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Worst-case expansions of complete theories

Samuel Braunfeld and Michael C. Laskowski

Given a complete theory T and a subset Y � Xk , we precisely determine the
worst-case complexity, with respect to further monadic expansions, of an expan-
sion .M; Y / by Y of a model M of T with universe X . In particular, although
by definition monadically stable/NIP theories are robust under arbitrary monadic
expansions, we show that monadically NFCP (equivalently, mutually algebraic)
theories are the largest class that is robust under anything beyond monadic
expansions. We also exhibit a paradigmatic structure for the failure of each of
monadic NFCP/stable/NIP and prove each of these paradigms definably embeds
into a monadic expansion of a sufficiently saturated model of any theory without
the corresponding property.

1. Introduction

The idea of measuring the complexity of a first order theory by determining the
worst-case complexity of its models under expansions by arbitrarily many unary
(monadic) predicates was introduced by Baldwin and Shelah [1985]. For example,
the theory ACF of algebraically closed fields is maximally complex with respect
to this measure, even though it is classically very simple and has many well-
studied tame monadic expansions. One way to see this complexity is to first name
an infinite linearly independent set by a unary predicate A; then any graph G
with vertex set A is definable in the further expansion by the unary predicate
BG D fgC h W g; h 2 A and .g; h/ is an edge in Gg. As any structure in a finite
language is definable in a monadic expansion of a graph (e.g., by the construction
in [Hodges 1993, Theorem 5.5.1]), we may for example define models of ZFC in
monadic expansions of models of ACF.

In contrast to ACF, some theories such as Th.Q; </ are monadically NIP, i.e., no
monadic expansion has the independence property. (The definitions of NIP, as well
as stability and NFCP, are recalled in the next section.) If a theory is not monadically
NIP then it can define arbitrary graphs in unary expansions of its models, as ACF
does, and thus is also maximally complex by our measure. Similarly, there exist
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monadically stable theories, such as the theory of an equivalence relation with
infinitely many infinite classes, and monadically NFCP theories (which coincide
with the mutually algebraic theories of [Laskowski 2013]), such as Th.Z; succ/.

Our first result shows that the random graph, .Q; </, and the equivalence relation
with infinitely many infinite classes are paradigms of structures that respectively are
not monadically NIP/stable/NFCP, in the sense that we may define these paradigms
on singletons in a monadic expansion of any sufficiently saturated model without
the corresponding property (Theorem 3.2).

For our main result, recall that while monadically NIP and monadically sta-
ble theories are closed under monadic expansions by definition, the monadically
NFCP theories satisfy a stronger closure property: if T is monadically NFCP
and M ˆ T , then any expansion of M by arbitrarily many relations definable in
monadically NFCP structures with the same universe as M remains monadically
NFCP [Laskowski 2013]. Our main result proves that any attempt to extend
these closure statements to larger classes of relations fails spectacularly, producing
expansions of models defining arbitrary graphs.

Before stating the result, we must introduce an extremely simple class of theories.

Definition 1.1. A complete theory T is purely monadic if, for every model M ˆ T
with universe �, every definable (with parameters) Y ��k is definable in a monadic
structure .�; U1; : : : ; Un/.

Theorem 1.2. Suppose a complete theory T is not purely monadic and Y � �k is
not definable in a purely monadic structure, where j�j � jT j.

If either T is not monadically NFCP or Y is not definable in a monadically NFCP
structure, then there is M ˆ T with universe � such that the expansion .M; Y / is
not monadically NIP.

Otherwise, if T is monadically NFCP and Y is definable in a monadically
NFCP structure, then for every M ˆ T with universe �, the expansion .M; Y / is
monadically NFCP.

The cases ruled out by the hypotheses of this theorem are straightforward, and
are handled by Fact 2.3.

Section 3 is dedicated to the result on paradigmatic failures of monadic properties
mentioned above, while in Section 4 we find a canonical configuration present
in any structure that is monadically NFCP but not purely monadic. In Section 5,
Theorem 1.2 is then proved in cases, by suitably overlaying the available configura-
tions to monadically define arbitrary graphs.

2. Preliminaries

We recall the following standard conditions on a partitioned formula �.xx; xy/, when
we are working in a sufficiently saturated model C of a complete theory T :
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� �.xx; xy/ has the finite-cover property (FCP) if, for arbitrarily large n, there are
hxai W i < ni in C such that

Cˆ:9xx
�V

i<n �.xx; xai /
�
^
V

`<n9xx
�V

i<n;i¤` �.xx; xai /
�
:

� �.xx; xy/ has the order property if, for each n, there are hxai W i < ni in C such
that, for each k < n,

Cˆ
V

k<n

�
9xx
�V

i<k �.xx; xai /^
V

k�i<n:�.xx; xai /
��
:

� �.xx; xy/ has the independence property if, for each n, there are hxai W i < ni

in C such that

Cˆ
V

s�Œn�

�
9xx
�V

i2s �.xx; xai /^
V

i2nns:�.xx; xai /
��
:

A complete theory T is NFCP if no partitioned formula �.xx; xy/ has the FCP,
T is stable if no partitioned formula �.xx; xy/ has the order property, and T is NIP
if no partitioned formula �.xx; xy/ has the independence property.

