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Jan Dobrowolski and Mark Kamsma

An important dividing line in the class of unstable theories is being NSOP1, which is
more general than being simple. In NSOP1 theories forking independence may not be as
well behaved as in stable or simple theories, so it is replaced by another independence
notion, called Kim-independence. We generalise Kim-independence over models in NSOP1

theories to positive logic — a proper generalisation of full first-order logic where negation
is not built in, but can be added as desired. For example, an important application is that we
can add hyperimaginary sorts to a positive theory to get another positive theory, preserving
NSOP1 and various other properties. We prove that, in a thick positive NSOP1 theory,
Kim-independence over existentially closed models has all the nice properties that it is
known to have in an NSOP1 theory in full first-order logic. We also provide a Kim–Pillay
style theorem, characterising which thick positive theories are NSOP1 by the existence of a
certain independence relation. Furthermore, this independence relation must then be the
same as Kim-independence. Thickness is the mild assumption that being an indiscernible
sequence is type-definable.

In full first-order logic Kim-independence is defined in terms of Morley sequences in
global invariant types. These may not exist in thick positive theories. We solve this by
working with Morley sequences in global Lascar-invariant types, which do exist in thick
positive theories. We also simplify certain tree constructions that were used in the study of
Kim-independence in full first-order logic. In particular, we only work with trees of finite
height.
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1. Introduction

The study of (ternary) independence relations in model theory goes back to Shelah’s
notion of forking independence, which is an abstract generalisation of classical
independence notions such as linear independence in vector spaces and algebraic
independence in algebraically closed fields. Forking independence was initially
used to study stable theories, in which it enjoys particularly nice properties. It
was later discovered that forking independence can be useful in studying the
broader class of simple theories, as it retains most of its features in that class
[Kim 1998; Kim and Pillay 1997]. Moreover, the fundamental properties of fork-
ing independence in simple theories, such as transitivity, symmetry, and local
character, fail in all nonsimple theories, which suggested that forking independence
might not be so useful in studying any broader class of theories. On the other
hand, some natural examples of nonsimple theories admitting useful notions of
independence have been known, including the theories of infinite-dimensional
vector spaces with a generic bilinear form [Granger 1999], ω-free PAC fields
[Chatzidakis 2002; 2008], and random parametrised equivalence relations. Inspired
by some ideas of Kim [2009], and building on [Chernikov and Ramsey 2016],
Kaplan and Ramsey [2020] defined the notion of Kim-independence (denoted
by |⌣

K ), and they have proved that in NSOP1 theories — a class containing all sim-
ple theories and, among many others, the three nonsimple theories mentioned above
[Chernikov and Ramsey 2016, Section 6] — it satisfies over models all the main
properties of forking independence in simple theories except base-monotonicity.

The goal of this paper is to generalise the theory of Kim-independence in NSOP1

theories to the class of thick positive theories. Positive model theory, introduced in
[Ben-Yaacov 2003a; Ben Yaacov and Poizat 2007] (with some ideas in a similar
direction present also in [Hrushovski 1998] and [Pillay 2000]), provides a framework
generalising that of full first-order logic and allows the study of a wider range of
objects using model-theoretic techniques. An important class of such objects, which
motivated the work undertaken in [Ben-Yaacov 2003a], is that of the hyperimaginary
extensions T heq of theories T in full first-order logic. In the context of NSOP1

theories, elimination of hyperimaginaries has been assumed in [Kim 2021] in order
to carry out a construction of weak canonical bases. It was asked there (in the
discussion following Definition 4.1) whether T heq satisfies the existence axiom
for forking independence provided that T does. We observe that this is indeed
true (Theorem 10.20), which might be helpful in eliminating the assumption of
elimination of hyperimaginaries in [Kim 2021] by working with Kim-independence
in T heq.

Haykazyan and Kirby [2021] studied the theory ECEF of existentially closed
exponential fields, and working with an arbitrary JEP-refinement (which, intuitively,
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corresponds to a completion of an incomplete theory in full first-order logic), they
have found an invariant ternary relation satisfying over models the following prop-
erties: strong finite character, existence, monotonicity, symmetry, and independence
theorem. They have also proved that, for any positive theory, the existence of such
a relation implies NSOP1, so in particular the JEP-refinements of ECEF are NSOP1.
As in the full first-order setting, a natural question whether every positive NSOP1

theory admits a ternary relation satisfying these properties arises.
Another class of examples of nonsimple NSOP1 theories in positive logic comes

from a recent work [d’Elbée et al. 2021], where d’Elbée, Kaplan and Neuhauser
show that for any integral domain R all JEP-refinements of the theory FR-module of
fields with a generic R-submodule are NSOP1 but not simple. In particular, this
applies to the theory of algebraically closed fields of characteristic zero with a
generic additive subgroup.

We work under the mild assumption that the theory is thick. This means that being
an indiscernible sequence is type-definable. Theories in full first-order logic, and
their hyperimaginary extensions, are always thick. The theories ECEF and FR-module

mentioned above are also thick.

Main results. The main results of our paper state that in every thick NSOP1 theory,
Kim-independence satisfies: symmetry (Theorem 6.5), the (strong) independence
theorem (Theorems 7.7 and 7.15), transitivity (Theorem 8.4) and local character
(Corollary 9.7), as well as invariance under automorphisms, existence, extension,
monotonicity and (strong) finite character. Moreover, we prove a Kim–Pillay
style theorem: in any thick positive theory T , if there exists a ternary relation |⌣
satisfying all the above properties, then T is NSOP1 and |⌣ = |⌣

K (Theorem 9.1).

Challenges. In contrast to the full first-order setting, in a positive theory, a type
over an existentially closed model may fail to have an invariant global extension.
This is a fundamental obstacle to generalising Kim-independence to the positive
setting, as the original definition of it relies on existence of invariant extensions in
the full first-order setting. We show, however, that in a thick theory any type over
an existentially closed model M extends to a global M-Lascar-invariant type. We
define Kim-independence in an arbitrary thick positive theory replacing the use of
invariant types by Lascar-invariant types.

One of the difficulties in adapting the results of [Kaplan and Ramsey 2020;
2021] to the positive setting is that the tree-modelling property [Kim et al. 2014,
Theorem 4.3], on which most of the constructions there rely, is not available in
the positive setting. This forced us in particular to work only with trees of finite
height, which turns out to be enough due to compactness and a careful choice of
the global types with which we work. Consequently, we substitute the notion of
a tree Morley sequence used in [Kaplan and Ramsey 2020] with a weaker notion
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of a parallel-Morley sequence. In particular, we do not have a counterpart of the
chain condition [Kaplan and Ramsey 2020, Corollary 5.15] for parallel-Morley
sequences, which causes some additional technical difficulties in our proof of the
strong independence theorem.

Our proofs yield in particular alternative proofs of the results in full first-order
logic on Kim-independence not using any combinatorial tools other than the Ramsey
theorem: while we do use the Erdős–Rado theorem to extract indiscernible se-
quences, in the full first-order setting this can be always replaced by the standard
use of the Ramsey theorem; the technique of extracting strongly indiscernible
trees from s-indiscernible trees from [Kaplan and Ramsey 2020] relying on the
Erdős–Rado theorem is not used by us.

Overview. In Section 2 we review some basic terminology and facts about positive
logic and NSOP1 theories, and we make some observations which are used through-
out the paper. In Section 3 we define a notion of a Morley sequence in a global
Lascar-invariant type, and we prove some basic properties of these. In Section 4 we
define Kim-dividing in an arbitrary thick NSOP1 theory, we give several characterisa-
tions of Kim-dividing and we establish some basic properties of Kim-independence.
In Section 5 we develop some tools which we later use in certain tree constructions:
the EM-modelling property, which is a weak version of the modelling property
used in [Kaplan and Ramsey 2020], parallel-Morley sequences, which serve as our
substitute for the notion of a tree Morley sequence from [Kaplan and Ramsey 2020],
and q-spread-outness, which is a variant of the spread-outness used in [Kaplan and
Ramsey 2020]. Sections 6, 7 and 8 contain the proofs of the main properties of
Kim-independence in thick positive theories: symmetry, independence theorem and
transitivity, and Section 9 is dedicated to proving a Kim–Pillay-style characterisation
of the NSOP1 property among thick positive theories by existence of an abstract
independence relation satisfying certain properties, and the characterisation of Kim-
independence in NSOP1 theories as the only relation satisfying them. In Section 10
we describe in detail some examples of thick NSOP1 theories: Poizat’s example
of a thick non-semi-Hausdorff theory, (JEP refinements of) the positive theory of
existentially closed exponential fields studied in [Haykazyan and Kirby 2021], and
the hyperimaginary extensions of NSOP1 theories.

2. Preliminaries

In this section we recall the basics of positive logic that we need in this paper. For
a more extensive treatment we refer to [Ben-Yaacov 2003a; Poizat and Yeshkeyev
2018].

Throughout the paper variables will be of arbitrary (possibly infinite) length,
unless stated otherwise.
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Definition 2.1. Fix a signature L. A positive existential formula in L is one that is
obtained from combining atomic formulas using ∧, ∨, ⊤, ⊥ and ∃. An h-inductive
sentence is a sentence of the form ∀x(ϕ(x)→ ψ(x)), where ϕ(x) and ψ(x) are
positive existential formulas. A positive theory is a set of h-inductive sentences.

Note that every positive existential formula ϕ(x) is equivalent to one of the form
∃yψ(x, y), where ψ(x, y) is positive quantifier-free. Positive existential sentences
and their negations can be used as axioms in a positive theory, since ∀xϕ(x)
and ∀x¬ϕ(x) are equivalent to ∀x(⊤→ ϕ(x)) and ∀x(ϕ(x)→⊥) respectively.

As in full first-order logic, we will assume that L contains a symbol= interpreted
in every L-structure as equality.

Remark 2.2. We can study full first-order logic as a special case of positive logic.
This is done through a process called Morleyisation. For this we add a relation
symbol Rϕ(x) to our language for every formula ϕ(x) in full first-order logic. Then
we have our theory (inductively) express that Rϕ(x) and ϕ(x) are equivalent. This
way every formula in full first-order logic is (equivalent to) a relation symbol, and
thus in particular to a positive existential formula.

Many definitions later in this section simplify in this case to familiar concepts.
Every homomorphism will be an elementary embedding, and thus in particular an
immersion. So every model will be an e.c. model. A theory has JEP if and only if
it is complete, and the JEP-refinements correspond to completions.

Since we will only be considering full first-order logic as a special case of positive
logic, we will make the following convention.

Convention 2.3. Whenever we say “formula” or “theory” we will mean “positive
existential formula” and “positive theory” respectively, unless explicitly stated
otherwise. This also means that every formula and theory we consider will be
implicitly assumed to be positive (existential).

In full first-order logic we consider elementary embeddings because they preserve
and reflect truth of full first-order formulas. Since we do not have negation in
positive logic, there is a difference between preserving and reflecting truth of
positive existential formulas.

Definition 2.4. A function f : M→ N between L-structures is called a homomor-
phism if for every ϕ(x) and every a ∈ M we have

M |H ϕ(a) =⇒ N |H ϕ( f (a)).

We call f an immersion if additionally the converse implication holds for all ϕ(x)
and all a ∈ M .
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In positive model theory we study the existentially closed models.

Definition 2.5. We call a model M of T an existentially closed model or an e.c.
model if the following equivalent conditions hold:

(i) Every homomorphism f : M→ N with N |H T is an immersion.

(ii) For every a ∈ M and ϕ(x) such that there is a homomorphism f : M → N
with N |H T and N |H ϕ( f (a)), we have that M |H ϕ(a).

(iii) For every a ∈ M and ϕ(x) such that M ̸|H ϕ(a) there is ψ(x) with T |H
¬∃x(ϕ(x)∧ψ(x)) and M |H ψ(a).

Fact 2.6. Let T be some theory.

(i) Unions: The union of a chain of (e.c.) models is an (e.c.) model.

(ii) Amalgamation: If one of M1 ← M → M2 is an immersion then there are
M1→ N ← M2 making the relevant square commute. In particular, every e.c.
model is an amalgamation base.

(iii) Existential completion: For every M |HT there is a homomorphism f :M→N ,
where N is an e.c. model of T .

(iv) Compactness: Let 6(x) be a set of positive existential formulas and suppose
that for every finite 60(x) ⊆ 6(x) there is M |H T with a ∈ M such that
M |H 60(a). Then there is an e.c. model N of T with a ∈ N such that
N |H6(a).

In the statement of compactness, Fact 2.6(iv), we have explicitly mentioned
positive existential formulas because it is crucial that we cannot use all formulas
from full first-order logic in 6(x). This is actually one of the big obstacles in this
paper. We provide two examples to indicate how full compactness can fail.

Example 2.7. Consider the theory T with a symbol for inequality and ω many
disjoint unary predicates Pn(x). Then e.c. models of T are precisely those which
consist of ω-many disjoint infinite sets, one for each predicate. If we had full
compactness then the set

6(x)= {¬Pn(x) : n < ω}

would have a realisation in some e.c. model, which is impossible.

Example 2.8. It could happen that there is a definable set that is infinite and bounded.
This does not contradict compactness: it just means that inequality is not positively
definable on that set. Such situations might arise when adding hyperimaginaries as
real elements, which can be done in positive logic (see Section 10C).
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Definition 2.9. We say that a theory T has the joint embedding property or JEP if
the following equivalent conditions hold:

(i) For any two models M1 and M2 there are homomorphisms M1→ N ← M2.

(ii) If T |H ¬ϕ ∨¬ψ then T |H ¬ϕ or T |H ¬ψ .

For a theory T we call an extension T ′ of T a JEP-refinement of T if it has JEP
and every e.c. model of T ′ is also an e.c. model of T .

