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The family of Weisfeiler—Leman equivalences on graphs is a widely studied approximation of graph
isomorphism with many different characterizations. We study these and other approximations of isomor-
phism defined in terms of refinement operators and Schurian polynomial approximation schemes (SPAS).
The general framework of SPAS allows us to study a number of parameters of the refinement operators
based on Weisfeiler—Leman refinement, logic with counting, lifts of Weisfeiler—Leman as defined by
Evdokimov and Ponomarenko, the invertible map test introduced by Dawar and Holm, and variations of
these, as well as to establish relationships between them.

1. Introduction

For convenience, we shall treat graphs as arc-coloured complete digraphs; that is to say, as labelled
partitions of the set of ordered pairs of vertices (hereafter, we refer to the latter as arcs). For example,
an undirected simple graph can be seen as a partition of its arcs into edges, nonedges, and loops. As
such, the graph isomorphism problem is that of deciding whether there is a colour-preserving bijection
between the sets of vertices of two given graphs. Computationally, this problem is polynomial-time
equivalent to finding the orbits of the induced action of the automorphism group of a given graph G on
a fixed power of its vertex set V [Mathon 1979]. For short, we refer to the partition of V* (for any fixed
k) obtained by this action as the orbit partition of V*. The graph isomorphism problem (and likewise
the problem of determining the orbit partition) is neither known to be solvable in polynomial time nor
known to be NP-complete. The best known upper bound to their computational time is quasipolynomial.
This follows from the well-known result by Babai [2016].

The classical Weisfeiler—Leman (WL) algorithm is a well-known method for approximating the orbits
of the induced action of the automorphism group of a given graph on the set of pairs of arcs. It can be
seen as a generalization of the so-called naive colour refinement. Given a graph G, the WL algorithm
produces a coherent configuration, which is a partition of the set of arcs of G satisfying certain stability
conditions (see Section 2 for the definition). A natural generalization of this algorithm was given by
Babai: for each k € N, the k-dimensional Weisfeiler—Leman (WLy) algorithm outputs a labelled partition
of k-tuples of vertices satisfying a similar stability condition and respecting local isomorphism. The
running time of the WL algorithm on a graph with n vertices is bounded by n°®). The case k = 1
coincides with the naive colour refinement, and k = 2 with the classical Weisfeiler-Leman algorithm.

It follows from a result by Cai, Fiirer, and Immerman [Cai et al. 1992] that there is no fixed k ¢ N
such that for all graphs the k-dimensional Weisfeiler—Leman algorithm outputs the partition of k-tuples
of vertices into orbits of the induced action of the automorphism group of the input graph. Indeed, the
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authors show how to construct a graph with O (k) vertices for which WL fails to produce the partition
into such orbits. Thus, their result implies that a partition induced by this group action can be obtained for
all graphs on n vertices only if one chooses k to be €2(n). One can informally claim that the strength of the
k-dimensional Weisfeiler—Leman algorithm increases with k. More precisely, for unlabelled partitions
P and Q of some set A we write P <4 Q, and say Q is a refinement of P; if, whenever a, b € A are in
the same equivalence class of Q, they are also in the same equivalence class of P. By viewing a labelled
partition of A as a function y : A — L to a set of labels L (which we sometimes refer to as the colour
set), the unlabelled partition induced by y is {7/_1 () | I € L}. We extend the partial order <4 to labelled
partitions by writing y <4 p to mean that the unlabelled partition induced by p refines that induced by
y. Note that this does not require that the codomains of y and p are the same. We omit the subscript A
when the set is clear from the context. For a graph I', define WL, (I') =T'; and for k > 2, set WL (") to
be the labelled partition of the set of arcs induced by the output of the k-dimensional Weisfeiler—Leman
algorithm on input I"'. We can now state the following:

WL (') < WLa(T') < -+ - < WL, (') = WLy (T) = - - - = WLoo (),

where 7 is the number of vertices of I' and WL (I") is the partition into the orbits of the induced action
of the automorphism group on arcs. Also,

WL (WL (")) = WL (T")

for all [, k € N with [ < k. This shows that the family of maps from the set of arc-coloured complete
digraphs to itself {WL{, WL,, ...} forms a Schurian polynomial approximation scheme in the following
sense, as defined in [Evdokimov and Ponomarenko 1999]:

Definition 1.1 (Schurian polynomial approximation scheme). A family of mappings {X, X, ...} is
said to form a Schurian polynomial approximation scheme (SPAS) if for any graph I with vertex set V:

(1) Xi(T") is a graph with vertex set V for all k € N.

2) X1 = Xo(T) =+ 2 X, (1) = Xpy1 (T') = -+ - = Xoo(I') = Sch(T"), where n = |V| and Sch(I")
is the partition of arcs into orbits of the induced action of the automorphism group of I".

3) X;(X,,(I') = X,,(I') forall I, m e N with [ < m.

(4) Xi(T") is computable in time no®,

More informally, one can think of SPAS as a collection of polynomially computable functions indexed
by N, each of which takes as input a partition and refines it. Moreover, the higher the index, the closer
the output partition is to the orbit partition of the set of arcs.

Definition 1.2 (dominance and equivalence of SPAS). For any two SPAS, Sy = {X1, X»,...} and
Sy={Y, Y2, ...}

(1) we say Sy dominates Sy, and write Sy < Sy, if for each k € N there is some k£’ € N such that
Y (') < Xy (') for all graphs I'.
(2) we say Sy is equivalent to Sy, and write Sy ~ Sy, if Sy < Sy and Sy < Sy.

(3) we say Sy strictly dominates Sy if Sy < Sx, but Sx A Sy.
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In this paper, we deal with the following SPAS: Swi, Sc, Sc.r, SwL.r» and Sivr). Such schemes arise
from considering fixed points of refinement operators. The formal definition of refinement operators is
given in Section 4. These are operators that take a partition y, of V¥, to a refinement of itself. The
SPAS Swi, and Sc arise from the following well-known concepts: Babai’s generalization of the classical
Weisfeiler—Leman algorithm for the former and first order logic with counting quantifiers for the latter.
In each case, the label of a tuple v € V¥ in the refined partition is determined by its label in y and the
partition of V that is induced by considering y (i) for the tuples # obtained by substituting elements of
V in v. For r € N, Swr,, and Sc,, are further generalizations of Swy, and Sc, respectively. In these
generalizations, the label associated to each k-tuple v is determined by y (v) and the partition of V"
obtained by considering y (i) for tuples u# obtained by substituting r-tuples in v. Formal definitions of
these are given later. Here we note that our first result shows that the parameter » does not strengthen
the SPAS Swi, and Sc.

Theorem 1.3. Foranyr € N, Swr >~ Sc >~ SwL.» >~ Sc.r-

The reasons for considering the additional parameter r is that it appears to be of interest in another
scheme we consider. The scheme Spw(r) arises from the invertible map game introduced in [Dawar
and Holm 2017]. It has been shown to have a close relationship to logics with linear algebraic opera-
tors [Dawar et al. 2019] over a field F. The associated refinement operator IME maps each k-tuple of
vertices v and partition y to a tuple of matrices, and the colour associated to v by the refinement of y is
determined by the equivalence class of this tuple of matrices under simultaneous similarity.

For this SPAS we prove the following results:

Theorem 1.4. For any field [ of characteristic 0, Spmr) = SwL-
Theorem 1.5. For any field F of positive characteristic, Symr) strictly dominates Swy.