It is well known that for complete theories, NFCP D) stable D) NIP, and as
purely monadic theories are NFCP (e.g., by the comment after Fact 4.2), we have
the following implications for a complete theory T :

purely monadic D) mon. NFCP D) mon. stable D) mon. NIP:

We now introduce some definitions for convenience.

Definition 2.1. Given a complete theory T , a cardinal �, a subset Y � �k for
some k � 1, and a property P of theories (we will be particularly interested in
monadic NIP), we say .T; Y / is always P if Th.M; Y / has P for all models M
of T with universe �.

Definition 2.2. A subset Y � �k is monadically definable if it is definable in some
monadic structure .N;U1; : : : ; Un/.
Y � �k is monadically NFCP definable if it is definable in some monadically

NFCP structure N . Analogously, Y is monadically stable/monadically NIP defin-
able if it is definable in some monadically stable/monadically NIP structure N .

Equivalently, a subset Y ��k is monadically definable (respectively, monadically
NFCP/stable/NIP definable) if and only if the structure N D .�; Y / in a language
with a single k-ary predicate symbol is purely monadic (respectively, monadically
NFCP/stable/NIP).

Thus, we have the following implications for Y � �k:

mon. definable D) mon. NFCP def D) mon. stable def D) mon. NIP def:

The hypotheses of Theorem 1.2 ruled out the cases where T is purely monadic
or Y is monadically definable. The following fact is immediate from unpacking
definitions, but we include it for completeness.
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Fact 2.3. Let T be a complete theory, Y � �k , and

P 2 fpurely monadic, monadically NFCP, monadically stable, monadically NIPg:

(1) If T is purely monadic and Y is P definable then .T; Y / is always P .

(2) If T is P and Y � �k is monadically definable then .T; Y / is always P .

There are many equivalents to monadic NFCP (e.g., see [Laskowski 2009; 2013;
Braunfeld and Laskowski 2022]), monadic stability (see [Baldwin and Shelah 1985;
Anderson 1990]), and monadic NIP (see [Baldwin and Shelah 1985; Shelah 1986;
Braunfeld and Laskowski 2021]). What we use is encapsulated in the rest of this
section.

Definition 2.4. Let T be a complete theory. T is weakly minimal if for any pair
M �N of models, every nonalgebraic 1-type p 2S1.M/ has a unique nonalgebraic
extension q 2 S1.N /. T is ( forking trivial) if whenever fA;B;C g is pairwise
forking-independent over D, then it is an independent set over D. T is totally
trivial if for all A;B;C;D, if A j^D

B and A j^D
C then A j^D

BC . (This is
obtained from the definition of triviality by removing the hypothesis that B j^D

C .)

Fact 2.5 [Laskowski 2013, Theorem 3.3]. The following are equivalent for a
complete theory T :

(1) T is monadically NFCP.

(2) T is mutually algebraic (see Definition 4.1 below).

(3) T is weakly minimal and trivial.

Although we will not explicitly use it, “trivial” could be replaced by “totally
trivial” in (3), since they are equivalent assuming weak minimality, for example, by
[Goode 1991, Proposition 5].

We will make use of the following sufficient condition from [Baldwin and Shelah
1985] for monadically defining arbitrary graphs or, equivalently, by Fact 2.7, for
the failure of monadic NIP.

Definition 2.6. A structure M admits coding if there are infinite subsets A;B;C
of M 1 and a formula �.x; y; z/ whose restriction to A�B �C is the graph of
a bijection f W A �B ! C . A theory T (monadically) admits coding if (some
monadic expansion M � of) some model M of T admits coding.

Fact 2.7 [Baldwin and Shelah 1985; Braunfeld and Laskowski 2021]. The following
are equivalent for a complete theory T :

(1) T is monadically NIP.

(2) T does not monadically admit coding.

(3) There is a graph that is not definable in any monadic expansion of any model
of T .
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Fact 2.8 [Baldwin and Shelah 1985; Anderson 1990]. The following are equivalent
for a stable complete theory T :

(1) T is monadically stable.

(2) T is monadically NIP.

(3) T does not admit coding.

(4) T is totally trivial and forking is transitive on singletons, i.e., for all D,
if a 6 j^D

b and b 6 j^D
c then a 6 j^D

c.

