2rp /B (x)2 We also see that different pairs from
equivalence classes necessarily give different 8-tuples, and so the claim is proved. We use Cauchy—
Schwarz on the right-hand side of (10) to bound it by a product of fourth energies:

Y raja)’ress(x)? < Ef(A)'PE;(B).
X
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We use Theorem 7 to bound these energies. We bound via

C(A+ DA D(B —1)|?|B)?
EZO4)<<| ( |cf|| | log | A, EI(B)<<| ( Il)ﬂ | |log|BL

with conditions
IC(A+DIIAI <ICP, IC(A+DP <|A[ICP, |AP|CI < p?,
ID(B—DI|B|<|DP’, [D(B~-DI><|B||IDP, |BPID|< p’,
which are all satisfied under our assumptions. Returning to (9), we now have

IC(A+ DIIAP?|ID(B = 1)||BP?

12
|C|1/2|D|1/2 (log |A|log|B)/~. (11D

101°A%|B|* <« |X]|

We now bound | X |, the number of equivalence classes where the conditions (8) are satisfied. Note that
any (a, d’, b, b") belonging to an equivalence class in X maps to a solution of the equation

s u
w=-=-—, (12)

t v
with w € Q, s,t,u, v € P, by taking w = a/d’, s =ab, t =a’b, u = ab’, v =a’b’. Note that taking
two solutions (a, a’, b, b’) and (c, ¢/, d, d’) that are not from the same equivalence class necessarily gives
us two different solutions to (12) via the map above. Therefore we may bound | X| by the number of

solutions to (12).

|X| <

{(w,s,t,u,v)e 0 x P4:w=;=%H = H(s,t,u,v)e P4:;=% € QH

The popularity of P allows us to bound this by

|AB|*(log |A])*
|A1*1BI*

a2b2 a4b4

1X| <

b b
{(‘11,612,613,614,1?1,bz,b3,b4)€A4><343al—l e Q”

We dyadically pigeonhole the set BA/A in relation to the number of solutions to r/a =r'/a’ € Q, with
r,r' € BA/A, a,a’ € A, to find popular subsets Ry, Ry C BA/A in terms of these solutions. We have

log | Al

2
AB|*(log |AD*
Uﬂfw E E rap/a(x)
i=1

4 p4
|AI*|B] x€AB/A

20 <rapya(x)<2itl

b
{(a3,a4,b1,b3,b4> ceA2x B = =55 ¢ QH-
b] agay

We use the pigeonhole principle to give us A} > 0 and R; € AB/A such that

|AB|*(log|A])®

X| <A
X < Ay AR B

b
(r1,as, as, by, b3, by) € Ry x A> x BY: BB Ol
bz a4b4

We perform a similar dyadic decomposition to get A} > 0 and R, € AB/A such that

|AB|*(log|A])°

X AN
YT

(Vl,rz,bz,b4)eR1szxBZ;r_lzr_zeQ .
by by
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These decompositions now allow us to bound via fourth energies, as follows:

|AB|*(log |A])°
X AMAN|———

, |AB|*(log |A])®

= AIA]W Z ”RI/B(C])’”Rz/B(Q)
qeQ

|AB|*(log |A])° 1/2 12
EAIAEW ZrRl/B(Q)Z 2:7’1e2/1a(61)2

qeQ q€Q
|AB|*(log|A)®
|A|*|B|*

b

{(rl,rz,bz,bnem szxBZ:Z—l— 2 e QH
2

< AA}Q)'? E;(B, R\)*E}(B, Ry)'*, (13)

where the third and fourth lines follow from applications of the Cauchy—Schwarz inequality. We will
now show that given |B||D||R;|> < p? and |B| < |D| (which are true under our assumptions), we have

. |ID(B — 1) |R;|?
E (B, R) K D log | B|. (14)
Firstly, with the additional conditions
|BI*|D(B —1)| < |R;||D]*, |B||D(B—1)]*<|R;|*|D? (15)

we may bound these fourth energies by Theorem 7 to get (14). We can therefore assume one of these
conditions does not hold.
Firstly, suppose that | B I>|D(B — 1)| > |R;||D|. We will use the trivial bound
Ej(B, R) < |Ri|*|B|.

Note that it would be enough to prove

ID(B — D |R;|?
EX(B, R;) < ,
1(B,R)) < D
which would follow from
D(B — 1) |R;|?
R, B < PEZDEIRE (16)
|D|

which is true if and only if |R;|?|B||D| < |D(B — 1)|3. Using our assumed bound |B|*|D(B — 1)| >
|R;||D|3, we know

|B’|D(B—1)|?
|Ri|*|B||D| < -
|D
By the assumption | B| < |D|, we have
|BI>|D(B —1)|?
|Ri|*|B||D| < DF <|D(B -1,

and so by (16) the bound on the fourth energy holds.
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Now assume the second condition from (15) does not hold; that is, |B||D(B —1)|*> > |R;|*|D|>. Again,
we use the trivial bound

Ei(B,R) <|Ri|*|B|.

