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We investigate the configuration where a group of finite Morley rank acts definably
and generically m-transitively on an elementary abelian p-group of Morley rank n,
where p is an odd prime, and m ⩾ n. We conclude that m = n, and the action is
equivalent to the natural action of GLn(F) on Fn for some algebraically closed
field F . This strengthens one of our earlier results, and partially answers two
problems posed by Borovik and Cherlin in 2008.

1. Introduction

This is the fourth and concluding work in a series of papers, which began with
[Berkman and Borovik 2011; 2012; 2018]. All were aimed at proving the following
theorem, but they handled different stages of the proof, each using a completely
different approach and technique.

Theorem 1.1. Let G be a group of finite Morley rank, V an elementary abelian
p-group of Morley rank n, and p an odd prime. Assume that G acts on V faithfully,
definably and generically m-transitively with m ⩾ n. Then m = n and there is an
algebraically closed field F such that V ≃ Fn , G ≃ GLn(F), and the action is the
natural action.

In [Berkman and Borovik 2018], the same theorem was proven under the extra
assumption that the action of G on V is generically sharply m-transitive. In this
paper, we prove the generic sharpness of the action of G on V under the hypothesis
of Theorem 1.1. Then Theorem 1.1 follows from the previous result [Berkman and
Borovik 2018, Theorem 1]. We use the technique developed in [Borovik 2020]
for analysis of actions of certain subgroups of G specifically for the needs of the
present project; see Section 3A.

Theorem 1.1 gives partial confirmations to the following two conjectures; note
that the latter is implicit in the former.
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Conjecture 1.2 [Altınel et al. 2008, Problem 37, p. 536; Borovik and Cherlin
2008, Problem 13]. Let G be a connected group of finite Morley rank acting
faithfully, definably, and generically n-transitively on a connected abelian group V
of Morley rank n. Then V has a structure of an n-dimensional vector space over
an algebraically closed field F of Morley rank 1, and G is GLn(F) in its natural
action on Fn .

Conjecture 1.3 [Borovik and Cherlin 2008, Problem 12]. Let G be a connected
group of finite Morley rank acting faithfully, definably, and generically t-transitively
on an abelian group V of Morley rank n. Then t ⩽ n.

The cases when V is a torsion-free abelian group or an elementary abelian
2-group require completely different approaches and methods and are handled in
our next paper. But even that result will not be the end of the story, since it appears
to be an almost inevitable step in any proof of the following conjecture.

Conjecture 1.4 [Altınel et al. 2008, Problem 36, p. 536; Borovik and Cherlin 2008,
Problem 9]. Let G be a connected group of finite Morley rank acting faithfully,
definably, transitively, and generically (n+2)-transitively on a set � of Morley
rank n. Then the pair (G, �) is equivalent to the projective linear group PGLn+1(F)

acting on the projective space Pn(F) for some algebraically closed field F.

Indeed, the group Fn ⋊ GLn(F) is the stabiliser of a point in the action of
PGLn+1(F) on Pn(F).

Altınel and Wiscons [2018; 2019] have already made important contributions
towards a solution to the above conjecture. The importance of Conjecture 1.4 has
been recently highlighted in [Freitag and Moosa 2021].

General discussion and a survey of results on actions of groups of finite Morley
rank can be found in [Borovik and Deloro 2019]. Terminology and notation follow
[Altınel et al. 2008; Borovik and Nesin 1994; Borovik and Cherlin 2008].

2. Useful facts

In what follows, (G, X) is an infinite permutation group of finite Morley rank.

Definition. Let Y be a definable subset of X . If rk(X \Y ) < rk(X) then Y is called
a strongly generic subset of X . We will simply call it a generic subset. If G acts
transitively on a generic subset of X , then we say G acts generically transitively
on X . If the induced action of G on Xn is generically transitive, then we say G
acts generically n-transitively on X .

The following two facts show that connectedness assumptions are superfluous in
our context.