Proof. .1/ D) .2/ is clear, .2/ D) .3/ follows from Fact 2.7, and .3/ D) .4/

is [Baldwin and Shelah 1985, Lemma 4.2.6]. Finally, .4/ D) .1/ is essentially
contained in Theorems 3.2.4 and 4.2.17 of [Baldwin and Shelah 1985], but veri-
fying this involves tracing through several other results. The implication is more
cleanly stated in Theorems 2.17 and 2.21 of [Anderson 1990], noting that what
[Anderson 1990, Definition 2.5] calls forking-triviality is equivalent to the two
conditions in (4) by some basic forking-calculus manipulations. �
Lemma 2.9. If T is monadically stable (equivalently, stable and monadically NIP)
but not monadically NFCP, then T is not weakly minimal.

Proof. Fact 2.8 shows the parenthetical equivalence, and also shows that if T is
monadically stable then it is (totally) trivial. So by Fact 2.5, if T is not monadically
NFCP then it cannot be weakly minimal. �

3. Finding paradigms of nonmonadically NFCP theories

In this section, we show the following classical structures will always witness the
failure of monadic NIP/stability/NFCP in a suitable monadic expansion.

� The random graph, sometimes called the Rado graph, RD .A;E/ is the standard
example of a structure whose theory has the independence property. In particular,
its theory is not monadically NIP.

� Dense linear order (DLO), the theory of .Q;�/, is one of the simplest nonstable
theories as � visibly witnesses the order property. Thus, DLO is not monadically
stable, but it is monadically NIP (e.g., see [Simon 2015, Proposition A.2]).

� Let E D .X;E/, where X D!�! (so each element of X can be uniquely written
as .a; b/ 2 !2) and E..a1; b1/; .a2; b2// holds if and only if a1 D a2. Thus, E
is the (unique) model of the !-categorical theory of an equivalence relation with
infinitely many classes, with each class infinite. The theory Th.E/ is monadically
stable, but it is not monadically NFCP. To see the former, one can check it satisfies
the conditions in Fact 2.8(4). To see the latter, one can add a single unary predicate
whose interpretation contains exactly n elements from the n-th E-class. This
expanded structure is a paradigm of a stable structure with the finite-cover property.
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We next show that these paradigms all definably embed into a monadic expansion
of any model of its class. It is crucial to consider structures defined inM 1 rather than
in a cartesian power, as this will allow us to name substructures in unary expansions.

Definition 3.1. We say a structure A definably embeds into another structure M
(possibly in a different language) if A is definable on singletons in M .

Explicitly, let AD .A;R/ be any structure in a language with a binary relation,
and letM be an L-structure in some arbitrary language. We say A definably embeds
intoM if there areL-definableX�M 1 andR0�X2 and a bijection f WA!X such
that for all a; b 2A, AˆR.a; b/ if and only if M ˆR0.f .a/; f .b//. (Informally,
.X;R0/ is an “isomorphic copy of A”.)

A definable embedding f W .A;R/! .X;R0/ is type-respecting if, in addition,
for any tuples xa; xa0 2 An, if qftpA.xa/D qftpA.xa

0/, then tpM .f .xa//D tpM .f .xa
0//.

Theorem 3.2. Let T be a complete L-theory.

(1) If T is not monadically NIP, then the random graph R definably embeds into
some monadic expansion M � of a model M of T .

(2) If T is not monadically stable, then there is a definable, type-respecting
embedding of .Q;�/ into some monadic expansion M � of a model M of T .

(3) If T is monadically stable but not monadically NFCP, then there is a defin-
able, type-respecting embedding of E into some monadic expansion M � of a
model M of T .

(4) If T is not monadically NFCP, E definably embeds into some monadic expan-
sion M � of a model M of T .

Proof. (1) Assume T is not monadically NIP. By either [Baldwin and Shelah 1985]
or [Braunfeld and Laskowski 2021], there is a monadic expansion M � of a model
of T that admits coding, i.e., there are infinite sets A;B;C and a 3-ary L�-formula
�.x; y; z/ coding the graph of a bijection from A�B to C . By adding more unary
predicates, we may assume each of A;B;C are definable in M � and are countably
infinite, and by replacing � by �.x; y; z/^A.x/^B.y/^C.z/, the graph of � is pre-
cisely the bijection. Now add a unary predicateD�C so that for every a1¤a2 2A,
there is a unique b 2B such that M �ˆ9.d1; d2 2D/.�.a1; b; d1/^�.a2; b; d2//.
Thus, in this expansion, one can think of B as coding (symmetric) edges of A
via this formula. For the whole of D, we get a complete graph on A, but for any
predetermined graph G with universeA, one can add a single unary predicateE�D
so that for any a1 ¤ a2 2 A, the following formula holds if and only if a1 and a2

are edge-related in G:

9y 9z19z2.E.z1/^E.z2/^�.a1; y; z1/^�.a2; y; z2/:

In particular, we get a definable embedding of R into this expansion of M �.
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(2) By passing to a monadic expansion, we may assume T itself is unstable. (In
fact, any monadically NIP, nonmonadically stable theory must itself be unstable,
but we don’t need this.) By [Simon 2021], after adding parameters, there is a
formula �.x; y/ with the order property, where x and y are both singletons. Thus,
by adding an additional unary predicate for each of the parameters c (with interpre-
tation fcg) there is a monadic expansion M � of a model of T with a 0-definable
L�-formula  .x; y/ with the order property.