As suggested in Remark 2.2, having JEP is like requiring the theory to be
complete. We can always find a JEP-refinement (a “completion”) by taking the set
of h-inductive sentences that are true in some e.c. model.

Fix a sufficiently large cardinal κ̄ . We will say a set is small if it is of cardinality
smaller than κ̄ .

Convention 2.10. We will assume our theory T has JEP so we can work in a
monster model M (sometimes also called a universal domain), that is, a model
which is:

• Existentially closed: M is an e.c. model.

• Very homogeneous: Any partial immersion f :M→M with small domain
and codomain extends to an automorphism on all of M.

• Very saturated: Any finitely satisfiable small set of formulas over M is satisfi-
able in M.

We will assume all parameter sets considered to be small, except when we consider
the monster model as a parameter set. We will use lowercase Latin letters a, b, . . .
for (possibly small infinite) tuples inside the monster model and uppercase Latin
letters A, B, . . . for (small) parameter sets inside the monster model. We will use
letters M and N when these sets are e.c. models.

As is common, we use the notation |H ϕ(a) to abbreviate M |H ϕ(a).

The above also means that the right notion of a type in positive model theory
is that of a positive existential type. That is, we write tp(a/B) for the set of all
positive existential formulas over B satisfied by a. So we have tp(a/B)= tp(a′/B)
if and only if there is an automorphism f :M→M fixing B such that f (a)= a′.
We also write a ≡B a′ in this case. By a type (over A) in T we will always mean
a maximal consistent with T set of positive existential formulas (over A). By a
partial type (over A) in T we will mean any consistent set of positive existential
formulas (over A).

There are some subtle differences in possible definitions of saturatedness; see
for example [Poizat and Yeshkeyev 2018, Section 2.4]. We are only interested in
e.c. models, so for us it will mean the following. Constructing models of a certain
level of saturation is then standard.
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Definition 2.11. Let M be an e.c. model of some theory T . We say that M is
κ-saturated if for every A ⊆ M with |A|< κ we have that a set 6(x) of formulas
over A is satisfiable in M if and only if it is finitely satisfiable in M .

Fact 2.12. For any κ ≥ |A| + |T | there is a κ+-saturated N ⊇ A with |N | ≤ 2κ .

The following definitions are taken from [Ben-Yaacov 2003a; 2003c]. We added
the notion of being Boolean.

Definition 2.13. Let T be a theory and work in a monster model. We call T

• Boolean if every formula in full first-order logic is equivalent to a positive
existential formula, modulo T ;

• Hausdorff if for any two distinct types p(x) and q(x) there are ϕ(x) ̸∈ p(x)
and ψ(x) ̸∈ q(x) such that |H ∀x(ϕ(x)∨ψ(x));

• semi-Hausdorff if equality of types is type-definable, so there is a partial type
�(x, y) such that tp(a)= tp(b) if and only if |H�(a, b);

• thick if being an indiscernible sequence is type-definable, so there is a partial
type 2((xi )i<ω) such that (ai )i<ω is indiscernible if and only if |H2((ai )i<ω).

Remark 2.14. The reason for the name Hausdorff is that this corresponds to the
type spaces being Hausdorff, where formulas correspond to closed sets. The name
thick is based on the notion of thick formulas, which were originally defined in the
setting of full first-order logic (see also [Ben-Yaacov 2003c]).

The name Boolean comes from the fact that the Lindenbaum–Tarski algebra
of positive existential formulas forms a Boolean algebra, and this is in fact an
equivalent assertion. In [Haykazyan 2019] these theories are called “positively
model complete”, but we think this name is more descriptive.

Through Morleyisation, Boolean theories are essentially the same as theories in
full first-order logic, and so we will treat them as the same. The list of properties
in Definition 2.13 is really a hierarchy, so Boolean implies Hausdorff implies
semi-Hausdorff implies thick.

Definition 2.15. Let a and a′ be two tuples, and let B be any parameter set. We
write dB(a, a′) ≤ n if there are a = a0, a1, . . . , an = a′ such that ai and ai+1 are
on a B-indiscernible sequence for all 0≤ i < n.

Fact 2.16 [Ben-Yaacov 2003c, Proposition 1.5]. A theory is thick if and only if the
property “dB(x, x ′)≤ n” is type-definable over B for all B and n < ω.

The following appears as [Pillay 2000, Lemma 3.1] and [Ben-Yaacov 2003b,
Lemma 1.2].

Lemma 2.17. Let A be any parameter set, κ any cardinal, and let λ= ℶ(2|T |+|A|+κ )+ .
Then for any sequence (ai )i<λ of κ-tuples there is an A-indiscernible sequence
(bi )i<ω such that for all n<ω there are i1< · · ·< in<λ with b1 · · · bn≡A ai1 · · · ain .
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Definition 2.18. In the notation of Lemma 2.17 we say that (bi )i<ω is based on the
sequence (ai )i<λ (over A).

Often the parameter set A will be clear from the context (it will be the set that
the new sequence is indiscernible over), so we may leave out the “over A”.

Definition 2.19. We write λκ := ℶ(2κ )+ for any cardinal κ and λT := λ|T |.

Lemma 2.20. Let M be a λT -saturated e.c. model of a thick theory. Then a ≡M b
implies dM(a, b)≤ 2.

Proof. By thickness, dM(x, y) ≤ 1 is M-type-definable. Let ϕ(x, y) be a finite
conjunction of formulas in dM(x, y)≤ 1. It is enough to show that ϕ(x, a)∧ϕ(x, b)
is satisfiable, because then the partial type “dM(x, a) ≤ 1 and dM(x, b) ≤ 1” is
finitely satisfiable.

Since ϕ is just a formula, we may as well assume a and b to be finite. Let m denote
the (finite) part of M that appears in ϕ. By λT -saturatedness of M there is a sequence
(ai )i<λT in M such that ai (a j ) j<i ≡m a(a j ) j<i for all i<λT . Using Lemma 2.17 we
then find m-indiscernible (a′i )i<ω based on (ai )i<λT . So |H ϕ(a′0, a′1), and thus there
are i0 < i1 <λT such that M |H ϕ(ai0, ai1). By construction we have ai1ai0 ≡m aai0 ,
so |H ϕ(ai0, a). Since a ≡M b and ai0 ∈ M we also have |H ϕ(ai0, b). □

Lemma 2.21. Let T be a thick theory. Let B ⊇ A and κ any cardinal, and set
λ= λ|T |+|B|+κ . Then for any A-indiscernible sequence (ai )i<λ of κ-tuples, there is
B-indiscernible (a′i )i<λ based on (ai )i<λ such that dA((ai )i<λ, (a′i )i<λ)≤ 1.

Proof. By Lemma 2.17 there is B-indiscernible (bi )i<ω based on (ai )i<λ. Extend
this to B-indiscernible (bi )i<λ. Define

6((xi )i<λ)= tp((bi )i<λ/B)∪ “ dA((xi )i<λ, (ai )i<λ)≤ 1”,

and let60(xi1, . . . , xin )⊆6((xi )i<λ) be finite, only mentioning parameters in B and
ai1, . . . , ain . Let j1< · · ·< jn <λ be such that a j1 · · · a jn ≡B b1 · · · bn ≡B bi0 · · · bin .
It follows from the proof of Lemma 2.17 that we may choose j1 to be arbitrarily large
below λ, so we may assume j1 > in . Then a j1 · · · a jn realises 60. By compactness
we find the required (a′i )i<λ as a realisation of 6. □

The definition of dividing in positive theories is the same as in full first-order
logic [Pillay 2000; Ben-Yaacov 2003b]. Following [Pillay 2000] we have to adjust
forking to allow infinite disjunctions because compactness can no longer guarantee
disjunctions to be finite.

Definition 2.22. We say that a partial type 6(x, b) divides over C if there is a C-
indiscernible sequence (bi )i<ω with b0≡C b such that

⋃
i<ω6(x, bi ) is inconsistent.

We say 6(x, b) forks over C if there is a (possibly infinite) set of formulas 8(x)
with parameters, each of which divides over C , such that 6(x, b) implies

∨
8(x).

We write a |⌣
d
C b (or a |⌣

f
C b) if tp(a/Cb) does not divide (fork) over C .
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Remark 2.23. We have that tp(a/Cb) divides over C if and only if there is a formula
ϕ(x, b) ∈ tp(a/Cb) that divides over C . This follows directly from compactness.
Note that for forking this is no longer necessarily true, because the disjunction may
be infinite so we cannot apply compactness.

For a type p over a set B and a subset A ⊆ B, the restriction of p to A is a type
over A which we denote by p|A. We recall the notions of an heir and a coheir,
which also make sense in positive logic.

Definition 2.24. Let M ⊆ B, and let p = tp(a/B) be a type over B. We say that p
is a coheir of p|M , and write a |⌣

u
M B, if p is finitely satisfiable in M . We say

that p is an heir of p|M if for every formula ϕ(x, y), with parameters in M , and
every b ∈ B such that ϕ(x, b) ∈ p there is some b′ ∈ M such that ϕ(x, b′) ∈ p. In
this case we write a |⌣

h
M B.

Remark 2.25. As in full first-order logic, we have A |⌣
u
M B if and only if B |⌣

h
M A.

In Proposition 3.13 we compare the above notions of independence further.
We recall that 2<ω is the set of all finite sequences of zeroes and ones. For

η, ν ∈ 2<ω we write η ⪯ ν if ν continues the sequence η. We write η⌢ν for
concatenation, so for example η⌢0 is the sequence η with a 0 concatenated to it.

Definition 2.26. Let T be a theory, and let ϕ(x, y) be a formula. We say that ϕ(x, y)
has SOP1 if there are ψ(y1, y2) and (aη)η∈2<ω such that:

(i) For every σ ∈ 2ω the set {ϕ(x, aσ |n) : n < ω} is consistent.

(ii) ψ(y1, y2) implies that ϕ(x, y1)∧ϕ(x, y2) is inconsistent, that is,

T |H ∀y1 y2¬[ψ(y1, y2)∧∃x(ϕ(x, y1)∧ϕ(x, y2))].

(iii) For every η, ν ∈ 2<ω such that η⌢0⪯ ν we have |H ψ(aη⌢1, aν).

We say that T is NSOP1 if no formula has SOP1.

Remark 2.27. The idea of introducing the inconsistency witness ψ(y1, y2) is due
to Haykazyan and Kirby [2021]. In full first-order logic we can just take ψ(y1, y2)

to be ¬∃x(ϕ(x, y1)∧ϕ(x, y2)), so we see that the definitions coincide there. The
point of having ψ is that the inconsistency in (iii) is again definable by a single
formula for all relevant η and ν. This enables us to apply compactness to make the
tree (aη)η∈2<ω as big as we wish.

The following lemma, or rather its contrapositive, is what will actually be useful
to us. If, in an NSOP1 theory, we have two sequences that are “parallel to each other”
in a certain way then we can transfer consistency for a formula along one sequence
to the other. We will therefore give it the name “parallel sequences lemma”.
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Lemma 2.28 (parallel sequences lemma). Suppose that ϕ(x, y) is a formula, and
(c̄i )= (ci,0, ci,1)i∈I is an infinite indiscernible sequence satisfying

(i) ci,0 ≡c̄<i ci,1 for all i ∈ I ;

(ii) {ϕ(x; ci,0) : i ∈ I } is consistent;

(iii) {ϕ(x; ci,1) : i ∈ I } is inconsistent.

Then T has SOP1.

Proof. This is the same as [Kaplan and Ramsey 2020, Lemma 2.3] and that proof
mostly goes through. We sketch a few small changes that are needed. Obviously
we already start with an indiscernible sequence and by compactness we can freely
change the order type of I preserving properties (i)–(iii). Then in the claim in that
proof we need to make the array (ai,0, ai,1) sufficiently long. This can easily be
done by elongating the original indiscernible sequence (c̄i ). Then we can find an
indiscernible sequence based on (āi )= (ai,0, ai,1). Note that properties (1)–(3) in
that claim are preserved by this operation. The reason for all this is because we need
to start with an indiscernible sequence in [Kaplan and Ramsey 2020, Lemma 2.2]
as well. Then the rest of that proof goes through. Finally, inconsistency of
{ϕ(x, cl,1), χ(x, dl ′,0)} should be witnessed by some formula (similarly for [Kaplan
and Ramsey 2020, Lemma 2.2]), but the existence of such a witness easily follows
from the construction of χ . □

3. Global Lascar-invariant types

The definition of Lascar strong types from the first-order setting easily generalises
to (thick) positive logic; see [Pillay 2000, Definition 3.13, Lemma 3.15] and [Ben-
Yaacov 2003b, Lemma 1.38].1

Definition 3.1. We say a and b have the same Lascar strong type over A, and write
a ≡Ls

A b, if the following equivalent conditions hold:

(i) dA(a, b)≤ n for some n < ω.

(ii) For each bounded A-invariant equivalence relation E(x, y) we have E(a, b).

(iii) There are λT -saturated e.c. models M1, . . . ,Mn , each containing A, and
a = a0, . . . , an = b such that ai ≡Mi+1 ai+1 for all 0≤ i < n.

We write Lstp(a/A) for the ≡Ls
A -equivalence class of a.

Lemma 3.2. The conditions in Definition 3.1 are equivalent in a thick theory.

1Simplicity is assumed in [Ben-Yaacov 2003b, Lemma 1.38] but not used in the equivalence of
the properties we mention. It is used for what is (iii) there.
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Proof. The equivalence of (i) and (ii) is proved in both [Pillay 2000, Lemma 3.15]
and [Ben-Yaacov 2003b, Lemma 1.38]. So we prove (i)⇐⇒ (iii).

