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The family of Weisfeiler–Leman equivalences on graphs is a widely studied approximation of graph
isomorphism with many different characterizations. We study these and other approximations of isomor-
phism defined in terms of refinement operators and Schurian polynomial approximation schemes (SPAS).
The general framework of SPAS allows us to study a number of parameters of the refinement operators
based on Weisfeiler–Leman refinement, logic with counting, lifts of Weisfeiler–Leman as defined by
Evdokimov and Ponomarenko, the invertible map test introduced by Dawar and Holm, and variations of
these, as well as to establish relationships between them.

1. Introduction

For convenience, we shall treat graphs as arc-coloured complete digraphs; that is to say, as labelled
partitions of the set of ordered pairs of vertices (hereafter, we refer to the latter as arcs). For example,
an undirected simple graph can be seen as a partition of its arcs into edges, nonedges, and loops. As
such, the graph isomorphism problem is that of deciding whether there is a colour-preserving bijection
between the sets of vertices of two given graphs. Computationally, this problem is polynomial-time
equivalent to finding the orbits of the induced action of the automorphism group of a given graph G on
a fixed power of its vertex set V [Mathon 1979]. For short, we refer to the partition of V k (for any fixed
k) obtained by this action as the orbit partition of V k . The graph isomorphism problem (and likewise
the problem of determining the orbit partition) is neither known to be solvable in polynomial time nor
known to be NP-complete. The best known upper bound to their computational time is quasipolynomial.
This follows from the well-known result by Babai [2016].

The classical Weisfeiler–Leman (WL) algorithm is a well-known method for approximating the orbits
of the induced action of the automorphism group of a given graph on the set of pairs of arcs. It can be
seen as a generalization of the so-called naïve colour refinement. Given a graph G, the WL algorithm
produces a coherent configuration, which is a partition of the set of arcs of G satisfying certain stability
conditions (see Section 2 for the definition). A natural generalization of this algorithm was given by
Babai: for each k ∈ N, the k-dimensional Weisfeiler–Leman (WLk) algorithm outputs a labelled partition
of k-tuples of vertices satisfying a similar stability condition and respecting local isomorphism. The
running time of the WLk algorithm on a graph with n vertices is bounded by nO(k). The case k = 1
coincides with the naïve colour refinement, and k = 2 with the classical Weisfeiler–Leman algorithm.

It follows from a result by Cai, Fürer, and Immerman [Cai et al. 1992] that there is no fixed k ∈ N

such that for all graphs the k-dimensional Weisfeiler–Leman algorithm outputs the partition of k-tuples
of vertices into orbits of the induced action of the automorphism group of the input graph. Indeed, the
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authors show how to construct a graph with O(k) vertices for which WLk fails to produce the partition
into such orbits. Thus, their result implies that a partition induced by this group action can be obtained for
all graphs on n vertices only if one chooses k to be�(n). One can informally claim that the strength of the
k-dimensional Weisfeiler–Leman algorithm increases with k. More precisely, for unlabelled partitions
P and Q of some set A we write P �A Q, and say Q is a refinement of P; if, whenever a, b ∈ A are in
the same equivalence class of Q, they are also in the same equivalence class of P . By viewing a labelled
partition of A as a function γ : A→ L to a set of labels L (which we sometimes refer to as the colour
set), the unlabelled partition induced by γ is {γ−1(l) | l ∈ L}. We extend the partial order �A to labelled
partitions by writing γ �A ρ to mean that the unlabelled partition induced by ρ refines that induced by
γ . Note that this does not require that the codomains of γ and ρ are the same. We omit the subscript A
when the set is clear from the context. For a graph 0, define WL1(0)= 0; and for k ≥ 2, set WLk(0) to
be the labelled partition of the set of arcs induced by the output of the k-dimensional Weisfeiler–Leman
algorithm on input 0. We can now state the following:

WL1(0)�WL2(0)� · · · �WLn(0)=WLn+1(0)= · · · =WL∞(0),

where n is the number of vertices of 0 and WL∞(0) is the partition into the orbits of the induced action
of the automorphism group on arcs. Also,

WLl(WLk(0))=WLk(0)

for all l, k ∈ N with l ≤ k. This shows that the family of maps from the set of arc-coloured complete
digraphs to itself {WL1,WL2, . . . } forms a Schurian polynomial approximation scheme in the following
sense, as defined in [Evdokimov and Ponomarenko 1999]:

Definition 1.1 (Schurian polynomial approximation scheme). A family of mappings {X1, X2, . . . } is
said to form a Schurian polynomial approximation scheme (SPAS) if for any graph 0 with vertex set V :

(1) Xk(0) is a graph with vertex set V for all k ∈ N.

(2) X1(0) � X2(0) � · · · � Xn(0)= Xn+1(0)= · · · = X∞(0)= Sch(0), where n = |V | and Sch(0)
is the partition of arcs into orbits of the induced action of the automorphism group of 0.

(3) Xl(Xm(0))= Xm(0) for all l,m ∈ N with l ≤ m.

(4) Xk(0) is computable in time nO(k).

More informally, one can think of SPAS as a collection of polynomially computable functions indexed
by N, each of which takes as input a partition and refines it. Moreover, the higher the index, the closer
the output partition is to the orbit partition of the set of arcs.

Definition 1.2 (dominance and equivalence of SPAS). For any two SPAS, SX = {X1, X2, . . . } and
SY = {Y1, Y2, . . . }:

(1) we say SX dominates SY , and write SY � SX , if for each k ∈ N there is some k ′ ∈ N such that
Yk(0)� Xk′(0) for all graphs 0.

(2) we say SX is equivalent to SY , and write SX ' SY , if SX � SY and SY � SX .

(3) we say SX strictly dominates SY if SY � SX , but SX 6� SY .
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In this paper, we deal with the following SPAS: SWL, SC, SC,r , SWL,r , and SIM(F). Such schemes arise
from considering fixed points of refinement operators. The formal definition of refinement operators is
given in Section 4. These are operators that take a partition γ , of V k , to a refinement of itself. The
SPAS SWL and SC arise from the following well-known concepts: Babai’s generalization of the classical
Weisfeiler–Leman algorithm for the former and first order logic with counting quantifiers for the latter.
In each case, the label of a tuple Ev ∈ V k in the refined partition is determined by its label in γ and the
partition of V that is induced by considering γ (Eu) for the tuples Eu obtained by substituting elements of
V in Ev. For r ∈ N, SWL,r and SC,r are further generalizations of SWL and SC, respectively. In these
generalizations, the label associated to each k-tuple Ev is determined by γ (Ev) and the partition of V r

obtained by considering γ (Eu) for tuples Eu obtained by substituting r-tuples in Ev. Formal definitions of
these are given later. Here we note that our first result shows that the parameter r does not strengthen
the SPAS SWL and SC.

Theorem 1.3. For any r ∈ N, SWL ' SC ' SWL,r ' SC,r .

The reasons for considering the additional parameter r is that it appears to be of interest in another
scheme we consider. The scheme SIM(F) arises from the invertible map game introduced in [Dawar
and Holm 2017]. It has been shown to have a close relationship to logics with linear algebraic opera-
tors [Dawar et al. 2019] over a field F. The associated refinement operator IMF

k maps each k-tuple of
vertices Ev and partition γ to a tuple of matrices, and the colour associated to Ev by the refinement of γ is
determined by the equivalence class of this tuple of matrices under simultaneous similarity.

For this SPAS we prove the following results:

Theorem 1.4. For any field F of characteristic 0, SIM(F) ' SWL.

Theorem 1.5. For any field F of positive characteristic, SIM(F) strictly dominates SWL.

The paper is structured as follows: after a brief overview of the required notions on coherent configu-
rations and algebras, we formally define and discuss the concepts of refinement operators and procedures.
We then prove Theorem 1.3 and use a similar method to show the equivalence between SWL and SEP, a
SPAS introduced by Evdokimov and Ponomarenko in [1999]. The final two sections contain the proofs
of Theorems 1.4 and 1.5 and a short discussion on a variant of the SPAS SIM(F), namely SIMt(F). This
variant is motivated by looking at the difference between the definitions of SWL and SC, and applying a
similar variation to the definition of SIM(F). The discussion leads to a proof of the following:

Theorem 1.6. For any field F, SIM(F) ' SIMt(F).

Throughout the text, all sets are finite. Given two sets V and I , a tuple in V I is denoted by Ev, and
its i-th entry by vi , for each i ∈ I . We use the notation (vi )i∈I to denote the element of V I with i-th
element equal to vi . We set [k] = {1, 2, . . . , k} ⊂ N and [k](r) = {Ex ∈ [k]r | xi 6= x j ∀i, j ∈ [r ], i 6= j}.
Recall that a labelled partition of a set A is a function γ : A→ Im γ . The class of all labelled partitions
of A is denoted by P(A). Recall also that for γ, ρ ∈ P(A), γ � ρ denotes that the unlabelled partition
induced by ρ is a refinement of that induced by γ . If γ � ρ and γ � ρ are both satisfied, we write γ ≈ ρ.
Note that γ ≈ ρ does not imply γ = ρ, as they may have different codomains. The equivalence class of
a ∈ A with respect to the partition γ is denoted by [a]γ . Fix some set V and k, r ∈ N with r ≤ k. For
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any Ev ∈ V k , Eu ∈ V r , and Eı ∈ [k](r) we define Ev〈 Eı, Eu〉 ∈ V k to be the tuple with entries

(Ev〈 Eı, Eu〉) j =

{
uis if j = is for some s ∈ [r ],
v j otherwise.

Given two tuples Ev ∈ V r and Ew ∈ V s , their concatenation is denoted by Ev · Ew ∈ V r+s . More precisely,
Ev · Ew is the tuple with entries

(Ev · Ew)i =

{
vi if i ∈ [r ],
w j if i = j + r.