Fact 2.1. If G acts generically m-transitively on a group X , where m ⩾ rk(X),
then X is a connected group.
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Proof. If m ⩾ 2, this is a special case of [Borovik and Cherlin 2008, Lemma 1.8].
When m = 1, note that the generic orbit, say A ⊆ X , is cofinite in X . Since G
fixes X◦ and A setwise, G also fixes X◦

∩ A setwise. The transitivity of G on A
implies A ⊆ X◦. Hence X = X◦, since A is cofinite. □

Fact 2.2 [Altınel and Wiscons 2018, Lemma 4.10]. If G acts n-transitively on X ,
and X is of degree 1, then G◦ also acts n-transitively on X.

For any prime p, recall that a connected solvable p-group of bounded exponent
is called a p-unipotent group, and a divisible abelian p-group is called a p-torus.

As the following two facts show, the structure of Sylow 2-subgroups in groups
of finite Morley rank is well understood.

Fact 2.3 [Altınel et al. 2008, Propositions I.6.11, I.6.4, I.6.2]. Sylow 2-subgroups of
a group of finite Morley rank are conjugate. Moreover, if S is a Sylow 2-subgroup of
a group of finite Morley rank, then S◦

= U ∗ T , where U is a definable 2-unipotent
group, and T is a 2-torus. In particular, Sylow 2-subgroups in groups of finite
Morley rank are locally finite.

Fact 2.4 [Borovik et al. 2007a; Altınel et al. 2008, Theorem IV.4.1]. Sylow 2-
subgroups of a connected group of finite Morley rank are either trivial or infinite.

The following is a structure theorem for nilpotent groups of finite Morley rank.

Fact 2.5 [Borovik and Nesin 1994, Theorem 6.8]. Let G be a nilpotent group of
finite Morley rank. Then G is the central product D∗B, where D and B are definable
characteristic subgroups of G, D is divisible, and B has bounded exponent.

We gather below some facts about solvable groups of finite Morley rank which
will be used in our proof of Theorem 1.1.

Fact 2.6. Let M be a connected solvable group of finite Morley rank. Then the
following hold:

(a) The commutator subgroup [M, M] is connected and nilpotent.

(b) The group M can be written as a product M = [M, M]C , where C is a
connected nilpotent subgroup.

(c) If M is of bounded exponent, then M is nilpotent.

Proof. These follow from [Borovik and Nesin 1994, Theorem 6. 8], [Altınel et al.
2008, Corollary I.8.30], and [Altınel et al. 2008, Lemma I.5.5], respectively. □

Next, we list some results about various configurations where groups act on
groups.

Fact 2.7 [Berkman and Borovik 2018, Fact 2.12]. Let V be a connected abelian
group and E an elementary abelian 2-group of order 2m acting definably and
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faithfully on V . Assume m ⩾ n = rk(V ) and V contains no involutions. Then m = n
and V = V1 ⊕ · · · ⊕ Vn , where

(a) every subgroup Vi for i = 1, . . . , n is connected, has Morley rank 1 and is
E-invariant.

Moreover,

(b) each Vi for i = 1, . . . , n is a weight space of E ; that is, there exists a nontrivial
homomorphism ρi : E → {±1} such that

Vi = {v ∈ V | ve
= ρi (e) · v for all e ∈ E}.

Proof. Statements can be found in [Berkman and Borovik 2018], whose proofs
refer to [Berkman and Borovik 2012, Lemma 7.1]. □

Assume that G acts on a group V such that the only infinite definable invariant
subgroup of V is itself under this action. Then we say G acts on V minimally, or V
is G-minimal.

Fact 2.8 [Berkman and Borovik 2018, Proposition 2.18]. Let V be a connected
abelian group and 6 = Zm

2 ⋊ Symm act definably and faithfully on V . Assume
m ⩾ rk(V ) and V contains no involutions. Then 6 acts on V minimally.

Fact 2.9 (Zilber [Borovik and Nesin 1994, Theorem 9.1]). Let A and V be con-
nected abelian groups of finite Morley rank such that A acts on V definably,
CA(V ) = 1 and V is A-minimal. Then there exists an algebraically closed field K
and a definable subgroup S ⩽ K ∗ such that the action A↷ V is definably equivalent
to the natural action of S on K +.

Fact 2.10 [Altınel et al. 2008, Lemma I.8.2]. Let G be a connected solvable group
acting on an abelian group V . If V is G-minimal, then G ′ acts trivially on V .