The paper is structured as follows: after a brief overview of the required notions on coherent configu-
rations and algebras, we formally define and discuss the concepts of refinement operators and procedures.
We then prove Theorem 1.3 and use a similar method to show the equivalence between Swr, and Sgp, a
SPAS introduced by Evdokimov and Ponomarenko in [1999]. The final two sections contain the proofs
of Theorems 1.4 and 1.5 and a short discussion on a variant of the SPAS Spvr), namely Spvecry. This
variant is motivated by looking at the difference between the definitions of Swy, and Sc, and applying a
similar variation to the definition of Spmr). The discussion leads to a proof of the following:

Theorem 1.6. For anyﬁeld [F, SIM([F) ~ SIMt([F)-

Throughout the text, all sets are finite. Given two sets V and 1, a tuple in V' is denoted by v, and
its i-th entry by v;, for each i € I. We use the notation (v;);c; to denote the element of V! with i-th
element equal to v;. We set [k] ={1,2,...,k} CNand [k]") = {X € [k]" | x; #x; Vi, j €lr], i # j}.
Recall that a labelled partition of a set A is a function y : A — Imy. The class of all labelled partitions
of A is denoted by P(A). Recall also that for y, p € P(A), y < p denotes that the unlabelled partition
induced by p is a refinement of that induced by y. If y < p and y > p are both satisfied, we write y = p.
Note that y & p does not imply y = p, as they may have different codomains. The equivalence class of
a € A with respect to the partition y is denoted by [a],. Fix some set V and k, r € N with r < k. For
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any v e VK, e V", and 7 € [k]") we define v(7, u) € V¥ to be the tuple with entries

IR u;, if j =is for some s € [r],
((r,u));= .
v; otherwise.
Given two tuples v € V' and w € V*, their concatenation is denoted by v - w € V" +*. More precisely,
v - w is the tuple with entries

oo v, ifie]r],

(v-w)i={ o tielr]

w; ifi=j+r.

For a relation R € V2, we define the adjacency matrix of R to be the V x V matrix whose (u, v)-entry
is 1 if (u, v) € R and 0 otherwise. The set of multisets of elements of V is denoted by Mult(V'), and the
multiset of entries of a tuple v € V! is denoted by {{v; | i € I}}. For all y € P(V¥) and natural numbers

r <k, set ®”" =Im y[k]m.

2. Coherent configurations and coherent algebras

This section introduces notions on coherent configurations and algebras necessary throughout the paper.
For a more in-depth account see [Chen and Ponomarenko 2019] or [Cameron 1999]. Our formulation is,
in general, different from the more traditional treatment, as we deal with labelled partitions and extend
the notion of coherent algebras to arbitrary fields. Also note that rainbows and coherent configurations
were originally defined for unlabelled partitions. Thus, Definitions 2.1 and 2.2 define, strictly speaking,
a labelled rainbow and a labelled coherent configuration, respectively.

Definition 2.1 (rainbow). A labelled partition p of V2 is said to be a rainbow on V if:
(1) There is a set Z € Im p such that

U{feV2|p(z):o}:{(v,u)eV2|veV}. (1)

o€l
(2) Forall (u, v), (', v') € V2 pu,v) = p',v') = p(v,u) = p(v', u').

We set Cel(p) ={U C V |do eImp, p(u,u) = o, Yu € U} and call its elements the cells of p.

It was stated in the introduction that, in this paper, graphs are viewed as partitions of the set of their
arcs, hence as arc-coloured complete digraphs. For example, an uncoloured loop-free undirected graph
can be seen as a complete digraph with its arcs partitioned into three colour classes: edges, nonedges,
and loops. Hence, we can always see a graph as a rainbow in the above sense. This view is natural, since
our interest is in the partition into orbits of the induced action of the automorphism group on arcs, and
this partition is, necessarily, a rainbow. Furthermore, given any group action on V, the partition into the
orbits of the induced action on V2 forms a coherent configuration [Cameron 1999]':

Definition 2.2 (coherent configuration). A rainbow p on V is said to be a coherent configuration on V
if for each o, 7, k € Im p, there is a constant p¥_ such that for any (u, v) € V2 with p(u, v) =«,
[lx eV IpQu,x) =0, px,v) =1}| = p..

1Although all group actions give rise to coherent configurations, not all coherent configurations arise from group actions;
see [Cameron 1999].
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Observe that if X is a union of cells of a coherent configuration, the restriction p|x2 is a coherent
configuration on X.

The constants p7 . are called the intersection numbers of p and may be interpreted algebraically as
follows: For every o € Imp, let A, be the adjacency matrix of the relation p~!(c). Then for all
o, 7 €lmp,

AcAr =) ptiA..

kelmp

Thus, taking p%_ as rational numbers in a field F of characteristic zero, we see that the F-span of the
set A, ={A, | 0 € Im p} is an F-algebra. The same is true if we take [ to be a field of characteristic g
and consider the constants p%_ modulo g. We refer to this algebra as the F-adjacency algebra of p and
denote it by [FA,. Such an algebra is a coherent algebra in the following sense:

Definition 2.3 (coherent algebra). A subalgebra of Maty (F) is said to be a coherent algebra on V if itis a
unital algebra with respect to matrix multiplication and Schur—-Hadamard (componentwise) multiplication
, and it is closed under transposition.

We indicate the Schur—Hadamard multiplication by * 2. At this point, it needs to be pointed out
that in most literature, when F = C, closure under transposition is usually replaced by closure under
Hermitian conjugation for the definition of a coherent algebra. However, we show in Proposition 2.6,
that an algebra satisfies Definition 2.3 if and only if it has a basis of 0-1-matrices satisfying the coherence
conditions (Definition 2.4). In Section 2.3 of [Chen and Ponomarenko 2019] it is shown that an algebra
over C satisfies Definition 2.3 with closure under transposition replaced by closure under Hermitian
conjugation if and only if it has a basis of 0-1-matrices satisfying the coherence conditions. Hence, over
C, Definition 2.3 is equivalent to the original one by D. Higman in [1987], but has the advantage that it
can be extended to any field.

It is clear from the definition, that for any coherent configuration p, the F-adjacency algebra F.A, is a
coherent algebra for any field [. Indeed, the set A, is the unique basis of 0-1-matrices for F.A, satisfying
the coherence conditions:

Definition 2.4. A set of 0-1-matrices M is said to satisfy the coherence conditions if:
(1) > 4cp A =1J, where J is the all 1s matrix.
(2) Forsome Z C M, Y, _; A =1, where [ is the identity matrix.
(3) A’ e M forall A e M.

We now show that any coherent algebra over any field has a unique basis of 0-1-matrices satisfying the
coherence conditions. We refer to this basis as the standard basis of a coherent algebra. The argument
that follows is analogous to that used to prove Theorem 2.3.7 in [Chen and Ponomarenko 2019].

Let W be a coherent algebra over V. As explained in Section 2.3 in [Chen and Ponomarenko 2019],

one may write
I=>E, )
ielr]

2In the literature, the Schur—Hadamard multiplication is often denoted by o. However, we reserve the latter for function
composition.
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where {E; | i € [r]} is the full set of primitive idempotents of W with respect to the Schur—Hadamard
product. In order to be an idempotent, E; must be a 0-1 matrix; and hence, the adjacency matrix of some
relation R; € V2. Since for i # j, E; and E; are orthogonal, for all u, v eV, (Ej)yy =1= (E;)yy =0.
Thus, from (2), it follows that {R; | i € [r]} forms a partition of V2.

Lemma 2.5. {E; | i € [r]}, as above, satisfies the coherence conditions.

Proof. Condition (1) of Definition 2.4 is satisfied because of (2). Because | € W is an idempotent, it can
be written as a sum of primitive idempotents. Thus, {E; | i € [r]} satisfies condition (2) in Definition 2.4.
Finally, E! is also a primitive idempotent, since W is closed under transposition. (I

Proposition 2.6. For any field F, a coherent algebra on V over F has a unique basis of 0-1-matrices
satisfying the coherence conditions.

Proof. The set B ={E; | i € [r]} satisfies the coherence conditions by Lemma 2.5.