For a relation R ⊆ V 2, we define the adjacency matrix of R to be the V × V matrix whose (u, v)-entry
is 1 if (u, v) ∈ R and 0 otherwise. The set of multisets of elements of V is denoted by Mult(V ), and the
multiset of entries of a tuple Ev ∈ V I is denoted by {{vi | i ∈ I }}. For all γ ∈ P(V k) and natural numbers
r ≤ k, set 8γ,r = Im γ [k]

(r)
.

2. Coherent configurations and coherent algebras

This section introduces notions on coherent configurations and algebras necessary throughout the paper.
For a more in-depth account see [Chen and Ponomarenko 2019] or [Cameron 1999]. Our formulation is,
in general, different from the more traditional treatment, as we deal with labelled partitions and extend
the notion of coherent algebras to arbitrary fields. Also note that rainbows and coherent configurations
were originally defined for unlabelled partitions. Thus, Definitions 2.1 and 2.2 define, strictly speaking,
a labelled rainbow and a labelled coherent configuration, respectively.

Definition 2.1 (rainbow). A labelled partition ρ of V 2 is said to be a rainbow on V if:

(1) There is a set I ⊆ Im ρ such that⋃
σ∈I

{Ex ∈ V 2
| ρ(Ex)= σ } = {(v, v) ∈ V 2

| v ∈ V }. (1)

(2) For all (u, v), (u′, v′) ∈ V 2, ρ(u, v)= ρ(u′, v′)⇐⇒ ρ(v, u)= ρ(v′, u′).

We set Cel(ρ)= {U ⊂ V | ∃σ ∈ Im ρ, ρ(u, u)= σ, ∀u ∈U } and call its elements the cells of ρ.
It was stated in the introduction that, in this paper, graphs are viewed as partitions of the set of their

arcs, hence as arc-coloured complete digraphs. For example, an uncoloured loop-free undirected graph
can be seen as a complete digraph with its arcs partitioned into three colour classes: edges, nonedges,
and loops. Hence, we can always see a graph as a rainbow in the above sense. This view is natural, since
our interest is in the partition into orbits of the induced action of the automorphism group on arcs, and
this partition is, necessarily, a rainbow. Furthermore, given any group action on V , the partition into the
orbits of the induced action on V 2 forms a coherent configuration [Cameron 1999]1:

Definition 2.2 (coherent configuration). A rainbow ρ on V is said to be a coherent configuration on V
if for each σ, τ, κ ∈ Im ρ, there is a constant pκστ such that for any (u, v) ∈ V 2 with ρ(u, v)= κ ,∣∣{x ∈ V | ρ(u, x)= σ, ρ(x, v)= τ }

∣∣= pκστ .

1Although all group actions give rise to coherent configurations, not all coherent configurations arise from group actions;
see [Cameron 1999].
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Observe that if X is a union of cells of a coherent configuration, the restriction ρ|X2 is a coherent
configuration on X .

The constants pκστ are called the intersection numbers of ρ and may be interpreted algebraically as
follows: For every σ ∈ Im ρ, let Aσ be the adjacency matrix of the relation ρ−1(σ ). Then for all
σ, τ ∈ Im ρ,

Aσ Aτ =
∑
κ∈Im ρ

pκστ Aκ .

Thus, taking pκστ as rational numbers in a field F of characteristic zero, we see that the F-span of the
set Aρ = {Aσ | σ ∈ Im ρ} is an F-algebra. The same is true if we take F to be a field of characteristic q
and consider the constants pκστ modulo q. We refer to this algebra as the F-adjacency algebra of ρ and
denote it by FAρ . Such an algebra is a coherent algebra in the following sense:

Definition 2.3 (coherent algebra). A subalgebra of MatV (F) is said to be a coherent algebra on V if it is a
unital algebra with respect to matrix multiplication and Schur–Hadamard (componentwise) multiplication
, and it is closed under transposition.

We indicate the Schur–Hadamard multiplication by ? 2. At this point, it needs to be pointed out
that in most literature, when F = C, closure under transposition is usually replaced by closure under
Hermitian conjugation for the definition of a coherent algebra. However, we show in Proposition 2.6,
that an algebra satisfies Definition 2.3 if and only if it has a basis of 0-1-matrices satisfying the coherence
conditions (Definition 2.4). In Section 2.3 of [Chen and Ponomarenko 2019] it is shown that an algebra
over C satisfies Definition 2.3 with closure under transposition replaced by closure under Hermitian
conjugation if and only if it has a basis of 0-1-matrices satisfying the coherence conditions. Hence, over
C, Definition 2.3 is equivalent to the original one by D. Higman in [1987], but has the advantage that it
can be extended to any field.

It is clear from the definition, that for any coherent configuration ρ, the F-adjacency algebra FAρ is a
coherent algebra for any field F. Indeed, the set Aρ is the unique basis of 0-1-matrices for FAρ satisfying
the coherence conditions:

Definition 2.4. A set of 0-1-matrices M is said to satisfy the coherence conditions if:

(1)
∑

A∈M A = J, where J is the all 1s matrix.

(2) For some I ⊆M,
∑

A∈I A = I, where I is the identity matrix.

(3) At
∈M for all A ∈M.

We now show that any coherent algebra over any field has a unique basis of 0-1-matrices satisfying the
coherence conditions. We refer to this basis as the standard basis of a coherent algebra. The argument
that follows is analogous to that used to prove Theorem 2.3.7 in [Chen and Ponomarenko 2019].

Let W be a coherent algebra over V . As explained in Section 2.3 in [Chen and Ponomarenko 2019],
one may write

J=
∑
i∈[r ]

Ei , (2)

2In the literature, the Schur–Hadamard multiplication is often denoted by ◦. However, we reserve the latter for function
composition.
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where {Ei | i ∈ [r ]} is the full set of primitive idempotents of W with respect to the Schur–Hadamard
product. In order to be an idempotent, Ei must be a 0-1 matrix; and hence, the adjacency matrix of some
relation Ri ⊆ V 2. Since for i 6= j , Ei and E j are orthogonal, for all u, v ∈ V , (Ei )uv = 1=⇒ (E j )uv = 0.
Thus, from (2), it follows that {Ri | i ∈ [r ]} forms a partition of V 2.

Lemma 2.5. {Ei | i ∈ [r ]}, as above, satisfies the coherence conditions.

Proof. Condition (1) of Definition 2.4 is satisfied because of (2). Because I ∈W is an idempotent, it can
be written as a sum of primitive idempotents. Thus, {Ei | i ∈ [r ]} satisfies condition (2) in Definition 2.4.
Finally, E t

i is also a primitive idempotent, since W is closed under transposition. �

Proposition 2.6. For any field F, a coherent algebra on V over F has a unique basis of 0-1-matrices
satisfying the coherence conditions.

Proof. The set B = {Ei | i ∈ [r ]} satisfies the coherence conditions by Lemma 2.5.
Suppose F is algebraically closed. Then B is a basis for W , since W is commutative with respect

to the Schur–Hadamard product and a basis of a semisimple commutative algebra over an algebraically
closed field is given by the set of its primitive idempotents.

Suppose F is not algebraically closed. Since B is a linearly independent set, there is some B ′ ⊆ W
such that B ∪ B ′ is a basis for W . Let G be the algebraic closure of F, and consider the linear space
G(B ∪ B ′)⊆MatV (G). By construction, G(B ∪ B ′) is closed under transposition, matrix multiplication,
and Schur–Hadamard multiplication and is thus a coherent algebra over G. From the above, G(B ∪ B ′)
must then have a basis B ′′ of 0-1-matrices satisfying the coherence conditions. Since all entries of the
elements of B ′′ are 0 and 1, B ′′⊂ F(B∪B ′) is a basis for W as well. As B ′′ is a set of primitive orthogonal
idempotents of W , it holds that B ′′ ⊆ B. But B is a linearly independent set, and B ′′ is a basis for W .
Whence B ′′ = B = {Ei | i ∈ [r ]}.

The uniqueness of B follows from (2), which implies that any basis of 0-1 matrices satisfying the
coherence conditions must be the set of primitive idempotents of W . �

We can denote a coherent algebra on V over F as FA, where A is some set of 0-1-matrices satisfying
the coherence conditions. It is easily seen that for any (u, v) ∈ V 2 and binary relations S and T on V
with adjacency matrices AS, AT ∈MatV (F), respectively,∣∣{x ∈ V | (u, x) ∈ S, (x, v) ∈ T }

∣∣= (AS AT )uv (3)

if char(F) = 0. Set ρW : V 2
→ [r ] to be ρW (u, v) = i if (u, v) ∈ Ri . Since there are constants pk

i j ∈ F

such that
Ei E j =

∑
k∈[r ]

pk
i j Ek,

it then follows that
pk

i j =
∣∣{x ∈ V | ρW (u, x)= i, ρW (x, v)= j}

∣∣ (4)

is the same for all (u, v) such that ρW (u, v)= k; and hence, ρW is a coherent configuration. Otherwise,
if F has characteristic q > 0, (3) holds modulo q . In particular if q > |V |, ρW is a coherent configuration.

Remark 2.7. In the literature, coherent algebras over a field F of positive characteristic have usually
been defined to be the F-span of the adjacency matrices of the relations {ρ−1(σ )|σ ∈ Im ρ} for some
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coherent configuration ρ. The latter discussion thus shows that, over fields of positive characteristic,
Definition 2.2 defines a potentially larger class of algebras.

The most intuitive morphisms between coherent configurations arise from the algebraic setting. Let
A,A′ ⊆MatV (F) satisfy the coherence conditions.

Definition 2.8 (isomorphism of coherent algebras). An F-linear bijection ψ : FA→ FA′ is said to be an
isomorphism of coherent algebras if:

(1) ψ(I)= I.