Recall that if a group has no nontrivial p-elements, we call it a p⊥-group. A
connected divisible abelian group is called a torus, and a torus A is called good if
every definable subgroup of A is the definable hull of its torsion elements.

Fact 2.11 [Altınel et al. 2008, Proposition I.11.7]. If a connected solvable p⊥-
group A acts faithfully on an abelian p-group V , then A is a good torus.

Fact 2.12 [Altınel et al. 2008, Proposition I.8.5]. Let p be a prime. Assume V ⊴G
is a definable solvable subgroup that contains no p-unipotent subgroup, and U ⩽ G
is a definable connected p-group of bounded exponent. Then [U, V ] = 1.

Fact 2.13 [Altınel et al. 2008, Lemma I.4.5]. A definable group of automorphisms
of an infinite field of finite Morley rank is trivial.
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3. Definable actions on elementary abelian p-groups

In this section, V is a connected elementary abelian p-group of finite Morley rank
and X is a finite group acting on V definably. We use additive notation for the
group operation on V and treat V as a vector space over Fp.

It is convenient to work with the ring R generated by X in End V . It is finite and
its elements are definable endomorphisms; R is traditionally called the enveloping
algebra (over Fp) of the action of X on V . We treat V as a right R-module.

If v ∈ V , the set
vR = {vr : r ∈ R}

is an R-submodule, which is called the cyclic submodule generated by v. Of course
all cyclic submodules contain less than |R| elements, and therefore, there are finitely
many possibilities for the isomorphism type of each of them.

3A. Coprime actions. In this subsection, we assume that X is a finite p′-group
acting on V . Recall that a torsion group is called a p′-group, if it has no nontrivial
p-elements.

We recall some generalities from representation theory. Applying Maschke’s
theorem to the action of X on R by right multiplication, we see that R is a semisimple
Fp-algebra and that every finite R-submodule in V is semisimple, that is, a direct
sum of simple modules.

The following important (but easy) result (which generalises [Borovik 2020,
Theorem 5]) now follows immediately.

Theorem 3.1. Let V be a connected elementary abelian p-group of finite Morley
rank, X a finite p′-group acting on V definably, and R the enveloping algebra
over Fp for the action of X on V . Assume that A1, A2, . . . , Am is the complete list
of nontrivial simple submodules for R in V , up to isomorphism. Then

rk V ⩾ m.

Proof. For each i = 1, . . . , m, write

Vi = {v ∈ R : all simple submodules of vR are isomorphic to Ai }.

It is easy to see that all the Vi are definable submodules of V and

V = V1 ⊕ V2 ⊕ · · · ⊕ Vm .

Since V is connected, all the Vi are connected. Hence, being a nontrivial, definable,
connected submodule, each Vi has Morley rank at least 1. Therefore, rk(V )⩾m. □

Problem 3.2. It would be interesting to remove from Theorem 3.1 the assumption
that X is a p′-group and prove the following:
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If A1, A2, . . . , Am are nontrivial simple pairwise nonisomorphic R-modules
appearing as sections W/U for some definable R-modules U < W ⩽ V , then

rk V ⩾ m.

3B. p-Group actions. The following is folklore, and this elegant and short proof
was suggested by the referee.

Fact 3.3. Let V be a connected elementary abelian p-group of finite Morley rank.

(a) If x is a p-element and ⟨x⟩ acts on V definably, then [V, x] is a proper
subgroup of V . In particular, if rk(V ) = 1, then the action is trivial.

(b) If P is a p-torus which acts on V definably, then the action is trivial.

Proof. (a) We will work in End V . Let x ∈ End V of order pk . Since (x − 1)pk
=

x pk
− 1 = 0, we get a descending chain of definable subgroups

V ⩾ V (x − 1) ⩾ V (x − 1)2 ⩾ · · ·

which reaches 0 in at most pk steps. Thus, the chain does not become stationary
before it reaches 0. Therefore, V (x − 1) = [V, x] is a proper subgroup in V .

(b) Since V has finite Morley rank, for any p-element x acting definably on V
the above chain reaches 0 in at most rk(V ) steps. Therefore, if pk ⩾ rk(V ) then
V (x pk

−1)= V (x −1)pk
= 0. Since P is a p-torus, for any y ∈ P , there exists x ∈ P

such that y = x pk
. Hence, V (y − 1) = V (x pk

− 1) = 0, and we are done. □

4. Preliminary results

Throughout this section, we assume G and V are groups of finite Morley rank, V
is a connected elementary abelian p-group of Morley rank n, where p is an odd
prime, and G acts on V definably and faithfully.

