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A generalized Beatty sequence is a sequence V defined by V (n) = pbnαc + qn+ r , for n = 1, 2, . . . ,
where α is a real number, and p, q, r are integers. Such sequences occur, for instance, in homomorphic
embeddings of Sturmian languages in the integers.

We consider the question of characterizing pairs of integer triples (p, q, r), (s, t, u) such that the two
sequences V (n) = (pbnαc + qn + r) and W (n) = (sbnαc + tn + u) are complementary (their image
sets are disjoint and cover the positive integers). Most of our results are for the case that α is the golden
mean, but we show how some of them generalize to arbitrary quadratic irrationals.

We also study triples of sequences Vi = (pibnαc+ qi n+ ri ), i = 1, 2, 3 that are complementary in the
same sense.

1. Introduction

A Beatty sequence is the sequence A = (A(n))n≥1, with A(n)= bnαc for n ≥ 1, where α is a positive
real number. What Beatty observed is that when B = (B(n))n≥1 is the sequence defined by B(n)= bnβc,
with α and β satisfying

1
α
+

1
β
= 1, (1)

then A and B are complementary sequences, that is, the sets {A(n) : n ≥ 1} and {B(n) : n ≥ 1} are disjoint
and their union is the set of positive integers. In particular if α = ϕ = 1+

√
5

2 is the golden ratio, this gives
that the sequences (bnϕc)n≥1 and (bnϕ2

c)n≥1 are complementary.
Carlitz, Scoville and Hoggatt [Carlitz et al. 1972] studied the monoid generated by A = (A(n))n≥1

and B = (B(n))n≥1 for the composition of sequences in the case where α is the golden ratio. (The
composition of two integer sequences U = (U (n))n≥1 and V = (V (n))n≥1 is the sequence U V :=U ◦V =
(U (V (n)))n≥1, so that the monoid generated by A and B is composed of sequences like Ak B j A` . . . ,
where Ak

= AA . . . A is the composition of k copies of A.)

Theorem 1 [Carlitz et al. 1972, Theorem 13, p. 20]. Let U = (U (n))n≥1 be a composition of copies of
A = (bnϕc)n≥1 and B = (bnϕ2

c)n≥1, containing i occurrences of A and j occurrences of B. Then for
all n ≥ 1

U (n)= Fi+2 j A(n)+ Fi+2 j−1 n− λU ,

where Fk are the Fibonacci numbers (F0 = 0, F1 = 1, Fn+2 = Fn+1+ Fn) and λU is a constant.
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Definition 1. A generalized Beatty sequence is any sequence V of the type V (n)= p(bnαc)+ qn+ r ,
n ≥ 1, where α is a real number and p, q, and r are integers.

Two examples of generalized Beatty sequences are U = AA and U = AB, where Theorem 1 gives
AA(n)= A(n)+n− 1, and AB(n)= 2A(n)+n. These two formulas directly imply the following result.

Corollary 2. Let V be a generalized Beatty sequence given by V (n)= p(bnϕc)+ qn+ r , n ≥ 1. Then
V A and V B are generalized Beatty sequences with parameters (pVA, qVA, rVA)= (p+ q, p, r − p) and
(pWA, qWA, rWA)= (2p+ q, p+ q, r).

As an extension of Beatty’s observation the following natural questions can be asked.

Question A. Let α be an irrational number, and let A defined by A(n)= bnαc for n ≥ 1 be the Beatty
sequence of α. Let Id defined by Id(n)= n be the identity map on the integers. For which pairs of integer
triples (p, q, r) (s, t, u) are the two sequences V = p A+q Id+r and W = s A+ t Id+u complementary?

Question B. For which triples of integer triples (p1, q1, r1), (p2, q2, r2), (p3, q3, r3) are the sequences

Vi = pi A+ qi Id+ ri , i = 1, 2, 3,

a complementary triple? That is, when do they determine disjoint sets whose union is the positive
integers? (Further, when is this partition “nice”, or, in the terminology of [Fraenkel 1994], a nice integer
disjoint covering system?)

Remark 3. The theorem of Carlitz, Scoville and Hoggatt above was rediscovered by Kimberling [2008,
Theorem 5, p. 3], to whom it is attributed in, e.g., [Fraenkel 2010a, p. 575; Fraenkel 2010b, p. 647;
Larsson et al. 2015, p. 20–21]. This was corrected in [Ballot 2017, Theorem 2, p. 2]. Theorem 1 in
[Griffiths 2015] is also a special case of the same theorem of Carlitz et al.

Remark 4. Different generalizations of Beatty sequences are considered in [Mercer 1978; Artstein-
Avidan et al. 2008; Kimberling 2011; Hildebrand et al. 2018].

Remark 5. One can ask whether the monoid generated by other complementary sequences by com-
position can be written as a subset of the set of linear combinations of a finite number of elements.
Some answers for Beatty sequences can be found in a rich paper of Fraenkel [1994] (see, e.g., p. 645).
Another, possibly unexpected, example is given by the Thue–Morse sequence. Namely, calling odious
(resp. evil) the integers whose binary expansion contains an odd (resp. even) number of 1’s, it was proved
in [Allouche et al. 2016, Corollaries 1 and 3] that the sequences (A(n))n≥0 and (B(n))n≥0 of odious and
evil numbers satisfy for all n

A(n)= 2n+ 1− t (n), B(n)= 2n+ t (n), A(n)− B(n)= 1− 2t (n),

A(A(n))= 2A(n), B(B(n))= 2B(n), A(B(n))= 2B(n)+ 1, B(A(n))= 2A(n)+ 1,

where (t (n))n≥0 is the Thue–Morse sequence, i.e., the characteristic function of odious integers. (This
sequence can be defined by t (0)= 0 and for all n ≥ 0, t (2n)= t (n) and t (2n+1)= 1− t (n).) This easily
implies that any finite composition of (A(n))n≥0 and (B(n))n≥0 can be written as (αA(n)+βB(n)+γ )n≥0,
since t (A(n))= 1 and t (B(n))= 0 for all n.
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2. Complementary pairs

Let α be an irrational number, and let A be the Beatty sequence of α. In this section we consider
Question A of the Introduction, which we call the Complementary pair problem.

In what follows we will require that as a function A : N→ N be injective, since we then have a
one-to-one correspondence between sequences and subsets of N. (See [Kimberling and Stolarsky 2016]
for noninjective Beatty sequences.)

In the case that V and W are increasing, we will also require, without loss of generality, that V (1)= 1.
Solutions (p, q, r, s, t, u) with p = 0 or s = 0 will be called trivial.