(2) ψ(J)= J.

(3) ψ(AB)= ψ(A)ψ(B) and ψ(A ? B)= ψ(A) ?ψ(B), for all A, B ∈ FAρ .

That is, ψ preserves the structure of FA, both as a matrix algebra and as an algebra, with respect to
?. As a consequence, the image under ψ of an element of the standard basis of FA must be an element
of the standard basis of FA′, since the standard basis of a coherent algebra is the set of its primitive
idempotents with respect to ?. Conversely, the F-linear extension of any bijection between the standard
bases of FA and FA′ is a coherent algebra isomorphism provided it is also a matrix algebra isomorphism.

Let ρ and ρ ′ be coherent configurations and denote their intersection numbers by pκστ and qκ
′

σ ′τ ′ , re-
spectively.

Definition 2.9 (algebraic isomorphism). A bijection φ : Im ρ→ Im ρ ′ is said to be an algebraic isomor-
phism if for all σ, τ, κ ∈ Im ρ,

pκστ = qφ(κ)φ(σ )φ(τ).

Thus, an algebraic isomorphism between coherent configurations induces a bijection between the
standard bases of their respective adjacency algebras. Such a bijection linearly extends to a coherent
algebra isomorphism.

Crucial to this paper is the fact that when coherent algebras are semisimple (with respect to matrix
product), isomorphisms between them assume a very simple form. Indeed, it is an easy consequence of
the Skolem–Nöther Theorem that if ψ : W1→ W2 is an algebra isomorphism, where W1 and W2 are
semisimple subalgebras of Matn(F), then there is some S ∈ GLn(F) such that ψ(A) = S AS−1 for all
A ∈W1. The following is a direct consequence of Theorem 4.1.3 in [Zieschang 1996]3:

Theorem 2.10. The Jacobson radical of a coherent algebra FA is a subspace of the span of the elements
of the standard basis whose number of nonzero entries is divisible by char(F).

For a coherent configuration ρ on V , choose u, v ∈ V such that ρ(u, v) = σ and ρ(u, u) = τ . It
follows from formula (2.1.5) in [Chen and Ponomarenko 2019] that

|ρ−1(σ )| = |ρ−1(τ )|
∣∣{x ∈ V | ρ(u, x)= σ }

∣∣.
Since both factors on the right-hand side are no larger than |V |, it is clear that the prime factors of the
size of any equivalence class of ρ is no larger than |V |.

3The author actually proves this statement for coherent algebras whose diagonal matrices are multiples of the identity matrix.
However, the same argument applies to the more general case; and, in particular, to our more general notion of coherent algebras
in the sense of Definition 2.2.
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Corollary 2.11. A coherent algebra on V over F is semisimple with respect to matrix product if char(F)=
0 or char(F) > |V |.

3. Graph-like partitions

In this section, we describe some restrictions to be imposed on the partitions dealt with in the paper.
Such restrictions are natural in the sense that they are necessary conditions to be satisfied by a partition
of k-tuples into the orbits of an induced action of a group on 1-tuples.

Fix some k ∈ N, a set V , and let γ ∈ P(V k). Define an action of Sym(k) on V k by letting, for each
τ ∈ Sym(k), Evτ be the element of V k with i-th entry vτ−1(i).

Definition 3.1 (invariance). γ is invariant if γ (Eu) = γ (Ev) =⇒ γ (Euτ ) = γ (Evτ ) for all Eu, Ev ∈ V k and all
τ ∈ Sym(k). 4

Fix some r ∈ [k] and Eı ∈ [k]r . For a tuple Ev ∈ V k , we define its projection on Eı , denoted prEı Ev, to be
the tuple in V r with j-th entry vi j . Without ambiguity, we write prr Ev for the tuple pr(1,...,r)Ev. We denote
by prrγ the partition of V r given by

prrγ (Ev)= γ (v1, v2, . . . , vr , vr , . . . , vr ),

and call it the r -projection of γ . Note that if γ is invariant, then for any r ≤ k, prrγ is invariant.

Definition 3.2 (r -consistency). γ is said to be Eı-consistent for some Eı ∈ [k]r if for all Eu, Ev ∈ V k ,

γ (Eu)= γ (Ev)=⇒ prrγ (prEı Eu)= prrγ (prEı Ev).

If, in addition, γ is Eı-consistent for all Eı ∈ [k]r , we say that γ is r -consistent.

Observe that if for some r ≤ k, γ is r-consistent, then it is t-consistent for all t ≤ r . One may also
verify that if γ is invariant, then it is k-consistent if and only if for all Eu, Ev ∈ V k ,

γ (prk−1Eu · uk−1)= γ (prk−1Ev · vk−1). (5)

Definition 3.3 (graph-like partition). γ is said to be a graph-like partition of V k if it is invariant, r-
consistent for all r ≤ k, and for all Eu, Ev ∈ V k ,

γ (Eu)= γ (Ev)=⇒ (ui = u j =⇒ vi = v j , ∀ i, j ∈ [k]). (6)

Note that if γ is graph-like, then prtγ is graph-like for all t ∈ [k]. An example of a graph -like partition
is that of a coherent configuration, as introduced in Section 2.

Proposition 3.4. A coherent configuration is a graph-like partition.

Proof. Let ρ be a coherent configuration on V . Then ρ is a rainbow, and hence satisfies conditions (1)
and (2) of Definition 2.1, from which we deduce that it is invariant and satisfies (6). To show that it is
1-consistent, let u, v, u′, v′ ∈ V be such that ρ(u, v)= ρ(u′, v′). For any σ ∈ Im ρ,

{x ∈ V | ρ(u, x)= σ } =
⋃
τ∈Im ρ

{x ∈ V | ρ(u, x)= σ, ρ(x, v)= τ }.

4The concept of an invariant partition has already been introduced in Theorem 6.1 in [Evdokimov and Ponomarenko 1999].
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The size of the right-hand side of the above equation is independent of the choice of (u, v) from the
equivalence class [(u, v)]γ . In particular, if σ = ρ(u, u), then because ρ(u, v) = ρ(u′, v′) there is
exactly one x ∈ V such that ρ(u′, x)= σ , namely x = u′. Hence, ρ(u, u)= ρ(u′, u′), and 1-consistency
of ρ follows. �

Arguments of this kind appear repeatedly in our proofs of Theorems 1.3, 1.4, and 1.5.
Another graph-like partition which will be useful throughout the paper is that of atomic types of

k-tuples of vertices of a graph 0, which we indicate by αk,0. To be precise, we define

αk,0 : V k
→ (Im0)[k]

(2)
, Ev 7→ (0(vi , v j ))(i, j)∈[k](2),

where, as the reader may recall, we view graphs as labelled partitions.

Definition 3.5 (0-partition). We say that γ is a 0-partition if αk,0 � γ for some graph 0.

The following result is a useful property of graph-like partitions.

Lemma 3.6. For any graph-like γ ∈ P(V k) and any Eu, Ev ∈ V k such that γ (Eu)= γ (Ev),

γ (Eu〈 Eı, pr E Eu〉)= γ (Ev〈 Eı, pr E Ev〉)

for all Eı ∈ [k](r) and E ∈ [k]r .

Proof. Let Eu, Ev be as in the statement. For any s, t ∈ [k], γ (Eu〈s, vt 〉)= γ (Ev〈s, ut 〉) holds true by invariance
and (k− 1)-consistency of γ .

Fix some r<k and set Eu′=pr E Eu and Ev′=pr E Ev for some E ∈[k]r . Suppose that γ (Ev〈 Eı, Ev′〉)=γ (Eu〈 Eı, Eu′〉)
holds for all Eı ∈ [k](r). Because r < k, there is some i ′ ∈ [k] which is not an entry of Eı . For some l ∈ [k],
let x = vl and y = ul . Then,

γ ((Ev〈 Eı, Ev′〉)〈i ′, x〉)= γ ((Eu〈 Eı, Eu′〉)〈i ′, y〉)

by invariance and (k− 1)-consistency of γ . From this, one concludes that

γ (Ev〈 Eı · i ′, Ev′ · x〉)= γ (Eu〈 Eı · i ′, Eu′ · y〉);

and hence, by setting Eq = E · l,

γ (Ev〈 Eı · i ′, prEq Ev〉)= γ (Eu〈 Eı · i
′, prEq Eu〉).

We deduce the desired statement by induction. �

4. Refinement operators and procedures

As previously stated, all the SPAS in this paper arise from refinement operators, which we now define.
Fix some k ∈ N.

Definition 4.1 (refinement operator). A k-refinement operator R is a mapping which, for each set V ,
assigns to each γ ∈ P(V k) a partition R ◦ γ ∈ P(V k) such that γ � R ◦ γ .

Since labelled partitions are seen as mappings, the symbol ◦ really indicates composition thereof.

Definition 4.2 (fixed point). γ ∈P(V k) is said to be a fixed point of a k-refinement operator R if γ ≈ R◦γ .
In such cases, we also say that γ is R-stable.
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Fix some γ ∈ P(V k), set X0
= γ and X i

= R ◦ X i−1. We then have an increasing sequence

X0
� X1

� · · · � X i
� · · · .

Because all elements of this sequence are bounded by a labelled partition of V k with exactly one element
per equivalence class, there must be some s ∈ N such that for all i ≥ s, X i is fixed point of R. For the
smallest such s, denote X s by [γ ]R .

Definition 4.3 (graph-like operator). A k-refinement operator R is graph-like if R ◦ γ is graph-like for
all graph-like γ ∈ P(V k) and sets V .