(i) =⇒ (iii): Let a=a0, . . . , an=b such that ai and ai+1 are on an A-indiscernible se-
quence. Let 0≤ i<n, let (a′j ) j<ω be an A-indiscernible sequence with a′0a′1=ai ai+1,
and let M ⊇ A be some λT -saturated model. By Lemma 2.17 and an automorphism
there is Mi+1 ≡A M such that (a′j ) j<ω is Mi+1-indiscernible. So in particular
ai ≡Mi+1 ai+1, as required.

(iii) =⇒ (i): By Lemma 2.20 ai ≡Mi ai+1 implies that dMi (ai , ai+1) ≤ 2 and as
A ⊆ Mi we are done. □

Definition 3.1(iii) allows for the following definition.

Definition 3.3. Let Aut f (M/A) be the group generated by⋃
{Aut(M/M) : M is a λT -saturated model and A ⊆ M}.

We call its elements Lascar strong automorphisms. It is clear that in a thick theory
a ≡Ls

A b precisely when there is f ∈ Aut f (M/A) such that f (a)= b.

Remark 3.4. If T is semi-Hausdorff we may replace “λT -saturated model” by “e.c.
model” in Definition 3.1 and Lemma 3.2; see [Ben-Yaacov 2003c, Proposition 3.13].

Convention 3.5. Recall that a global type is a type over the monster model M.
Building on Convention 2.10 about the monster model, we will use lowercase Greek
letters α, β, . . . for realisations of global types (in a bigger monster).

Definition 3.6. A global type q is called A-Ls-invariant, short for A-Lascar-
invariant, if for a realisation α |H q we have that b ≡Ls

A b′ implies αb ≡Ls
A αb′.

Note that this definition does not depend on the choice of α. If α′ is any other
realisation of q, then α ≡M α′. So there is an automorphism f of the bigger
monster over M with f (α) = α′. So if b ≡Ls

A b′ then αb ≡Ls
A αb′ and therefore

f (α) f (b)≡Ls
f (A) f (α) f (b′), which is just α′b ≡Ls

A α′b′, since f fixes M.

Remark 3.7. Let q be any global type in a thick theory, let α |H q , and let A be any
(small) parameter set. Then there is a ∈M with a ≡Ls

A α. To see this, let M ⊇ A be
a λT -saturated model, and take any a |H q|M .

Lemma 3.8. Suppose that q is a global A-Ls-invariant type in a thick theory. Then:

(i) For any f ∈ Aut(M/A) the type f (q) is A-Ls-invariant.

(ii) For any B ⊇ A, q is also B-Ls-invariant.

Proof. Point (i) is straightforward. We prove (ii). Let α |Hq and b≡Ls
B b′. Then there

are λT -saturated models M1, . . . ,Mn , all containing B, and b = b0, . . . , bn = b′

such that bi ≡Mi+1 bi+1 for all 0 ≤ i < n. Letting 0 ≤ i < n, it is enough to
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show αbi ≡Mi+1 αbi+1. We have bi Mi+1 ≡
Ls
A bi+1 Mi+1, so by A-Ls-invariance,

αbi Mi+1 ≡
Ls
A αbi+1 Mi+1, which implies the desired result. □

Lemma 3.9. Let T be thick, and let p = tp(a/B) be a coheir over M ⊆ B. Then
there is a global M-Ls-invariant type extending p.

Proof. Define

0(x)= p(x)∪
⋃
{dM(xc, xc′)≤ 1 : c, c′ ∈M with dM(c, c′)≤ 1}.

We claim that 0(x) is consistent. For finite p0(x)⊆ p(x) there is d ∈ M such that
d |H p0. Then for any c and c′ with dM(c, c′) ≤ 1 we have that dM(dc, dc′) ≤ 1
because d is in M . Any maximal extension of 0(x) will be a desired global M-Ls-
invariant type. □

Definition 3.10. For A ⊆ B we say that Lstp(c/B) extends Lstp(c′/A) if c ≡Ls
A c′.

Corollary 3.11. In a thick theory we have that Lstp(a/M) extends to a global
M-Ls-invariant type for any a and M.

Proof. By Lemma 3.9 we have that p = tp(a/M) extends to some global M-Ls-
invariant type q. For α |H q let a′ ≡Ls

M α. Then there is f ∈ Aut(M/M) such that
f (a′)= a. So by Lemma 3.8(i), f (q) is global M-Ls-invariant and is exactly what

we need. □

Definition 3.12. For a type p = tp(a/Cb) write a |⌣
iLs
C b if there is a global

C-Ls-invariant extension of p.

Proposition 3.13. In any thick theory T we have

a |⌣
u
C b =⇒ a |⌣

iLs
C b =⇒ a |⌣

f
C b =⇒ a |⌣

d
C b.

Proof. This is standard, but we write out the arguments to check they hold with
the slightly changed definitions for positive logic. The first implication is precisely
Lemma 3.9, while the last implication is direct from the definition of dividing and
forking.

We prove the middle implication. Assume a |⌣
iLs
C b and suppose for a contradic-

tion that p(x)= tp(a/Cb) forks over C . Let8(x) be a set of formulas that all divide
over C such that p(x) implies

∨
8(x). Let q be a global C-Ls-invariant extension

of p, and let α |H q. Then there must be ϕ(x, d) ∈ 8(x) such that |H ϕ(α, d).
Let (di )i<ω be C-indiscernible with d0 = d. For all i < ω we have d ≡Ls

C di and
thus αd ≡Ls

C αdi . So in particular α |H {ϕ(x, di ) : i < ω}, which contradicts that
ϕ(x, d) divides over C . □

In the remainder of this section we will develop tensoring of global Ls-invariant
types. This comes down to verifying that the usual constructions for global invariant
types (see, e.g., [Simon 2015, Section 2.2.1]) work when we carefully replace types
by Lascar strong types everywhere.
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Lemma 3.14. Suppose that T is thick, q is a global A-Ls-invariant type and
p = Lstp(a∗/A). Then, for β |H q , the set

Rp,q(A)= {(a, b) ∈M : a ≡Ls
A a∗ and b ≡Ls

Aa β}

is (the set of realisations of ) a Lascar strong type over A.

Proof. Clearly this does not depend on the choice of a∗ or β. The set is nonempty,
as for any b ≡Ls

Aa∗ β we have (a∗, b) ∈ Rp,q(A).
Let (a, b), (a′, b′) ∈ Rp,q(A). Then a ≡Ls

A a∗ ≡Ls
A a′, so by A-Ls-invariance

ab≡Ls
A aβ ≡Ls

A a′β ≡Ls
A a′b′. Conversely, suppose (a, b)∈ Rp,q(A) and ab≡Ls

A a′b′.
Then a′≡Ls

A a≡Ls
A a∗. Furthermore, by A-Ls-invariance βab≡Ls

A βa′b′, so applying
an automorphism to b ≡Ls

Aa β we get b′ ≡Ls
Aa′ β and thus (a′, b′) ∈ Rp,q(A). □

Theorem 3.15. Suppose T is thick with global A-Ls-invariant types q and r. Then
there is a unique global A-Ls-invariant type q ⊗ r such that for any α |H q , β |H r
and (α′, β ′) |H q ⊗ r , the following are equivalent for all B ⊇ A and all a and b:

(i) ab ≡Ls
B α′β ′.

(ii) a ≡Ls
B α and b ≡Ls

Ba β.

In particular, this implies that also α′ |H q and β ′ |H r .

Proof. Throughout, let α |H q and β |H r . For B ⊇ A, denote by qB the Lascar
strong type Lstp(α/B). By Lemma 3.8(ii) and Lemma 3.14, we have a well-defined
Lascar strong type RqB ,r (B).

Claim. For A ⊆ B ⊆ C we have RqC ,r (C)⊆ RqB ,r (B).

Proof of claim. Let (a, b) ∈ RqC ,r (C). Then a ≡Ls
C α and b ≡Ls

Ca β. Hence a ≡Ls
B α

and b ≡Ls
Ba β, so (a, b) ∈ RqB ,r (B). □

For M ⊇ A a λT -saturated model RqM ,r (M) corresponds to the usual syntactic
type over M . So viewing RqM ,r (M) as a set of formulas over M , we get, by the
claim, that the following is a well-defined global type:

q ⊗ r :=
⋃
{RqM ,r (M) : M is a λT -saturated model and A ⊆ M}.

First we verify that q ⊗ r satisfies the universal property we claimed. So let
(α′, β ′) |H q ⊗ r and B ⊇ A. Let M ⊇ B be a λT -saturated model and pick
a′b′ ≡Ls

M α′β ′. Then by construction (a′, b′) ∈ RqM ,r (M) and so by the claim
(a′, b′)∈ RqB ,r (B). So for any a and b we have ab≡Ls

B α
′β ′ if and only if ab≡Ls

B a′b′

if and only if (a, b) ∈ RqB ,r (B) if and only if a ≡Ls
B α and b ≡Ls

Ba β.
Uniqueness follows because any global type satisfying this universal property

must restrict to RqM ,r (M)= (q ⊗ r)|M for all λT -saturated M ⊇ A.
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Finally we prove A-Ls-invariance. Let d ≡Ls
A d ′, and pick a and b in M such

that ab ≡Ls
Add ′ α

′β ′. So a ≡Ls
Add ′ α

′ and thus, by A-Ls-invariance of q ,

ad ≡Ls
A α′d ≡Ls

A α′d ′ ≡Ls
A ad ′.

Then A-Ls-invariance of r gives us β ′ad ≡Ls
A β
′ad ′. From the universal property

we get b ≡Ls
Add ′a β

′, so abd ≡Ls
A abd ′. Because, by assumption, ab ≡Ls

Add ′ α
′β ′, we

conclude that α′β ′d ≡Ls
A α′β ′d ′ and we are done. □

Lemma 3.16. For any global A-Ls-invariant types p, q , r in a thick theory we have:

(i) Associativity: (p⊗ q)⊗ r = p⊗ (q ⊗ r).

(ii) Monotonicity: For any q ′(x0) = q(x0, x1)|x0 ⊆ q(x0, x1) and any r ′(y0) =

r(y0, y1)|y0 ⊆ r(y0, y1), we have q ′⊗ r ′ ⊆ q ⊗ r .

Proof. (i) Let (α, β, γ ) |H (p⊗q)⊗r and (α′, β ′, γ ′) |H p⊗(q⊗r). We will prove
that αβγ ≡Ls

B α
′β ′γ ′ for all B ⊇ A. Let abc≡Ls

B αβγ . Then b≡Ls
Ba β and c≡Ls

Bab γ .
So we have bc≡Ls

Ba β
′γ ′. Since also a ≡Ls

B α we thus conclude that abc≡Ls
B α
′β ′γ ′.

(ii) Let (α, β)= ((α0, α1), (β0, β1)) |H q ⊗ r , and let ab ≡Ls
B αβ, where B ⊇ A is

arbitrary. Then in particular a0≡
Ls
B α0 and b0≡

Ls
Ba0
β0. So if we let (α′, β ′) |H q ′⊗r ′

then α0β0 ≡
Ls
B a0b0 ≡

Ls
B α′β ′. So (α0, β0) |H q ′⊗ r ′ and we are done. □

Definition 3.17. For a global A-Ls-invariant type, we define q⊗δ for an ordinal
δ ≥ 1 by induction as follows:

• q⊗1
= q ,

• q⊗δ+1
= q⊗δ ⊗ q ,

• q⊗δ =
⋃
γ<δ q⊗γ when δ is a limit.

A Morley sequence in q (over A) is a sequence (ai )i<δ such that (ai )i<δ ≡
Ls
A (αi )i<δ ,

where (αi )i<δ |H q⊗δ.

Note that we define Morley sequences in terms of Lascar strong types here.
So saying that (ai )i<ω is a Morley sequence in q over A is generally a stronger
statement than just saying (ai )i<ω |H q⊗ω|A. Of course, if A is a λT -saturated model
in a thick theory then the two coincide.

Lemma 3.18. Suppose that q is a global A-Ls-invariant type, and let (αi )i<δ |H q⊗δ .
Then for any strictly increasing sequence (iη)η<γ in δ we have that (αiη)η<γ |H q⊗γ .

Proof. From the construction of q⊗δ it is clear that for γ < δ and (αi )i<δ |H q⊗δ

we have (αi )i<γ |H q⊗γ .
We prove the lemma by induction to γ . The base case and the limit step are

easy, so we prove the successor step. So suppose that (αiη)η<γ |H q⊗γ . We will
prove that (αiη)η<γαiγ ≡

Ls
B α<γαγ for all B ⊇ A. Let a≤iγ ≡

Ls
B α≤iγ . Then in

particular (aiη)η<γ ≡
Ls
B (αiη)η<γ and aiγ ≡

Ls
B(aiη )η<γ

αiγ . By the induction hypothesis
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and the universal property this means (aiη)η<γ aiγ ≡
Ls
B α<γαγ , which concludes the

successor step. □

By Lemma 3.18, (ai )i<δ |H q⊗δ|A if and only if (ai1, . . . , ain ) |H q⊗n
|A for

all i1 < · · ·< in < δ. From this perspective it makes sense to make the following
convention, even though we technically have not defined q⊗I for arbitrary linear
orders I .

Convention 3.19. Let I be any linear order, and let q be a global A-Ls-invariant
type. Then by (ai )i∈I |H q⊗I

|A we mean that for any i1 < · · · < in in I we have
(ai1, . . . , ain ) |H q⊗n

|A.

Proposition 3.20. For any Morley sequence (ai )i<δ in a global A-Ls-invariant
type q the following hold:

(i) For all i < δ, ai ≡
Ls
Aa<i

α, where α |H q.

(ii) (ai )i<δ is A-indiscernible.