The homogeneous Sturmian sequence generated by a real number α ∈ (0, 1) is the sequence

cα := (b(n+ 1)αc− bnαc)n≥1.

(For more about Sturmian sequences, the reader can consult, e.g., [Lothaire 2002, Chapter 2].)
A real number α is called a Sturm number if α ∈ (0, 1) is a quadratic irrational number with algebraic
conjugate α satisfying α /∈ (0, 1). Sturm numbers have a property that is useful to recognize their
generalized Beatty sequences.

Proposition 6 [Crisp et al. 1993; Allauzen 1998]. Let α be a Sturm number. Then there exists a morphism
σα on the alphabet {0, 1} such that σα(cα)= cα.

In the following we will consider the variants of σα on various other alphabets than {0, 1}, but will not
indicate this in the notation. The following lemma is implied trivially by

V = p A+ q Id+ r ⇒ V (n+ 1)− V (n)= p(A(n+ 1)− A(n))+ q = p cα(n)+ q.

Lemma 7. Let α be a Sturm number. Let V = (V (n))n≥1 be the generalized Beatty sequence defined by
V (n)= p(bnαc)+ qn+ r , and let 1V be the sequence of its first differences. Then 1V is the fixed point
of σα on the alphabet {q, p+ q}.

We remark that it can be shown that the first letters of σα(0) and σα(1) are equal (see, e.g., [Dekking
2018b]), so σα has a unique fixed point. It is also obvious that this fixed point starts with 0 if α ∈ (0, 1/2),
and with 1 if α ∈ (1/2, 1). For general α, one replaces α with ᾰ = α−bαc(= {α}). When α is the golden
mean ϕ = (1+

√
5)/2, the morphism generating the sequence associated to the Sturm number ϕ̆ = ϕ− 1

is 0 7→ 1, 1 7→ 10, so one has to exchange 0 and 1 if one wishes to compare 1V with the classical
Fibonacci morphism 0 7→ 01, 1 7→ 0. As a special case of Lemma 7 we therefore obtain one direction
of the following lemma.

Lemma 8. Let V = (V (n))n≥1 be the generalized Beatty sequence defined by V (n)= p(bnϕc)+ qn+ r ,
and let 1V be the sequence of its first differences. Then 1V is the Fibonacci word on the alphabet
{2p + q, p + q}. Conversely, if xab is the Fibonacci word on the alphabet {a, b}, then any V with
1V = xab is a generalized Beatty sequence V = ((a− b)bnϕc)+ (2b− a)n+ r) for some integer r .

Another observation is that the q Id+ r part in a generalized Beatty sequence generates arithmetic
sequences. The following lemma, which will be useful in proving Theorem 11 below, shows that in
some weak sense the Wythoff part p A of a generalized Beatty sequence is orthogonal to its arithmetic
sequence part, provided that 1

3 < {α}<
2
3 , where {α} = α−bαc. We prove this for 4

3 < α <
5
3 .
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Lemma 9. Let α satisfy 4
3 < α <

5
3 , and let V = (V (n))n≥1 be the generalized Beatty sequence defined

by V (n)= p(bnαc)+ qn+ r with p 6= 0, then neither (V (1), V (2), V (3)), nor (V (2), V (3), V (4)) can
be an arithmetic sequence of length 3.

Proof. When 3
2 < α <

5
3 , we have bαc = 1, b2αc = 3, and b3αc = 4, b4αc = 6, so

V (2)− V (1)= pb2αc+ 2q + r − pbαc− q − r = 2p+ q,

V (3)− V (2)= pb3αc+ 3q + r − pb2αc− 2q − r = p+ q,

V (4)− V (3)= pb4αc+ 4q + r − pb3αc− 3q − r = 2p+ q,

and the result follows, since p 6= 0. When 4
3 <α<

3
2 , we have bαc= 1, b2αc= 2, b3αc= 4, and b4αc= 5.

So this time V (2)−V (1)= p+q, V (3)−V (2)= 2p+q and V (4)−V (3)= p+q , leading to the same
conclusion. �

Remark 10. We note for further use that solving the equations in the proof of Lemma 9 for p and q,
supplemented with an equation for r , yields in the case 3

2 < α <
5
3 that

p =−V (1)+ 2V (2)− V (3)
q = V (1)− 3V (2)+ 2V (3)
r = V (1)+ V (2)− V (3).

Let α=ϕ be the golden mean. Then the classical solution is (p, q, r)= (1, 0, 0) and (s, t, u)= (1, 1, 0),
which corresponds to the Beatty pair (bnϕc), (bnϕ2

c). Another solution is given by

(p, q, r)= (−1, 3,−1), (s, t, u)= (1, 2, 0),

which corresponds to the Beatty pair
(⌊

n
( 5−
√

5
2

)⌋)
,
(⌊

n
( 5+
√

5
2

)⌋)
, that is, (bn(3−ϕ)c), (bn(ϕ+ 2)c).

Theorem 11. Let α = ϕ. Then there are exactly two nontrivial increasing solutions to the complementary
pair problem: (p, q, r, s, t, u)= (1, 0, 0, 1, 1, 0) and (p, q, r, s, t, u)= (−1, 3,−1, 1, 2, 0).

Proof. Recall that V (1)= 1. Note that V (2) < 5, since otherwise (W (1),W (2),W (3))= (2, 3, 4), which
is not allowed by Lemma 9. There are therefore three cases to consider, according to the value of V (2).

(1) The case V (1)= 1, V (2)= 2. Then by Lemma 9, V (3)= 3 is not possible.

(a) If V (3)= 4, then, by Remark 10, p =−1, q = 3, r =−1, which is one of the two solutions.
(b) If V (3)= 5, then, by Remark 10, p=−2, q = 5, r =−2, which implies that V (4)= 6, V (5)= 7,

V (6)= 10. So W (1)= 3, W (2)= 4, W (3)= 8, which gives s =−3, t = 7, u =−1 (Remark 10
applied to W ), implying W (5)= 10, which contradicts complementarity.

(c) If V (3)= m with m > 5, then W (1)= 3, W (2)= 4, W (3)= 5, which contradicts Lemma 9.

(2) The case V (1)= 1, V (2)= 3.

(a) If V (3)= 4, then, by Remark 10, p = 1, q = 0, r = 0, which is one of the two solutions.
(b) If V (3)= 5, then we obtain a contradiction with Lemma 9.
(c) If V (3)= 6, then, by Remark 10, p =−1, q = 4, r =−2, which implies V (5)= 10. But we

must then have W (1) = 2,W (2) = 4,W (3) = 5, so (Remark 10 applied to W ), s = 1, t = 0,
u = 1, which implies W (6)= 10, a contradiction with complementarity.