Definition 4.4 (refinement procedure). The family of mappings {R1, R2, . . . } is said to be a refinement
procedure if, for each k ∈ N:

(1) Rk is a graph-like k-refinement operator;

(2) if γ is a graph-like fixed point of Rk then prk−1γ is a fixed point of Rk−1; and

(3) for all sets V and γ ∈ P(V k), [γ ]Rk is computable in time |V |O(k).

For each k, r ∈ N, the k-refinement operators of interest in this paper are the Weisfeiler–Leman oper-
ators WLk,r ; the counting logic operators Ck,r ; and, for any field F, the invertible map operators IMF

k .
For the former two, we are really interested in the case when r < k. Thus, when k ≤ r , for convenience,
we let WLk,r ◦ γ = Ck,r ◦ γ = γ for all γ ∈ P(V k) and sets V . For r < k define

WLk,r ◦ γ : V k
→ Im γ ×Mult(8γ,r )V

r
, Ev 7→

(
γ (Ev),

{
{(γ (Ev〈 Eı, Eu〉)Eı∈[k](r) | Eu ∈ V r

}
})
.

Ck,r ◦ γ : V k
→ Im γ × (Mult(Im γ V r

))[k]
(r)
, Ev 7→

(
γ (Ev),

({
{γ (Ev〈 Eı, Eu〉) | Eu ∈ V r

}
})
Eı∈[k](r)

)
.

Let χγ,Ev
Eı,σ be the adjacency matrix of the binary relation {(x, y) ∈ V 2

| γ (Ev〈 Eı, (x, y)〉)= σ }. Similarly to
above, set IMF

1 ◦ γ = IMF
2 ◦ γ = γ ; and, for k > 2 define

IMF
k ◦ γ : V

k
→ Im γ × (MatV (F)

Im γ×[k](2)/∼), Ev 7→ (γ (Ev), ((χ
γ,Ev

Eı,σ )σ∈Im γ )Eı∈[k](2)),

where ∼ is the equivalence relation on elements of MatV (F)
Im γ×[k](2) under simultaneous similarity. That

is, two tuples are equivalent if they lie in the same orbit of GLV (F) acting on the tuples by conjugation.
Although the reader may find the above definitions rather technical, they are not crucial throughout the
paper. Indeed, for k > r and Eu, Ev ∈ V k , the following facts are sufficient:

(1) WLk,r ◦ γ (Eu)=WLk,r ◦ γ (Ev) if and only if γ (Eu)= γ (Ev), and for all Eφ ∈8γ,r and Eı ∈ [k](r)∣∣{Ex ∈ V r
| γ (Eu〈 Eı, Ex〉)= φEı }

∣∣= ∣∣{Ex ∈ V r
| γ (Ev〈 Eı, Ex〉)= φEı }

∣∣.
(2) Ck,r ◦ γ (Eu)= Ck,r ◦ γ (Ev) if γ (Eu)= γ (Ev), and for all σ ∈ Im γ and Eı ∈ [k](r)∣∣{Ex ∈ V r

| γ (Eu〈 Eı, Ex〉)= σ }
∣∣= ∣∣{Ex ∈ V r

| γ (Ev〈 Eı, Ex〉)= σ }
∣∣.

(3) IMF
k ◦ γ (Eu) = IMF

k ◦ γ (Ev) if and only if γ (Eu) = γ (Ev), and for each Eı ∈ [k](2) there exists some
S ∈ GLV (F) such that for all σ ∈ Im γ ,

Sχγ,Eu
Eı,σ S−1

= χ
γ,Ev

Eı,σ .

From this, one may derive the following stability conditions:
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Proposition 4.5. For any γ ∈ P(V k) and k > r :

(1) γ is WLk,r -stable if and only if for all Ev ∈ V k,Eı ∈ [k](r), and Eφ ∈8γ,r , the size of the set {Ex ∈ V r
|

γ (Ev〈 Eı, Ex〉)= φEı } is independent of the choice of Ev from the equivalence class [Ev]γ .

(2) γ is Ck,r -stable if and only if for all Ev ∈ V k,Eı ∈ [k](r), and σ ∈ Im γ , the size of the set {Ex ∈ V r
|

γ (Ev〈 Eı, Ex〉)= σ } is independent of the choice of Ev from the equivalence class [Ev]γ .

(3) γ is IMF
k -stable if for all Eu, Ev ∈ V k and Eı ∈ [k](2),

γ (Eu)= γ (Ev)=⇒ ∃S ∈ GLV (F), Sχγ,Eu
Eı,σ S−1

= χ
γ,Ev

Eı σ , ∀σ ∈ Im γ.

Consider the following families of mappings:

(1) For all r ∈ N, WLr = {WL1,r ,WL2,r , . . . }.

(2) For all r ∈ N, Cr = {C1,r ,C2,r , . . . }.

(3) For any field F, IM(F)= {IMF
1, IMF

2, . . . }.

Proposition 4.6. The families WLr , Cr , and IM(F) are refinement procedures for all r ∈ N and fields F.

For the proof of Proposition 4.6 and that of the next auxiliary lemma, we use the following notations
and conventions. Fix a graph-like partition γ ∈ P(V k). Let γ = prk−1γ , and for all Ev ∈ V k , if σ = γ (Ev),
let σ = γ (prk−1Ev). For π ∈ Sym(k), we let σπ = γ (Evπ ) and define an action on [k](r) by setting
(π(Eı )) j = π(i j ) for all j ∈ [r ]. For any Ev ∈ V k , we denote Ev′ = prk−1Ev · vk−1. Note that σ and σπ are
well defined, since γ is graph-like.

Lemma 4.7. Let Eı ∈ [k](r).

(1) If k is an entry of Eı , then γ (Ev′〈 Eı, Ex〉)= γ (Ev〈 Eı, Ex〉).

(2) If k − 1 is an entry of Eı , but k is not; then γ (Evπ 〈 Eı, Ex〉) = γ (Ev′〈 Eı, Ex〉), where π = (k − 1, k) is a
transposition of Sym(k).

(3) If neither k nor k− 1 are entries of Eı , then γ (Ev〈 Eı, Ex〉)= σ =⇒ γ (Ev′〈 Eı, Ex〉)= σ . In particular,

{Ex ∈ V r
| γ (Ev′〈 Eı, Ex〉)= κ} =

⋃
σ∈Im γ
σ=κ

{Ex ∈ V r
| γ (Ev〈 Eı, Ex〉)= σ }. (7)

Proof. Statements (1) and (2) are trivial to check.
Let Ew = Ev〈 Eı, Ex〉 with γ ( Ew)= σ . Then Ew′ = Ev′〈 Eı, Ex〉, so γ ( Ew′)= σ by definition. From this, and the

fact that γ is (k− 1)-consistent, the right-hand side of (7) is a subset of the left-hand side. The reverse
inclusion follows from the definition of σ in terms of σ , and statement (3) follows. �

Proof of Proposition 4.6. We check that each of the families of mappings satisfy the conditions in
Definition 4.4. Note that γ � R ◦ γ for any k-refinement operator R. Hence, since γ is graph-like, for
any Eu, Ev ∈ V k , R ◦ γ (Eu)= R ◦ γ (Ev) implies that ui = u j =⇒ vi = v j for all i, j ∈ [k]. Thus, to show that
R ◦ γ is graph-like, it suffices to verify that R ◦ γ is invariant and satisfies (5). That is, for all Eu, Ev ∈ V k ,
R ◦ γ (Eu)= R ◦ γ (Ev)=⇒ R ◦ γ (Eu′)= R ◦ γ (Ev′).

WLr is a refinement procedure. We first show that WLk,r ◦ γ is invariant and satisfies (5), and is
thus a graph-like partition.
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Suppose WLk,r ◦ γ (Eu) =WLk,r ◦ γ (Ev). Then γ (Eu) = γ (Ev) by definition, and hence γ (Euτ ) = γ (Evτ )
since γ is graph-like and thus invariant. Furthermore, from the invariance of γ , it follows that, for all
τ ∈ Sym(k) and Eφ ∈8γ,r ,

{Ex ∈ V r
| γ (Evτ 〈τ(Eı ), Ex〉)= (φEı )τ , ∀Eı ∈ [k](r)} = {Ex ∈ V r

| γ (Ev〈 Eı, Ex〉)= φEı , ∀Eı ∈ [k](r)}.

Hence, WLk,r ◦ γ is invariant.
For all Eφ ∈8γ,r , let Eφ†

∈8γ,r be defined as

φ
†
Eı =


φEı if neither k nor k− 1 are entries of Eı,
(φEı )

π if k− 1 is an entry of Eı,
φEı otherwise,

where π = (k− 1, k) ∈ Sym(k). Observe that if {Ex ∈ V r
| γ (Ev′〈 Eı, Ex〉)= ψEı , ∀Eı ∈ [k](r)} is nonempty for

some Ev ∈ V k and Eψ ∈ 8γ,r , then Eψ = Eφ† for some Eφ ∈ 8γ,r . It follows from the definition of Eφ† and
Lemma 4.7 that

{Ex ∈ V r
| γ (Ev′〈 Eı, Ex〉)= ψEı , ∀Eı ∈ [k](r)} =

⋃
Eφ∈8γ,r

Eψ= Eφ†

{Ex ∈ V r
| γ (Ev〈 Eı, Ex〉)= φEı , ∀Eı ∈ [k](r)}. (8)

Since WLk,r ◦ γ (Eu)=WLk,r ◦ γ (Ev) for all Eφ ∈8γ,r ,∣∣{Ex ∈ V r
| γ (Eu〈 Eı, Ex〉)= φEı , ∀Eı ∈ [k](r)}

∣∣= ∣∣{Ex ∈ V r
| γ (Ev〈 Eı, Ex〉)= φEı , ∀Eı ∈ [k](r)}

∣∣.
Thus, because the right-hand side of (8) is a disjoint union, we deduce that∣∣{Ex ∈ V r

| γ (Eu′〈 Eı, Ex〉)= φEı , ∀Eı ∈ [k](r)}
∣∣= ∣∣{Ex ∈ V r

| γ (Ev′〈 Eı, Ex〉)= φEı , ∀Eı ∈ [k](r)}
∣∣,

for all Eφ ∈8γ,r . This implies WLk,r ◦ γ (Eu′)=WLk,r ◦ γ (Ev
′); and hence, that WLk,r ◦ γ is graph-like.