Proof. We first prove (i). Let (αi )i<δ |H q⊗δ and i < δ. Then a<i ai ≡
Ls
A α<iαi . As

α<iαi |H q⊗i
⊗ q , the universal property yields ai ≡

Ls
Aa<i

αi , as required.
For (ii), consider any i1 < · · ·< in <δ. By Lemma 3.18, αi1 · · ·αin ≡M α1 · · ·αn ,

so in particular αi1 · · ·αin ≡
Ls
A α1 · · ·αn . As (ai )i<δ ≡A (αi )i<δ, we conclude that

ai1 · · · ain ≡A a1 · · · an . □

4. Kim-dividing

The idea of Kim-dividing is to restrict dividing witnesses to nonforking Morley
sequences. Proving the existence of such sequences over arbitrary sets turns out to
be difficult, and is in fact an open problem for NSOP1 theories in full first-order
logic; see [Dobrowolski et al. 2022, Remark 2.6, Question 6.6]. In [Kaplan and
Ramsey 2020] this is solved by using Morley sequences in some global invariant
type. In full first-order logic any type over a model extends to a global invariant type.
In positive logic we need to assume the theory to be semi-Hausdorff to find global
invariant extensions [Ben-Yaacov 2003c, Lemma 3.11], because they may not exist
otherwise (see Section 10A). In the more general setting of thick positive theories
we can always find global Ls-invariant extensions and the notion of a Morley
sequence makes sense in such a global Ls-invariant type; see Section 3. Since we
can generally only extend types over e.c. models to global Ls-invariant types, we
will consider Kim-dividing only over e.c. models (compare Question 10.21).

Definition 4.1. Let 6(x, b) be a partial type in a thick theory, possibly with param-
eters in M , and let q be a global M-Ls-invariant extension of tp(b/M). We say that
6(x, b) q-divides over M if for any (equivalently, some) Morley sequence (bi )i<ω

in q (over M) the set
⋃

i<ω6(x, bi ) is inconsistent.
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By compactness q-dividing does not depend on the length of the Morley sequence,
as long as it is infinite.

Proposition 4.2. Let T be thick, let q be a global M-Ls-invariant extension
of tp(b/M) and write p(x, y)= tp(ab/M). Then the following are equivalent:

(i) The type p(x, b) does not q-divide.

(ii) For any f ∈ Aut(M/M) the type p(x, b) does not f (q)-divide.

(iii) For any (equivalently, some) (bi )i<ω |H q⊗ω|M the set
⋃

i<ω p(x, bi ) is consis-
tent.

(iv) There is an Ma-indiscernible sequence (bi )i<ω |H q⊗ω|M with b0 = b.

Proof. (i)⇐⇒ (ii)⇐⇒ (iii): This follows because consistency of
⋃

i<ω p(x, bi )

only depends on tp((bi )i<ω/M), together with the fact that given a Morley sequence
(bi )i<ω in q we have that ( f (bi ))i<ω is a Morley sequence in f (q).

(i) =⇒ (iv): Let (bi )i<λ be a Morley sequence in q for big enough λ. Let a∗ realise⋃
i<λ p(x, bi ), and let (b′i )i<ω be Ma∗-indiscernible, based on (bi )i<λ. So there

is i < λ such that a∗b′0 ≡M a∗bi ≡M ab. Let (b′′i )i<ω with b′′0 = b be such that
a(b′′i )i<ω ≡M a∗(b′i )i<ω. Then (b′′i )i<ω is Ma-indiscernible. Furthermore, since
(bi )i<λ was already M-indiscernible, we have (b′′i )i<ω ≡M (b′i )i<ω ≡M (bi )i<ω, so
(b′′i )i<ω |H q⊗ω|M .

(iv) =⇒ (iii): For such an Ma-indiscernible sequence (bi )i<ω we have, for all i <ω,
ab = ab0 ≡M abi . So a realises

⋃
i<ω p(x, bi ). □

Proposition 4.3. Let T be thick, let 6(x, b) be a partial type with parameters in M ,
and let q be a global M-Ls-invariant extension of tp(b/M). If 6(x, b) does not
q-divide over M then there is a complete p(x, b)⊇6(x, b) that does not q-divide
over M.

Proof. Let (bi )i<λ |H q⊗λ|M with b0 = b. Then there is some a |H
⋃

i<λ6(x, bi ).
Then, assuming we chose λ large enough, there is some i0<λ such that for infinitely
many i < λ we have abi ≡M abi0 . Set p(x, y)= tp(abi0/M). Then p(x, bi0) does
not q-divide, while also 6(x, bi0) ⊆ p(x, bi0). By invariance p(x, b) does not
q-divide. □

The following lemma is the core of the connection between Kim-dividing and
NSOP1 theories. It tells us that q-dividing does not depend on the global Lascar-
invariant type q. More discussion on the origins of this lemma can be found in
[Kaplan and Ramsey 2020]. Briefly put, Kim [1998, Proposition 2.1] proved that
in simple theories a formula divides with respect to every Morley sequence if and
only if it divides with respect to some Morley sequence. The lemma below is an
analogue of that for NSOP1 theories.
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Proposition 4.4 (Kim’s lemma). If T is thick NSOP1, then q-dividing does not
depend on q. That is, if q and r are global M-invariant types extending tp(b/M)
then a partial type 6(x, b) q-divides if and only if it r -divides.

Proof. This is essentially the proof of [Kaplan and Ramsey 2020, Proposition 3.15],
adapted to the thick positive logic setting. By Proposition 4.2(ii) we may assume
that q and r extend Lstp(b/M). Suppose that 6(x, b) does not q-divide, while it
r -divides. We will prove that T has SOP1. Let (b̄i )i<ω = (bi,0, bi,1)i<ω be a Morley
sequence in q ⊗ r . By Lemma 3.16(ii) and induction, (bi,0)i<ω and (bi,1)i<ω are
Morley sequences in q and r respectively.

Since 6(x, b) r-divides, the set
⋃

i<ω6(x, bi,1) is inconsistent. So by com-
pactness there is an M-formula ϕ(x, y) ∈6(x, y) such that {ϕ(x, bi,1) : i < ω} is
inconsistent. Because 6(x, b) does not q-divide we have that {ϕ(x, bi,0) : i < ω}
is consistent.

We wish to apply the parallel sequences lemma (Lemma 2.28) to ϕ(x, y) and
(b̄i )i<ωop , where ωop carries the opposite order of ω. So we are left to prove that
bi,0≡Mb̄>i

bi,1 for all i<ω. We do so by proving that bi,0(b̄i )i< j<n≡M bi,1(b̄i )i< j<n

for all i < n<ω. Let (β̄i )i<ω |H (q⊗r)⊗ω. By Lemma 3.16(i) we have (q⊗r)⊗n
=

(q⊗ r)⊗i+1
⊗ (q⊗ r)⊗n−i−1. So we have β̄<n |H (q⊗ r)⊗i+1

⊗ (q⊗ r)⊗n−i−1 and
because b̄<n ≡

Ls
M β̄<n we have (b̄ j )i< j<n ≡

Ls
Mb̄≤i

(β̄ j )i< j<n . As bi,0 ≡
Ls
M b ≡Ls

M bi,1,
we get, by M-Ls-invariance, that bi,0(β̄ j )i< j<n ≡

Ls
M bi,1(β̄ j )i< j<n . Putting the two

together yields the required result. □

Definition 4.5. We say 6(x, b) Kim-divides (over M) if it q-divides for some
global M-Ls-invariant q that extends tp(b/M). We write a |⌣

K
M b when tp(a/Mb)

does not Kim-divide over M and call this Kim-independence.

Remark 4.6. By Lemma 3.9 we can extend any type over an e.c. model M in a
thick theory to a global M-Ls-invariant type. So assuming NSOP1, we have by
Proposition 4.4 that tp(a/Mb) Kim-divides if and only if it q-divides for any global
M-invariant extension q of tp(b/M).

In some constructions it will be necessary to stay within the same Lascar strong
type. For this we introduce the technical tool of q-Ls-dividing.

Definition 4.7. Let T be thick, and let q be a global M-Ls-invariant extension
of Lstp(b/M). We say that Lstp(a/Mb) does not q-Ls-divide (over M) if there is
a Morley sequence (bi )i<ω in q with b0 = b that is Ma-indiscernible.

Remark 4.8. The length of the Morley sequence does not matter in Definition 4.7,
as long as it is infinite. However, the argument here takes a little more care than for
q-dividing.

One direction is clear: if there is an Ma-indiscernible Morley sequence (bi )i<δ

in q for some δ≥ω, then we can just take an initial segment. For the other direction
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we let N ⊇ M be λT -saturated and (bi )i<ω |H q⊗ω|N . Then (bi )i<ω is a Morley
sequence in q. Applying a Lascar strong automorphism we find a′b0 ≡

Ls
M ab such

that (bi )i<ω is Ma′-indiscernible. Let n be such that dM(a′b0, ab)≤ n. Consider
the set of formulas

q⊗δ|N ((yi )i<δ) ∪ “(xyi )i<δ is M-indiscernible” ∪ dM(xy0, ab)≤ n.

This set is finitely satisfiable, and hence it has a realisation. So we find an Ma′′-
indiscernible Morley sequence (b′i )i<δ in q with a′′b′0 ≡

Ls
M ab. The result follows

by applying a Lascar strong automorphism.

Lemma 4.9. Let T be thick, and let q be a global M-Ls-invariant extension
of Lstp(b/M). A type p = tp(a/Mb) does not q-divide if and only if there is a
realisation a′ |H p such that Lstp(a′/Mb) does not q-Ls-divide.

Proof. The right-to-left direction is clear by Proposition 4.2(iv). For the other direc-
tion we let (b′i )i<ω be a Morley sequence in q with b′0 = b. By Proposition 4.2(iv)
there is (bi )i<ω |H q⊗ω|M that is Ma-indiscernible with b0 = b. Pick a′ such that
a′(b′i )i<ω ≡M a(bi )i<ω and we are done. □

Corollary 4.10. Let T be thick, and let q be a global M-Ls-invariant extension
of Lstp(b/M). Suppose that there is M ⊆ N ⊆ b such that N is λT -saturated. Then
tp(a/Mb) does not q-divide if and only if Lstp(a/Mb) does not q-Ls-divide.

Proof. By Lemma 4.9 we only need to prove the left-to-right direction. So sup-
pose that tp(a/Mb) does not q-divide. Then there is a′ with a′ ≡Mb a such that
Lstp(a′/Mb) does not q-Ls-divide. In particular, we have that a′b ≡N ab, so
a′b ≡Ls

M ab. It follows that Lstp(a/Mb) does not q-Ls-divide. □

Proposition 4.11. In a thick NSOP1 theory Kim-independence always satisfies the
following properties:

(i) Strong finite character: If a ̸ |⌣
K
M b, then there is a formula ϕ(x, b,m) in

tp(a/Mb) such that for any a′ |H ϕ(x, b,m) we have a′ ̸ |⌣
K
M b.

(ii) Existence over models: a |⌣
K
M M.

(iii) Monotonicity: aa′ |⌣
K
M bb′ =⇒ a |⌣

K
M b.

Proof. All follow directly from the definitions, using compactness for (i). □

Remark 4.12. Let T be a thick theory. Then Kim-dividing implies dividing because
any Morley sequence in some q is in particular an indiscernible sequence. So by
Proposition 3.13,

a |⌣
u
M b =⇒ a |⌣

iLs
M b =⇒ a |⌣

f
M b =⇒ a |⌣

d
M b =⇒ a |⌣

K
M b.

Proposition 4.13. Let T be a thick theory and M an e.c. model of T , and let a, b, c
be tuples. Let also q(x, y) be a global M-Ls-invariant extension of Lstp(bc/M)
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and write r(x)= q|x . If Lstp(a/Mb) does not r-Ls-divide then there is c∗b ≡Ls
M cb

such that Lstp(a/Mbc∗) does not q-Ls-divide.

Proof. Let (bi , ci )i<λ be a Morley sequence over M in q for some big enough λ.
Since (bi )i<λ is a Morley sequence over M in r and Lstp(a/Mb) does not r -divide
there is a′ with a′b0 ≡

Ls
M ab such that (bi )i<λ is Ma′-indiscernible.

Let f ∈Aut f (M/M) be such that f (a′b0)=ab and put (b′i , c′i )= ( f (bi ), f (ci )).
Then b′0 = b, (b′i )i<λ is Ma-indiscernible and (b′i , c′i )i<λ is a Morley sequence
over M in q .

Let M ′ ⊇ Ma be λT -saturated and use Lemma 2.21 to find M ′-indiscernible
(b′′i , c′′i )i<λ based on (b′i , c′i )i<λ and such that dM((b′′i , c′′i )i<λ, (b

′

i , c′i )i<λ) ≤ 1. In
particular, (b′′i , c′′i )i<λ is a Morley sequence over M in q. Let i < λ be such
that b′′0 ≡M ′ b′i . Then b′′0 ≡

Ls
Ma b′i ≡

Ls
Ma b′0 = b. So there is g ∈ Aut f (M/Ma) such

that g(b′′0)= b. Set c∗ = g(c′′0). So bc∗ ≡Ls
M b′′0c′′0 ≡

Ls
M b′0c′0 ≡

Ls
M b0c0 ≡

Ls
M bc. Finally,

since (g(b′′i ), g(c′′i ))i<λ is a Morley sequence over M in q starting with bc∗ that is
Ma-indiscernible, we conclude that Lstp(a/Mbc∗) does not q-Ls-divide. □

Corollary 4.14 (extension). In a thick NSOP1 theory we have that if a |⌣
K
M b then

for any c there is c′ ≡Ls
Mb c such that a |⌣

K
M bc′.