GENERALIZED BEATTY SEQUENCES AND COMPLEMENTARY TRIPLES 329

(d) If V (3)= m with m > 6, then we obtain a contradiction with Lemma 9, since then W (2)= 4,
W (3)= 5, W (4)= 6.

(3) The case V (1)= 1, V (2)= 4.

(a) If V (3) = 5, then, by Remark 10, p = 2, q = −1, r = 0, thus V (4) = 8; hence W (1) = 2,
W (2) = 3, W (3) = 6. Hence, by Remark 10 applied to W, s = −2, t = 5, u = −1, so that
W (5)= 8= V (4), which contradicts complementarity.

(b) If V (3)= 6, then W (1)= 2, W (2)= 3, W (3)= 5. Thus, by Remark 10 applied to W, s =−1,
t = 3, u = 0. Hence W (4)= 6= V (3), which contradicts complementarity.

(c) If V (3)= 7, then we obtain a contradiction with Lemma 9.
(d) If V (3)=m with m > 7, it follows that V (3)= 8, since we have W (1)= 2, W (2)= 3, W (3)= 5,

yielding, by Remark 10 applied to W, W= (−A(n)+ 3n)= 2, 3, 5, 6, 7, 9, 10, 12, 13, 14, . . .
With V (3)= 8, one obtains (by Remark 10) that V (n)=−A(n)+5n−3, but then V (5)= 14=
W (10), i.e., V and W are not complementary. �

For α=
√

2 the classical solution to the complementary pair problem is V = A, W = A+2 Id, i.e., the
Beatty pair given by V (n)= bn

√
2c, and W (n)= bn(2+

√
2)c. As 4

3 <
√

2< 3
2 , we can use Lemma 9

and adapt Remark 10 to prove the following result, in the same way as Theorem 11.

Theorem 12. Let α =
√

2. Then there is a unique nontrivial increasing solution to the complementary
pair problem: (p, q, r, s, t, u)= (1, 0, 0, 1, 2, 0).

We end this section with an example where {α} /∈
( 1

3 ,
2
3

)
.

Theorem 13. Let α =
√

8. Then there is a unique nontrivial increasing solution to the complementary
pair problem: (p, q, r, s, t, u)= (1, 4, 0,−1, 4, 0).

Proof. Since (4+
√

8, 4−
√

8) is a Beatty pair, (p, q, r, s, t, u)= (1, 4, 0,−1, 4, 0) is a solution to the
complementary pair problem. To prove that it is unique is more involved. We fix V (1)= 1.

Let ᾰ= α−2=
√

8−2. Then ᾰ ∈ (0, 1), and ᾰ has the periodic continued fraction expansion [0; 1, 4].
It follows then from [Crisp et al. 1993], or from Corollary 9.1.6 in [Allouche and Shallit 2003] that the
morphism σᾰ fixing the homogeneous Sturmian sequence cᾰ is given by

σᾰ : 0 7→ 11110, 1 7→ 111101.

Note that

V (n)= pbn
√

8c+ qn+ r = pbn(
√

8− 2)c+ (2p+ q)n+ r = pbnᾰc+ (2p+ q)n+ r.

The difference sequence 1V of V is therefore the fixed point of σᾰ on the alphabet {2p+ q, 3p+ q}.
Since we require V to be increasing, both 2p + q and 3p + q have to be larger than 0. We split the
possibilities according to the value of 3p+ q. The arguments below are based on the fact, following
from the form of σᾰ, that V starts with an arithmetic sequence of length 5, followed by an arithmetic
sequence of length 6, both with common differences 3p+ q , and separated by a distance 2p+ q .

(1) The case 3p+ q > 3. If 3p+ q ≥ 3, then W (1)= 2, W (2)= 3, so W = s A+ tId+ u has to start
with an arithmetic sequence of length 5 with common difference 1, i.e., W (1),W (2), . . . ,W (5)=
2, 3, . . . , 6. Moreover, since W (6)= 7 is not possible (as it would imply p = 0), we have V (2)= 7,
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which implies V (3)= 13. But then the second arithmetic sequence of W, which has length 6, does
not fit in between V (2) and V (3).

(2) The case 3p+ q = 2. In this case V (1), . . . , V (5)=1, 3, 5, 7, 9, so W (1), . . . ,W (5)=2, 4, 6, 8, 10.
Then either V (6)= 11, or W (6)= 11.

In the former case we must have 2p + q = V (6)− V (5) = 2, which implies p = 0, which is
trivial.

In the latter case W (6), . . . ,W (11) = 11, 13, 15, 17, 19, 21, and W (12) = 22, since W (12)−
W (11)=W (6)−W (5)= 1. But also, V (6), . . . , V (11) equals 12, 14, . . . , 22. So V and W are not
complementary.

(3) The case 3p+ q = 1. In this case V (1), . . . , V (5) = 1, 2, 3, 4, 5, so W (1) = 6, since V (6) = 6
would imply p = 0. Then either V (6)= 7, or W (2)= 7.

In the former case, V (6), . . . , V (11) = 7, 8, 9, 10, 11, 12, and W (2) = 13. This implies that
2= V (6)− V (5)= 2p+ q , which leads to (p, q, r)= (−1, 4, 0), and (s, t, u)= (1, 4, 0), which is
the announced solution.

In the latter case W (1), . . . ,W (5)= 6, 7, 8, 9, 10, and V (6)= 11. So 2p+q = V (6)−V (5)= 5.
This implies (p, q, r) = (−5, 16,−5), and (s, t, u) = (−6, 19,−1). But then V (12) = 22, and
W (11)= 22. So V and W are not complementary. �

2.1. Generalized Pell equations. If V and W are not increasing, then an analysis as in the proof of
Theorem 11 is still possible, but very lengthy. We therefore consider another approach in this subsection.
Considering the densities of V and W in N, one sees that a necessary condition for (p A+ q Id+ r) and
(s A+ t Id+ u) to be a complementary pair is that

1
pα+ q

+
1

sα+ t
= 1 (2)

In what follows we concentrate on the case α = ϕ = (1+
√

5)/2, but our arguments can be generalized
to the case of arbitrary quadratic irrationals.

Proposition 14. A necessary condition for the pair V = p A+ q Id+ r and W = s A+ t Id+ u to be a
complementary pair is that p 6= 0 is a solution to the generalized Pell equation

5p2x2
− 4x = y2, x, y ∈ Z.