Lemma 4.1. Let H a definable connected subgroup of G, and q ̸= p a prime
number. Then H does not contain any definable connected q-groups of bounded
exponent. In particular, if H has an involution, then the connected component of
any of its Sylow 2-subgroups is a 2-torus.

Proof. Combine Facts 2.12, 2.3 and 2.4. □

4A. Groups of p-unipotent type. Following [Borovik et al. 2007b], we shall call
a group K a group of p-unipotent type, if every definable connected solvable
subgroup in K is a nilpotent p-group of bounded exponent. We still work under
the assumptions of this section.

Proposition 4.2. Let K be a definable subgroup in G which contains no good tori.
Then K is a torsion group of p-unipotent type. In addition, K does not contain
nontrivial definable divisible abelian subgroups.
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Proof. First note that by Fact 3.3, K contains no nontrivial p-tori. Therefore, every
connected definable solvable p⊥-subgroup in K is trivial by Fact 2.11.

Now it is easy to see that very definable divisible abelian subgroup in K is trivial.
Indeed, if such a subgroup, say A, contains a nontrivial p-element, then it contains
a nontrivial p-torus, which is impossible by the above paragraph. Hence A is a
p⊥-group and is trivial again by above.

Next, notice that every element in K is of finite order. Indeed, if x ∈ K is of
infinite order, then the connected component d(x)◦ of the definable closure of ⟨x⟩

is a divisible abelian group, which contradicts the above paragraph.
By Fact 2.5, M = B D, where B and D are connected, B is of bounded exponent

and D is divisible. However, D = 1 by above, and B is a p-group by Lemma 4.1.
Therefore, every definable connected nilpotent subgroup M in K is a p-group of
bounded exponent.

By Fact 2.6(b), if M is a connected solvable subgroup in K , then M = [M, M]C
where C is a connected nilpotent subgroup.

Finally, we will prove that K is of p-unipotent type. Let M be a definable
connected solvable subgroup of K . Then by above, M = [M, M]C , where C is
a connected nilpotent subgroup. By Fact 2.6(a), [M, M] is also connected and
nilpotent. Hence both subgroups are p-groups of bounded exponent by above;
therefore, so is M . Now the nilpotency of M follows from Fact 2.6(c). □

4B. Basis of induction. Connected groups acting faithfully and definably on
abelian groups of Morley rank n ⩽ 3 are well understood. To prove these special
cases of our theorem, the following results will be used.

Fact 4.3 [Deloro 2009]. Let G be a connected nonsolvable group acting faithfully
on a connected abelian group V . If rk(V ) = 2, then there exists an algebraically
closed field K such that the action G ↷ V is equivalent to GL2(K ) ↷ K 2 or
SL2(K ) ↷ K 2.

Fact 4.4 [Borovik and Deloro 2016; Frécon 2018]. Let G be a connected nonsolv-
able group acting faithfully and minimally on an abelian group V. If rk(V ) = 3 then
there exists an algebraically closed field K such that V = K 3 and G is isomorphic
to either PSL2(K ) × Z(G) or SL3(K ) ∗ Z(G). The action is the adjoint action in
the former case, and the natural action in the latter case.

4C. Throwback to pseudoreflection actions. To exclude the case when G in our
Theorem 1.1 is not connected, we will need a result which uses concepts from one
of our earlier papers [Berkman and Borovik 2012]. A special case of this result,
when G is connected, was stated as [Berkman and Borovik 2012, Corollary 1.3].

Proposition 4.5. Let G be a group of finite Morley rank acting definably and
faithfully on an elementary abelian p-group V of Morley rank n, where p is an
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odd prime. Assume that G contains a definable subgroup G♯
≃ GLn(F) for an

algebraically closed field F of characteristic p. Assume also that V is definably
isomorphic to the additive group of the F-vector space Fn and G♯ acts on V as on
its canonical module. Then G♯

= G.