Proof. We first prove a weaker version where we conclude c′ ≡Mb c instead of
c′ ≡Ls

Mb c.
Let q(x, y) be an M-Ls-invariant extension of Lstp(bc/M) and write r(x)= q|x ,

where x matches b. Since a |⌣
K
M b there is a′b≡M ab such that Lstp(a′/Mb) does not

r -Ls-divide. By Proposition 4.13 we thus find bc∗ ≡Ls
M bc such that Lstp(a′/Mbc∗)

does not q-Ls-divide. Letting c′ be such that abc′ ≡M a′bc∗, then c′ satisfies
a |⌣

K
M bc′ and furthermore we have bc′ ≡M bc∗ ≡M bc.

Now we use the weaker version to prove the full version. Let N ⊇ Mb be some
λT -saturated model. By the above we can find N ′≡Mb N such that a |⌣

K
M N ′. Then

using the above again we find c′ ≡N ′ c such that a |⌣
K
M N ′c′. Since Mb ⊆ N ′ we

thus get c′ ≡Ls
Mb c and a |⌣

K
M bc′, as required. □

5. EM-modelling and parallel-Morley sequences

In this section we will introduce some tools which will be useful later in certain
tree constructions.

Definition 5.1 [Kim et al. 2014, Defintion 2.1]. The Shelah language

Ls = {⊴,∧, <lex, (Pα)α<ω}

consists of binary relation symbols ⊴ and <lex, a binary function symbol ∧,
and unary relation symbols Pα. We will consider a tree ω≤k (with k < ω) as
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an Ls-structure, where ⊴ is interpreted as the containment relation, <lex as the
lexicographic order, ∧ as the meet function and Pα as the α-th level of the tree.

Definition 5.2 [Kim et al. 2014, Definition 3.7]. Let I be an arbitrary index structure
and C an arbitrary set of parameters. The EM-type of a tuple A= (ai )i∈I over C is
the partial type in variables (xi )i∈I , consisting of all the formulas of the form ϕ(xī )

over C (where ī is a tuple in I ) satisfying the following property: |H ϕ(a j̄ ) holds
whenever j̄ is a tuple in I with qftpI ( j̄)= qftpI (ī). We let EMI (A/C) denote this
partial type.

In particular, we write EMs(A/C) (respectively, EM<(A/C)) for EMI (A/C),
where I is considered as an Ls-structure (respectively, a {<}-structure).

Definition 5.3. Let I be an index structure, and let A = (ai )i∈I and B = (bi )i∈I be
I -indexed tuples of compatible parameters. We will say that A is EMI -based on B
over C if EMI (A/C)⊇ EMI (B/C).

Corollary 5.4. If A is any set of parameters, then for any compatible sequence
(ai )i<ω there is an A-indiscernible sequence (bi )i<ω which is EM<-based on
(ai )i<ω over A.

Proof. By compactness there is a sequence (a′i )i<λ|T |+|A|+|a0|
which is EM<-based

on (ai )i<ω over A. Then by Lemma 2.17 there is an A-indiscernible sequence
(bi )i<ω which is EM<-based on (a′i )i<λ|T |+|A|+|a0|

over A, hence EM<-based on
(ai )i<ω over A. □

In what follows we consider ω≤k as an Ls-structure (see Definition 5.1). We
will only work with trees of width ω, as we will only need those, but everything
naturally works for arbitrary (infinite) widths.

Definition 5.5. We call a tree (aη)η∈ω≤k s-indiscernible over C if for any η̄, ν̄⊆ω≤k

such that η̄ ≡qf ν̄ we have that aη̄ ≡C aν̄ .

Lemma 5.6. Suppose η̄ = (η0, . . . , ηn−1) ≡qf ν̄ = (ν0, . . . , νn−1) are tuples of
elements of ω≤k for some k < ω. Then there exists a sequence I of n-tuples of
elements of ω≤k such that η̄ ⌢ I and ν̄ ⌢ I are qf-indiscernible sequences in ω≤k .

Proof. Let l < ω be such that η̄, ν̄ ⊆ {∅} ∪
{
ξ ∈ ω≤k

\{∅} : ξ(0) < l
}
. For every

0<m <ω choose a tuple χ̄m
⊆ {∅}∪

{
ξ ∈ ω≤k

\{∅} :ml ≤ ξ(0) < (m+1)l
}

such
that χ̄m

≡qf η̄ ≡qf ν̄ (for example, for every n′ < n put χm
n′ (0) = ηn′(0)+ml and

χm
n′ (i)= ηn′(i) for every 0< i ≤ k). Finally, put I = (χ̄m)0<m<ω. □

Corollary 5.7. If T is thick then s-indiscernibility is type-definable, i.e., for every
k < ω and a tuple of variables y there is a partial type π((xη)η∈ω≤k , y) over ∅
such that for all D with |D| = |y|, ((aη)η∈ω≤k , D) |H π if and only if (aη)η∈ω≤k is
s-indiscernible over D.
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More specifically, we can take π((xη)η∈ω≤k , y) to be the partial type that ex-
presses that for any (η0, . . . , ηn−1) ≡qf (ν0, . . . , νn−1) the Lascar distance of
(xη0, . . . , xηn−1) and (xν0, . . . , xνn−1) over y is at most 2.

Proof. Let π be as above. Consider arbitrary (aη)η∈ω≤k and D. If ((aη)η∈ω≤k , D) |Hπ
then (aη)η∈ω≤k is indiscernible over D, as being at Lascar distance at most 2 over D
implies equality of types over D.

Conversely, if ((aη)η∈ω≤k , D) is s-indiscernible over D and

η̄ = (η0, . . . , ηn−1)≡qf ν̄ = (ν0, . . . , νn−1),

then with I = (χ̄m)0<m<ω given by Lemma 5.6 we have that aη̄ ⌢ (aχ̄m )0<m<ω

and aν̄ ⌢ (aχ̄m )0<m<ω are both indiscernible sequences over D, so aη̄ and aν̄ are at
Lascar distance at most 2 over D. □

We now adapt the proof of [Kim et al. 2014, Theorem 4.3] to obtain the EMs-
modelling property for positive logic.

Proposition 5.8. Suppose T is thick and consider an arbitrary set of parameters D
and k < ω. Then for any tree A = (aη)η∈ω≤k of compatible tuples there is an
s-indiscernible over D tree C = (cη)η∈ω≤k which is EMs-based on A over D.

Proof. We proceed by induction on k. The case k=0 is trivial. Suppose the assertion
holds for some k and consider any A = (aη)η∈ω≤k+1 . For any i < ω consider an
ω≤k-indexed tree Ai := (ai⌢η)η∈ω≤k . Using the inductive hypothesis we choose
inductively for each i < ω a tree Bi = (bi

η)η∈ω≤k which is s-indiscernible over
Da∅B<i A>i and EMs-based on Ai over Da∅B<i A>i . Let B = (bη)η∈ω≤k+1 , where
b∅ = a∅ and bi⌢ξ = bi

ξ for every i < ω and ξ ∈ ω≤k .

Claim. Bi is s-indiscernible over Db∅ B̸=i for every i < ω.

Proof of claim. Fix i <ω. We will show by induction on j that Bi is s-indiscernible
over Db∅B<i Bi+1 · · · B j−1 A≥ j for every j > i , which is enough by Corollary 5.7.
For j = i+1 this follows directly from the choice of Bi . Now suppose the assertion
holds for some j > i . By Corollary 5.7 there is a type π((xη)η∈ω≤k , ȳ) over
D′ := Db∅B<i Bi+1 · · · B j−1 A> j , where ȳ = (yη)η∈ω≤k , expressing that (xη)η∈ω≤k

is s-indiscernible over D′ ȳ. Then Bi A j |H π . Note that the type π(Bi , ȳ) is
invariant under all permutations of ȳ, and therefore if ϕ(yη0, . . . , yηn−1) ∈ π(Bi , ȳ)
then ϕ(yν0, . . . , yνn−1) ∈ tp(A j/D′Bi ) for all ν0, . . . , νn−1 ∈ ω

≤k . In particular,
π(Bi , ȳ) ⊆ EMs(A j/D′Bi ). Thus, by the choice of B j , we have that π(Bi , ȳ) ⊆
EMs(B j/D′Bi ), so in particular Bi B j |H π . Hence Bi is indiscernible over D′B j =

Db∅B<i Bi+1 · · · B j A≥ j+1, as required. □

Claim. B is EMs-based on A over D.



KIM-INDEPENDENCE IN POSITIVE LOGIC 77

Proof of claim. Consider any i<ω and the trees E=(eη)η∈ω≤k+1 and F=( fη)η∈ω≤k+1

given by

e∅ = f∅ = a∅, e j⌢η =

{
b j⌢η for j < i,
a j⌢η for j ≥ i,

and f j⌢η =

{
b j⌢η for j ≤ i,
a j⌢η for j > i.

We will prove that π0 :=EMs(E/D)⊆EMs(F/D)=:π1, which clearly is sufficient
to prove the claim. Let x̄ = (xη)η∈ω≤k+1 be a tuple of variables compatible with
the aη’s. We naturally view π0 and π1 as partial types in the variable x̄ . Consider
any formula

ϕ(xη0, . . . , xηl , xηl+1, . . . , xηl′
) ∈ π0

over D with

η0, . . . , ηl ∈ Ki := {i ⌢ ξ : ξ ∈ ω≤k
} and ηl+1, . . . , ηl ′ ∈ ω

≤k+1
\Ki .

We will be done if we show

|H ϕ( fη0, . . . , fηl′
).

Write ηt = i ⌢ ξt for t = 0, 1, . . . , l. For any ξ ′0, . . . , ξ
′

l ∈ ω
≤k with

qftpLs
(ξ ′0, . . . , ξ

′

l )= qftpLs
(ξ0, . . . , ξl),

we have

qftpLs
(η0, . . . , ηl ′)= qftpLs

(i ⌢ ξ0, . . . , i ⌢ ξl, ηl+1, . . . , ηl ′)

= qftpLs
(i ⌢ ξ ′0, . . . , i ⌢ ξ ′l , ηl+1, . . . , ηl ′),

so, as ϕ ∈ π0, we get that |H ϕ(ei⌢ξ ′0, . . . , ei⌢ξ ′l , eηl+1, . . . , eηl′
). This shows that

ϕ(yξ0, . . . , yξl , eηl+1, . . . , eηl′
) ∈ EMs(Ai/a∅A<i B>i ),

where Ai is naturally indexed by ω≤k , so, by the choice of Bi , we get that

|H ϕ(bi
ξ0
, . . . , bi

ξl
, eηl+1, . . . , eηl′

).

Because

(bi
ξ0
, . . . , bi

ξl
, eηl+1, . . . , eηl′

)= ( fi⌢ξ0, . . . , fi⌢ξl , fηl+1, . . . , fηl′
)= ( fη0, . . . , fηl′

),

this means that |H ϕ( fη0, . . . , fηl′
), as required. □

By Corollary 5.4 we find a sequence (Ci )i<ω = ((ci
η)η∈ω≤k )i<ω which is EM<-

based on (Bi )i<ω over Db∅ and indiscernible over Db∅. Let C = (cη)η∈ω≤k+1 be
given by c∅ = b∅ and ci⌢ξ = ci

ξ for any ξ ∈ ω≤k and i < ω. By the first claim
on page 76 and Corollary 5.7 we get that Ci is s-indiscernible over C ̸=i Dc∅ for
every i < ω, which, together with Dc∅-indiscernibility of (Ci )i<ω, easily gives
that C is s-indiscernible over D (as in [Kim et al. 2014]). It is left to prove:

Claim. C is EMs-based on B (and hence on A) over D.
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Proof of claim. Consider any formula ϕ(xi1⌢ξ1, . . . , xil⌢ξl , x∅) ∈ EMs(B/D)
with i1, . . . , il ∈ ω and ξ1, . . . , ξl ∈ ω

≤k . Then for every j1, . . . , jl ∈ ω with
qftp{<}( j1, . . . , jl)= qftp{<}(i1, . . . , il), we have that

qftpLs
( j1 ⌢ ξ1, . . . , jl ⌢ ξl,∅)= qftpLs

(i1 ⌢ ξ1, . . . , il ⌢ ξl,∅),

so |H ϕ(b j1⌢ξ1, . . . , b jl⌢ξl , b∅). This means that

ϕ(xi1⌢ξ1, . . . , xil⌢ξl , b∅) ∈ EM<((Bi )i<ω/b∅D),

and therefore, by the choice of C , we have that |H ϕ(ci1⌢ξ1, . . . , cil⌢ξl , c∅), and
thus ϕ(xi1⌢ξ1, . . . , xil⌢ξl , x∅) ∈ EMs(C/D), as required. □

Definition 5.9. Let I be a linearly ordered set. For a global M-Ls-invariant type q ,
we will call a sequence (ai )i∈I a parallel-Morley sequence in q over M if there is
some (bi )i∈I |H q⊗I

|M such that the pair (ai , bi ) starts an Ma>i b>i -indiscernible
sequence for every i ∈ I . We will say that (ai )i∈I is a parallel-Morley sequence
in tp(a/M) if it is a parallel-Morley sequence in some global M-Ls-invariant type
q ⊇ tp(a/M).

In the semi-Hausdorff case we can replace the condition “(ai , bi ) starts an
Ma>i b>i -indiscernible sequence” by “ai ≡Ma>i b>i bi ”. The reason for which we
need the stronger condition in thick theories is that equality of types is not necessarily
type-definable there, so some of the compactness arguments below would not work
with the weaker condition.

Note that a parallel-Morley sequence is not required to be indiscernible. The rea-
son for the name “parallel-Morley sequence” is because such a sequence is parallel
to a Morley sequence, in the sense of the parallel sequences lemma (Lemma 2.28).
We make this precise in Corollary 5.11, for which we first slightly reformulate the
parallel sequences lemma.