Suppose F is algebraically closed. Then B is a basis for W, since W is commutative with respect
to the Schur-Hadamard product and a basis of a semisimple commutative algebra over an algebraically
closed field is given by the set of its primitive idempotents.

Suppose [ is not algebraically closed. Since B is a linearly independent set, there is some B € W
such that B U B’ is a basis for W. Let G be the algebraic closure of F, and consider the linear space
G(B U B’) C Maty (G). By construction, G(B U B’) is closed under transposition, matrix multiplication,
and Schur-Hadamard multiplication and is thus a coherent algebra over G. From the above, G(B U B’)
must then have a basis B” of 0-1-matrices satisfying the coherence conditions. Since all entries of the
elements of B” are 0 and 1, B” C F(BU B’) is a basis for W as well. As B” is a set of primitive orthogonal
idempotents of W, it holds that B” C B. But B is a linearly independent set, and B” is a basis for W.
Whence B” = B ={E; | i € [r]}.

The uniqueness of B follows from (2), which implies that any basis of 0-1 matrices satisfying the
coherence conditions must be the set of primitive idempotents of W. U

We can denote a coherent algebra on V over [ as F.4, where A is some set of 0-1-matrices satisfying
the coherence conditions. It is easily seen that for any (u, v) € V2 and binary relations S and T on V
with adjacency matrices Ag, A7 € Maty (IF), respectively,

{xeV |, x)eS, (x,v) €T} =(AsAT)u 3)

if char(F) = 0. Set pw : V2 > [r] to be ow(u,v) =1iif (u, v) € R;. Since there are constants pfj el
such that

K
EiEj= Z Pi; Ex,
kelr]

it then follows that
ph=|lx eV ]pwu, x) =i, pw(x, v)=j}| )
is the same for all (u, v) such that pw (u, v) = k; and hence, pw is a coherent configuration. Otherwise,

if F has characteristic ¢ > 0, (3) holds modulo ¢. In particular if ¢ > | V|, pw is a coherent configuration.

Remark 2.7. In the literature, coherent algebras over a field F of positive characteristic have usually
been defined to be the F-span of the adjacency matrices of the relations {p~"(0)|o € Im p} for some
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coherent configuration p. The latter discussion thus shows that, over fields of positive characteristic,
Definition 2.2 defines a potentially larger class of algebras.

The most intuitive morphisms between coherent configurations arise from the algebraic setting. Let
A, A’ C Maty (F) satisfy the coherence conditions.

Definition 2.8 (isomorphism of coherent algebras). An F-linear bijection ¢ : FA — FA’ is said to be an
isomorphism of coherent algebras if:

ORI
2) v =J.
(3) Y(AB) = ¥ (A)Y(B) and ¥ (A B) = ¥ (A) » ¥ (B), forall A, B € FA,.

That is, ¢ preserves the structure of F.A, both as a matrix algebra and as an algebra, with respect to
*. As a consequence, the image under ¥ of an element of the standard basis of .4 must be an element
of the standard basis of F.A’, since the standard basis of a coherent algebra is the set of its primitive
idempotents with respect to . Conversely, the F-linear extension of any bijection between the standard
bases of F.A and FA’ is a coherent algebra isomorphism provided it is also a matrix algebra isomorphism.

Let p and p’ be coherent configurations and denote their intersection numbers by p%_ and qgit,, re-
spectively.

Definition 2.9 (algebraic isomorphism). A bijection ¢ : Im p — Im p’ is said to be an algebraic isomor-

phism if for all o, 7, k € Im p,
@ (r)

Por = 4g()p(0)-

Thus, an algebraic isomorphism between coherent configurations induces a bijection between the
standard bases of their respective adjacency algebras. Such a bijection linearly extends to a coherent
algebra isomorphism.

Crucial to this paper is the fact that when coherent algebras are semisimple (with respect to matrix
product), isomorphisms between them assume a very simple form. Indeed, it is an easy consequence of
the Skolem—Nother Theorem that if i : W, — W, is an algebra isomorphism, where W and W, are
semisimple subalgebras of Mat, (F), then there is some S € GL,(F) such that ¢ (A) = SAS™! for all
A € W;. The following is a direct consequence of Theorem 4.1.3 in [Zieschang 1996]3:

Theorem 2.10. The Jacobson radical of a coherent algebra F A is a subspace of the span of the elements
of the standard basis whose number of nonzero entries is divisible by char(F).

For a coherent configuration p on V, choose u, v € V such that p(u,v) =0 and p(u,u) = 1. It
follows from formula (2.1.5) in [Chen and Ponomarenko 2019] that

o @) =lp""@I|{xeV]pw, x)=0}.

Since both factors on the right-hand side are no larger than | V|, it is clear that the prime factors of the
size of any equivalence class of p is no larger than |V]|.

3The author actually proves this statement for coherent algebras whose diagonal matrices are multiples of the identity matrix.
However, the same argument applies to the more general case; and, in particular, to our more general notion of coherent algebras
in the sense of Definition 2.2.
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Corollary 2.11. A coherent algebra on V over [ is semisimple with respect to matrix product if char(F) =
0 or char(F) > |V|.

3. Graph-like partitions

In this section, we describe some restrictions to be imposed on the partitions dealt with in the paper.
Such restrictions are natural in the sense that they are necessary conditions to be satisfied by a partition
of k-tuples into the orbits of an induced action of a group on 1-tuples.

Fix some k € N, a set V, and let y € P(V*). Define an action of Sym(k) on V¥ by letting, for each
T € Sym(k), v7 be the element of V* with i-th entry Vr=1j)-

Definition 3.1 (invariance). y is invariant if y (i) = y (V) = y %) = y(v?) for all i, v € V¥ and all
T € Sym(k). *

Fix some r € [k] and 7 € [k]". For a tuple v € VK we define its projection on 1, denoted pr;T), to be
the tuple in V" with j-th entry v;;. Without ambiguity, we write pr, v for the tuple pr(; . We denote
by pr,y the partition of V" given by

.....

pr.y () =y (U1, V2, .\ Upy Uy e, U,
and call it the r-projection of y. Note that if y is invariant, then for any r < k, pr, y is invariant.
Definition 3.2 (r-consistency). y is said to be 7-consistent for some 7 € [k]” if for all i, v € V¥,
y (i) =y (V) = pr,y (pr;ui) = pr,y (pr;V).
If, in addition, y is 7-consistent for all 7 € [k]", we say that y is r-consistent.

Observe that if for some r < k, y is r-consistent, then it is 7-consistent for all # < r. One may also
verify that if y is invariant, then it is k-consistent if and only if for all i, v € V¥,

Y(Pry_yi - ug—1) =y (pry_ v - vi_1). &)

Definition 3.3 (graph-like partition). y is said to be a graph-like partition of V* if it is invariant, r-
consistent for all » < k, and for all u, v € V¥,

y@)=y@) = (u; =u; = v; =v;, Vi, j €[k]). (6)

Note that if y is graph-like, then pr,y is graph-like for all # € [k]. An example of a graph -like partition
is that of a coherent configuration, as introduced in Section 2.

Proposition 3.4. A coherent configuration is a graph-like partition.