By Ramsey and compactness and by passing to an L�-elementary extension,
we may assume that there are order-indiscernible subsets A D fai W i 2 Qg and
B D fbj W j 2 Qg of M � such that M � ˆ  .ai ; bj / if and only if i � j . By
replacing M � by a monadic expansion of itself, we may additionally assume there
are predicates for A and B . But now, the ordering ai �

0 aj is definable on A via the
0-definable L�-formula .8b 2 B/Œ .aj ; b/!  .ai ; b/�. Then .A;�0/ witnesses
that there is a type-respecting, definable embedding of .Q;�/ into M �.

(3) By Lemma 2.9, T is not weakly minimal, so the following will suffice.

Fact 3.3. If T is stable but not weakly minimal, then, working in a large, saturated
model C of T , there is a model M � C and singletons a and b such that tp.a=Mb/

is not algebraic, but forks over M .

Proof of fact. As T is not weakly minimal, there are M0 �N and p 2 S1.M0/ that
has two nonalgebraic extensions to S1.N /. As p is stationary, this implies there
is a nonalgebraic q 2 S1.N / that forks over M0. Let a be any realization of q,
and choose Y to be maximal such that M0 � Y �N and a j^M0

Y: As tp.a=N /
forks over M0, Y ¤ N , so choose any singleton b 2 N n Y . By the maximality
of Y , a 6 j^Y

b: To complete the proof, choose a model M � Y with M j^Y
ab:

It follows by symmetry and transitivity of nonforking that a 6 j^M
b: Also, since

tp.a=N / is nonalgebraic, so is tp.a=Y b/. But, as tp.a=M/ does not fork over Y b,
tp.a=M/ is nonalgebraic as well. �

Fix a; b;M as in Fact 3.3 and choose a formula �.x; y/ 2 tp.ab=M/ (with
parameters from M ) that witnesses the forking over M .

Let r D tp.b=M/ and choose a Morley sequence B D fbn W n 2 !g in r . Let
q D stp.a=Mb/, and for each n, let qbn

be the strong type over Mbn conjugate
to q. Recursively construct sets fIn W n 2 !g where each In D fan;m W m 2 !g

is a Morley sequence of realizations of the nonforking extension q�bn
of qbn

to
M [B[

S
fIk W k < ng. It follows by symmetry and transitivity of nonforking that

each In is independent and fully indiscernible over MB [
S
fIk W k ¤ ng.

LetADfan;m Wn;m2!g. Now, any permutation � 2Sym.B/ isLM -elementary
and, in fact, induces an LM -elementary permutation �� 2 Sym.AB/. Let L� D
L[fA;B;C1; : : : ; Cng and let C� be the natural monadic expansion of C formed by
interpreting A and B as above, and interpreting each Ci as fcig, where fc1; : : : ; cng
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are the parameters occurring in �. (We silently replace �.x; y/ by the natural
0-definable L�-formula formed by replacing each ci by Ci .) Finally, define an
L�-definable binary relation E on A2 by

E.a; a0/ () .9b 2 B/Œ�.a; b/^�.a0; b/�:

It is easily checked that E is an equivalence relation, whose classes are precisely
fIn W n 2 !g. Thus, .A;E/ is the image of a type-respecting, definable embedding
of E into C�.

(4) We prove this by cases. If T is not monadically NIP, then R definably embeds
in a unary expansion, and expanding by a further unary predicate naming infin-
itely many infinite cliques with no edges between them definably embeds E , so
assume T is monadically NIP. If T is also monadically stable, we are done by (3),
so assume T is not monadically stable. Then, by (2), there is a type-respecting,
definable embedding of .Q;�/ into some monadic expansion M � of a model of T .
Thus, it suffices to prove that E definably embeds into some monadic expansion
of .Q;�/. But this is easy. Let ADQnZ. Then A is 0-definable in the monadic
expansion .Q;�; A/, as is the relation E � A2 given by

E.a; a0/ () 8x.Œa < x < a0 _ a0 < x < a�! A.x//:

It is easily checked that .A;E/ is isomorphic to E . �
We close this section by stating one “improvement” of Theorem 3.2(4) that will

be used in Section 5. Whereas Theorem 3.2 speaks about a definable embedding
of E into some monadic expansion of some model of T , we isolate the following
corollary, which describes a weaker configuration that can be found in arbitrary
models of T in the original language.

Corollary 3.4. Suppose T is a complete L-theory that is monadically NIP, but
not monadically NFCP. Then there is an L-formula �.x; y; xz/ such that, for every
model N of T and every n � 1, there is xdn and disjoint sets Bn D fb

n
i W i < ng,

An D fa
n
i;j W i; j < ng that are without repetition such that:

(1) The sets fAn; Bm W n;m 2 !g are pairwise disjoint.