Proof. Using ϕ2
= 1+ϕ, a straightforward manipulation shows that (2) implies

(ps+ pt + qs− p− s)ϕ = q + t − ps− qt.

But since ϕ is irrational, this can only hold if

ps+ pt + qs− p− s = 0, q + t − ps− qt = 0. (3)

The first equation gives pt = p− (p+ q − 1)s. Eliminating pt from p2s + (q − 1)pt − pq = 0, we
obtain p2s+ (p− (p+ q − 1)s)(q − 1)− pq = 0. This gives the quadratic equation

s q2
+ (p− 2)s q − (p2

+ p− 1)s+ p = 0.
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Since q is an integer, 1 := (p− 2)2s2
+ 4s((p2

+ p− 1)s − p) has to be an integer squared. Trivial
manipulations yield that

1= 5p2s2
− 4ps. (4)

Since p divides the square 1, 5p2s2
− 4ps = p2 y2 for some integer y, and hence p also divides s. If

we put s = px , we obtain 5p3x2
− 4p2x = p2 y2, which finishes the proof of the proposition. �

Actually there is a simple characterization of the integers p such that the diophantine equation above
has a solution.

Proposition 15. The generalized Pell equation

5p2x2
− 4x = y2, x, y ∈ Z,

has a solution for p > 0 if and only if p divides some Fibonacci number of odd index, i.e., if and only p
divides some number in the set {1, 2, 5, 13, 34, . . .}.

Proof. First suppose that there are integers p > 0 and x, y ∈ Z such that 5p2x2
− 4x = y2. Let d :=

gcd(x, y) and x ′ = x/d , y′ = y/d, so that gcd(x ′, y′)= 1. We thus have

5p2dx ′2− 4x ′ = dy′2.

Thus x ′ divides dy′2, but it is prime to y′, hence x ′ divides d . Since clearly d divides 4x ′, we have d = αx ′

for some α dividing 4, hence α belongs to {1, 2, 4}. This yields α(5p2x ′2 − y′2) = 4. We distinguish
three cases.

(1) If α = 1, then we have 5p2x ′2− y′2 = 4. But the equation 5X2
− 4 = Y 2 has an integer solution

if and only if X is a Fibonacci number with odd index [Lind 1968, p. 91]. Hence px ′ must be a
Fibonacci number with odd index, thus p divides a Fibonacci number with odd index.

(2) If α = 2, then we have 5p2x ′2− y′2 = 2. Note that x ′ must be odd, otherwise x ′ and y′ would be
even, which contradicts gcd(x ′, y′)= 1. Thus 5p2x ′2 ≡ p2 mod 4, hence p2

− 2≡ y′2 mod 4. If p
is even, this yields y′2 ≡ 2 mod 4, while if p is odd, this gives y′2 ≡ 3 mod 4. There is no such y′

in both cases.

(3) If α = 4, then we have 5p2x ′2− y′2 = 1, thus 5(2px ′)2− (2y′)2 = 4, then 2px ′ must be a Fibonacci
number with odd index, thus p divides a Fibonacci number with odd index.

Now suppose that p divides some Fibonacci number with odd index, say there exists a k with F2k+1 =

pβ. We will construct an integer solution in (x, y) to the equation 5p2x2
− 4x = y2. We know (again

[Lind 1968, p. 91]) that there exists some integer γ with 5F2
2k+1 − 4 = γ 2 thus 5p2β2

− 4 = γ 2. Let
x = β2 and y = βγ . Then

5p2x2
− 4x = 5p2β4

− 4β2
= β2(5p2β2

− 4)= β2γ 2
= y2. �

Corollary 16. If −1 is not a square modulo p, there are no solutions to the complementary pair problem.
This is in particular the case if p has a prime divisor congruent to 3 modulo 4.

(The sequence of such integers p, which starts with 1, 2, 5, 10, 13, 17, 25, 26, 29, 34, 37, 41, . . . , is
labeled A008784 in The on-line encyclopedia of integer sequences [OEIS].)

http://oeis.org/search?q=A008784
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Proof. We will prove that if there are solutions to the complementary problem for p, thus if p divides an
odd-indexed Fibonacci number (Propositions 14 and 15), then −1 is a square modulo p. Using again the
characterization in [Lind 1968, p. 91], there exist two integers x, y with 5p2x2

− 4= y2. We distinguish
two cases.

(i) If p is odd, we have y2
≡ −4 mod p and 22

≡ 4 mod p. But 2 is invertible modulo p, hence, by
taking the quotient of the two relations, we obtain that −1 is a square modulo p.

(ii) If p is even, remembering that px = F2k+1 for some k, we claim that p must be congruent to 2
modulo 4 and that x must be odd. Namely the sequence of odd-indexed Fibonacci numbers, reduced
modulo 4, is easily seen to be the periodic sequence (1 2 1)∞. Hence it never takes the value 0
modulo 4. The equality 5p2x2

− 4= y2 implies that y must be even, thus we have 5(p/2)2x2
− 1=

(y/2)2, say (y/2)2 = −1+ z(p/2). Up to replacing (y/2) with (y + p)/2, we may suppose that
(y/2) is even (recall that p/2 is odd). Thus z(p/2) is even, hence z is even, say z = 2z′. This gives
(y/2)2 =−1+ z′ p; thus −1 is a square modulo p. �

Remark 17. We have just seen that if the integer p divides some odd-indexed Fibonacci number (OEIS
A008784) then −1 is a square modulo p. A natural question is then whether it is true that if −1 is a
square modulo p, then p must divide some odd-indexed Fibonacci number. The answer is negative, since
on one hand 122

≡−1 mod 29, and, on the other hand, the sequence of odd-indexed Fibonacci numbers
modulo 29 is the periodic sequence (1, 2, 5, 13, 5, 2, 1)∞ which is never zero.

Let us look at examples of solutions to the diophantine equation for values of p that divide some
Fibonacci number with odd index. Consider, for example, the case where p = s. Then equation (4)
becomes 1= 5p4

− 4p2, so the diophantine equation is

5x2
− 4= y2, x, y ∈ Z.

For p= F1= 1 we obtain the two sequences V = A+r and W = A+ Id+u. These are complementary
only when r = u = 0, and we obtain the classical Beatty pair (A, A+ Id).

For p = F3 = 2 we obtain the two sequences V = 2A+2 Id+ r and W = 2A−2 Id+u. These cannot
be complementary for any r and u, since for u = 0 we have W (n)= 2bnϕc− 2n = 2bn(ϕ− 1)c, which
gives all even numbers, since ϕ− 1< 1. This an example where equation (2) does not apply, since W as
a function is not injective.