Proof. Let p be a coherent configuration on V. Then p is a rainbow, and hence satisfies conditions (1)
and (2) of Definition 2.1, from which we deduce that it is invariant and satisfies (6). To show that it is
1-consistent, let u, v, u’, v’ € V be such that p(u, v) = p(u’, v'). For any o € Im p,

{xeV]|pux)=0}= U {(xeV]|pu,x)=0,px,v)=r1}.

telmp

4The concept of an invariant partition has already been introduced in Theorem 6.1 in [Evdokimov and Ponomarenko 1999].
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The size of the right-hand side of the above equation is independent of the choice of (u, v) from the
equivalence class [(«, v)],. In particular, if o = p(u, u), then because p(u,v) = p(u’, v') there is
exactly one x € V such that p(u’, x) = o, namely x = u’. Hence, p(u, u) = p(u’, u’), and 1-consistency
of p follows. [l

Arguments of this kind appear repeatedly in our proofs of Theorems 1.3, 1.4, and 1.5.
Another graph-like partition which will be useful throughout the paper is that of atomic types of
k-tuples of vertices of a graph I', which we indicate by o . To be precise, we define

-

apr: VE— (Im DM §s (T, Vi), ek
where, as the reader may recall, we view graphs as labelled partitions.
Definition 3.5 (I"-partition). We say that y is a ['-partition if o r <y for some graph I'.
The following result is a useful property of graph-like partitions.
Lemma 3.6. For any graph-like y € P(VX) and any i, v € V¥ such that y (i) = y (V),
y (7, pryu)) = y ({1, pryv))
forall7 e [k]") and ] € [k]".

Proof. Let ii, ¥ be as in the statement. For any s, t € [k], y (1 (s, v;)) = ¥ (¥{s, u;)) holds true by invariance
and (k — 1)-consistency of y.

Fix some r <k and set &’ = pr;u and v’ = pr;u for some j € [k]". Suppose that y (v(7, V")) =y (u(7, u'))
holds for all 7 € [k]"). Because r < k, there is some i’ € [k] which is not an entry of 7. For some [ € [k],
let x = v; and y = u;. Then,

y (@7, 0D x) = y (@7, @) y))
by invariance and (k — 1)-consistency of y. From this, one concludes that

./

y@(7-i,0 - x) =y @(7-i'u' - y));
and hence, by setting g = J -1,
7

y(0(7 -1, pryv)) = y (7 -i', prgii)).

We deduce the desired statement by induction. O

4. Refinement operators and procedures
As previously stated, all the SPAS in this paper arise from refinement operators, which we now define.
Fix some k € N.

Definition 4.1 (refinement operator). A k-refinement operator R is a mapping which, for each set V,
assigns to each y € P(V¥) a partition Roy € P(V¥) such that y < Roy.

Since labelled partitions are seen as mappings, the symbol o really indicates composition thereof.

Definition 4.2 (fixed point). y € P(V¥) is said to be a fixed point of a k-refinement operator R if y &~ Roy .
In such cases, we also say that y is R-stable.
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Fix some y € P(V¥), set X =y and X’ = R o X'~!. We then have an increasing sequence
X0<x'<.. <X <

Because all elements of this sequence are bounded by a labelled partition of V¥ with exactly one element
per equivalence class, there must be some s € N such that for all i > s, X' is fixed point of R. For the
smallest such s, denote X* by [y]%.

Definition 4.3 (graph-like operator). A k-refinement operator R is graph-like if R o y is graph-like for
all graph-like y € P(V¥) and sets V.

Definition 4.4 (refinement procedure). The family of mappings {R;, R», ...} is said to be a refinement
procedure if, for each k € N:

(1) Ry is a graph-like k-refinement operator;
(2) if y is a graph-like fixed point of Ry then pr,_,y is a fixed point of Ry_;; and
(3) for all sets V and y € P(V¥), [y]® is computable in time |[V]0W,

For each k, r € N, the k-refinement operators of interest in this paper are the Weisfeiler—Leman oper-
ators WLy ,; the counting logic operators Cy ; and, for any field F, the invertible map operators IM,[E.
For the former two, we are really interested in the case when r < k. Thus, when k < r, for convenience,
welet WLy , oy =Cy, oy =y forall y € P(V¥) and sets V. For r < k define

WLy, oy : VK= Imy x Mult(d”")V", v (Y @), {y @7, @)oo i € V).
Crroy:VE—Imy x Multmy " DM, 5 (v @), ({y G(7, @) i € VI ygo)-

Let Xa " be the adjacency matrix of the binary relation {(x, y) € V? | y (¥(7, (x, y))) = o }. Similarly to
above, set IM[F oy = IM[F oy = y; and, for k > 2 define

2) - - h
Moy : VE = Imy x Maty ()™ 77/ ~) 5 (v @), (o etmyicmgo)s

where ~ is the equivalence relation on elements of Maty (F)™? x[K? ynder simultaneous similarity. That
is, two tuples are equivalent if they lie in the same orbit of G Ly (F) acting on the tuples by conjugation.
Although the reader may find the above definitions rather technical, they are not crucial throughout the
paper. Indeed, for k > r and i, v € V¥, the following facts are sufficient:

(1) WLy, 0y (i) = WLy, 0 y (D) if and only if y (if) = y (¥), and for all ¢ € " and T € [k]©)
X eV |y@(i,3) =¢i}| = [(X e V" |y ({7, X)) = ¢}|.

(2) Crroy (@) =Cy, oy (@) if y(u) =y (¥), and for all 0 € Imy and 7 € [k]")
{(XeV [y@(i,X) =0} =|{x e V" | y(U(7,X)) =0}|.

3) IM,[E oy(u) = IM,”; o y(v) if and only if y () = y(v), and for each 7 € [k]® there exists some
S € GLy (F) such that for all o € Im y,

Yl g—1 _ V.0
SX?,U ST = X?,a :

From this, one may derive the following stability conditions:
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Proposition 4.5. Forany y € P(V¥) and k > r:
(1) y is WLy .-stable if and only if for all ¥ € V¥, 7 € [k]7), and ¢ € ®V", the size of the set {¥ € V" |
y (U(7, X)) = ¢} is independent of the choice of vV from the equivalence class [V],.
(2) y is Cy ,-stable if and only if for all v € V*,7 € [k]"), and o € Imy, the size of the set {x € V' |
y (U(1, X)) = o} is independent of the choice of v from the equivalence class [V],.
Q) yis IM,[E—stable ifforallii,v € VK and7 e [k]?,
y(@) = y(¥) = 35 € GLy(F), Sx'S™' = 4", Yo e Imy.
Consider the following families of mappings:
(1) Forall r € N, WL, = {WL{,, WL, ...}.
(2) Forallr eN, C, ={Cy,,Co,...}.
(3) For any field F, IM(F) = {IM}, IM}, ... }.
Proposition 4.6. The families WL,., C,, and IM(F) are refinement procedures for all r € N and fields T.

For the proof of Proposition 4.6 and that of the next auxiliary lemma, we use the following notations
and conventions. Fix a graph-like partition y € P(V*). Let ¥ = pr,_,y, and for all v € V¥, if 0 = y (¥),
let & = y(pr;_,v). For w € Sym(k), we let 0™ = y(v") and define an action on [k]® by setting
(m(7)); =n(i;) for all j € [r]. For any v € V¥, we denote v’ = pr;_, v - v—;. Note that & and o™ are
well defined, since y is graph-like.

Lemma 4.7. Let 1 € [k]".
(1) Ifk is an entry of 1, then y (V' (7, X)) = y (V(1, X)).

(2) If k — 1 is an entry of 1, but k is not; then y (V" (1, X)) = y(V'(7, X)), wherem = (k — 1, k) is a
transposition of Sym(k).

(3) If neither k nor k — 1 are entries of 1, then y (v(1,x)) =0 = y (V'(1, X)) = &. In particular,

FeV ly@ (@, Mm=c= |J FeV Iy@(i ) =0} (7)
ogl_nllcy

Proof. Statements (1) and (2) are trivial to check.

Let w = v(7, X) with y (W) = o. Then w’ = v'(7, X), so y(w’) = & by definition. From this, and the
fact that y is (k — 1)-consistent, the right-hand side of (7) is a subset of the left-hand side. The reverse
inclusion follows from the definition of & in terms of o, and statement (3) follows. U

Proof of Proposition 4.6. We check that each of the families of mappings satisfy the conditions in
Definition 4.4. Note that y < R o y for any k-refinement operator R. Hence, since y is graph-like, for
any ii, v € VK, Roy (i) = Roy (V) implies that u; = u; = v; = v; for all i, j € [k]. Thus, to show that
R oy is graph-like, it suffices to verify that R o y is invariant and satisfies (5). That is, for all u, v € vk,
Roy(@)=Roy(®) = Roy(')=Roy®).