(2) For all n and all i; j; k < n, one of the following holds:
(a) T is stable and N ˆ �.bn

k
; an

i;j / if and only if k D i .
(b) T is unstable and N ˆ �.bn

k
; an

i;j / if and only if k � i .

Moreover, we may additionally assume that the set X D N n
S

n�1.An [Bn/ is
infinite.

Proof. As in the proof of parts (2) and (3) of Theorem 3.2, we split into cases
depending on whether or not T is stable. If T is unstable, as in the proof of
Theorem 3.2(2), choose an L-formula �.x; y; xz/ witnessing the order property in
large, sufficiently saturated models of T . Now, choose any N such that N ˆ T . As
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there is some sufficiently saturated N 0 � N in which �.x; y; xd/ codes the order
property, it follows from elementarity that, for any fixed n, there are xdn 2N

lg.xz/

and disjoint sets fbi W i < ng and fai;j W i; j < ng such that for all k; i; j < n,
N ˆ �.bk; ai;j ; xdn/ if and only if k � i .

To get the pairwise disjointness, note that if fbi W i < ng and fai;j W i; j < ng

work for n, then for any subset s � n, the subsets fbi W i 2 sg and fai;j W i; j 2 sg

work for n0 D jsj. Thus, given any fixed finite set F to avoid, given any n, by
choosing m � n large enough and choosing an appropriate s � m, we can find
disjoint sets fbi W i < ng and fai;j W i; j < ng each of which are disjoint from F .

Using this, we can recursively define sequences xdn and pairwise disjoint fam-
ilies Bn D fb

n
i W i < ng and An D fa

n
i;j W i; j < ng such that for all k; i; j < n,

N ˆ �.bk; ai;j ; xdn/ if and only if k � i . By passing to an infinite subsequence,
using the remarks above, and reindexing, we can shrink any family fBn; An W n2!g

to one satisfying the “Moreover : : : ” clause.
If T is stable, then T is not weakly minimal, by Lemma 2.9. Thus, as in the

proof of Theorem 3.2(3), there is a sufficiently saturated elementary extension
N 0 �N and a formula �.x; y; xz/ that witnesses forking, such that in N 0 there are
fbi W i 2!g, fai;j W i; j 2!g, and xd such that for all i; j; k 2Z, N 0ˆ�.bk; ai;j ; xd/

if and only if k D i .
Using this configuration, the methods used in the unstable case apply here also. �

4. Sets definable in purely monadic and monadically NFCP structures

Fact 2.5 asserts that a theory is monadically NFCP if and only if it is mutually
algebraic, so we recall what is known about sets definable in a mutually algebraic
structure. Throughout this section, fix an infinite cardinal � and think of the set
�D f˛ W ˛ 2 �g as being the universe of a structure.

Definition 4.1. Fix any infinite cardinal � and any integer k � 1.

� A subset Y � �k is mutually algebraic if there is some integer m so that for
every a 2 �, fxa 2 Y W a 2 xag has size at most m.

� A subset Y � � �kC` is padded mutually algebraic if, for some permutation
� 2 Sym.kC `/ of the coordinates, there is a mutually algebraic Y � �k and
Y � D �.Y ��`/.

� A model M with universe � is mutually algebraic if, for every n, every
definable (with parameters) D � �n is a boolean combination of definable
(with parameters) padded mutually algebraic sets.

� A complete theory T is mutually algebraic if some (equivalently, all) models
of T are mutually algebraic.

Trivially, every unary subset Y � �1 is mutually algebraic.
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Fact 4.2 [Laskowski and Terry 2020, Theorem 2.1]. An L-structure M is mutually
algebraic if and only if every atomic L-formula ˛.x1; : : : ; xn/ is equivalent to a
boolean combination of quantifier-free definable (with parameters) padded mutually
algebraic sets.

It follows immediately that any purely monadic structure is mutually algebraic.
In this section, our goal is to obtain a particular configuration, described in

Lemma 4.5, appearing in any mutually algebraic structure whose theory is not purely
monadic. This will be used in the proof of Theorem 1.2, when a nonmonadically
definable Y induces a mutually algebraic structure.

We begin by characterizing which mutually algebraic sets Y ��k are monadically
definable. Obviously, every Y � �1 is monadically definable, so we concentrate
on k � 2. Let �k D f.a; a; : : : ; a/ 2 �

k W a 2 �g denote the set of constant k-tuples.

Lemma 4.3. Fix any infinite cardinal � and any integer k� 2. A mutually algebraic
subset Y � �k is monadically definable if and only if Y n�k is finite.

Proof. First, suppose Y n�k is finite. Let F D
S
.Y n�k/ D fa1; : : : ; ang � �

and let Z D fa 2 � W .a; a; : : : ; a/ 2 Y g. Let N D .�; U1; : : : ; Un; UnC1/ be the
structure in which Ui is interpreted as faig for each i � n and UnC1 is interpreted
as Z. Then Y is definable in N , so Y is monadically definable.