Suppose now that γ is WLk,r -stable. Observe that for all Eφ ∈8γ ,r ,

{Ex ∈V r
|γ (prk−1Ev〈 Eı, Ex〉)=φEı , ∀Eı ∈[k−1](r)}=

⋃
Eψ∈8γ,r

ψEı=φEı ,∀Eı∈[k−1](r)

{Ex ∈V r
|γ (Ev〈 Eı, Ex〉)=ψEı , ∀Eı ∈[k](r)}. (9)

From the WLk,r -stability of γ and the fact that γ (Eu)= γ (Ev), it follows that for all Eψ ∈8γ,r ,

|{Ex ∈ V r
| γ (Eu〈 Eı, Ex〉)= ψEı , ∀Eı ∈ [k](r)}| = |{Ex ∈ V r

| γ (Ev〈 Eı, Ex〉)= ψEı , ∀Eı ∈ [k](r)}|.

Since the right-hand side of (9) is a disjoint union, it holds that for all Eφ ∈8γ ,r ,∣∣{Ex ∈ V r
| γ (prk−1Eu〈 Eı, Ex〉)= φEı , ∀Eı ∈ [k− 1](r)}

∣∣= ∣∣{Ex ∈ V r
| γ (prk−1Ev〈 Eı, Ex〉)= φEı , ∀Eı ∈ [k− 1](r)}

∣∣.
Thus, γ is WLk−1,r -stable.

To see that the stable partition [γ ]WLk,r can be computed in time |V |O(k), note that the number of
iterations of the refinement operator before the fixed point is reached is at most |V |k . At each step, for
each k-tuple Ev, we need to compute the colour WLk,r ◦ γ (Ev), which involves checking the colour of k|V |
distinct tuples. The total time required at each step is therefore O(k|V |k+1). Repeating this for |V |k

steps gives us the required bound.
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Cr is a refinement procedure. The proof, in this case, is similar to that of WLk,r .
Suppose Ck,r ◦ γ (Eu)= Ck,r ◦ γ (Ev). The invariance of γ implies that γ (Euτ )= γ (Evτ ) and that

{Ex ∈ V r
| γ (Evτ 〈τ(Eı ), Ex〉)= σ τ } = {Ex ∈ V r

| γ (Ev〈 Eı, Ex〉)= σ },

for all τ ∈ Sym(k) and Eı ∈ [k](r). Hence,∣∣{Ex ∈ V r
| γ (Euτ 〈τ(Eı ), Ex〉)= σ τ }

∣∣= ∣∣{Ex ∈ V r
| γ (Evτ 〈τ(Eı ), Ex〉)= σ τ }

∣∣.
Therefore, Ck,r ◦ γ (Euτ )= Ck,r ◦ γ (Ev

τ ); thus showing that Ck,r ◦ γ is invariant.
As γ is graph-like and Ck,r ◦γ (Eu)=Ck,r ◦γ (Ev), it follows from (1) in Lemma 4.7 that for all Eı ∈ [k](r)

with some entry equal to k,∣∣{Ex ∈ V r
| γ (Eu′〈 Eı, Ex〉)= σ }

∣∣= ∣∣{Ex ∈ V r
| γ (Ev′〈 Eı, Ex〉)= σ }

∣∣. (10)

If Eı ∈ [k](r) has an entry equal k− 1 but none equal to k, then (2) in Lemma 4.7 implies that∣∣{Ex ∈ V r
| γ (Ev′〈 Eı, Ex〉)= σ }

∣∣= ∣∣{Ex ∈ V r
| γ (Evπ 〈π(Eı ), Ex〉)= σ }

∣∣.
From the invariance of Ck,r ◦ γ , we deduce that (10) holds also for such values of Eı . Finally, if no entry
of Eı is equal to k or k− 1, γ satisfies (7). As the right-hand side of the latter is a disjoint union and for
all σ ∈ Im γ ∣∣{Ex ∈ V r

| γ (Eu〈 Eı, Ex〉)= σ }
∣∣= ∣∣{Ex ∈ V r

| γ (Ev〈 Eı, Ex〉)= σ }
∣∣,

it follows that (10) holds also when neither k nor k− 1 are entries of Eı . Thus, Ck,r ◦ γ (Eu′)= Ck,r ◦ γ (Ev
′)

and Ck,r ◦ γ is therefore graph-like.
Suppose γ is Ck,r -stable. Since γ is graph-like, it holds that

{Ex ∈ V r
| γ (prk−1Ev〈 Eı, Ex〉)= κ} =

⋃
σ∈Im γ
σ=κ

{Ex ∈ V r
| γ (Ev〈 Eı, Ex〉)= σ }, (11)

for all Eı ∈ [k− 1](r) and κ ∈ Im γ . Since the right-hand side of the above is a disjoint union and∣∣{Ex ∈ V r
| γ (Eu〈 Eı, Ex〉)= σ }

∣∣= ∣∣{Ex ∈ V r
| γ (Ev〈 Eı, Ex〉)= σ }

∣∣,
it then follows from (11) that∣∣{Ex ∈ V r

| γ (prk−1Eu〈 Eı, Ex〉)= σ }
∣∣= ∣∣{Ex ∈ V r

| γ (prk−1Ev〈 Eı, Ex〉)= σ }
∣∣.

Thus, γ is Ck−1,r -stable.
A very similar argument to the case of WLk,r shows that [γ ]Ck,r can be computed in time |V |O(k).
IM(F) is a refinement procedure. We proceed via the same proof strategy as for the above refinement

procedures.
Suppose IMF

k ◦ γ (Eu)= IMF
k ◦ γ (Ev). Then γ (Eu)= γ (Ev); and hence, γ (Euτ )= γ (Evτ ) for all τ ∈ Sym(k).

Note that for any σ ∈ Im γ , χγ,Ev
Eı,σ = χ

γ,Evτ

τ(Eı ), σ τ . From this one deduces that IMF
k ◦ γ (Eu

τ )= IMF
k ◦ γ (Ev

τ );
whence, IMF

k ◦ γ is invariant.
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From Lemma 4.7, it follows that χγ,Ev
′

Eı,σ = χ
γ,Ev

Eı,σ if k is an entry of Eı ; χγ,Ev
′

Eı,σ = χ
γ,Evπ

π(Eı ),σ if k− 1 is an entry
of Eı , but k is not; and

χ
γ,Ev′

Eı,σ =
∑
κ∈Im γ
κ=σ

χ
γ,Ev

Eı,κ

if neither k nor k− 1 are entries of Eı . Since Sχγ,Ev
Eı,σ S−1

= χ
γ,Eu
Eı,σ for all σ ∈ Im γ , then Sχγ,Ev

′

Eı,σ S−1
= χ

γ,Eu′

Eı,σ
for all σ ∈ Im γ . From this, IMF

k ◦ γ (Eu
′)= IMF

k ◦ γ (Ev
′) follows; and thus, IMF

k ◦ γ is graph-like.
From the fact that γ is graph-like we deduce that for all Eı ∈ [k− 1](2),

χ
γ ,prk−1Ev

Eı,σ =

∑
κ∈Im γ
κ=σ

χ
γ,Ev

Eı,κ .

Thus, if Sχγ,Ev
Eı,σ S−1

= χ
γ,Eu
Eı,σ for all σ ∈ Im γ , then Sχ

γ ,prk−1Ev

Eı,σ S−1
= χ

γ ,prk−1 Eu
Eı,σ for all σ ∈ Im γ . In particular,

if γ is IMF
k -stable, then γ is IMF

k−1-stable.
Finally, showing that [γ ]IM

F
k can be computed in time |V |O(k) is similar to the previous cases. Again,

the number of refinement steps is at most |V |k . However, at each step, and for each pair of tuples, we
need to perform a simultaneous similarity test. For this, we rely on the fact that simultaneous similarity
is decidable in polynomial time. This follows from the fact that testing simultaneous similarity can be
reduced in polynomial time to testing module isomorphism (see [Chistov et al. 1997], for example), and
the polynomial-time algorithm for the latter problem over any field is given by Brookbanks and Luks
in [2008]. �

For a refinement procedure R= {R1, R2, . . . }, let SR= {R1, R2, . . . } be the family of mappings where
for all graphs 0, R1(0)= 0 and Rk(0)= pr2[αk,0]

Rk for k ≥ 2. Then, from the above discussion, SR is
a SPAS. We define SWL,r = {WL1,r ,WL2,r , . . . },SC,r = {C1,r ,C2,r , . . . }, and SIM(F) = {IMF

1, IMF
2, . . . }

to be the SPASs obtained from the refinement procedures WLr ,Cr , and IM(F), respectively.

5. Proof of Theorem 1.3

Hereafter, when talking of the families of operators WLr and Cr , we write WL = {WL1,WL2, . . . }

and C = {C1,C2, . . . } to denote the families WL1 = {WL1,1,WL2,1, . . . } and C1 = {C1,1,C2,1, . . . },
respectively. The distinction between the procedure WLk and the operator WLk should not cause any
confusion, likewise for the procedure Ck and the operator Ck .