WL, is a refinement procedure. We first show that WLy , o y is invariant and satisfies (5), and is
thus a graph-like partition.
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Suppose WLy, o y (i) = WLy, o y (V). Then y () = y () by definition, and hence y (%) = y (v")
since y is graph-like and thus invariant. Furthermore, from the invariance of y, it follows that, for all
T € Sym(k) and ¢ € ®77,

FeV |y@(z(7), %) = ()", Vi e [k]) = (X e V" | y(¥(7, %)) = ¢7, V7 € [k]"}.

Hence, WLy , o y is invariant.
For all ¢ € V", let ¢7 € &7 be defined as

o7 if neither k nor k — 1 are entries of 7,
qb; ={ (¢p)™ ifk—1isanentry of 7,
on otherwise,

where 7 = (k — 1, k) € Sym(k). Observe that if {X € V’ |y (W (7, %) =y, VT e[k]"}is nonempty for
some v € V¥ and w € &7, then w qﬂ for some qﬁ € @77, It follows from the definition of (1)‘ and
Lemma 4.7 that

eV Iy@(, )=y, Vielkl”)= J eV |y@(I, ) =¢, Viekl”). ®
d)Ed)V’
i

Since WLy, 0 (i) = WLy, o y (D) for all ¢ € d7-",

[ eV 1y (T, %) =¢r, YT e K1V} = [{¥ e V" |y (§(7, %) = ¢r, VT € [K]}].
Thus, because the right-hand side of (8) is a disjoint union, we deduce that

[(E eV |y@(1,30)=¢;, Viek]”}| =[(x e V' | y@(7.5) = ¢r, VT € [k]"}],

for all q’) € ®¥". This implies WLy, oy (i) = WLy, oy (¥ ) and hence, that WLy , o y is graph-like.
Suppose now that y is WLy .-stable. Observe that for all ¢ € VT,

eV P 3(i. i) =¢;, Viek-11")= | ] (EeV Iy@(.3)=v: ¥iek]”}. )
Jewrs
Vi=¢r, Viek—1]")

From the WL, ,-stability of y and the fact that y (ii) = y (9), it follows that for all § € &,
(X e V! |y @1, %) =y7, Vi€ K17} = {F € V" | y (0(7, X)) = vz, VT € [K]}].
Since the right-hand side of (9) is a disjoint union, it holds that for all $ € V7,
(¥ eV | y(pr_ (1, X)) =¢i, Vielk—1") =[{Xe V" | y(pr,_ (7. X)) = ¢, YT €[k —117}].

Thus, ¥ is WLi_ ,-stable.

To see that the stable partition [y W™ can be computed in time |V|°® note that the number of
iterations of the refinement operator before the fixed point is reached is at most |V |¥. At each step, for
each k-tuple v, we need to compute the colour WLy , o y (v), which involves checking the colour of k| V|
distinct tuples. The total time required at each step is therefore O (k|V [¥*!). Repeating this for |V |¢
steps gives us the required bound.
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C, is a refinement procedure. The proof, in this case, is similar to that of WLy ,.
Suppose Cy., o y (it) = Cy., o ¥ (v). The invariance of y implies that y (#%) = y (v") and that

XeV |y@(t(i), X)) ="} ={x e V" |y (i, X)) =0},
for all T € Sym(k) and 7 € [k]"). Hence,
(X eV |y@(z(i),X) ="} =[{xe V" |y@ (x(1),X)) =07}

Therefore, Cy oy (u") = Cy - o y (v7); thus showing that Cy , o y is invariant.
As y is graph-like and Cy, oy (it) = Cy., o y (0), it follows from (1) in Lemma 4.7 that for all 7 € [k]"”)
with some entry equal to k,

eV Iy@(1.3) =0l =|[Fe V' |y@(.3) =0}l (10)
If 7 € [k]") has an entry equal k — 1 but none equal to k, then (2) in Lemma 4.7 implies that
[(FeV y@(1.3) =0} =X eV |y@ (x(7). ) =0}.

From the invariance of Cy , o ¥, we deduce that (10) holds also for such values of 7. Finally, if no entry
of 7 is equal to k or k — 1, y satisfies (7). As the right-hand side of the latter is a disjoint union and for
alloc eImy

’

X eV |y@(i,3) =o)|=[{X e V" | y(¥(1, X)) =0}

it follows that (10) holds also when neither k nor k — 1 are entries of 7. Thus, Cy , oy (4') = Cy, o ¥ (V')
and Cy , o y is therefore graph-like.
Suppose y is Cg ,-stable. Since y is graph-like, it holds that

eV |ypn_ 0,0y == |J (FeV 1y@(E ) =0, (11)
Ugl_n’lcy

for all 7 € [k — 11" and «x € Im ¥ . Since the right-hand side of the above is a disjoint union and

X eV | y@(i, X)) =0} =|[{xeV"|y(¥(i, X)) =0)

9’

it then follows from (11) that
(X e VI [ 7(pry_yii(T, X)) =0} = [(X e V' | ¥ (pr,_ 9(7, X)) = o}

Thus, y is Ci¢_ ,-stable.

A very similar argument to the case of WLy, shows that [y]% can be computed in time |V|9®.

IM(F) is a refinement procedure. We proceed via the same proof strategy as for the above refinement
procedures.

Suppose IM,E oy(il) = IM,[E oy (V). Then y (u) = y (v); and hence, y (u®) = y (v°) for all T € Sym(k).
Note that for any o € Imy, X{f = Xry(’lfr ), o*. From this one deduces that IM,[(F oy (') = IM}E oy (¥Y);
whence, IM}E oy is invariant.
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From Lemma 4.7, it follows that Xfy’ = X* U if k is an entry of 7; X~ - X;’(?; , if k—11is an entry
of 7, but k is not; and
W= xl

K§Im 1%
K=0
if neither k nor k — 1 are entries of 7. Since Sxa Vgl = )(a “ for all o € Im y, then SXV 5l = X;’f,
for all o € Im y. From this, IMk oy = IMk o y(v’) follows and thus, IMk oy is graph -like.
From the fact that y is graph-like we deduce that for all 7 € [k — 1]®),

VPt V.0
X?,o* - z : X?,K :

kelmy
K=0

VPt g 1_X3/p" ¥ for all o € Im y. In particular,

Thus, 1fSX S = Xq forallo € Imy, then SX
if y is IMk stable then ¥ y is IMk |-stable.

Finally, showing that [y ]™: can be computed in time |V|?® is similar to the previous cases. Again,
the number of refinement steps is at most |V [¥. However, at each step, and for each pair of tuples, we
need to perform a simultaneous similarity test. For this, we rely on the fact that simultaneous similarity
is decidable in polynomial time. This follows from the fact that testing simultaneous similarity can be
reduced in polynomial time to testing module isomorphism (see [Chistov et al. 1997], for example), and
the polynomial-time algorithm for the latter problem over any field is given by Brookbanks and Luks

in [2008]. ]

For a refinement procedure R={Ry, R,, ...}, let SR = {R1, R3, ...} be the family of mappings where
for all graphs I, R () =T and R (') = prZ[ak,r]Rk for k > 2. Then, from the above discussion, SR is
a SPAS. We define Swr., = {WLi,,, WLa,,, ...}, Sc., = {C1,, Car, ...}, and Spuer) = {IMF, IME, ...}
to be the SPASs obtained from the refinement procedures WL, C,, and IM(F), respectively.