Conversely, suppose Y is mutually algebraic and definable in some monadic
N D .�; U1; : : : ; Un/. It is easily seen that N admits elimination of quantifiers.
Collectively, the unary predicates Ui color each element a 2 � into one of 2n

colors. Some of these 2n colors will have infinitely many elements of �, while
other colorings have only finitely many elements. Let F be the set˚
a 2 � W there are only finitely many b 2 � such that N ˆ

Vn
iD1Ui .a/$ Ui .b/

	
:

Clearly, F is finite. Now, the elements of � nF are partitioned into finitely many
infinite chunks, each of which is fully indiscernible over its complement. Thus, it
follows that F D aclN .∅/ and for any a 2 �, aclN .a/D F [fag. To show Y n�k

finite, it suffices to prove the following.

Claim. Y � F k [�k .

Proof of claim. Choose any xa 2 �k n.F k[�k/. Since xa …F k , choose a coordinate
a� 2 xa with a� … F . Since the k-tuple xa is not constant, choose b 2 xa with
b ¤ a�. Now, by way of contradiction, suppose xa 2 Y . As Y is mutually algebraic,
a� 2 aclN .b/D F [fbg, which it isn’t. �

Lemma 4.4. Suppose M is a mutually algebraic structure with universe � such
that Th.M/ is not purely monadic. Then, for some k � 2, there is some LM -
definable, mutually algebraic Y � �k with Y n�k infinite.
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Proof. Fix such an M and assume that no such LM -definable, mutually algebraic
set existed. By Lemma 4.3 we would have that for every k, every LM -definable,
mutually algebraic subset of �k is monadically definable. From this, it follows
easily that everyLM -definable, padded mutually algebraic set would be monadically
definable, as would every boolean combination of these. AsM is mutually algebraic,
it follows that every LM -definable set is monadically definable, contradicting
Th.M/ not being purely monadic. �

We now obtain our desired configuration.

Lemma 4.5. Suppose M is a mutually algebraic structure with universe � whose
theory is not purely monadic. Then there is some k� 2, some LM -definable Y ��k

and an infinite set F D fxan W n 2 !g � Y n�k such that

(1) for each n 2 !, .xan/1 ¤ .xan/2 (the first two coordinates differ), and

(2) xan\ xam D∅ for distinct n;m 2 !.

In particular, if F D
S

F , then for every a 2 F there is exactly one xa 2 Y with
xa � F (and hence .xa/1 ¤ .xa2/).

Proof. By Lemma 4.4, choose k � 2 and an LM -definable, mutually algebraic
Y � �k such that X WD Y n�k is infinite. By mutual algebraicity, choose an
integer K such that for every a 2 �, there are at most K k-tuples xa 2 Y with a 2 xa.
As each element of X is a nonconstant k-tuple, by the pigeonhole principle we
can find an infinite X 0 �X and i ¤ j 2 Œk� such that .xa/i ¤ .xa/j for each xa 2X 0.
By applying a permutation � 2 Sym.Œk�/ to Y , we may assume i D 1 and j D 2,
so after this transformation, (1) holds for any xa 2 X 0. But now, as X 0 � Y is
infinite, while every element a 2 � occurs in only finitely many xa 2X 0, it is easy
to recursively construct F D fxan W n 2 !g �X

0. �

5. Monadically stable and monadically NIP are aptly named

In this section, we prove Theorem 1.2. The positive part, that .T; Y / is always
monadically NFCP whenever both T is and Y ��k is monadically NFCP definable,
is immediate from the following.

Lemma 5.1. Suppose N1 and N2 are structures, both with universe �, in disjoint
languages L1 and L2. If both N1 and N2 are monadically NFCP (D mutually
algebraic) then the expansion N � D .N1; N2/ is monadically NFCP as well.

Proof. By replacing each function and constant symbol by its graph, we may assume
both L1 and L2 only have relation symbols. As the languages are disjoint, this
implies that every L1[L2-atomic formula is either L1-atomic or L2-atomic. Thus,
every atomic formula in N � is either equivalent to a boolean combination of either
L1-definable or L2-definable padded, mutually algebraic formulas. As the notion
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of a set Y � �k being padded mutually algebraic is independent of any structure,
the result follows by applying Fact 4.2. �

The negative directions are more involved. To efficiently handle the various
cases, we first prove two propositions, from which all of the negative results follow
in Theorem 5.4.

For the following proposition, first note that a structure with two cross-cutting
equivalence relations admits coding. We will essentially encode this configuration,
but since we don’t want to assume that either N1 or N2 is saturated for our eventual
application, we must work with the finitary approximations to an equivalence
relation with infinitely many infinite classes provided by Corollary 3.4.