For p = F5 = 5 we obtain the two sequences V = 5A+ 4 Id+ r and W = 5A− 7 Id+ u. To make
these complementary we are forced to choose r = u = 3, and we obtain

V = (12, 26, 35, 49, 63, 72, 86, 95, 109, 123, 132, 146, 160, 169, 183, 192, 206, 220, 229, 243, 252, 266, . . . ),

W = (1, 4, 2, 5, 8, 6, 9, 7, 10, 13, 11, 14, 17, 15, 18, 16, 19, 22, 20, 23, 21, 24, 27, 25, 28, 31, 29, 32, 30, . . . ).

Now a proof that V and W form a complementary pair is much harder when we let V start with V (0)= 3,
to include 3 in the union. We can perform the following trick. We split W into (W (A(n)))n≥1, and
(W (B(n)))n≥1 (cf. Corollary 2). The two sequences W A and W B are increasing, and we can prove that
(V (n))n≥0, (W (A(n)))n≥1, and (W (B(n)))n≥1 form a partition of the positive integers by proving that
the three-letter sequence obtained by applying the morphism 0 7→ 1120, 1 7→ 11100 to the fixed point
of the morphism g given by g : 0 7→ 01, 1 7→ 011, has the property that the preimages of 0, 1 and 2 are
precisely these three sequences. See Theorem 25 and its proof for a similar result.

http://oeis.org/search?q=A008784
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For p = F2m+1 ≥ 13 it seems that we can always choose r and u for in such a way that we get almost
complementary sequences: namely, e.g., for p = 13 we find q = 9 and t =−20. If we take r = u = 9,
then we almost get a complementary pair. One finds V = 9, 31, 66, 88, 123, 158, 180, 215, . . . and
W = 2, 8, 1, 7, 13, 6, 12, 5, 11, 17, 10 . . . . So 3 and 4 are missing. We thought we could prove, perhaps
using something like the Lambek–Moser Theorem [Lambek and Moser 1954], that for all F2m+1 > 5 the
two sequences are complementary excluding finitely many values, but we were not successful.

3. Complementary triples

Here we will find several complementary triples consisting of sequences Vi = pi A+qi Id+ri , i = 1, 2, 3,
where A(n)= bnαc, and α is a real number.

It is interesting that the case p1 = p2 = p3 = 1 cannot be realized. This was proved by Uspensky in
1927; see [Fraenkel 1977].

The case with different αi was analyzed in [Tijdeman 1996] for rational αi , 1 = 1, 2, 3. Also see
[Tijdeman 2000] for the inhomogeneous Beatty case (Vi (n))n = (bnαi +βic)n, i = 1, 2, 3.

There is one triple in which we will be particularly interested (see Theorem 25):

(p1, q1, r1)= (2,−1, 0), (p2, q2, r2)= (4, 3, 2), (p3, q3, r3)= (2,−1, 2).

We allow the sequences (Vi ) to be each indexed either by {0, 1, 2, . . . } or by {1, 2, . . . }.

3.1. Two classical triples. In this subsection α is always the golden mean ϕ. Let once more A(n)=bnϕc
for n ≥ 1 be the terms of the lower Wythoff sequence, and let B be given by B(n) = bnϕ2

c for n ≥ 1,
the upper Wythoff sequence. Then we have the disjoint union

A(N)∪ B(N)= N. (5)

Since B = A+ Id, this is the classical complementary pair ((1, 0, 0), (1, 1, 0)).

Here is a way to create complementary triples from complementary pairs.

Proposition 18. Let (V,W ) be a golden mean complementary pair V = p A+q Id+r and W = s A+t Id+
u. Then (V1, V2, V3) is a complementary triple, where the three parameters of V1 are (p+ q, p, r − p),
those of V2 are (2p+ q, p+ q, r), and V3 =W.

Proof. Substituting (5) in V (N)∪W (N)= N we obtain the disjoint union

V (A(N))∪ V (B(N)) ∪ W (N)= N.

Then Corollary 2 implies the statement of the proposition. �

Remark 19. Actually Proposition 18 and Corollary 2 can be generalized to cover an infinite family of
quadratic irrationals, but their statements will not be true for all quadratic irrationals. We hope to revisit
this point in a future article.

Applying Proposition 18 to the basic complementary pair ((1, 0, 0), (1, 1, 0)) gives that

((1, 1,−1), (2, 1, 0), (1, 1, 0)) and ((1, 0, 0), (2, 1,−1), (3, 2, 0))
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are complementary triples, which we will call classical triples. (The corresponding sequences are indexed
in OEIS as (A003623, A003622, A001950) and (A000201, A035336, A101864). The first classical triple
is given at the end of [Skolem 1957].)

Let w = 1231212312312 . . . be the fixed point of the morphism

1 7→ 12, 2 7→ 3, 3 7→ 12.

Then w−1(1)= AA, w−1(2)= B and w−1(3)= AB give the three sequences V1, V3 and V2 of the first
classical triple (see [Dekking 2016]).

The question arises: is there also a morphism generating the second triple? The answer is positive.

Proposition 20. Let (V1, V2, V3)= (A, 2A+ Id−1, 3A+ 2Id)= (A, B A, B B). Then (V1, V2, V3) is a
complementary triple. Let µ be the morphism on {1, 2, 3} given by

µ : 1 7→ 121, 2 7→ 13, 3 7→ 13,

with fixed point z. Then z−1(1)= V1, z−1(2)= V2 and z−1(3)= V3.

Proof. The four words of length 3 occurring in the infinite Fibonacci word xF are 010, 100, 001, 101.
Coding these with the alphabet {1, 2, 3, 4} in the given order, they generate the 3-block morphism f̂3 that
describes the successive occurrences of the words of length 3 in xF (cf. [Dekking 2016]). It is given by

f̂3(1)= 12, f̂3(2)= 3, f̂3(3)= 14, f̂3(4)= 3.

It has just one fixed point, which is

z′ := 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, . . . .

We claim that
z′−1

(1)= AA, z′−1
(2)= B A, z′−1

(3)= AB, z′−1
(4)= B B.

To see this, note that the 3-block 010 in xF uniquely decomposes as 010= f (0)0. It follows that the mth

occurrence of 010 in xF corresponds exactly to the mth occurrence of 0 in f −1(xF)= xF. This implies
that the positions of the occurrences of 010 are of the form A(A(n)), and also that the occurrences of
001 are of the form A(B(n)), since B(N) is the complement of A(N).