We have
ID(B — 1)’ |R;|?
IR:|*|B| < D “ < |R*|B|ID| < |D(B-1)P,

so it is enough to prove |R;|?|B||D| < |D(B — 1)]3, as before. Using the assumption |B||D(B — D? >
|R;|?|D|*, we have

|BI*|D(B—1)|?
|Ri|*|B||D| < >
|D|
and it follows from our assumption |B| < | D] that
BI>’|D(B —1)|?
BEIDB-DP _\p w1

|D|?

Therefore we have |R;|?|B||D| < |D(B — 1)|? and so the bound on the fourth energy holds. Returning
to (13), we use (14) to bound | X| as

L2 |AB* (log | A])®
A BI*

12 |ABI*|D(B — )P
|AI*[BI*[D['/2

1X| < A1AY Q] E}(B, R\)'*E;(B, Ry)'/*

< MAIRV RV Q) (log |A])®(log | B|)'/2. (17)

As |Ri|A; <> rga/A(x), the product |R1|1/2|R2|]/2A1A/1 can be bounded by

12
IR\[V2|Ry| 2 A1) < (Z reaja(x)’ rBA/A<x>2> :

XER| XER,

XER;

where it is important to note that rg4,4(x) gives a triple (b, a, a’). For i =1, 2, we have

bia; bras
Z rpasa(x)? < H(Cll,az,aa,ambl,bz) eA*x B?: — = =21,
X€ER; @ a4

Following a similar dyadic decomposition as before, we find a pair of subsets S;, S, € A/A with respect
to these solutions, and some A», A’2 > 0 with

> rpasa(x)® K AgAy(log [AD?|{(s1. 52, b1, b2) € Sy x Sy x B? 1 5161 = 510}
XGR,'

< MM (log [AD? ) " rs p(X)rs,p(x)

X

< AyAS(log |AD*E*(B, S)V2E*(B, $))'/?,

where the third inequality is given by the Cauchy—Schwarz inequality. We will use an argument similar
to that above to prove that with the two conditions |B||D||S;| min{|D|, |S;|} <« p? and |B| < |D| (which
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are satisfied under our assumptions), we have

|Si1>21D(B = DY/
E*(B, S) € — DR log |B|. (18)

Under the extra conditions
|BI*ID(B—1)| <|S;||DI>, |B||ID(B—1)*<|S;*|D]? (19)

we can bound this energy by Theorem 8 to get (18). We therefore assume the first condition from (19)
does not hold; that is, |[B|*|D(B — 1)| > |S;||D|>. We bound the energy via the trivial estimate

E*(B, S;) <|B||Si|*.
It is now enough to show that

1S;1*2|D(B — 1)|*/?
|D|1/2

|B||S;|> < ., which is true if and only if |B||D|"?|8;|'/? < |D(B —1)|*/>.

Using our assumption |B|*>|D(B — 1)| > |S;||D|3, we have

|BI?|D(B —1)|'/?

|B||DIY28:]'/? <
D

Our assumption that |B| < | D] then gives

|BI*ID(B —1)|'/?

D <|B||D(B —1)|'? < |D(B - 1)]*?,

so that |B||D|'/?|8;|'/? < |D(B — 1)|*/?, and the bound (18) holds. Next we assume that the second
condition in (19) does not hold; that is, |B||D(B — 1)|*> > |S;|>| D|>. We again use the trivial bound

E*(B., $) < |BI|SiI*.
Comparing this to our desired bound, we have

1S: /2| D(B — 1)
1B|1S;]* < — D2 < |B||D|'?|S|'* < |D(B - 1P,

so that the desired bound would follow from the second inequality above. Using our assumption that

|B||D(B —1)|*> > |S;|?|D|?, we know

|BP*/*|D(B —1)|'?
| D| 1/4

|B||D|'/2|8: "% <

El

and by our assumption that | B| < |D|, we have

|BPP*|D(B—1)|'?

D17 <|D(B -1,

so that we have |B||D|'/?|S;|'/? < |D(B — 1)|*>/? as needed.
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In all cases the bound on E*(B, S;) holds, so that we find
[Ri|"2[Ry|'/> A1 AT < ASATE*(B, S1)E*(B, S)(log |A])*
¢ AFAZ 1817218, D(B — 1)|?
|D|
_ By’ 1D - P
- |D|

(log |A])*(log | B|)?

(log |A])*(log | B])?,

where the final inequality follows as A and A, correspond to representations of elements of S; and S,
in A/A, so that

3/2
151171283 = (1511452 < (Z rA/A<x>4/3) < Ej5(A)P°2
X

and similarly for S>. Combining the bounds (11), (17), and the above, we have
|Q12 A2 BB |AP?|DP2|C|'? < |ABI*|C(A+ 1) D(B — DI*E} 5(A)**(log |AD'"*(log | B|)?,
which simplifies to
E;;3(A)’|BIP|AP|DP|CI < |ABIPIC(A+ DI D(B — DIPE} ;5(A)’ (log |A]) " (log | B|)*.
We know by Lemma 9 that E4/3(A") 3> E4/3(A), so we have
|BI|APIDP|C| < |ABI*IC(A+1*ID(B — 1)|*(log |A]) (log | B])*

as needed. O
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