Proof. Observe first that rk Fn
= n implies rk F = 1. Pseudoreflection subgroups in

the sense of [Berkman and Borovik 2012] are connected definable abelian subgroups
R < G♯ such that V = [V, R] ⊕ CV (R) and R acts transitively on the nonzero
elements of [V, R]. By Fact 2.9, one can immediately conclude that R ≃ F∗ and
[V, R] ≃ F+. Therefore rk R = 1 = rk[V, R] in our case.

It is easy to see that pseudoreflection subgroups in G♯
= GLn(F) are one-

dimensional (in the sense of the theory of algebraic groups) tori of the form, in a
suitable coordinate system in Fn ,

R = {diag(x, 1, . . . , 1) | x ∈ F, x ̸= 0},

and all pseudoreflection subgroups in G♯ are conjugate in G♯.
If R is a pseudoreflection subgroup in G♯, consider the subgroup ⟨RG

⟩ generated
in G by all G-conjugates of R, which is a normal definable subgroup generated by
pseudoreflection subgroups. In view of [Berkman and Borovik 2012, Theorem 1.2],
G♯

= ⟨RG
⟩ is normal in G.

We will use induction on n ⩾1. When n = 1, G♯
= R ≃ F∗ and V =[V, R]≃ F+.

The subring generated by R in the ring of definable endomorphisms of V is a field
by Schur’s lemma, which we will denote by E . Since G normalises R, G acts as a
group of field automorphisms on E . Hence, by Fact 2.13, G = CG(R). Thus, G
acts linearly on V ≃ F+, and therefore, G = F∗

= R = G♯.
Now assume n ⩾ 2. By the Frattini argument, G = G♯NG(R). Write H = NG(R)

and H ♯
= NG♯(R). It is well known that H ♯

= R × L , where L ≃ GLn−1(F)

centralises [V, R] and acts on CV (R) ≃ Fn−1 as on a canonical module. Obviously,
H leaves [V, R] and CV (R) invariant. Note that the action of H/R on CV (R)

is faithful. Indeed, if K/R is the kernel, then K acts faithfully on [V, R] with
a normal subgroup R ∼= F∗. This brings us to the base of induction, which was
discussed above. Hence K = R. Thus, H/R contains a definable subgroup

H ♯/R = (R × L)/R ≃ GLn−1(F);

by the inductive assumption, H/R = H ♯/R, and hence H = H ♯. Therefore,
G = G♯H = G♯H ♯

= G♯. □

5. Proof of Theorem 1.1

We present a complete proof of Theorem 1.1 in this section. Therefore, we work
under the following assumptions.
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We have a group of finite Morley rank G acting definably, faithfully, and generi-
cally m-transitively on a connected elementary abelian p-group V of Morley rank n,
with p an odd prime and m ⩾ n.

First note that V is connected by Fact 2.1. Another crucial observation is that G◦

also acts definably, faithfully, and generically m-transitively on V by Fact 2.2.
Therefore, in view of Proposition 4.5, it will suffice to prove Theorem 1.1 in the
special case when G = G◦ is connected.

Therefore, from now on we assume that G is connected.

5A. The core configuration. We will focus now on a group-theoretic configuration
at the heart of Theorem 1.1.

The generic m-transitivity of G on V means that there is a generic subset A
of V m on which G acts transitively. We fix an element ā = (a1, . . . , am) ∈ A, and
write

V0 = ⟨a1, . . . , am⟩.

From now on, we denote by K the pointwise stabilizer, and by H the setwise
stabilizer of {±a1, . . . ,±am} in G.

In H = H/K we have m involutions ēi for i = 1, . . . , m defined by their action
on a1, . . . , am :

aēi
j =

{
−a j if i = j,

a j otherwise.

Lemma 5.1. The group Em = ⟨ē1, . . . , ēm⟩ is an elementary abelian group of
order 2m and H/K ≃ 6m = Em ⋊ Symm , where Symm permutes the generators
ē1, . . . , ēm of Em .

Notice that the group 6m is the hyperoctahedral group of degree m, which
prominently features in the theory of algebraic groups as the reflection group of
type BCm . This fact is not used in this paper, but is likely to pop up in some of our
future work.