For showing that for two refinement procedures X= {X1, X2, . . . } and Y= {Y1, Y2, . . . }, their respec-
tive SPAS satisfy SX � SY, our general strategy is as follows. For each k ∈ N, we find some k ′ ∈ N such
that for any graph 0 and any Yk-stable graph-like 0-partition γ ∈ P(V k), there is some Xk′-stable graph-
like 0-partition γ ′ ∈ P(V k′) such that pr2γ

′
� pr2γ . By taking γ ′ to be [αk,0]

Xk′ (which is graph-like
by Proposition 4.6), we have that X k(0)= pr2γ

′
� pr2γ � Y k(0) for all graphs 0. The last inequality

follows from the fact that Y k(0) is the 2-projection of a minimal Yk-stable partition refining αk,0.
For the proofs in this section, the operators WLk,r and Ck,r are only considered in the case k > r ,

since the statements hold trivially when k ≤ r .

Lemma 5.1. For all k, r ∈ N, any WLk,r -stable partition is Ck,r -stable.
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Proof. Let γ ∈ P(V k) be WLk,r -stable. The size of {Ex ∈ V r
| γ (Ev〈 Eı, Ex〉) = φEı , ∀Eı ∈ [k](r)} is then

independent of the choice of Ev from the equivalence class [Ev]γ for all Eφ ∈8γ,r , by Proposition 4.5. For
each E ∈ [k](r) and σ ∈ Im γ ,

{Ex ∈ V r
| γ (Ev〈 E, Ex〉)= σ } =

⋃
Eφ∈8γ,r

φ E=σ

{Ex ∈ V r
| γ (Ev〈 Eı, Ex〉)= φEı , ∀Eı ∈ [k](r)}.

The right-hand side of the above is a disjoint union of sets, whose sizes are independent of the choice of
Ev, from the equivalence class [Ev]γ . Hence, the size of the left-hand side, is also the same for any choice
of Ev from the class [Ev]γ , implying that γ is Ck,r -stable. �

Corollary 5.2. For any graph 0 and k, r ∈ N,

Ck,r (0)�WLk,r (0).

Lemma 5.3. For all k, r ∈ N, any Ck-stable partition is Ck,r -stable.

Proof. Let γ ∈ P(V k) be Ck-stable. Then, by definition, it is Ck,1 stable.
Suppose γ is Ck,m-stable for some m < k. Let E ∈ [k](m). Since m < k, there is some j ′ ∈ [k] such

that j ′ 6= ji for all i ∈ [m]. For all σ, τ ∈ Im γ and Ev ∈ V k such that γ (Ev)= σ , define

pστ =
∣∣{u ∈ V | γ (Ev〈 j ′, u〉)= τ }

∣∣
and

qστ =
∣∣{ Ew ∈ V m

| γ (Ev〈 E, Ew〉)= τ }
∣∣.

Because γ is Ck-stable and, by the induction hypothesis, also Ck,m-stable, pστ and qστ are independent
of the choice of Ev from the equivalence class [Ev]γ .

Observe that

{ Ew · u ∈ V m+1
| γ (Ev〈 E · j ′, Ew · u〉)= τ } = { Ew · u ∈ V m+1

| γ ((Ev〈 E, Ew〉)〈 j ′, u〉)= τ }.

From this one deduces that∣∣{ Ew · u ∈ V m+1
| γ (Ev〈 E · j ′, Ew · u〉)= τ }

∣∣=∑
α∈Im γ

pσαqατ .

The right-hand side of the above is independent of the choice of Ev from the equivalence class [Ev]γ . Hence,
γ is Ck,m+1-stable. Thus, by induction, it is Ck,r stable for all r . �

Corollary 5.4. For any graph 0 and k, r ∈ N,

Ck(0)� Ck,r (0).

Note that Lemmas 5.1 and 5.3 are not restricted to graph-like partitions.

Lemma 5.5. For all k, r ∈ N, the k-projection of a Ck+r,r -stable graph-like partition is WLk,r -stable.

Proof. Let Ev, Ev′ ∈ V k , and let γ = prkγ for some Ck+r,r -stable graph-like partition γ ∈P(V k+r ). Because
γ is graph-like, by Lemma 3.6 it follows that for all Eı ∈ [k+ r ](r),

γ (Ev〈 Eı, pr E Ev〉)= γ (Ev
′
〈 Eı, pr E Ev

′
〉),
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where E = (k+ 1, k+ 2, . . . , k+ r) ∈ [k+ r ](r). In particular, for all Eı ∈ [k](r),

γ (prk Ev〈 Eı, pr E Ev〉)= γ (prk Ev
′
〈 Eı, pr E Ev

′
〉). (12)

For all Ev ∈ V k+r, define E1 ∈ (8γ ,r )Im γ to be

(1γ (Ev))Eı = γ (prk Ev〈 Eı, pr E Ev〉).

One deduces from (12) that E1 is well defined.
For any Eφ ∈8γ ,r, it follows from the definition of E1 that:

{Eu ∈ V r
| γ (prk Ev〈 Eı, Eu〉)= φEı , ∀Eı ∈ [k]

(r)
} =

⋃
σ∈Im γ

1σ=Eφ

{Eu ∈ V r
| γ (Ev〈 E, Eu〉)= σ }.

Ck,r -stability of γ implies that the size of the right-hand side of the above is independent of the choice
of Ev from the equivalence class [Ev]γ . Since γ is graph-like, the size of the left-hand side is independent
of the choice of Ew ∈ V k+r , where prk Ew ∈ [prk Ev]γ , and the result follows. �

Corollary 5.6. For any graph 0 and k, r ∈ N,

Ck+r,r (0)�WLk,r (0).

In particular,
Ck+1(0)�WLk(0).

Lemma 5.7. For all k, r ∈ N, the (k− r + 1)-projection of a Ck,r -stable graph-like partition is Ck−r+1-
stable.

Proof. Let γ = prk−r+1γ , and let Ev ∈ V k . Fix some i ∈ [k−r ], and let E ∈ [k](k−r+1) be defined by
E = (i, k−r+1, k−r+2, . . . , k−1, k). Fix u ∈ EV , and let Ew = (vk−r+1, vk−r+1, . . . , vk−r+1) ∈ V k−r.

Since γ is graph-like, for any u′ ∈ V ,

γ (Ev〈 E, u · Ew〉)= γ (Ev〈 E, u′ · Ew〉)⇐⇒ γ (prk Ev〈i, u〉)= γ (prk Ev〈i, u′〉);

and therefore,

{u′ ∈ V | γ (prk Ev〈i, u〉)= γ (prk Ev〈i, u′〉)} = {u′ ∈ V | γ (Ev〈 E, u′ · Ew〉)= γ (Ev〈 E, u · Ew〉)}.

The size of the right-hand side of the latter is independent of the choice of Ev from the equivalence class
[Ev]γ . Hence, as γ is graph-like, the size of the left-hand side is independent of the choice of Ew ∈ V k ,
where prk−r+1 Ew ∈ [prk−r+1Ev]γ . The result follows. �

Corollary 5.8. For any graph 0 and k, r ∈ N,

Ck,r (0)� Ck−r+1(0).

The results proved so far involved showing that the projection of a partition satisfying some stability
condition satisfied some other stability condition. In order to prove that SWL dominates SC, we extend
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a WLk-stable partition to a Ck+1-stable one. Let γ be graph-like and be a WLk-stable partition of V k .
Define γ̂ ∈ P(V k+1) as

γ̂ (Ev,w)= (γ (Ev), γ (Ev〈1, w〉), γ (Ev〈2, w〉), . . . , γ (Ev〈k, w〉)), ∀Ev ∈ V k, w ∈ V .

That is to say, γ̂ (Ev,w) = γ̂ (Ev′, w′) if and only if γ (Ev) = γ (Ev′) and γ (Ev〈i, w〉) = γ (Ev′〈i, w′〉) for all
i ∈ [k]. First, we need to prove that γ̂ is graph-like.

Lemma 5.9. Let γ and γ̂ be as above. If γ is invariant, then γ̂ is invariant.

Proof. Because Sym(k+ 1)= 〈Sym(k), (k, k+ 1)〉, it is sufficient to show that γ̂ (Eu · u′)= γ̂ (Ev · v′)=⇒
γ̂ ((Eu · u′)τ )= γ̂ ((Ev · v′)τ ), where τ = (k, k+ 1) is a transposition of Sym(k+ 1); or, equivalently,

γ̂ ((prk−1Eu) · u
′
· uk)= γ̂ ((prk−1Ev) · v

′
· vk). (13)

From the definition of γ̂ , it holds that

γ (Eu〈k, u′〉)= γ (Ev〈k, v′〉).

Hence,
γ ((prk−1Eu) · u

′)= γ ((prk−1Ev) · v
′). (14)

Also, γ̂ (Eu · u′)= γ̂ (Ev · v′) implies that γ (Eu)= γ (Ev); and hence, since γ is graph-like,

γ ((prk−1Eu) · uk)= γ ((prk−1Ev) · vk). (15)

Since γ (Eu〈i, u′〉)= γ (Ev〈i, v′〉) for all i ∈ [k] and γ is invariant; for any τ = (i, k)∈Sym(k), γ (Eu〈i, u′〉τ )=
γ (Ev〈i, v′〉τ ) or, equivalently,

γ ((prk−1Eu) · u
′
〈i, uk〉)= γ ((prk−1Ev) · v

′
〈i, vk〉). (16)

Combining (14), (15), and (16), we see that (13) follows. �

Consequently, if γ is graph-like, so is γ̂ . Indeed, γ̂ is k-consistent by construction. Also, since γ̂ is
invariant and γ satisfies (6), then γ̂ also satisfies (6). Finally, observe that if γ is a 0-partition for some
graph 0, then so is γ̂ .

Lemma 5.10. Let γ and γ̂ be as above. If γ is graph-like and WLk stable, then γ̂ is Ck+1-stable.