For the 3-block 100, we note that it always occurs in xF as factor of 0100, which uniquely decomposes
in xF as 0100= f 2(0)0. It follows that the mth occurrence of 100 in xF corresponds exactly to the mth

occurrence of 0 in f −2(xF) = xF. This implies that the positions of the occurrences of 100 are of the
form B(A(n)), and also that the occurrences of 101 are of the form B(B(n)).

Since the 0’s in xF occur either as prefix of 001, or of 010, we see that we have to merge the letters
1 and 3 to obtain the sequence A. This is not possible with f̂3. However, the square of this 3-block
morphism is given by

1 7→ 123, 2 7→ 14, 3 7→ 123, 4 7→ 14,

and now we can consistently merge 1 and 3 to the single letter 1, obtaining the morphism µ, after
mapping 4 to 3. Under this projection the sequence z′ maps to z. �

http://oeis.org/search?q=A003623
http://oeis.org/search?q=A003622
http://oeis.org/search?q=A001950
http://oeis.org/search?q=A000201
http://oeis.org/search?q=A035336
http://oeis.org/search?q=A101864
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3.2. Nonclassical triples. Let L be a language, i.e., a sub-semigroup of the free semigroup generated
by a finite alphabet under the concatenation operation. A homomorphism of L into the natural numbers
is a map S : L→ N satisfying S(vw)= S(v)+S(w), for all v,w ∈ L.

Let LF be the Fibonacci language, i.e., the set of all words occurring in the Fibonacci word xF, the
iterative fixed point of the morphism f defined on {0, 1}∗ by f : 0 7→ 01, 1 7→ 0.

Theorem 21 [Dekking 2018a]. Let S : LF→ N be a homomorphism. Define a = S(0), b = S(1). Then
S(LF) is the union of the two generalized Beatty sequences(

(a− b)bnϕc+ (2b− a)n
)

and
(
(a− b)bnϕc+ (2b− a)n+ a− b

)
.

For a few choices of a and b, the two sequences in S(LF) and the sequence N \S(L) form a comple-
mentary triple of generalized Beatty sequences. The goal of this section is to prove this for a = 3, b = 1.
It turns out that the three sequences

(2bnϕc− n)n≥1, (2bnϕc− n+ 2)n≥1, (4bnϕc+ 3n+ 2)n≥0,

form a complementary triple.

Remark 22. Note that the indices for (4bnϕc)+ 3n+ 2)n≥0 are (n ≥ 0), not (n ≥ 1).

It is easy to see that the Fibonacci word xF can be obtained as an infinite concatenation of two kinds
of blocks, namely 01 and 001 (part (i) of Lemma 23 below). Kimberling introduced in the OEIS the
sequence A284749 obtained by replacing every block 001 in this concatenation by 2. We let xK =

A284749 denote this sequence.

Lemma 23. Let f , g, h, k be the morphisms defined on {0, 1}∗ by

f : 0 7→ 01, 1 7→ 0; g : 0 7→ 01, 1 7→ 011; h : 0 7→ 01, 1 7→ 001; k : 0 7→ 01, 1 7→ 2.

The following equalities hold:

(i) xF = f∞(0)= h(g∞(0)).

(ii) xK = k(g∞(0)).

Proof. (i) An easy induction proves that for all n ≥ 0 one has hgk
= f 2kh. (Note that it suffices to prove

that the values of both sides are equal when applied to 0 and to 1.) By letting n tend to infinity this
implies hg∞(0)= f∞(0).

(ii) Assertion (i) gives that xF is an infinite concatenation of blocks h(0)= 01 and h(1)= 001, obtained
as image under h from g∞(0). So substituting 2 for 001 in xF is the same as substituting 01 for 0 and 2
for 1 in g∞(0). �

It is interesting that xK is fixed point of a morphism i , given by i : 0 7→ 01, 1 7→ 2, 2 7→ 0122. This
follows from the relation kgn

= in+1 for all n, which is easily proved by induction.

Lemma 24. Define the morphism ` from {0, 1}∗ to {0, 1, 2}∗ by ` : 0 7→ 012, 1 7→ 0022. Then the
sequence v = (vn)n≥1 = `(g∞(0)) is obtained from xK by replacing 1 by 0 in all blocks 0122 (but not in
0120).

Proof. Note that kg : 0 7→ 012, 1 7→ 0122. Lemma 24 then follows from xK= k(g∞(0))= kg(g∞(0)). �

http://oeis.org/search?q=A284749
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Theorem 25. Let v be the sequence defined above, i.e., v = `(g∞(0)), where g and ` are the morphisms
defined by g : 0 7→ 01, 1 7→ 011 and ` : 0 7→ 012, 1 7→ 0022. Then the increasing sequences of integers
defined by v−1(0), v−1(1), v−1(2) form a partition of the set of positive integers N∗. Furthermore:

• v−1(0)= {1, 4, 5, 8, 11, 12, 15, 16, 19, 22, . . .} is equal to the sequence of integers (2bnϕc− n)n≥1,
where ϕ is the golden ratio 1+

√
5

2 (OEIS A050140).

• v−1(1)= {2, 9, 20, 27, . . .} is equal to the sequence of integers (4bnϕc+ 3n+ 2)n≥0.

• v−1(2)= {3, 6, 7, 10, 13, 14, 17, 18, 21, 24, . . .} is equal to the sequence (2bnϕc− n+ 2)n≥1 (that
is, 2+A050140).

Proof. We see from Lemma 24 that the positions of 2 in v are the same as the positions of 2 in xK. In
Section 4 it is proved that x−1

K (2)= (2bnϕc− n+ 2), see Example 30, and so the third assertion of the
theorem follows.

Inspection of the occurrences of 0 and 2 in `(0) and `(1) then shows the first assertion to be true too.

For the proof of the second assertion consider `(01)= 0120022, `(011)= 01200220022. Since g∞(0)
is a concatenation of the words g(0)= 01 and g(1)= 011, we see from this that the differences of indices
of the positions where 1’s in v occur are 7 or 11, and moreover, that a 0 in g∞(0) generates a difference
7, a 1 in g∞(0) generates a difference 11.