Proof. Since G acts generically m-transitively on V , the proof of [Berkman and
Borovik 2018, Lemma 3.1] can be repeated in this context as well, and we obtain
the desired result. □

5B. Essential subgroups and ample subgroups. Let D be the full preimage in H
of the subgroup Em < H/K . At this point, we temporarily forget about the ambient
group G and generic transitivity and focus on the group H and its subgroups
D and K .

For a subgroup X ⩽ H , we write X D = X ∩ D and X K = X ∩ K .
We shall call a definable subgroup X ⩽ H ample if K X = H .
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A definable subgroup X ⩽ D is essential if K X = D. Equivalently, a definable
subgroup X < G is essential if

• X leaves invariant the set {±a1, . . .±am} (which is equivalent to X ⩽ H ) and,
consequently, the subgroup V0;

• X K is the pointwise stabiliser of ā in X (and consequently X K = CX (V0)),
and X/K X ≃ Em acts on V0 as on the canonical module Zm

p for Em and leaves
invariant the subgroups

A1 = ⟨a1⟩, . . . , Am = ⟨am⟩.

Notice that X = H is an ample subgroup. Obviously, if X is ample, then X D is
essential.

The following lemma summarises the application of representation theory of
finite groups in our context.

Lemma 5.2. If X is a finite essential subgroup and X K is a p′-group, then X K = 1.
Also, in that case, m = n.

Proof. Since X K is a p′-group, X is also a p′-group because p ̸= 2 and X/X K is
a 2-group which covers D/K = Em .

Let R be the enveloping algebra of X .
Notice that X (hence R) acts on each subgroup A1, . . . , Am irreducibly. More-

over, each representation is different, because the Ai are cyclic groups of order p
and, among the elements ē1, . . . , ēm , only ēi inverts Ai . By Theorem 3.1, m = n
and V = V1 ⊕ · · · ⊕ Vn , where in the modules Vi each simple R-submodule is
isomorphic to Ai . But X K acts trivially on each Ai , hence acts trivially on each Vi

and therefore on V . This means X K = 1. □

Notice that in the next lemma we do not assume that X is finite, and therefore
we continue to accept the possibility that m > n.

Lemma 5.3. If X is an essential subgroup then X K is a 2⊥-group.

Proof. Let S be a Sylow 2-subgroup in X . If X K is not a 2⊥-group, then X K ∩S ̸= 1.
Take a nontrivial element s ∈ X K ∩ S and elements s1, . . . , sm in S whose images
in X/X K generate X/X K ≃ Em . By Fact 2.3, S is locally finite, so s, s1, . . . , sm

generate a finite 2-subgroup, say Y , in S. Obviously, X K Y = X , and hence Y is
essential and s = 1 by Lemma 5.2, a contradiction. □

We can now characterise essential subgroups.

Lemma 5.4. Let E be a Sylow 2-subgroup in D. Then K E = D, EK = 1, and
E ≃ Em . In particular, E is an essential subgroup.

Moreover, essential subgroups of D are exactly those definable subgroups which
contain one of the Sylow 2-subgroups of D.
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Proof. Since E is a Sylow 2-subgroup in D, so is K E/K in D/K ≃ Em , thus
D = K E , that is, E is essential. By Lemma 5.3, EK is a 2⊥-group, so it is trivial.
Since K/EK ≃ Em , the first statement follows. The second statement is clear. □

Now we obtain the equality m = n in the general case.

Lemma 5.5. m = n.

Proof. Because H contains an elementary abelian 2-subgroup of order 2m by
Lemma 5.4, Fact 2.7 (or Theorem 3.1) gives us m = n. □

Lemma 5.6. K contains no good tori.

Proof. Assume the contrary, and let T be a maximal good torus in K . By conjugacy
of maximal good tori [Altınel et al. 2008, Proposition IV.1.15], and the Frattini
argument, we have D = K ND(T ) and thus ND(T ) is an essential subgroup and
contains a Sylow 2-subgroup E of D. Let q be a prime such that T has q-torsion
and Q the maximal elementary abelian q-subgroup in T . Obviously, E normalises Q
and QE is an essential subgroup. By Lemma 5.2, Q = 1, a contradiction. □

Lemma 5.7. K is a torsion group of p-unipotent type.