Proof. As observed, if γ is graph-like, then γ̂ is graph-like by construction. Since γ is WLk-stable, it
follows that for all σ ∈ Im γ̂ and Ev ∈ V k+1, the size of {x ∈ V | γ̂ (Ev〈k+1, x〉)= σ } is independent of the
choice of Ev from the equivalence class [Ev]γ̂ . By invariance of γ̂ , one deduces that for all i ∈ [k+ 1], the
size of {x ∈ V | γ̂ (Ev〈i, x〉)= σ } is independent of the choice of Ev in the equivalence class [Ev]γ̂ . Thus, γ̂
is Ck+1-stable. �

Corollary 5.11. For any graph 0,
Ck+1(0)�WLk(0).

In particular, combining this with Corollary 5.6, one deduces that for all graphs 0 and k ∈ N,

Ck+1(0)≈WLk(0). (17)
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This can be seen as a combinatorial reformulation of Theorem 5.2 in [Cai et al. 1992] proven without
referring to the Immerman–Lander pebble game.

Proof of Theorem 1.3. Let 0 be any graph. From (17) it easily follows that SWL ' SC.
It follows from Corollaries 5.4 and 5.8 that for all r, k ∈ N,

Ck(0)� Ck,r (0)� Ck−r+1(0);

and hence, for any r ∈ N,
SC ' SC,r .

From Corollaries 5.6 and 5.2, we deduce that for all r ∈ N,

SWL,r ' SC,r . �

6. The Evdokimov–Ponomarenko SPAS

In this section, we apply the language and results of this paper to derive the following statement about
the SPAS, SEP = {EP1,EP2, . . . }, introduced by Evdokimov and Ponomarenko in [1999].

Theorem 6.1 (Evdokimov, Ponomarenko, 1999). For any graph 0 and k ∈ N,

WLk(0)� EPk(0)�WL3k(0). (18)

In particular, SEP ' SWL.

We first define the mapping EPk in terms of the refinement operator WL2.
For P ∈ P(V 2), k ∈ N, and some symbol 1, set P (k) : (V k)2 → Im Pk

∪ Im Pk
× {1} to be the

following labelled partition of (V k)2:

P (k)(Eu, Ev)=
{
(P(u1, v1), P(u2, v2), . . . , P(uk, vk),1) if Eu = Ev = (u, u, . . . , u) for some u ∈ V,
(P(u1, v1), P(u2, v2), . . . , P(uk, vk)) otherwise,

for all Eu, Ev ∈ V k . Note that we have denoted elements of (V k)2 by (Eu, Ev) as opposed to (Eu · Ev) to emphasize
the difference between a set of pairs of k-tuples as opposed to a set of 2k-tuples. Hence, if 0 is a graph,
then [0(k)]WL2 is a coherent configuration on V k , which we denote by 0̂(k). Observe that the set

I1 = {(u, u, . . . , u) | u ∈ V } ⊂ V k

is a union of cells of 0̂(k). Hence, the restriction 0̂(k)|I 2
1

is a coherent configuration on I1. Let δ : V 2
→ I 2

1

be the map
(u, v) 7→ (Eu, Ev), (19)

where Eu = (u, u, . . . , u) ∈ V k and Ev = (v, v, . . . , v) ∈ V k . We define EPk(0) = 0̂
(k)
◦ δ, which is a

coherent configuration on V .
Theorem 1.1 in [Evdokimov et al. 1999] shows that the family SEP = {EP1,EP2, . . . } forms a SPAS.

Furthermore, the authors also prove the following properties for a binary relation R on V . Set X k
R =

{(u, v, . . . , v) ∈ V k
| (u, v) ∈ R}.

Proposition 6.2 (Proposition 3.6 in [Evdokimov et al. 1999]). R = {(u, v) ∈ V 2
| EPk(0)(u, v)= σ } for

some σ ∈ Im EPk(0) if and only if X k
R is a cell of 0̂(k).
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Proposition 6.3 (Proposition 3.6 in [Evdokimov et al. 1999]). The equivalence classes of [αk,0]
WLk are

unions of cells of 0̂(k).

From these, one can deduce the left-most relation of (18).

Lemma 6.4. For any graph 0 and k ∈ N,

WLk(0)� EPk(0).

Proof. For k = 1, the statement is trivial. Let k ≥ 2, and set 3 = [αk,0]
WLk . By Proposition 6.3 and

because 3 is graph-like, for any u, v ∈ V the equivalence class [(v, u, . . . , u)]3 is a union of cells of 0̂(k)

whose elements are all of the form (v′, u′, . . . , u′). Since WLk(0)= pr23, it follows from Proposition 6.2
that its equivalence classes are unions of equivalence classes of EPk(0). Hence WLk(0)� EPk(0). �

We now apply Lemmas 5.1 and 5.5 to show the right-most relation of (18). For all k, p ∈ N, let
ψk,p : V pk

→ (V k)p be the map

Ev 7→ ( Ew1, Ew2, . . . , Ewp),

where Ewi = (v1+(i−1)k, v2+(i−1)k, . . . , vk+(i−1)k).

Lemma 6.5. For any graph 0 and k ∈ N,

EPk(0)�WL3k(0).

Proof. Let 3= [α3k,0]
C3k,k , and set 8̂=8pr2k3,k . By Lemma 5.5, pr2k3 is a WL2k,k-stable partition of

V 2k . Hence, for all Eφ ∈ 8̂, the size of

{Ex ∈ V k
| pr2k3(Ev〈 Eı, Ex〉)= φEı , ∀Eı ∈ [2k](k)}

is independent of the choice of Ev from the equivalence class [Ev]pr2k3
. In particular, if T = {(1, 2, . . . , k),

(k+ 1, k+ 2, . . . , 2k)}, then for all Eξ ∈ (Im pr2k3)
T ,

{Ex ∈ V k
| pr2k3(Ev〈 Eı, Ex〉)= ξi , ∀Eı ∈ T } =

⋃
Eφ∈8̂

φEı=ξEı ,∀Eı∈T

{Ex ∈ V k
| pr2k3(Ev〈 Eı, Ex〉)= φEı , ∀Eı ∈ [2k](k)}.

The right-hand side of the above is a disjoint union of sets whose size is independent of the choice of Ev
from the equivalence class [Ev]pr2k3

. Hence, the size of the left-hand side is independent of the choice of
Ev from the equivalence class [Ev]pr2k3

; and therefore, (pr2k3) ◦ψ
−1
k,2 is a WL2-stable partition of (V k)2.

In particular, it refines α2k,0 ◦ψ
−1
k,2 . But 0(k) � α2k,0 ◦ψ

−1
k,2 ; and thus, since γ̂ (k) is a minimal WL2-stable

partition of V 2k refining 0(k), then 0̂(k) � (pr2k3) ◦ψ
−1
k,2 . In particular, 0̂(k)|I 2

1
� (pr2k3) ◦ψ

−1
k,2 |I 2

1
; and

hence, if δ is as defined in (19),

EPk(0)� (pr2k3) ◦ψ
−1
k,2 ◦ δ.

Since 3 is graph-like, Lemma 3.6 implies that for all u, u′, v, v′ ∈ V ,

pr2k3(u, v, . . . , v)= pr2k3(u
′, v′, . . . , v′)=⇒ pr2k3(Eu · Ev)= pr2k3(Eu

′
· Ev), (20)
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where Eu = (u, u, . . . , u), Ev = (v, v, . . . , v), Eu′ = (u′, u′, . . . , u′), Ev′ = (v′, v′, . . . , v′) ∈ V k . It follows
that pr23= (pr2k3) ◦ψ

−1
k,2 ◦ δ. But pr23= C3k,k(0)�WL3k(0). Thus, by (20),

EPk(0)�WL3k(0). �

7. Proofs of Theorems 1.4 and 1.5

We proceed using the same strategy as for the proof of Theorem 1.3.

Lemma 7.1. The k-projection of a graph-like IMF
k+1-stable partition is Ck-stable for any field F and

k ∈ N.

Proof. Let γ ∈ P(V k+2) be a graph-like IMF
k+2-stable partition, and set γ = prkγ . Suppose γ (Ev)= γ (Ev′).

Fix some j ∈ [k], and let Eı = ( j, k + 1) ∈ [k+ 1](2). As γ is graph-like, there is some σ ∈ Im γ such
that the matrix χγ,Ev

σ,Eı is diagonal and nonzero. Since γ (Ev)= γ (Ev′), there is some S ∈ GLV (F) such that

Sχγ,Ev
σ,Eı S−1

= χ
γ,Ev′

σ,Eı . So χγ,Ev
σ,Eı and χγ,Ev

′

σ,Eı have the same rank and hence, the same number of 1s on the
diagonal. Thus, for any w ∈ V , the size of the set {u ∈ V | γ (Ev〈 Eı, (u, u)〉) = σ } is independent of the
choice of Ev from the equivalence class [Ev]γ . Also,

{u ∈ V | γ (prk Ev〈 j, u〉)= σ } = {u ∈ V | γ (Ev〈 Eı, (u, u)〉)= σ },

and hence, as γ is graph-like, the size of the left-hand side is independent of the choice of prk Ev from the
equivalence class [prk Ev]γ . The result follows. �

Corollary 7.2. For any graph 0 and k ∈ N,

IMF
k+2(0)�WLk(0).

Proof. This follows from Lemma 7.1 and the fact that Ck+1(0)≈WLk(0). �

Lemma 7.3. The k-projection of a graph-like Ck+1-stable partition is IMF
k -stable for any F with char(F)=

0 or char(F) > |V |.

Proof. Let γ ∈ P(V k+1) be a graph-like Ck+1-stable partition, and fix some Eı ∈ [k+ 1](3) with i3 = k+ 1.
For every Ev ∈ V k+1, define gEv to be the partition of V 3 given by gEv(Ex)= γ (Ev〈 Eı, Ex〉) for all Ex ∈ V 3. Since
γ is Ck+1-stable, it follows that gEv is C3 stable for all Ev ∈ V k+1. As γ is graph-like, pr2gEv is a rainbow,
and it is WL2-stable by Lemma 5.1 and thus, a coherent configuration on V .