It is well known and easy to prove that g∞(0) equals the binary complement of the Fibonacci word
prefixed with the letter 1. From this it follows that 1v−1(1) is the Fibonacci word on the alphabet {11, 7}.
Now Lemma 8 gives the generalized Beatty sequence V = (4bnϕc+3n+2). The first element 2 in v−1(1)
is obtained by letting V start at n = 0 instead of n = 1. �

Remark 26. Some of the sequences above are images of Sturmian sequences by a morphism. Namely
v = `(g∞(0)), xK = k(g∞(0)). Such sequences are examples of sequences called quasi-Sturmian in
[Cassaigne 1998]. Their block complexity is of the form n+C for n large enough (C = 1 for Sturmian
sequences). These sequences were studied, e.g., in [Paul 1974/75; Coven 1974/75; Cassaigne 1998].

4. Generalized Beatty sequences and return words

In this section we show that generalized Beatty sequences are closely related to return words.

Theorem 27. Let xF be the Fibonacci word, and let w be any word in the Fibonacci language LF. Let Y
be the sequence of positions of the occurrences of w in xF. Then Y is a generalized Beatty sequence, i.e.,
for all n ≥ 0, Y (n+ 1)= pbnϕc+ qn+ r with parameters p, q, r , which can be explicitly computed.

Proof. Let xF = r0(w)r1(w)r2(w)r3(w) . . . , written as a concatenation of return words of the word w
(cf. [Huang and Wen 2015], Lemma 1.2). According to Theorem 2.11 in [Huang and Wen 2015], if we
skip r0(w), then the return words occur as the Fibonacci word on the alphabet {r1(w), r2(w)}. Thus the
distances between occurrences of w in xF are equal to l1 := |r1(w)| and l2 := |r2(w)|. We can apply
Lemma 8, which yields p = l1− l2 and q = 2l2− l1. Inserting n = 0, we find that r = |r0(w)| + 1, as the
first occurrence of w is at the beginning of r1(w). �

4.1. The Kimberling transform. Here we will obtain nonclassical triples appearing in another way,
namely as the three indicator functions x−1(0), x−1(1) and x−1(2), of a sequence x on an alphabet

http://oeis.org/search?q=A050140
http://oeis.org/search?q=A050140
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{0, 1, 2} of three symbols. In our examples the sequence x is a transform T (xF) of the Fibonacci
word xF = 01001010010010100 . . . . These transforms have been introduced by Kimberling. Our
main example is T : [001 7→ 2]. Replacing each 001 in xF = 01001010010010100 . . . by 2 gives
xK = 01201220120 . . . .

For the transform method T we can derive a general result similar to Theorem 27. However, since
Kimberling applies the StringReplace procedure from Mathematica, which replaces occurrences of w
consecutively from left to right, we do not obtain a sequence of return words in the case that w has
overlaps in xF. This restricts the number of words w to which Theorem 29 below applies.

Definition 28 [Wen and Wen 1994, pp. 593–594]. Let w be a factor of the Fibonacci word xF. We say
that w has an overlap in xF if there exist nonempty words x, y and z such that w = xy = yz, and the
word xyz is a factor of the Fibonacci word.

Theorem 29. Let xF be the Fibonacci word, and let w be a factor of xF that has no overlap in xF.
Consider the transform T (xF), which replaces every occurrence of the word w in xF by the letter 2. Let
Y be the sequence (T (xF))

−1(2), i.e., the positions of 2’s in T (xF). Then Y is a generalized Beatty
sequence, i.e., for all n ≥ 1, Y (n) = pbnϕc + qn+ r , with parameters p, q, r , which can be explicitly
computed.

Proof. As in the proof of Theorem 27, let xF = r0(w)r1(w)r2(w) . . . , written as a concatenation of return
words of the word w. Now the distances between 2’s in T (xF) are equal to l1 := |r1(w)| − |w| + 1 and
l2 := |r2(w)| − |w| + 1. We can apply Lemma 8, which gives p = l1− l2, q = 2l2− l1. Inserting n = 1,
we find that r = |r0(w)| − l2+ 1. �

Example 30. We take T : [001 7→ 2], with image T (xF)= 01201220120 . . . , so Y = (3, 6, 7, 10, . . . ).
Here r0(w)= 01, r1(w)= 00101, r2(w)= 001. This gives l1 = 3, l2 = 1, implying p = 2, q =−1 and
r = 2. So Y is the generalized Beatty sequence (Yn)n≥1 = (2bnϕc− n+ 2)n≥1.

The question arises whether not only T (xF)
−1(2), but also T (xF)

−1(0) and T (xF)
−1(1) are generalized

Beatty sequences. In general this is not true. However, this holds for T : [001 7→ 2].

Theorem 31. Let T : [001 7→ 2], and let xK := T (xF). Then the three sequences x−1
K (0), x−1

K (1), x−1
K (2)

form a complementary triple of generalized Beatty sequences.

Proof. According to Example 30 we have that x−1
K (2) = (2bnϕc − n+ 2)n≥1. Since clearly x−1

K (0) =
x−1

K (1)− 1, our remaining task is to prove that (Z(n))n≥0 := x−1
K (1) is a generalized Beatty sequence.

The return word structure of the word w = 001 in xF is given by

r0(w)= 01, r1(w)= 00101, r2(w)= 001.

Note that Z(0)= 2, the 1 coming from r0(w). This is exactly the reason why it is convenient to start Z
from index 0: the other 1’s are coming from the r1(w)’s — note that r2(w) is mapped to 2.

The differences between the indices of occurrences of 2 in xK are given by the Fibonacci word
3133131331 . . . , which codes the appearance of the words r1(w) and r2(w). Therefore, to obtain the
differences between the indices of occurrences of 1 in xK, we have to map the word w′ = 13 to 4,
obtaining the word u = 343443 . . . . To obtain a description of u, we apply Theorem 27 a second time
with w′ = 13. We have r0(w

′) = 3, r1(w
′) = 133, r2(w

′) = 13. So l1 = |r1(w
′)| − |w′| + 1 = 2, and

l2= |r2(w
′)|−|w′|+1= 1, which gives p= l1− l2= 1, q = 2l2− l1= 0. The conclusion is that positions
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of 4 in u are given by the generalized Beatty sequence (bnϕc+ 1)n≥1. This forces that u is nothing else
than the Fibonacci word on {4, 3}, preceded by 3. But then Z is a generalized Beatty sequence with
parameters p = 1, q = 2. Since Z(1)= 5, we must have r = 2, which happens to fit perfectly with the
value Z(0)= 2. �

Here is an example where T (xF)
−1(0) and T (xF)

−1(1) are not generalized Beatty sequences.