Proof. This is an immediate consequence of Lemma 5.6 and Proposition 4.2. □

Lemma 5.8. Let E be a Sylow 2-subgroup in D. Then X = NH (E) is an ample
subgroup. Moreover, X K = 1 and X ≃ 6n .

Proof. By the Frattini argument, DX = H , and thus X is an ample subgroup. Since
X K ◁ X , E ◁ X , and X K ∩ E = 1 by Lemma 5.3, we have [X K , E] = 1. If x is
a p′-element in X K , then the subgroup ⟨x⟩ × E is essential and therefore x = 1 by
Lemma 5.2. Hence X K is a p-group.

Take the weight decomposition of V with respect to E :

V = V1 ⊕ · · · ⊕ Vn, where i = 1, 2, . . . , n.

Note that every element in X K leaves every one-dimensional space Vi invariant.
Since X K is a p-group, Fact 3.3 is applicable, and thus we conclude that X K fixes
each Vi , and hence V , elementwise. Therefore X K = 1, which, in its turn, implies
X ≃ 6n . □

5C. An almost final configuration: the ample subgroup K ◦6.

Lemma 5.9. If m ⩾ 2 then G is not solvable.

Proof. If G is solvable, by Fact 2.8, we know that Fact 2.10 is applicable, so G ′
= 1

and G is abelian. However, for m ⩾ 2, 6m is not abelian. □

At the heart of our proof of Theorem 1.1, there is a Core Configuration. We set
it up by writing Q = K ◦ and X = QNH (E) and listing the properties of X which
we have established so far.
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Core Configuration. • X is a group of finite Morley rank acting definably
and faithfully on an elementary abelian p-group V with p odd of Morley
rank n ⩾ 3.

• Q ◁ X is a nontrivial connected definable subgroup of p-unipotent type; notice
that Q is not necessarily nilpotent. We also denote it by Qn .

• 6 ≃ 6n is a subgroup of X which normalises Q. It will be convenient to
denote it just by 6n .

• Finally, to emphasise the inductive nature of our setting, we may write, if
necessary, X = Xn .

In the next Lemma 5.10 we analyse the Core Configuration on its own, without
using any further information about G, and prove that Q = 1.

Lemma 5.10. Under assumptions of the Core Configuration, Qn = 1 for all n ⩾ 3.

Proof. We proceed by induction on n. If n = 3, Q3 is nilpotent in view of Facts 4.3
and 4.4, which give us a basis of induction on n ⩾ 3. For the inductive step for n > 3,
take the involution en and consider

CQ6(en) = C◦

Q(en)C6(en).

Obviously, this group leaves invariant the eigenspaces V +
n and V −

n . Write Qn−1 =

C◦

Q(en). Observe C6(en) = 6n−1 × ⟨en⟩, and we write Xn−1 = Qn−16n−1.
For the inductive assumption, we have Qn−1 = 1. Then C◦

Q(en) = Qn−1 = 1 and
Qn is an abelian p-group. Assume Qn ̸= 1. Then [V, Qn] is a nontrivial proper
connected subgroup of V and is 6n-invariant, which contradicts the minimality of
the action of 6n on V , Fact 2.8. The contradiction shows Qn = 1. □

We can now return to the main proof.

Proposition 5.11. K ◦
= 1.

Proof. If n ⩽ 3, we know everything about G from Facts 4.3, 4.4, and Lemma 5.9,
and in these cases, K ◦

= 1. If n ⩾ 3, the proposition follows from Lemma 5.10. □

Corollary 5.12. If X is an ample subgroup, then X K is a finite group without
involutions and X = X K ⋊6.

5D. The final case: K is finite.

Lemma 5.13. K = 1 and H = 6.

Proof. Let Q ̸= 1 be a Sylow q-subgroup of K for a prime q ̸= p. Then by the
Frattini argument, H = K NH (Q). Write X = NH (Q). Then X is an ample subgroup.
We can assume without loss of generality that E < X . Applying Lemma 5.2 to
the essential group QE , we see that Q = 1. Hence if K ̸= 1 then K is a p-group.
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Consider the ample group K6; because of the minimality of the action of 6 on V
(Fact 2.8), we have K = 1 by Fact 3.3(a). Hence H = 6. □

This completes the proof of Theorem 1.1.
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