Lemma 5.10. Let T be thick and suppose ϕ(x, y) is a formula and (ci,0, ci,1)i∈I is
an infinite sequence of pairs with (ci,1)i∈I indiscernible, such that

(i) for every i ∈ I , the pair (ci,0, ci,1) starts a c>i,0c>i,1-indiscernible sequence;

(ii) {ϕ(x; ci,0) : i ∈ I } is consistent;

(iii) {ϕ(x; ci,1) : i ∈ I } is inconsistent.

Then T has SOP1.

Proof. We may assume the tuples ci,0 and ci,1 to be finite. As (ci,1)i∈I is indiscernible
and {ϕ(x, ci,1) : i ∈ I } is inconsistent, there is some ψ(y1, . . . , yk) that implies
¬∃x(ϕ(x, y1) ∧ · · · ∧ ϕ(x, yk)) such that for any i1 < · · · < ik ∈ I we have |H
ψ(ci1,1, . . . , cik ,1). Call this ψ-inconsistent. By compactness there is a sequence
of pairs (c̄′i )i<λT = (c

′

i,0, c′i,1)i<λT such that (c′i,0, c′i,1) starts a c̄′>i -indiscernible
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η4

η3

η2

η1

Figure 1. An example of ηi ’s from Definition 5.12.

sequence for every i <λT , {ϕ(x, c′i,0) : i <λT } is consistent and {ϕ(x, c′i,1) : i <λT }

is ψ-inconsistent. Then an indiscernible sequence based on (c̄′i )i<λT will satisfy
the assumptions of Lemma 2.28, so T has SOP1. □

By Kim’s lemma (Proposition 4.4) and Lemma 5.10 we easily get the following.

Corollary 5.11. Suppose T is thick NSOP1 with an e.c. model M , 6(x, b) is a
partial type, I is an infinite linearly ordered set, and (bi )i∈I a parallel-Morley
sequence in tp(b/M). If

⋃
{6(x, bi ) : i ∈ I } is consistent then 6(x, b) does not

Kim-divide over M. If (bi )i∈I is indiscernible over M , then the converse also holds.

Definition 5.12. Let M be an e.c. model and q a global M-Ls-invariant type.

(i) We say that a tree (cη)η∈ω≤k is q-spread-out over M if for any η1 ∈ ω
1,

η2 ∈ ω
2, . . . , ηk ∈ ω

k such that

η1 >lex η2 >lex · · ·>lex ηk and (∀l < l ′ ≤ k)(ηl ′ ∧ ηl ∈ ω
l−1),

we have that (cηk , . . . , cη1) is a Morley sequence in q over M .

(ii) We say that (cη)η∈ω≤k is weakly q-spread-out over M if (cηk , . . . , cη1) |Hq⊗k
|M

for ηi ’s as in (i).

Clearly q-spread-outness implies weak q-spread-outness. We will freely use the
above definition for trees of parameters indexed by trees naturally isomorphic to
trees of the form ω′≤k′ , e.g., subtrees of ω≤k consisting of all nodes extending a
fixed node.

The point of the conditions on the ηi ’s in Definition 5.12 is that this is quantifier-
free definable by an Ls-formula. This is useful for preservation when EMs-basing
trees on one another, as we do in the following lemma.

Lemma 5.13. Let k be a natural number, M an e.c. model and q a global M-Ls-
invariant type.

(i) If ((ci⌢η)η∈ω≤k−1)i<ω is a Morley sequence in a global M-Ls-invariant type
r(x, z) ⊇ q(x) over M , where x corresponds to the elements ci and where
(c0⌢η)η∈ω≤k−1 is q-spread-out over M then also (cη)η∈ω≤k is q-spread-out
over M for any choice of root c∅.
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z

x

Morley sequence in r(x, z)
a0

a1

a2

a3

a4

a′0
a′1

a′2

a′3

a′4

|H q⊗5
|M

parallel-Morley in q

Figure 2. Lemma 5.13(i), left, and Lemma 5.13(iii), right.

(ii) If (cη)η∈ω≤k is weakly q-spread-out over M and

(c′η)η∈ω≤k |HEMs((cη)η∈ω≤k/M),

then also (c′η)η∈ω≤k is weakly q-spread-out over M.

(iii) If (cη)η∈ω≤k is weakly q-spread-out over M and s-indiscernible over M , then
for ai = c0k−i we have that (ai )i<k is a parallel-Morley sequence in q over M.

Proof. (i) Let ηk ∈ ω
k, . . . , η1 ∈ ω

1 be such that

η1 >lex · · ·>lex ηk and (∀l < l ′ ≤ k)(ηl ′ ∧ ηl ∈ ω
l−1).

We will prove that (cηk , . . . , cη1) is a Morley sequence in q. For each ℓ ≥ 2, let
βℓ ∈ ω

1 be such that ηℓ ⊵ βℓ. For every ℓ > 2, we have by assumption that
η2 ∧ ηℓ = η2|1 = β2, and hence βℓ = β2 =: β (and η1 >lex β as η1 >lex η2). In
particular, (cηk , . . . , cη2) is contained in (cβ⌢η)η∈ω≤k−1 , which has the same Lascar
strong type over M as (c0⌢η)η∈ω≤k−1 . So, as (c0⌢η)η∈ω≤k−1 is q-spread-out by
assumption, (cηk , . . . , cη2) is a Morley sequence in q. As ((ci⌢η)η∈ω≤k−1)i<ω is a
Morley sequence in r , we have that (cη1⌢η)η∈ω≤k−1 , which contains cη1 , has the
same Lascar strong type over M(cβ⌢η)η∈ω≤k−1 , which contains Mcηk · · · cη2 , as some
realisation of r . Since q(x)= r |x we see that cη1 has the same Lascar strong type
over Mcηk , . . . , cη2 as some realisation of q . So we conclude that (cηk , . . . , cη1) is
indeed a Morley sequence in q.

(ii) This holds because the condition on (η1, . . . , ηk) in the definition of weak
q-spread-outness is expressible by a quantifier-free Ls-formula.

(iii) Put a′i := c0k−i−1⌢1 for i < k. Then (a′i )i<k |H q⊗k
|M by weak q-spread-

outness, and (ai , a′i ) starts an Ma>i a′>i
-indiscernible sequence for each i < k by

s-indiscernibility. □
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6. Symmetry

Lemma 6.1 (chain condition). Let T be a thick NSOP1 theory, and let M be an
e.c. model. Let (bi )i<κ be a Morley sequence in some global M-Ls-invariant q(x).
If (bi )i<κ is Ma-indiscernible then a |⌣

K
M (bi )i<κ .

Proof. We will prove that a |⌣
K
M bi1 · · · bik for all i1 < · · ·< ik < κ . This is indeed

enough by finite character. By Ma-indiscernibility of (bi )i<κ we may assume
{i1, . . . , ik} = {0, . . . , k− 1}.

We have (bi )i<ω ≡
Ls
M (βi )i<ω for some (βi )i<ω |H q⊗ω. Define the tuple γi =

(βik, βik+1, . . . , βik+k−1) for all i <ω. Then (γi )i<ω |H (q⊗k)⊗ω by associativity of
tensoring (Lemma 3.16). We let ci = (bik, bik+1, . . . , bik+k−1) for all i < ω. Then
(ci )i<ω ≡

Ls
M (γi )i<ω. So (ci )i<ω is a Morley sequence in q⊗k over M and (ci )i<ω is

Ma-indiscernible. So tp(a/Mc0)= tp(a/Mb0 · · · bk−1) does not q⊗k-divide, and
thus a |⌣

K
M b0 · · · bk−1, as required. □

Definition 6.2. Suppose M is an e.c. model, q a global type extending Lstp(a/M)
and λ a cardinal. We will say that the extension q ⊇ Lstp(a/M) satisfies (∗)λ if for
every c with |c| ≤ λ there is a global M-Ls-invariant type r(x, y)⊇ Lstp(ac/M)
extending q(x) (in particular, q is M-Ls-invariant).

Lemma 6.3. For any e.c. model M , tuple a and cardinal λ there is q ⊇ Lstp(a/M)
satisfying (∗)λ.

Proof. Let M , a and λ be as in the statement. Choose a small tuple d such that
for any c with |c| ≤ λ there is some d ′ ⊆ d with Lstp(ad ′/M) = Lstp(ac/M)
(this is possible as the number of Lascar types of tuples of fixed length over M is
bounded by Lemma 2.20). Now take a global M-Ls-invariant extension r(x, y) of
Lstp(ad/M), where x corresponds to a. Then q :=r |x is an extension of Lstp(a/M)
satisfying (∗)λ. □

Remark 6.4. If q ⊇ Lstp(a/M) is finitely satisfiable in M then it satisfies (∗)λ for
any cardinal λ [Mennuni 2020, Lemma 3.4]. However, finitely satisfiable extensions
may not exist in thick theories.

Theorem 6.5 (symmetry). In a thick NSOP1 theory, a |⌣
K
M b implies b |⌣

K
M a.

Proof. We may assume that b enumerates a λT -saturated model containing M . If this
is not the case, let N ⊇ Mb be a λT -saturated model. By extension, Corollary 4.14,
we find N ′ ≡Mb N such that a |⌣

K
M N ′. Now we replace b by N ′ and we continue

the proof.
Set λ= |ab|. By Lemma 6.3 we can choose a global extension q ⊇ Lstp(a/M)

satisfying (∗)λ. Let p(y, a) = tp(b/Ma). We will show that there is a parallel-
Morley sequence (ai )i<ω in q over M such that

⋃
i<ω p(y, ai ) is consistent, which
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is enough by Corollary 5.11. All the properties we wish (ai )i<ω to have are type-
definable. It is thus enough to find such a sequence of length k for every k < ω.

So fix any k < ω. By backward induction on k ′ = k+ 1, k, . . . , 1 we will define
trees (cη)η∈Sk′

, where Sk′ = {ξ ∈ ω
≤k+1

: 0k′−1 ⊴ ξ}. We will write S∗k′ for Sk′

without the root, so S∗k′ = Sk′ − {0k′−1
}. For each k ′ the tree (cη)η∈Sk′

will satisfy
the following conditions:

(A1)k′ cηcν ≡Ls
M ab for all ν ▷ η ∈ Sk′ with ν ∈ ωk+1 and η ∈ ω≤k .

(A2)k′ (cη)η∈Sk′∩ω
≤k is q-spread-out over M .

(A3)k′ We have c0k′−1 |⌣
K
M (cη)η∈S∗k′

(the root is independent from the rest).

For k ′ = k + 1 we let t be a global M-Ls-invariant extension of Lstp(b/M).
Since a |⌣

K
M b we have that tp(a/Mb) does not t-divide. By Corollary 4.10 and our

assumption on b, this means that Lstp(a/Mb) does not t-Ls-divide. So we find an
Ma-indiscernible Morley sequence (c0k⌢α)α<ω in t with c0k+1 = b. By Lemma 6.1,
we have that a |⌣

K
M (c0k⌢α)α<ω. So we pick c0k = a and directly satisfy (A3)k′ .

Condition (A2)k′ is vacuous and (A1)k′ follows directly from Ma-indiscernibility
of (c0k⌢α)α<ω and the fact that c0k+1 = b.

For the inductive step, suppose we have constructed (cη)η∈Sk′
. By (A1)k′ there is a

tuple d such that c0k′−1(cη)η∈S∗k′
≡

Ls
M ad . So, by (∗)λ, there is a global M-Ls-invariant

type r(x, z) ⊇ q(x) extending Lstp(c0k′−1(cη)η∈S∗k′
/M). By (A3)k′ we have that

c0k′−1 |⌣
K
M (cη)η∈S∗k′

. So since b⊆ (cη)η∈S∗k′
and using our assumption on b we have by

Corollary 4.10 that Lstp(c0k′−1/M(cη)η∈S∗k′
) does not r |z-Ls-divide. By extension for

Ls-dividing, Proposition 4.13, we find c such that c(cη)η∈S∗k′
≡

Ls
M c0k′−1(cη)η∈S∗k′

and
Lstp(c/M(cη)η∈Sk′

) does not r -Ls-divide. So there is an Mc-indiscernible Morley
sequence ((dη,i )η∈Sk′

)i<ω in r such that (dη,0)η∈Sk′
= (cη)η∈Sk′

. We set c0k′−2 = c
and c0k′−2⌢i⌢ζ = d0k′−1⌢ζ,i . Again, using Lemma 6.1 we directly get (A3)k′−1.

Now (A2)k′−1 follows from Lemma 5.13(i). We verify (A1)k′−1. Everything
above the root consists of copies (via a Lascar strong automorphism over M)
of (cη)η∈Sk′

, so we only need to check that c0k′−2cν≡Ls
M ab for all ν ∈ Sk′−1∩ω

k+1. By
indiscernibility we may assume ν ∈ Sk′ ∩ω

k+1. Then (A1)k′−1 follows from (A1)k′

and the fact that c0k′−2(cη)η∈S∗k′
≡

Ls
M c0k′−1(cη)η∈S∗k′

.
Thus the inductive step, and hence the construction of the tree (cη)η∈ωk+1 =

(cη)η∈S1 , is completed.
Consider the following condition:

(A1′)1 cηcν ≡M ab for all ν ▷ η with ν ∈ ωk+1 and η ∈ ω≤k .