Example 32. We take T : [00100 7→ 2], with image T (xF) = 010010121010010121012 . . . , so Y =
(8, 17, 21 . . . ). Here r0(w)= 0100101, r1(w)= 0010010100101, r2(w)= 00100101. This gives l1 = 9
and l2 = 4, so p = 5 and q =−1 and r = 4. Therefore Y is the generalized Beatty sequence (Yn)n≥1 =

(5bnϕc− n+ 4)n≥1. The positions of 0 are given by (T (xF))
−1(0)= 1, 3, 4, 6, 10, 12, 13, . . . , with dif-

ference sequence 2, 1, 2, 4, 2, 1, . . . , so by Lemma 8 this sequence is not a generalized Beatty sequence.
However, it can be shown that (T (xF))

−1(0) is a union of four generalized Beatty sequences, and the
same holds for (T (xF))

−1(1).

Here is the general result.

Theorem 33. For a nonoverlapping word w from the Fibonacci language let T : [w 7→ 2], and let
Y := T (xF). Suppose w satisfies

|r0(w)| ≤ |r1(w)| − |w|. (SR0)

Then the three sequences Y−1(0), Y−1(1), Y−1(2) are finite unions of generalized Beatty sequences.

Note that we already know by Theorem 29 that Y−1(2) is a single generalized Beatty sequence.
Condition (SR0) states that r0(w) is short relative to r1(w).

For the proof of Theorem 33 one needs the following proposition.

Proposition 34. Let w be a word from the Fibonacci language, and let r0(w)r1(w)r2(w) . . . be the
return sequence of w in the Fibonacci word xF. Then:

(i) r0(w) is a suffix of r1(w).

(ii) If r2(w)= wt2(w), then t2(w) is a suffix of r1(w).

Proof. Let s0 = 1, s1 = 00, s2 = 101, s3 = 00100, . . . be the singular words introduced in [Wen and
Wen 1994]. According to [Huang and Wen 2015, Theorem 1.9] there is a unique largest singular word
sk occurring in w, so we can write w = µ1skµ2, for two words µ1, µ2 from the Fibonacci language. It
is known — see [Wen and Wen 1994] and the remarks after [Huang and Wen 2015, Proposition 1.6] —
that the two return words of the singular word sk are

r1(sk)= sksk+1, r2(sk)= sksk−1.

According to [Huang and Wen 2015, Lemma 3.1], the two return words of w are given by

r1(w)= µ1r1(sk)µ
−1
1 , r2(w)= µ1r2(sk)µ

−1
1 .

Substituting the first equation in the second, we obtain the key equation

r1(w)= µ1sksk+1µ
−1
1 , r2(w)= µ1sksk−1µ

−1
1 . (6)
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Proof of (i): We compare the return word decompositions of xF by sk and by w:

r0(sk)r1(sk)r2(sk)r1(sk) . . .= r0(w)r1(w)r2(w)r1(w) . . .

= r0(w)µ1r1(sk)µ
−1
1 µ1r2(sk)µ

−1
1 µ1r1(sk)µ

−1
1 . . . .

It follows that r0(sk) = r0(w)µ1, and so r0(w) = r0(sk)µ
−1
1 . By [Huang and Wen 2015, Lemma 2.3],

r0(sk) equals sk+1, with the first letter deleted. Thus we obtain from (6) that r0(w) is a suffix of r1(w).

Proof of (ii): Since sk+1= sk−1sk−3sk−1, by [Wen and Wen 1994, Property 2], we can make the following
computation, starting from (6):

r1(w)= µ1sksk+1µ
−1
1 = wµ

−1
2 sk+1µ

−1
1 = wµ

−1
2 sk−1sk−3sk−1µ

−1
1 = wµ

−1
2 sk−1sk−3µ2µ

−1
2 sk−1µ

−1
1 .

For r2(w) we have
r2(w)= µ1sksk−1µ

−1
1 = wµ

−1
2 sk−1µ

−1
1 .

Now note that in this concatenation µ−1
2 cancels against a suffix of w. We claim that it also cancels

against a prefix of sk−1. This follows, since by [Huang and Wen 2015, Proposition 2.5] any occurrence
of sk in xF is directly followed by a sk+1 = sk−1sk−3sk−1 with the last letter deleted. It now follows that
t2(w)= µ−1

2 sk−1µ
−1
1 , and we see that this word is a suffix of r1(w). �

Proof of Theorem 33. In view of property (ii) in Proposition 34, the return words of w can be written as

r1(w)= wm1(w) t2(w), r2(w)= w t2(w),

for some words m1(w) and t2(w). Let Z := Y−1(2) be the positions of the letter 2. If t2(w) is nonempty,
then any letter in t2(w) occurs in Y := T (xF) in positions which are just a shift −|t2(w)|, . . . ,−1 of Z ,
so each letter occurs according to a generalized Beatty sequence. The word m1(w) is never empty, and
any letter in m1(w) occurs in Y = T (xF) in positions which are a shift of a subsequence of Z (except,
possibly, for the first occurrence, which then is in r0(w)). This subsequence is obtained by replacing the
distances `1 and `2 of 1Z by `1+ `2 and `1. Moreover, these distances occur as the Fibonacci word xF

on the alphabet {`1+ `2, `1}, because xF is invariant under 0 7→ 01, 1 7→ 0. Thus each letter in m1(w)

occurs according to a generalized Beatty sequence. All these |t2(w)|+ |m1(w)| sequences start at index 1.
If we let the last |r0(w)| of these sequences start at index 0, then we have taken into account all elements
of Y . This works, because of property (i) in Proposition 34. �

Here is an example where (SR0) is not satisfied.

Example 35. We take T : [10100 7→ 2], with image T (xF)= 01002100221002 . . . , so Y = (5, 9, 10 . . . ).
Here r0(w)= 0100, r1(w)= 10100100, r2(w)= 10100. The positions of 0 are given by the sequence
(T (xF))

−1(0)= 1, 3, 4, 7, 8 . . . , which can be written as a union of two generalized Beatty sequences,
except that the position 1 from the first 0 in T (xF) will not be in this union.

With (6) we can deduce an equivalent simple formulation of condition (SR0). If w = µ1skµ2, then
r0(w) equals sk+1µ

−1
1 with the first letter removed, and r1(w)= µ1sksk+1µ

−1
1 , so

|w| = |µ1| + Fk + |µ2|, |r0(w)| = Fk+1− |µ1| − 1, |r1(w)| = Fk+1+ Fk .
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Filling this into condition (SR0) we obtain

|µ2| ≤ 1. (SR0′)

Using this condition, together with Theorem 6 in [Wen and Wen 1994], one can show that Theorem 33
does apply to at most 3 words w of length m, for all m ≥ 2 (in fact, only 2, if m is not a Fibonacci
number).
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