5. Proof of Theorem 1.3

Hereafter, when talking of the families of operators WL, and C,, we write WL = {WL, WL,, ...}
and C = {Cy, C,, ...} to denote the families WL; = {WL; ;, WLy (,...} and C; ={Cy 1, Co 1, ...},
respectively. The distinction between the procedure WL and the operator WL should not cause any
confusion, likewise for the procedure C; and the operator Cy.

For showing that for two refinement procedures X = {X;, X», ...} and Y = {Y1, 1>, ...}, their respec-
tive SPAS satisfy Sx > Sy, our general strategy is as follows. For each k € N, we find some k&’ € N such
that for any graph I" and any Yj-stable graph-like I'-partition y € P(V¥), there is some Xj/-stable graph-
like ['-partition ¥’ € P(V*') such that pryy’ > proy. By taking y’ to be [og r]¥¥ (which is graph-like
by Proposition 4.6), we have that X; (I") = pr,y’ > pr,y > Y (I'") for all graphs I". The last inequality
follows from the fact that Y (") is the 2-projection of a minimal Yj-stable partition refining oy .

For the proofs in this section, the operators WL , and Cy , are only considered in the case k > r,
since the statements hold trivially when k <r.

Lemma 5.1. Forall k,r € N, any WLy .-stable partition is Cy ,-stable.
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Proof. Let y € P(V¥) be WL, ,-stable. The size of {Xx € V" | y(¥(7,X)) = ¢7, VI € [k]?} is then
independent of the choice of v from the equivalence class [v], for all ¢ € ®¥*", by Proposition 4.5. For
each 7 € [k]") and o € Im y,

FeV |y@(.2)=0l= [ (FeV |y@(,5) =¢; VT e[k},

pedr "
pj=0

The right-hand side of the above is a disjoint union of sets, whose sizes are independent of the choice of
v, from the equivalence class [ﬁ]y. Hence, the size of the left-hand side, is also the same for any choice
of v from the class [v],, implying that y is Cy ,-stable. O

Corollary 5.2. For any graph I and k,r € N,
Ek,r(l—‘) = Wk,r(r)-

Lemma 5.3. Forall k,r € N, any Cy-stable partition is Cy_,-stable.
Proof Let y € P(VK) be Cy-stable. Then, by definition, it is Cy | stable.
Suppose y is Cy_,-stable for some m < k. Let J € [k]. Since m < k, there is some j’ € [k] such
that j' # j; forall i € [m]. Forall o, T € Imy and v € V¥ such that y (v) = o, define
Por = i{u eVIy@(', u)= f}i
and
dor = [{W € V" |y (], W) =T}

Because y is Cg-stable and, by the induction hypothesis, also Ck ,-stable, p,. and g5, are independent
of the choice of ¥ from the equivalence class [v],,.
Observe that

fw-ueV™ | y@(GF-jw-u)=t={w-ue V" | y(@(F, w)(j, u) =1}
From this one deduces that

(-ue V™ y@GG- - u) =t} = Pradar-

aclmy

The right-hand side of the above is independent of the choice of v from the equivalence class [v],. Hence,
y 18 Cg m+1-stable. Thus, by induction, it is Cy , stable for all r. O

Corollary 5.4. For any graph " and k,r € N,
Ci(I) = C,r (D).
Note that Lemmas 5.1 and 5.3 are not restricted to graph-like partitions.

Lemma 5.5. Forall k,r € N, the k-projection of a Cy,.-stable graph-like partition is WLy, ,.-stable.

Proof. Let v, v’ € V¥, and let ¥ = pr,y for some Cy,.,-stable graph-like partition y € P(V**"). Because
y is graph-like, by Lemma 3.6 it follows that for all 7 € [k +r]®,

y B{T. pryi)) = y (7(7. pry0)).
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where j = (k+1,k+2,...,k+r) € [k+r]?. In particular, for all 7 € [k]"",
¥ (pr (7, pr;v)) = ¥ (pr v'(7, pr;v’)). (12)
For all & € VK7, define A € (®7")™ to be
(Ay )i = Y (pr (T, pr;v)).

One deduces from (12) that A is well defined.
For any ¢ € ®7", it follows from the definition of A that:

i eV | yEnd(ia)=¢. Vielkl”)= |J eV |y@(.i) =o).
oelmy
A0:¢;

Ck r-stability of y implies that the size of the right-hand side of the above is independent of the choice
of v from the equivalence class [v],. Since y is graph-like, the size of the left-hand side is independent
of the choice of w € V", where pr,w € [pr, U]y, and the result follows. O

Corollary 5.6. For any graph T and k,r € N,
Chprr(T) = W (D).

In particular,
Cig1(I) = WL (D).

Lemma 5.7. Forallk,r € N, the (k —r + 1)-projection of a Cx ,-stable graph-like partition is Cy_,41-
stable.

Proof. Let ¥ = pry_,,,v, and let ¥ € V. Fix some i € [k—r], and let ] € [k]*~"D be defined by
J=Gk—r+1,k—r+2,...,k—1,k). Fixu € V, and let & = (Vk—y41, Vk—yils - - - » Vk—rs1) € VE".
Since y is graph-like, for any u’ € V,

Y@, u-w)) =y @(j, u"-w)) < y(pr,v(i, u)) =y (prv(i, u'));
and therefore,
(' eV |y@rvi,u) =yprni(iu)}={u" eV |y@(,u w) =y@(],u-w))}

The size of the right-hand side of the latter is independent of the choice of v from the equivalence class
[U],. Hence, as y is graph-like, the size of the left-hand side is independent of the choice of w € vk,
where pr;_, W € [pry_,Uly. The result follows. O

Corollary 5.8. For any graph I and k,r € N,
Cir () = Cheps1 ().

The results proved so far involved showing that the projection of a partition satisfying some stability
condition satisfied some other stability condition. In order to prove that Swi dominates Sc, we extend
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a WL;-stable partition to a Cyy1-stable one. Let y be graph-like and be a WL;-stable partition of V*.
Define y € P(V**!) as

PO, w) = @), y@(l, w), y @2, w), ..., y@k w)), VoeViweV.

That is to say, y (v, w) = (v, w’) if and only if y(¥) = y(¥’) and y (v(i, w)) = y (V' (i, w’)) for all
i € [k]. First, we need to prove that y is graph-like.

Lemma 5.9. Let y and y be as above. If y is invariant, then y is invariant.

Proof. Because Sym(k + 1) = (Sym(k), (k, k + 1)), it is sufficient to show that y (u -u') =y (V- V') =

P(@-u)")y=y((v-v)7), where T = (k, k + 1) is a transposition of Sym(k + 1); or, equivalently,
Y((pry_qi) - u' - up) = P ((pry_10) - v vp). (13)

From the definition of p, it holds that

y @k, u')) =y @k, v')).

Hence,

y ((pry_qi) - u') = y ((pry_, 0) - V). (14)
Also, (i -u") = y (v -v') implies that y (1) = y (v); and hence, since y is graph-like,

Y (pry_ i) - ug) = y ((pry_, V) - vg). (15)
Since y (u (i, u’)) =y (v{i, v')) for all i € [k] and y is invariant; for any T = (i, k) € Sym(k), y (u{i, u’)") =
y (V(i, v')7) or, equivalently,

Y ((pry_yid) - u' (i, ug)) = y ((pry_ ) - v'{i, ). (16)

Combining (14), (15), and (16), we see that (13) follows. U

Consequently, if y is graph-like, so is y. Indeed, y is k-consistent by construction. Also, since y is
invariant and y satisfies (6), then y also satisfies (6). Finally, observe that if y is a I'-partition for some
graph T, then so is p.

Lemma 5.10. Let y and y be as above. If y is graph-like and WLy, stable, then y is Cyy-stable.