Proposition 5.2. Suppose L1 and L2 are disjoint languages, �� kL1[L2k is a
cardinal, N1 is an L1-structure with universe �, and N2 is an L2-structure with
universe �. If both Th.N1/ and Th.N2/ are not monadically NFCP, then there is a
permutation � 2 Sym.�/ such that the L1[L2-structure .N1; �.N2// has a theory
that is not monadically NIP.

Proof. We may assume Th.N1/ and Th.N2/ are monadically NIP, since we are
finished otherwise. Apply Corollary 3.4 to both N1 and N2. This gives an L1-
formula �.x; y; xz/ and, for each n, pairwise disjoint sets An D f˛

n
i;j W i; j < ng,

Bn D fˇ
n
i W i < ng and xrn as there, with exceptional set X D � n

S
n�1.An[Bn/.

Note that as each An; Bn is finite, jX j D �. On the L2-side, choose an L2-formula
 .x; y; xw/ such that, for all n � 1, there is xsn 2 �lg. xw/ and pairwise disjoint sets
Cn D f


n
i;j W i; j < ng and Dn D fı

n
i W i < ng as there.

Now choose � 2 Sym.�/ to be any permutation such that for all n� 1,

(1) �.Dn/�X , and

(2) � maps Cn bijectively onto An via �.
n
i;j /D ˛

n
j;i .

Note that there are many permutations � satisfying these constraints. Choose
one, and let �.N2/ be the unique L2-structure with universe � so that � is an
L2-isomorphism.

Claim. The L1[L2-theory Th.N1; �.N2// is not monadically NIP.

Proof of claim. We will produceM �, a monadic expansion of anL1[L2-elementary
extensionM � .N1; �.N2// that admits coding, which suffices. To do this, first note
that by compactness, there is an L1[L2-elementary extension M � .N1; �.N2//

that contains disjoint sets ADfai;j W i; j 2Zg, B Dfbi W i 2Zg, DDfdj W j 2Zg,
and tuples xr and xs such that, for all k; i; j 2 Z, either (if Th.N1/ is unstable)
M ˆ �.bk; ai;j ; xr/ if and only if k � i , or (if Th.N1/ is stable) M ˆ �.bk; ai;j ; xr/

if and only if kD i ; and dually, either (if Th.N2/ is unstable) M ˆ .dk; ai;j ;xs/ if
and only if k � j , or (if Th.N2/ is stable) M ˆ .dk; ai;j ;xs/ if and only if k D j .



WORST-CASE EXPANSIONS OF COMPLETE THEORIES 27

Now, givenM , let L�DL1[L2[fA;B;Dg and letM � be the natural monadic
expansion of M described by A;B;D above. To show that M � admits coding, we
need to rectify the ambiguity between the stable and unstable cases. Specifically, we
claim that there is an L�-formula ��.x; y; xz/ such that for all bi 2 B , the solution
set ��.bi ;M

�; xr/ is fai;j W j 2 Zg. If Th.N1/ is stable, this is easy: just take
��.x; y; xz/ WD A.y/ ^ �.x; y; xz/. However, when Th.N1/ is unstable, we need
some more L�-definability in M �. Specifically, note that in this case, the natural
ordering on B is L�-definable via

bi � bj if and only if 8yŒ.A.y/^�.bj ; y; xr//! �.bi ; y; xr/�:

As the ordering on B is discrete, every element b 2B has a unique successor, S.b/,
and this operation is L�-definable since � is. Using this, the L�-formula

��.x; y; xz/ WD B.x/^A.y/^�.x; y; xz/^:�.S.x/; y; xz/

is as desired.
Arguing similarly, there is an L�-formula  �.x; y; xw/ such that for all dj 2D,

the solution set  �.dj ;M
�;xs/ is fai;j 2 A W i 2 Zg. Putting these together, let

�.u; v; y; xz; xw/ be the L�-formula

B.u/^D.v/^A.y/^��.u; y; xz/^ �.v; y; xw/:

Then the solution set of �.u; v; y; xr;xs/ is precisely the graph of a bijection from
B �D onto A. Thus, M � admits coding, which suffices. �

The proof of the next proposition is in many ways similar. Here our ideal
infinitary configuration consists of an equivalence relation with infinitely many
infinite classes, with each tuple from the configuration in Lemma 4.5 pairing two
classes by intersecting them. But again, instead of our ideal equivalence relation,
we must restrict ourselves to the finitary approximations from Corollary 3.4.

Proposition 5.3. Suppose L1 and L2 are disjoint languages, �� kL1[L2k is a
cardinal, N1 is an L1-structure with universe �, and N2 is an L2-structure with
universe �. If Th.N1/ is not monadically NFCP, and if Th.N2/ is monadically
NFCP but not purely monadic, then there is a permutation � 2 Sym.�/ such that
the L1[L2-structure .N1; �.N2// has a theory that is not monadically NIP.