This condition is clearly implied by (A1)1 as it is seen by the EMs-type of (cη)η∈ω≤k+1

over M . Let (c′η)η∈ω≤k+1 be an s-indiscernible tree that is EMs-based on (cη)η∈ω≤k+1

over M , and we get that (c′η)η∈ω≤k+1 satisfies (A1′)1, and (c′η)η∈ω≤k is weakly q-
spread-out over M by Lemma 5.13(ii).
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Put ai = c′0k+1−i . Then (a1, . . . , ak) is a parallel-Morley sequence in q over M by
Lemma 5.13(iii), and by (A1′)1 we have that

⋃
1≤i≤k p(y, ai ) is consistent because

it is realised by c′0k+1 . This completes the proof. □

Lemma 6.6. Let T be a thick theory. Suppose that ϕ(x, y) has SOP1, witnessed by
ψ(y1, y2). Then there is an e.c. model M and b1, b2, c1, c2 such that c1 |⌣

u
M c2,

c1 |⌣
u
M b1, c2 |⌣

u
M b2 and b1c1 ≡

Ls
M b2c2 and |H ϕ(b1, c1)∧ϕ(b2, c2)∧ψ(c1, c2).

Proof. The proof is mostly the same as that of [Haykazyan and Kirby 2021,
Proposition A.7] but we have to adjust a few things throughout to get equality
of Lascar strong types rather than just equality of types. As in that proof, we
will use a Skolemisation technique for positive logic [Haykazyan and Kirby 2021,
Lemma A.6]. In such a Skolemised theory the positively definable closure of any
set is an e.c. model and the reduct of an e.c. model (to the original language)
is an e.c. model (of the original theory). It is not directly clear whether this
Skolemisation construction preserves thickness, but that is not a problem. Ultimately
we are interested in Lascar strong types in our original theory. So even though we
technically work in a Skolemised theory the (type-definable) predicate d(x, y)≤ 1
should be taken as in our original theory.

Let κ be any cardinal. By compactness we find parameters (aη)η∈2<κ such that

(i) for every σ ∈ 2κ the set {ϕ(x, aσ |i ) : i < κ} is consistent,

(ii) for every η, ν ∈ 2<κ such that η⌢0⪯ ν, we have |H ψ(aη⌢1, aν).

For a big enough cardinal λ, we construct by induction a sequence (ηi , νi )i<λ with
ηi , νi ∈ 2<κ such that

(1) ηi ⊴ η j and ηi ⊴ ν j for all i < j < λ,

(2) ηi ⊵ (ηi ∧ νi ) ⌢ 0, νi = (ηi ∧ νi ) ⌢ 1, and (aηi , aνi ) starts an aη<i aν<i -
indiscernible sequence for every i < λ.

Assume (η j , ν j ) j<i has been constructed and set η =
⋃

j<i η j . Assuming we
chose κ large enough, then, by applying Lemma 2.17 to (aη⌢0α⌢1)α>0, it follows
that there are 0< α < β < κ such that (aη⌢0α⌢1, aη⌢0β⌢1) starts an {η j , ν j : j < i}-
indiscernible sequence. We set νi = η

⌢0α⌢1 and ηi = η
⌢0β⌢1.

By (i) and (1), there is b2 realising {ϕ(x, aηi ) : i < λ}. Now let (ei , di )i<ω+2 be
indiscernible over b2 based on (aηi , aνi )i<λ.

Let M be the positively definable closure of {ei , di : i <ω}. As discussed, we may
assume M to be an e.c. model. Set c1 = dω and c2 = eω+1. Then c1 |⌣

u
{ei ,di :i<ω}

c2

and c2 |⌣
u
{ei ,di :i<ω}

b2 by indiscernibility. So c1 |⌣
u
M c2, c2 |⌣

u
M b2 and |H ϕ(b2, c2).

By construction c1c2= dωeω+1≡ aνi0
aηi1

for some i0< i1<λ and thus |Hψ(c1, c2)

by (ii), (1), and (2).
To find b1 we first claim that dM(eω, dω) ≤ 1. By compactness it suffices to

prove that dA(eω, dω)≤ 1 for all finite A ⊆ M . By how we constructed M it then
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suffices to prove that (eω, dω) starts an indiscernible sequence over {ei , di : i < n}
for all n < ω. To prove this last statement we let i0 < · · ·< in+1 < λ be such that

e0d0 · · · endneωdω ≡ aηi0
aνi0
· · · aηin

aνin
aηin+1

aνin+1
.

By how we constructed (ηi , νi )i<λ we have (aηin+1
, aνin+1

) starts an indiscernible
sequence over {aηi0

aνi0
· · · aηin

aνin
}. So the claim follows after applying the auto-

morphism.
Now we leave the Skolemised theory and work in the original theory, in which

d(x, y) ≤ 1 corresponds to actually having Lascar distance one. We have that
c2 = eω+1 ≡

Ls
M eω ≡Ls

M dω = c1, so there is f ∈ Aut f (M/M) such that f (c2)= c1.
Let b1 = f (b2). Then c2b2 ≡

Ls
M c1b1, and thus also |H ϕ(b1, c1) and c1 |⌣

u
M b1, as

required. □

Theorem 6.7. Let T be a thick theory. The following are equivalent:

(i) T is NSOP1.

(ii) Symmetry: a |⌣
K
M b implies b |⌣

K
M a.

(iii) Weak symmetry: a |⌣
iLs
M b implies b |⌣

K
M a.

Proof. Theorem 6.5 is precisely (i)=⇒ (ii). For (ii)=⇒ (iii) we just note that a |⌣
iLs
M b

implies a |⌣
K
M b. Finally, for (iii) =⇒ (i) we proceed as in [Kaplan and Ramsey

2020, Proposition 3.22] replacing their reference to [Chernikov and Ramsey 2016]
by Lemma 6.6 and being careful about using global Ls-invariant types instead of
just global invariant types.

We prove the contrapositive, so assume that T has SOP1. Then, by Lemma 6.6,
there is an e.c. model M and b1, b2, c1, c2 such that c1 |⌣

u
M c2, c1 |⌣

u
M b1,

c2 |⌣
u
M b2 and b1c1 ≡

Ls
M b2c2. Furthermore, for p(x, c1) = tp(b1c1/M), we have

that p(x, c1)∪ p(x, c2) is inconsistent. In particular, we have that Lstp(c1/Mc2)

extends to a global M-Ls-invariant q . Then as c1 ≡
Ls
M c2 there is a Morley sequence

(di )i<ω in q with d0d1= c2c1. We thus have that
⋃
{p(x, di ) : i <ω} is inconsistent.

So b2 ̸ |⌣
K
M c2. Since also c2 |⌣

u
M b2 and therefore c2 |⌣

iLs
M b2, we see that weak

symmetry fails and this concludes our proof. □

7. Independence theorem

We recall the following facts. The first is the same as [Kaplan and Ramsey 2020,
Lemma 7.4] and the second is the same as the claim in [Dobrowolski et al. 2022,
Lemma 5.3]. Their proofs work in our setting as well.

Fact 7.1. The following hold in any thick NSOP1 theory.

(i) If a |⌣
d
M bc and b |⌣

K
M c then ab |⌣

K
M c.

(ii) If a |⌣
K
M b and a |⌣

K
M c then there is c′ with ac′ ≡M ac such that a |⌣

K
M bc′.
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For the following lemma we borrow a trick from [Dobrowolski et al. 2022,
Lemma 5.4].

Lemma 7.2. Let T be thick NSOP1, and let a ≡Ls
M a′, a |⌣

K
M b and a′ |⌣

K
M c. Then

there is c′ such that ac′ ≡Ls
M a′c and a |⌣

K
M bc′.

Proof. Let c∗ be such that ac∗≡Ls
M a′c, so a |⌣

K
M c∗. Let N ′⊇M be λT -saturated, and

let q be a global M-Ls-invariant extension of Lstp(N ′/M). Let N realise q|Mabc∗ ,
so we have N |⌣

iLs
M abc∗. By Fact 7.1(i), we then have Na |⌣

K
M b and Na |⌣

K
M c∗.

So by fact Fact 7.1(ii), we find c′ with Nac′ ≡M Nac∗ and Na |⌣
K
M bc′. We thus

have ac′ ≡Ls
M ac∗ ≡Ls

M a′c, as required. □

Definition 7.3. We write b |⌣
∗

M c to mean that Lstp(b/Mc) extends to a global
M-Ls-invariant type tp(N/M) for some ℶω(λT + |Mbc|)-saturated model N ⊇ M .
Extending Lstp(b/Mc) here means that there is some β ∈ N with β ≡Ls

Mc b.

The point of the enormous cardinal ℶω(λT + |Mbc|) is that we will want to find
a λT -saturated model M ′ containing M and a copy of b in N , and then again some
λT -saturated M ′′ ⊇ M ′ inside N . By Fact 2.12 we can choose these λT -saturated
models small enough so that this process can be repeated any finite number of
times.

We easily see that |⌣
∗ is invariant under automorphisms and, assuming thickness,

that b |⌣
∗

M M for all M .

Lemma 7.4. We have that |⌣
∗ satisfies the following extension properties.

(i) Left extension: If b |⌣
∗

M c and |d|< ℶω(λT + |Mbc|), then there is d ′ ≡Ls
Mb d

such that bd ′ |⌣
∗

M c.

(ii) Right extension: If b |⌣
∗

M c and |d|<ℶω(λT +|Mbc|), then there is d ′ ≡Ls
Mc d

such that b |⌣
∗

M cd ′.

Proof. In both cases we assume b |⌣
∗

M c. So let q = tp(N/M) be a global M-Ls-
invariant extension of Lstp(b/Mc) for some ℶω(λT + |Mbc|)-saturated N ⊇ M .

We first prove left extension. Let N ′ ≡Ls
Mc N be in M. By moving things by a

Lascar strong automorphism over Mc we may assume b ∈ N ′. By Fact 2.12 there
is Mb ⊆ M ′ ⊆ N ′ where M ′ is λT -saturated and of cardinality ≤ 2λT+|Mb|. Let d ′

realise tp(d/M ′) in N ′. Therefore, d ′ ≡Ls
Mb d while q also extends Lstp(bd ′/Mc),

so indeed bd ′ |⌣
∗

M c.
Now we prove right extension. Let β ∈ N be such that β ≡Ls

Mc b. Pick b′ ∈M
such that b′ ≡Ls

Mcd β. Then clearly b′ |⌣
∗

M cd. We finish the proof by picking d ′

such that bd ′ ≡Ls
Mc b′d . □

Proposition 7.5 (weak independence theorem). Let T be thick NSOP1. Suppose
that a ≡Ls

M a′, a |⌣
K
M b, a′ |⌣

K
M c and b |⌣

∗

M c. Then there is a′′ with a′′ ≡Ls
Mb a and

a′′ ≡Ls
Mc a′ such that a′′ |⌣

K
M bc.
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Proof. We may assume that b and c both enumerate a λT -saturated model con-
taining M . If this is not the case, let N ⊇ Mb be λT -saturated and such that
|N |<ℶω(λT +|Mbc|). By left extension from Lemma 7.4 we then find N ′≡Ls

Mb N
with N ′ |⌣

∗

M c. By Corollary 4.14 we find a0 with a0 ≡
Ls
Mb a and a0 |⌣

K
M N ′. Now

we can replace a by a0 and b by N ′ and continue the proof. The case for c is
analogous.

By Lemma 7.2 there is c′ such that ac′≡Ls
M a′c and a |⌣

K
M bc′. Apply left extension

from Lemma 7.4 to b |⌣
∗

M c and c′ to find c′′ ≡Ls
Mb c with bc′ |⌣

∗

M c′′. Let b∗ be
such that b∗c′′ ≡Ls

M bc′ and apply right extension from Lemma 7.4 to bc′ |⌣
∗

M c′′

and b∗ to find b′′ ≡Ls
Mc′′ b∗ with bc′ |⌣

∗

M b′′c′′. In particular, b′′c′′ ≡Ls
M bc′, and

Lstp(bc′/Mb′′c′′) extends to a global M-Ls-invariant type q . So there is a Morley
sequence (bi ci )i<ω in q with (b0, c0)= (b′′, c′′) and (b1, c1)= (b, c′). As a |⌣

K
M bc′,

we can find a∗ with a∗b′′c′′ ≡M abc′ such that (bi ci )i<ω is Ma∗-indiscernible. By
construction we had c′′≡Ls

Mb c, so there is a Lascar strong automorphism σ over Mb
such that σ(c′′)= c. Setting a′′ = σ(a∗), we check that this is indeed the a′′ we are
looking for.

By the chain condition (Lemma 6.1), a∗ |⌣
K
M (bi ci )i<ω, so we have a∗ |⌣

K
M bc′′,

and a′′ |⌣
K
M bc then follows by invariance. By Ma∗-indiscernibility we have

a′′b ≡M a∗b ≡M a∗b′′ ≡M ab. We assumed b to enumerate a λT -saturated model,
so indeed a′′ ≡Ls

Mb a. By construction of c′ we have a′′c ≡M a∗c′′ ≡M ac′ ≡M a′c.
We assumed c to enumerate a λT -saturated model, so indeed a′′ ≡Ls

Mc a′, which
concludes the proof. □

Fact 7.6. In a thick theory, if N ⊇ M is (2|M |+λT )+-saturated and q and r are
global M-Ls-invariant types with q|N = r |N , then q = r .

Proof. By Fact 2.12 there is M ⊆ M ′ ⊆ N where M ′ is a λT -saturated model and
|M ′| < (2|M |+λT )+. Let ϕ(x, b) be any formula with parameters b. Let b′ ∈ N
realise tp(b/M ′). Then b ≡Ls

M b′. By M-Ls-invariance and q|N = r |N , we have

ϕ(x, b) ∈ q ⇐⇒ ϕ(x, b′) ∈ q ⇐⇒ ϕ(x, b′) ∈ r ⇐⇒ ϕ(x, b) ∈ r,

which concludes the proof. □

Theorem 7.7 (independence theorem). Let T be a thick NSOP1 theory. Suppose
that a ≡Ls

M a′, a |⌣
K
M b, a′ |⌣

K
M c and b |⌣

K
M c. Then there is a′′ with a′′ ≡Ls

Mb a,
a′′ ≡Ls

Mc a′ and a′′ |⌣
K
M bc.