Proof. As observed, if y is graph-like, then p is graph-like by construction. Since y is WL,-stable, it
follows that for all & € Im 7 and v € V¥*! | the size of {x € V | p (V(k + 1, x)) = o} is independent of the
choice of v from the equivalence class [E]J;. By invariance of y, one deduces that for all i € [k + 1], the
size of {x € V | p(¥(i, x)) = o'} is independent of the choice of v in the equivalence class [v];. Thus, p
is Cy41-stable. O

Corollary 5.11. For any graph I,
Cr+1(I") = WL ().

In particular, combining this with Corollary 5.6, one deduces that for all graphs I" and k € N,

Crr1(T") ~ WLi(I). (17)
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This can be seen as a combinatorial reformulation of Theorem 5.2 in [Cai et al. 1992] proven without
referring to the Immerman—Lander pebble game.

Proof of Theorem 1.3. Let I' be any graph. From (17) it easily follows that Swy, >~ Sc.
It follows from Corollaries 5.4 and 5.8 that for all r, k € N,
Ci(T) = Cp (1) = Crpp 1 (1)
and hence, for any r € N,
Sc ~ SC’r.

From Corollaries 5.6 and 5.2, we deduce that for all » € N,

SwL,r =~ Sc,r- O

6. The Evdokimov-Ponomarenko SPAS

In this section, we apply the language and results of this paper to derive the following statement about
the SPAS, Sgp = {EPy, EP», ...}, introduced by Evdokimov and Ponomarenko in [1999].

Theorem 6.1 (Evdokimov, Ponomarenko, 1999). For any graphT" and k € N,
WL (I") < EPx(T") < WL3i(I). (18)
In particular, Sgp ~ Swi.
We first define the mapping EPy in terms of the refinement operator WL;.

For P € P(V?), k € N, and some symbol A, set P® : (VK2 — Im P¥ UIm P* x {A} to be the
following labelled partition of (VK2

PO G ) (P(uy,v1), P(uz, v2), ..., P(ug,vp), A) ifu=v=u,u,...,u)forsomeucV,
u,v) = .

(P(uy,v1), P(uz, v2), ..., P(ug, v)) otherwise,
for all iz, v € VXK. Note that we have denoted elements of (V¥)? by (i, v) as opposed to (i -v) to emphasize
the difference between a set of pairs of k-tuples as opposed to a set of 2k-tuples. Hence, if I is a graph,

then [T ®1WVL2 js a coherent configuration on V¥, which we denote by I'®). Observe that the set
In={(u,u,...,u)|lueVycvk

is a union of cells of ['®, Hence, the restriction f® | 2 is a coherent configuration on /5. Let § : V2 Ii
be the map
(u, v) — (u, v), (19)

where i = (u,u,...,u) € VK and ¥ = (v, v, ..., v) € VK. We define EP;(I') = ['® 0§, which is a
coherent configuration on V.

Theorem 1.1 in [Evdokimov et al. 1999] shows that the family Sgp = {EP;, EP», ...} forms a SPAS.
Furthermore, the authors also prove the following properties for a binary relation R on V. Set X ];e =
{(u,v,...,v) e VE| (u,v) €R).

Proposition 6.2 (Proposition 3.6 in [Evdokimov et al. 1999]). R = {(u, v) € V2 | EPy (D) (u, v) = o} for
some o € ImEPy (") if and only ifX];e is a cell of T®).
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Proposition 6.3 (Proposition 3.6 in [Evdokimov et al. 1999]). The equivalence classes of [ay ]V are
unions of cells of T ®.

From these, one can deduce the left-most relation of (18).

Lemma 6.4. For any graph " and k € N,
WL (T') < EP(I).

Proof. For k = 1, the statement is trivial. Let k > 2, and set A = [ak,r]WL’f. By Proposition 6.3 and
because A is graph-like, for any u, v € V the equivalence class [(v, u, ..., u)]A is a union of cells of r®
whose elements are all of the form (v, u/, ..., u’). Since WLi(I") = pr, A, it follows from Proposition 6.2
that its equivalence classes are unions of equivalence classes of EP;(I"). Hence WL (I') < EP(I"). O

We now apply Lemmas 5.1 and 5.5 to show the right-most relation of (18). For all k, p € N, let
Vi.p : VP — (VK)P be the map

6|_) (J)lvlj)25~-~aa}p)’

where w; = (V146G —1)k> V24 G—Dk» + - + > Vk-(i—1)k)-

Lemma 6.5. For any graph " and k € N,
EP;(I') < WL (I").

Proof. Let A = [Ol3k’1"]c3k'k, and set ® = PPk, By Lemma 5.5, pr,, A is a WLy x-stable partition of
V2k_ Hence, for all ¢ € D, the size of

{¥ € V¥ | pry AW(T, X)) = ¢, VT € 21D}

is independent of the choice of v from the equivalence class [ﬁ]pr% A. In particular, if T ={(1, 2, ..., k),
(k+1,k+2,...,2k)}, then for all £ € (ImperA)T,

e Vi pryA@(T, ¥) =&, VieT= ] {FeV¥|pryA@(i.X) =¢; Vie[26%).
ped
$i=&,V1eT

The right-hand side of the above is a disjoint union of sets whose size is independent of the choice of v
from the equivalence class [T)]per A- Hence, the size of the left-hand side is independent of the choice of
v from the equivalence class [ﬁ]per A; and therefore, (pry, A) o w,: % is a WL,-stable partition of ( VK2,
In particular, it refines ok, © w,; 21 But I'® < k. © w,; ;; and thus, since )7(") i1s a minimal WL,-stable
partition of V¥ refining I'®, then I'® < (pry, A) o 1//,;21 In particular, f(k)|1§ < (proyA) o wkféhi; and
hence, if § is as defined in (19),

EPi(T") < (pryzA) o ¥, 0.

Since A is graph-like, Lemma 3.6 implies that for all u, u’, v, v € V,

Py A, v, ..., v) =pry A, v, ..., V) = pryg A - V) = pryg A(u' - D), (20)
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where 4 = (u,u,...,u),v = (v,v,...,v), a0 =@, u,....,u), v =@, v,...,v) e VK It follows
that pryA = (pry; A) o w,;; 08. But pryA = Cs; 4 (I') < WL (I"). Thus, by (20),

EP, (") < WL (D). U

7. Proofs of Theorems 1.4 and 1.5

We proceed using the same strategy as for the proof of Theorem 1.3.

Lemma 7.1. The k-projection of a graph-like IM}E y1-Stable partition is Cy-stable for any field | and
keN.

Proof. Let y € P(V*?) be a graph-like IM}_ ,-stable partition, and set ¥ = pr;y. Suppose ¥ (9) = y (V).
Fix some j € [k], and let T=(j,k+1)ek+1]?. As y is graph-like, there is some o € Imy such
that the matrix XZ:;U is diagonal and nonzero. Since y (v) = y (v'), there is some S € GLy (F) such that
S )(;”’YUS_1 = X;’Tv/. So x; and X(’;”;v/ have the same rank and hence, the same number of Is on the
diagonal. Thus, for any w € V, the size of the set {u € V | y (V(7, (u, u))) = o'} is independent of the
choice of v from the equivalence class [v],. Also,

{ueV|ypro(ju)=ct={ueV|y@i, (u,u)) =0},
and hence, as y is graph-like, the size of the left-hand side is independent of the choice of pr,v from the
equivalence class [pr; v];. The result follows. U

Corollary 7.2. For any graph T’ and k € N,
M, (T") = WL (I').
Proof. This follows from Lemma 7.1 and the fact that EH 1(I) ~ WL (D). [l

Lemma 7.3. The k-projection of a graph-like Cyy1-stable partition is IM}E-stable for any F with char(F) =
0 or char(F) > |V|.