Proof. We may assume Th.N1/ is monadically NIP, since we are finished otherwise.
Apply Corollary 3.4 to N1, obtaining an L1-formula �.x; y; xz/ and, for each n,
pairwise disjoint sets An D f˛

n
i;j W i; j < ng, Bn D fˇ

n
i W i < ng and xrn as there,

with exceptional set X D � n
S

n�1.An[Bn/. Note that as each An; Bn is finite,
jX j D �. For the N2 side, apply Lemma 4.5, getting an N2-definable Y � �k

and a distinguished set F D fxe` W ` 2 !g � Y as there. Say Y is defined using
parameters fc1; : : : ; cng. LetLV

2 DL2[fV;C1; : : : ; Cng and letN V
2 be the monadic
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expansion of N2, interpreting V as F D
S

F and each Ci as fcig. Note that in N V
2 ,

the subsets F1 D f.xe/1 W xe 2 Fg and F2 D f.xe/2 W xe 2 Fg of F are LV
2 -definable

(without parameters), along with the bijection f W F1! F2 given by f .x/D .xe/2,
where xe is the unique element of F containing x. Fix an enumeration f
` W ` 2 !g

of F1 � �.
We now choose a permutation � 2 Sym.�/ that satisfies:

� For all n� 1 and all distinct i < j < n, there is some (in fact, a unique) ` 2 !
such that �.
`/D ˛

n
i;j and �.f .
`//D ˛

n
j;i .

Let �.N V
2 / be the LV

2 -structure with universe � so that � is an LV
2 -isomorphism.

Let MV
0 D.N1; �.N

V
2 // be the expansion of N1 to an L1[L

V
2 -structure. So MV

0

has universe � and satisfies:

� For all n� 1 and i < j < n, f .˛n
i;j /D ˛

n
j;i .

� The relationships given by N1 hold for MV
0 .

Let M0 be the L1[L2-reduct of MV
0 .

Claim. The L1[L2-theory of M0 is not monadically NIP.

Proof of claim. We show that the L1[L
V
2 -theory of MV

0 is not monadically NIP,
which suffices. For this, the strategy is similar to the proof of Proposition 5.2. We
will find anL1[L

V
2 -elementary extensionM ofMV

0 and then find a monadic expan-
sionM � ofM that admits coding. Specifically, choose anL1[L2[fV g-elementary
extension M for which there are sets B D fbi W i 2 Zg and AD fai;j W i ¤ j 2 Zg
such that:

(1) For all i < j from Z, f .ai;j /D aj;i .

(2) One of the following holds:
(a) Th.N1/ is unstable, and M ˆ �.bk; ai;j ; xr/ if and only if k � i .
(b) Th.N1/ is stable, and M ˆ �.bk; ai;j ; xr/ if and only if k D i .

Given such anM , letL�DL1[L
V
2 [fA;Bg, and letM � be the expansion ofM

interpreting A and B as themselves. Exactly as in the proof of Proposition 5.2, find
an L�-formula ��.x; y; xz/ such that for all bi 2B , the solution set ��.bi ;M

�; xr/ is
fai;j Wj 2Z; j ¤ ig. Finally, letLCDL�[fB�; BC; A�gwithB�Dfbi W i 2Z<0g,
BCD fbi W i 2Z>0g, and A�D fai;j W i 2Z

<0; j 2Z>0g. Let �.u; v; y; xz/ be the
LC-formula

B�.u/^BC.v/^A�.y/^��.u; y; xz/^��.v; f .y/; xz/:

Then the formula �.u; v; y; xr/ is the graph of a bijection from B� �BC! A�,
which suffices. �

Using Propositions 5.2 and 5.3 we are now able to prove the negative portions
of Theorem 1.2. As the positive portion was proved in Lemma 5.1, this suffices.
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Theorem 5.4. Suppose T is a complete L-theory and Y � �k with �� kLk. Then:

(1) If T is not monadically NFCP and Y is not monadically definable, then .T; Y /
is not always monadically NIP.

(2) If T is not purely monadic and Y is not monadically NFCP definable, then
.T; Y / is not always monadically NIP.

Proof. (1) Choose N1ˆ T with universe �, and let N2D .�; Y / be the structure in
the language L2DfY g with the obvious interpretation. Now, depending on whether
Th.N2/ is monadically NFCP or not, apply either Proposition 5.2 or Proposition 5.3
to get a permutation � 2 Sym.�/ such that Th.N1; �.N2// is not monadically NIP.
Of course, Y need not be preserved here, so apply ��1. That is, let .��1.N1/; Y /

be the L[fY g-structure so that ��1 is an L[fY g-isomorphism. As �.N1/ˆ T ,
this structure witnesses that .T; Y / is not always monadically NIP.

(2) LetN1D .�; Y / and letN2 be any model of T with universe �. Again, by either
Proposition 5.2 or Proposition 5.3 (depending on Th.N2/), we get a permutation
� 2 Sym.�/ such that .N1; �.N2// has a nonmonadically NIP theory. But this
structure is precisely .�.N2/; Y / and �.N2/ ˆ T , so again .T; Y / is not always
monadically NIP. �
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