Set γ = prkγ , and for all Ey ∈ V 2, let ḡEv(Ey) = γ (prk Ev〈(i1, i2), Ey〉). Then ḡEv = pr2gEv. Therefore, all
nonempty relations of ḡEv form a coherent configuration whose F-adjacency algebra has standard basis

{χ
γ ,prk Ev

(i1,i2),σ
| ∃Ey ∈ V 2, γ (prk Ev〈(i1, i2), Ey〉)= σ }.

Thus, if γ (prk Eu)= γ (prk Ew), then ḡEu and ḡ Ew are algebraically isomorphic coherent configurations. More
precisely, one can check that Im ḡEu = Im ḡEv and that the map

ι : Im ḡEu→ Im ḡEv, σ 7→ σ

is an algebraic isomorphism.
For char(F)= 0 or char(F) > |V |, it follows from Corollary 2.11 that there is some S ∈ GLV (F) such

that Sχγ ,prk Eu
(i1,i2),σ

S−1
= χ

γ ,prk Ew

(i1,i2),σ
for all σ ∈ Im γ . The result then follows. �
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Note that in the above proof, there may be other bijections Im ḡEu→ Im ḡEv which are algebraic isomor-
phisms. However, it follows from the definition of the k-refinement operator IMF

k , that Eu, Ev ∈ V k are in
the same equivalence class of an IMF

k -stable partition, only if ι, as above, is an algebraic isomorphism.

Corollary 7.4. For all k ∈N, graph 0 with vertex set V , and field F such that char(F)=0 or char(F)> |V |,

WLk(0)� IMF
k(0).

Proof. This follows from Lemma 7.3 and the fact that Ck+1(0)≈WLk(0). �

The statement of Theorem 1.4 comes from taking F to be of characteristic 0 in Corollaries 7.2 and 7.4.
Theorem 1.5 arises instead from combining Corollary 7.4 with a construction due to Holm [2010]. The
construction in the proof of Theorem 7.1 in [Holm 2010] gives, for each k ∈ N and prime number p, a
graph 0k,p for which WLk(0k,p) is strictly coarser than Sch(0k,p), but IMF

3(0k,p)= Sch(0k,p) for any
field F with char(F) = p. Furthermore, from the same result, it also follows that IMF

k(0k,p) is strictly
coarser than Sch(0k,p) whenever char(F) 6= p. This shows that the SPAS, SIM(F1) and SIM(F2), are
incomparable whenever char(F1) 6= char(F2).

8. Yet another refinement operator

There is a subtle difference between the definitions of WLk,r and Ck,r : the colours of WLk,r ◦ γ are
multisets of tuples of colours of γ , whereas the colours of Ck,r ◦ γ are tuples of multisets of colours of
γ . We now show that a similar variation in the definition of IMF

k gives a refinement procedure whose
corresponding SPAS is equivalent to SIM(F).

For every γ ∈ P(V k), Ev ∈ V k , and Eφ ∈8γ,2, let χγ,Ev
Eφ

be the adjacency matrix of the relation {Ex ∈ V 2
|

γ (Ev〈 Eı, (u, v)〉)= φEı , ∀Eı ∈ [k](2)} ⊆ V 2. Define the mapping IMtFk by setting IMtF1 ◦ γ = IMtF2 ◦ γ = γ ,
and for k > 2,

IMtFk ◦ γ : V
k
→ Im γ × (MatV (F)

8γ,2/∼), Ev 7→ (γ (Ev), (χ
γ,Ev

Eφ
) Eφ∈8γ,2),

where the equivalence classes of the relation ∼ are the orbits of GLV (F) acting on the tuples by conju-
gation.

Similarly to Proposition 4.6, one can show that IMtFk is a graph-like k-refinement operator for all
k ∈ N and that IMt(F) = {IMtF1, IMtF2, . . . } is a refinement procedure. Hence, the family SIMt(F) =

{IMtF1, IMtF2, . . . } is a SPAS for any field F. Also, similarly to Proposition 4.5, one may derive the
following stability condition:

Proposition 8.1. A partition γ ∈ P(V k) is IMtFk -stable if and only if for all Eu, Ev ∈ V k ,

γ (Eu)= γ (Ev)=⇒ ∃S ∈ GLV (F), ∀Eφ ∈8
γ,2 Sχγ,Eu

Eφ
S−1
= χ

γ,Ev

Eφ
.

In particular, the following result is analogous to Proposition 4.5:

Lemma 8.2. Any IMtFk -stable partition is also IMF
k -stable.

Proof. For any Ev ∈ V k,Eı ∈ [k](2), and σ ∈ Im γ

χ
γ,Ev

σ,Eı =
∑
Eφ∈8γ,2

φEı=σ

χ
γ,Ev

Eφ
.
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Hence, if γ (Eu)= γ (Ev), there is some S ∈ GLV (F) such that Sχγ,Ev
Eφ

S−1
= χ

γ,Eu
Eφ

for all Eφ ∈8γ,2. Thus,

Sχγ,Ev
σ,Eı S−1

=

∑
Eφ∈8γ,2

φEı=σ

Sχγ,Ev
Eφ

S−1
=

∑
Eφ∈8γ,2

φEı=σ

χ
γ,Eu
Eφ
= χ

γ,Eu
σ,Eı ;

from which follows that γ is IMF
k -stable. �

Corollary 8.3. For any graph 0, field F, and k ∈ N,

IMF
k(0)� IMtFk(0).

In the following result, the argument, is analogous to that of Lemma 5.5:

Lemma 8.4. The k-projection of an IMF
k+2-stable partition is IMtFk -stable.

Proof. Let Eu, Ev ∈ V k be such that γ (Eu)= γ (Ev), and set γ = prkγ . Because γ is graph-like, it follows from
Lemma 3.6 that for all Eı ∈ [k+2](2), γ (Ev〈 Eı, pr E Ev〉)= γ (Eu〈 Eı, pr E Eu〉), where E = (k+1, k+2) ∈ [k+2](2).
In particular, for all Eı ∈ [k](2),

γ (prk Ev〈 Eı, pr E Ev〉)= γ (prk Eu〈 Eı, pr E Eu〉). (21)

Define E1 ∈ (8γ ,2)Im γ such that
(1γ (Ev))Eı = γ (prk Ev〈 Eı, pr E Ev〉).

One deduces from (21) that E1 is well defined.
For any Eφ ∈8,

{Eu ∈ V 2
| γ (prk Ev〈 Eı, Eu〉)= φEı , ∀Eı ∈ [k]

(2)
} =

⋃
σ∈Im γ

1σ=Eφ

{Eu ∈ V 2
| γ (Ev〈 E, Eu〉)= σ }.

Hence, for all Eφ ∈8 it holds that
χ
γ,Ev

Eφ
=

∑
σ∈Im γ

1σ=Eφ

χ
γ,Ev

σ, E
.

Because γ is IMF
k+2-stable and γ (Eu) = γ (Ev), for each Eı ∈ [k](2) there is some S ∈ GLV (F) such that

Sχγ,Ev
σ,Eı S−1

= χ
γ,Eu
σ,Eı for all σ ∈ Im γ . Thus, for all Eφ ∈ (Im γ )[k]

(2)
,

Sχγ,Ev
Eφ

S−1
=

∑
σ∈Im γ

1σ=Eφ

Sχγ,Ev
σ, E

S−1
=

∑
σ∈Im γ

1σ=Eφ

χ Euσ, E = χ
γ,Eu
Eφ
;

whence, γ (Eu)= γ (Ev). Therefore, γ is IMtFk -stable. �

Corollary 8.5. For any graph 0, field F, and k ∈ N,

IMtFk(0)� IMF
k+2(0).

Theorem 1.6 follows from Corollaries 8.5 and 8.3.
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9. Conclusions

The Weisfeiler–Leman algorithm is much studied in the context of graph isomorphism. It is really a
family of algorithms, graded by a dimension parameter. A large number of other families of algorithms
have been shown to give essentially the same graded approximations of isomorphism. The Schurian
polynomial approximation schemes of Evdokimov et al. provide a general framework for comparing
these families of algorithms. The invertible map operators of Dawar and Holm provide another such
family of algorithms (or, more formally in the language of this paper, refinement procedure), but one
that has greater distinguishing power than the Weisfeiler–Leman family. In the same way that WLr and
Cr were obtained from WL and C, one can generalize IM(F) as follows: for every k, r ∈ N, define the
k-refinement operator IMF

k,r by setting IMF
k,r ◦ γ = γ when k ≤ 2r . When k > 2r define:

IMF
k,r ◦ γ : V

k
×→ Im γ × (MatV r (F)Im γ×[k](2r)

/∼), Ev 7→ (γ (Ev), ((χ
γ,Ev

Eı,σ )σ∈Im γ )Eı∈[k](2r)),

where χγ,Ev
Eı,σ is the adjacency matrix of the relation {(Ex, Ey) | γ (Ev〈 Eı, Ex · Ey〉)= σ } ⊆ (V r )2 and ∼ is the

relation whose equivalence classes are the orbits of GLV r (F) acting on the tuples by conjugation. One
can show that IMr (F)= {IMF

1,r , IMF
2,r , . . . } is a refinement procedure for all r ∈ N. One can thus derive

from it a SPAS, SIM(F),r , in the same manner as described in Section 4. While we were able to show that
the refinement procedures WLr and Cr do not yield SPASs more powerful than that yielded by WL, the
exact relation between SIM(F) and SIM(F),r is still unclear and an interesting open question.
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