Proof. Let y € P(V¥*1) be a graph-like Cy|-stable partition, and fix some 7 € [k + 1]® with i3 =k 4 1.
For every v € V¥*!, define g; to be the partition of V3 given by g3(¥) = y (¥(7, X)) for all X € V3. Since
y is Ci1-stable, it follows that g; is Cj stable for all v € V¥*!. As y is graph-like, pr,g; is a rainbow,
and it is WL,-stable by Lemma 5.1 and thus, a coherent configuration on V.

Set ¥ = pry, and for all ¥ € V2, let g5(3) = ¥ (pr,v((i1, i2), y)). Then g; = pr,g;. Therefore, all
nonempty relations of gz form a coherent configuration whose F-adjacency algebra has standard basis

G, 135 € V2, 7 (pr{(in, i), ¥) =o'}

Thus, if ¥ (pr,u) = y (pr,w), then g; and g; are algebraically isomorphic coherent configurations. More
precisely, one can check that Im g; = Im g; and that the map
t:Img; - Img;, oo

is an algebraic isomorphism.
For char(F) = 0 or char(F) > |V, it follows from Corollary 2.11 that there is some S € GLy (F) such
that Sy P §=1 = 5 ""P" for all ¢ € Im 7. The result then follows. O

(i1,02),0 — Aiia),0o
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Note that in the above proof, there may be other bijections Im g;; — Im gz which are algebraic isomor-
phisms. However, it follows from the definition of the k-refinement operator IM}E, that i, v € V¥ are in
the same equivalence class of an IM}E—stable partition, only if ¢, as above, is an algebraic isomorphism.

Corollary 7.4. Forall k € N, graph I with vertex set V, and field F such that char(F) =0 or char(F) > | V|,
WL(T') = IM; (D).

Proof. This follows from Lemma 7.3 and the fact that Cy(I") &~ WL, (). [l

The statement of Theorem 1.4 comes from taking [ to be of characteristic O in Corollaries 7.2 and 7.4.
Theorem 1.5 arises instead from combining Corollary 7.4 with a construction due to Holm [2010]. The
construction in the proof of Theorem 7.1 in [Holm 2010] gives, for each k € N and prime number p, a
graph I'y , for which ﬁk(f‘k,p) is strictly coarser than Sch(I'y ), but mg(rk,p) = Sch(I'k, ) for any
field F with char(F) = p. Furthermore, from the same result, it also follows that W{,E(rk, p) 1s strictly
coarser than Sch(I'x,,) whenever char(F) # p. This shows that the SPAS, Spv(Fy) and Spm(F»), are
incomparable whenever char(F;) # char(F,).

8. Yet another refinement operator

There is a subtle difference between the definitions of WL , and Cg ,: the colours of WLy , o y are
multisets of tuples of colours of y, whereas the colours of Cy , o y are tuples of multisets of colours of
y. We now show that a similar variation in the definition of IM}E gives a refinement procedure whose
corresponding SPAS is equivalent to Spv(r).

For every y € P(VK), v e VK, andgg e &2, let Xg’ﬁ be the adjacency matrix of the relation {X € V2|
y(@(7, (u, v))) = ¢r, V7 € [k]P} C V2. Define the mapping IMt] by setting IMt! oy =Mty oy =y,
and for k > 2,

2 > > D
IMt}f oy :VFESImy x Maty (F)®7/~), T (y(@), (X(J;;’v)aeqwz),

where the equivalence classes of the relation ~ are the orbits of G Ly (F) acting on the tuples by conju-
gation.

Similarly to Proposition 4.6, one can show that IMt}f is a graph-like k-refinement operator for all
k € N and that IMt(F) = {IMt!, IMtg, ...} is a refinement procedure. Hence, the family Sy =
Mt I_Mtg ,...} is a SPAS for any field F. Also, similarly to Proposition 4.5, one may derive the
following stability condition:

Proposition 8.1. A partition y € P(V¥) is IMt; -stable if and only if for all i, v € V¥,
y(@i) =y (@) =>3S € GLy(F), Ve "2 ngﬁs—l - Xd{j.
In particular, the following result is analogous to Proposition 4.5:
Lemma 8.2. Any IMt}E—stable partition is also IM}E—stable.
Proof. For any v € V¥, 7 e [k]?, and 0 € Im y

YU _ y,v
Xog = j{: X& .

peor?
pi=0
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Hence, if y (1) = y (V), there is some S € GLy (F) such that SX Vg-l = X i for all é € ®”°2. Thus,

-

st = ¥ sts = Xt =

pedr? pedr?
di=0 bi=0
from which follows that y is IM}E—stable. [l

Corollary 8.3. For any graph T, field F, and k € N,
IM} (") < M (T).
In the following result, the argument, is analogous to that of Lemma 5.5:
Lemma 8.4. The k-projection of an IM}E 4o-Stable partition is IMt}E—stable.

Proof. Let i, v € V¥ be such that y (1) = y (v), and set ¥ = pr,v. Because y is graph-like, it follows from
Lemma 3.6 that for all 7 € [k +2]?, y (v(7, prjv)) =y (u(7, pri)), where j = (k+1,k+2) € [k+2]@.
In particular, for all 7 € [k]®,

V (prv(7, pryv)) = y (pryii (7, pryu)). (21)
Define A € (®7-2)Im7 such that
(Ay@))i = ¥ (prv{ T, pr;v)).
One deduces from (21) that A is well defined.

For any ¢ € P,
lii e V| ppr (7, u) = ¢, YT e KIP) = | J (i e V? |y @(j, @) =o).
oelmy
A(r:&
Hence, for all (Z € @ it holds that
X0 v _ v
X4 > %
elmy

Ay :$

Because y is IMk 4o-stable and y (i) = y V), for each 7 € [k]? there is some S € GLy (F) such that

Sy V=1 — x" for all ¢ € Imy. Thus, for all ¢ € (Im 7)K1?
- Y suist= X ke
oelmy oelmy
A(,:(]-S AD':$
whence, ¥ (if) = 7 (V). Therefore, ¥ is IMt; -stable. O

Corollary 8.5. For any graph T, field F, and k € N,
Mty (') < IM,,(I).

Theorem 1.6 follows from Corollaries 8.5 and 8.3.



GENERALIZATIONS OF k-DIMENSIONAL WEISFEILER-LEMAN STABILIZATION 251

9. Conclusions

The Weisfeiler—Leman algorithm is much studied in the context of graph isomorphism. It is really a
family of algorithms, graded by a dimension parameter. A large number of other families of algorithms
have been shown to give essentially the same graded approximations of isomorphism. The Schurian
polynomial approximation schemes of Evdokimov et al. provide a general framework for comparing
these families of algorithms. The invertible map operators of Dawar and Holm provide another such
family of algorithms (or, more formally in the language of this paper, refinement procedure), but one
that has greater distinguishing power than the Weisfeiler—Leman family. In the same way that WL, and
C, were obtained from WL and C, one can generalize IM([F) as follows: for every k, r € N, define the
k-refinement operator IM,[EJ by setting IM,[EJ oy =y when k <2r. When k > 2r define:

(2r) - > v
IM, oy : VEx = Imy x Maty, ()™ 7~y G (v @), (O oetmyiemgen),

where X;)ff is the adjacency matrix of the relation {(X, ) | ¥ (V(7, X - y)) =0} € (V")? and ~ is the
relation whose equivalence classes are the orbits of G Ly-(F) acting on the tuples by conjugation. One

can show that IM,. (F) = {IM[{’ e IMgr, ...} is a refinement procedure for all » € N. One can thus derive

from it a SPAS, Spm(r), -, in the same manner as described in Section 4. While we were able to show that
the refinement procedures WL, and C, do not yield SPASs more powerful than that yielded by WL, the
exact relation between Simry and Spvr),» 1s still unclear and an interesting open question.
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