Proof. We may assume that b and c both enumerate a λT -saturated model con-
taining M . If this is not the case, let N ⊇ Mb be λT -saturated. By extension
(Corollary 4.14) and symmetry, then find N ′ ≡Ls

Mb N with N ′ |⌣
K
M c. Applying

extension again we find a0 with a0 ≡
Ls
Mb a and a0 |⌣

K
M N ′. Now we can replace a

by a0 and b by N ′ and continue the proof. The case for c is analogous.
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Let N0 ⊇ M be (2|M |+λT )+-saturated, and let κ be a big enough cardinal (de-
pending only on |N0bc|). Pick some global M-Ls-invariant type q(y, z) extending
Lstp(bc/M) such that q also extends to a global M-Ls-invariant type tp(N/M) for
some saturated enough N ⊇ M (depending only on κ). So there is β realising q|y
with β ≡Ls

M b. Let (bi ci )i<κ be a Morley sequence in q with b0 = b, and let
bκ ≡Ls

M(bi ci )i<κ
β. Then we have bi ci |⌣

∗

M b<i c<i for all i < κ and bκ |⌣
∗

M (bi ci )i<κ .
We will inductively construct a sequence (b′i )i≤κ with b′0 = b such that at step i ,

(i) c |⌣
K
M b′
≤i ,

(ii) cb′i ≡
Ls
M cb,

(iii) b′
≤i ≡

Ls
M b≤i .

The base case is already fixed: b′0 = b. So suppose we have constructed b′
≤i . By

induction hypothesis (iii) we can find b∗b′
≤i ≡

Ls
M bi+1b≤i . So b∗ |⌣

∗

M b′
≤i . Let c∗ be

such that c∗b∗ ≡Ls
M cb, so c∗ |⌣

K
M b∗. Therefore, also using (i) from the induction

hypothesis, we can apply the weak independence theorem (Proposition 7.5) to
find c′ such that c′ |⌣

K
M b′
≤i b
∗, c′ ≡Ls

Mb∗ c∗ and c′ ≡Ls
Mb′
≤i

c. We now pick b′i+1 to be
such that cb′i+1 ≡

Ls
Mb′
≤i

c′b∗. Then indeed c |⌣
K
M b′
≤i+1. We also have

b′
≤i b
′

i+1 ≡
Ls
M b′
≤i b
∗
≡

Ls
M b≤i bi+1.

Finally,
cb′i+1 ≡

Ls
M c′b∗ ≡Ls

M c∗b∗ ≡Ls
M cb.

This concludes the successor step. For the limit stage we assume we have con-
structed b′<i . We then have c |⌣

K
M b′<i by finite character. We also have b′

≤ j ≡
Ls
M b≤ j

for all j < i . So we have b′<i ≡M b<i . We assumed b to enumerate a λT -saturated
model containing M , so because b′0 = b = b0 we do in fact have b′<i ≡

Ls
M b<i . We

then construct b′i in an analogous way to the successor step.
We let (c′i )i<κ be such that b′κ(b

′

i c
′

i )i<κ ≡
Ls
M bκ(bi ci )i<κ . So by M-Ls-invariance

of q|y we have βb′κ(b
′

i c
′

i )i<κ ≡
Ls
M βbκ(bi ci )i<κ and thus by how we chose bκ we

have b′κ ≡
Ls
M(b′i c

′

i )i<κ
β.

Because q ⊆ tp(N/M) for some saturated enough N , we can find

βγ (βi , γi )i<κ ≡
Ls
M b′κc(b′i , c′i )i<κ

in N , where βγ |H q. Here we used that b′κc ≡Ls
M bc. Set

q ′((yi , zi )i<κ , y, z)= tp((βi , γi )i<κβγ/M).

Then q ′ is global M-Ls-invariant because tp(N/M) is global M-Ls-invariant. By
Fact 7.6 and our choice of κ , we get that some global M-Ls-invariant type q ′|yi zi yz

occurs for κ many i (modulo identifying the variables for different i’s). We now
focus on a subsequence of length ω such that (after relabelling) q ′|yi zi yz does not
depend on i , and we forget about κ . We also relabel b′κ to b′.
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Claim 1. In summary:

(i) We constructed a Morley sequence (b′i c
′

i )i<ω in q, where q is a global M-Ls-
invariant extension of Lstp(bc/M).

(ii) For every i < ω, we have b′i c ≡
Ls
M b′c ≡Ls

M bc.

(iii) Let β |H q|y . Then b′ ≡Ls
M(b′i c

′

i )i<ω
β.

(iv) q(y, z) ⊆ q ′((yi , zi )i<ω, y, z) and q ′ is global M-Ls-invariant and extends
Lstp((b′i , c′i )i<ωb′c/M).

(v) There is some sufficiently saturated N such that q ′ ⊆ tp(N/M) and tp(N/M)

is M-Ls-invariant.

(vi) The type q ′|yi zi yz does not depend on i , modulo identifying variables for differ-
ent i’s.

Claim 2. For every k < ω, there are

g0h0g1h1 · · · gk−1hk−1gk, g′0h′0g′1h′1 · · · g
′

k−1h′k−1 and h′′0g′′1 h′′1 · · · g
′′

k−1h′′k−1g′′k

such that

(i) (g′i h
′

i )i<k |H (q ′|y0,z)
⊗k
|M ,

(ii) (h′′i g′′i+1)i<k |H (q ′|z0,y)
⊗k
|M ,

(iii) (gi hi , g′i h
′

i ) starts an Mg>i h>i g′>i h
′

>i -indiscernible sequence for every i < k,

(iv) (hi gi+1, h′′i g′′i+1) starts an Mh>i g>i+1h′′>i g
′′

>i+1-indiscernible sequence for
every i < k.

We first prove that the theorem follows from Claim 2. We set p0(x, y) =
tp(ab/M) and p1(x, z)= tp(a′c/M). We will prove that p0(x, b)∪ p1(x, c) does
not Kim-divide over M . This is enough, because by Proposition 4.3 we can then
extend it to a complete type that does not Kim-divide over M . Since we assumed b
and c to enumerate λT -saturated models containing M , any realisation a′′ of that
complete type is then what we needed to construct.

By compactness, we can find M-indiscernible (gi hi g′i h
′

i g
′′

i h′′i )i∈Z such that
(g′i h

′

i )i∈Z |H (q ′|y0,z)
⊗Z
|M and (h′′i g′′i+1)i∈Z |H (q ′|z0,y)

⊗Z
|M . Furthermore, we can

make it so that for every i ∈ Z we have that

gi hi ≡Mg>i h>i g′>i h
′

>i
g′i h
′

i and hi gi+1 ≡Mh>i g>i+1h′′>i g′′>i+1
h′′i g′′i+1.

We have q ′|y,z0 ⊇ tp(b′c′0/M), by Claim 1(iv). So, by parts (iii) and (v) of Claim 1,
we have that b′ |⌣

∗

M c′0. Then by Proposition 7.5 we have that p0(x, g′′1 )∪ p1(x, h′′0)
does not Kim-divide. Then because (h′′i g′′i+1)i≥n |H (q ′|z0,y)

⊗ω
|M for all n ∈ Z, we

get that
⋃

i∈Z p0(x, g′′i+1)∪ p1(x, h′′i ) is consistent. By the parallel sequences lemma
(Lemma 2.28) we thus have that

⋃
i∈Z p0(x, gi+1)∪ p1(x, hi ) is consistent. This is

the same set as
⋃

i∈Z p0(x, gi )∪p1(x, hi ). So again by the parallel sequences lemma
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we get that
⋃

i∈Z p0(x, g′i )∪ p1(x, h′i ) is consistent. By parts (ii) and (iii) of Claim 1,
we have that q ′|y0,z extends Lstp(bc/M). So we conclude that p0(x, b)∪ p1(x, c)
does not Kim-divide over M , as required.

We are left to verify Claim 2. We fix k and by backwards induction on k ′ =
2k, 2k−1, . . . , 1 we will define trees (dηeη)η∈Sk′

where Sk′={ξ ∈ω
≤2k+1

:0k′−1⊴ξ}
such that for each k ′ the tree (dηeη)η∈Sk′

satisfies the following condition:

(P)k′ For every η ∈ ω≤2k−1 and i < ω such that η ⌢ i ∈ Sk′ we have that

(dη⌢i⌢ j eη⌢i⌢ j ) j<ωdη⌢i eη⌢i ≡
Ls
M(d⊵η⌢i ′e⊵η⌢i ′ )i ′<i

(β jγ j ) j<ωβγ.

Recall that q ′ = tp((β jγ j ) j<ωβγ/M). So in particular

(dη⌢ j eη⌢ j ) j<ωdηeη ≡Ls
M (β jγ j ) j<ωβγ for all η ∈ ω≤2k

∩ Sk′ .

For k ′ = 2k we let (dηeη)η∈S2k just be (b′i c
′

i )i<ωb′c. Suppose now that we have
constructed (dηeη)η∈Sk′

. We have (d0k′−1⌢i e0k′−1⌢i )i<ωd0k′−1e0k′−1 ≡
Ls
M (βiγi )i<ωβγ ,

by (P)k′ . So by Claim 1(v) there is a global M-Ls-invariant r ⊇ q ′ such that r
also extends Lstp((dηeη)η∈Sk′

/M). Here we match (d0k′−1⌢i e0k′−1⌢i )i<ωd0k′−1e0k′−1

with the variables in q ′. Let ((dη,i eη,i )η∈Sk′
)i<ω be a Morley sequence in r with

(dη,0eη,0)η∈Sk′
= (dηeη)η∈Sk′

. We set

d0k′−2⌢i⌢ξe0k′−2⌢i⌢ξ = d0k′−1⌢ξ,i e0k′−1⌢ξ,i for all i < ω and ξ ∈ ω≤2k+2−k′ .

We directly get (P)k′−1 for η ∈ Sk′ −{0k′−2
} by virtue of ((dη,i eη,i )η∈Sk′

)i<ω being
a Morley sequence. By Claim 1(iv), we have that (d0k′−2⌢i e0k′−2⌢i )i<ω is a Morley
sequence in q . So we can find d0k′−2e0k′−2 such that

(d0k′−2⌢i e0k′−2⌢i )i<ωd0k′−2e0k′−2 ≡
Ls
M (βiγi )i<ωβγ,

and that concludes the construction of (dηeη)η∈Sk′−1
.

Similarly as in the proof of Lemma 5.13, we will now show by induction on n≤ k
that the following holds.

(Q)n Let η2k−2m ∈ ω
2k−2m and ν2k−2m+1 ∈ ω

2k−2m+1 for 0≤m ≤ n. Suppose that
η2k−2m ◁ ν2k−2m+1 for all 0≤m ≤ n, η2k >lex η2k−2 >lex · · ·>lex η2k−2n and
for all 0 ≤ m′ < m ≤ n we have that η2k−2m ∧ η2k−2m′ ∈ ω

2k−2m−1. Then
(dν2k−2m+1eν2k−2m+1dη2k−2m eη2k−2m )m≤n is a Morley sequence in q ′|y0z0 yz .

For n = 0 this follows immediately from (P)1 and Claim 1(vi). So suppose
(Q)n holds for some n < k, and let η2k−2m ∈ ω

2k−2m and ν2k−2m+1 ∈ ω
2k−2m+1

for 0 ≤ m ≤ n+ 1 be as in the statement of (Q)n+1. For any m < n we have that
η2k−2m ∧ η2k−2n−2 = η2k−2n−2|2k−2n−3. Therefore we can write η2k−2n−2 = ξ ⌢ i
for some ξ ∈ ω2k−2n−3 and i < ω. We then have η2k−2m ⊵ ξ ⌢ i ′ for some i ′ < i
for all m ≤ n. So it follows from (P)1, Claim 1(vi) and the induction hypothesis
that (dν2k−2m+1eν2k−2m+1dη2k−2m eη2k−2m )m≤n+1 is a Morley sequence in q ′|y0z0 yz .
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d ′η e′ηg0

h0

g1
h1

g2 h2

g′0

h′0

g′1

h′1

h′′0

g′′1

h′′1

g′′2

Figure 3. Choice of the gi hi g′i h
′

i g
′′

i h′′i .

By exactly the same argument we also have the following condition. It differs
from (Q)n in that the levels have been shifted by one (therefore we only consider it
for n < k).

(Q′)n Let η2k−2m−1 ∈ω
2k−2m−1 and ν2k−2m ∈ω

2k−2m for 0≤m ≤ n. Suppose that
η2k−2m−1◁ν2k−2m for all 0≤m ≤ n, η2k−1 >lex η2k−3 >lex · · ·>lex η2k−2n−1

and for all 0≤ m′ < m ≤ n we have that η2k−2m−1∧ η2k−2m′−1 ∈ ω
2k−2m−2.

Then (dν2k−2m eν2k−2m dη2k−2m−1eη2k−2m−1)m≤n is a Morley sequence in q ′|y0z0 yz .

Now let (d ′ηe
′
η)η∈ω2k+1 be an s-indiscernible over M tree which is EMs-based

on (dηeη)η∈ω2k+1 over M . We put gi = d ′02(k−i)+1 for i ≤ k, and for i < k we put
hi = e′02(k−i) , g′i = d ′02(k−i)−1⌢1⌢0, h′i = e′02(k−i)−1⌢1, g′′i+1 = d ′02(k−i−1)⌢1 and h′′i =
e′02(k−i−1)⌢1⌢0; see Figure 3. Then conditions (i) and (ii) from Claim 2 follow from
(Q)k and (Q′)k−1, while conditions (iii) and (iv) follow from s-indiscernibility. □

Now that we have proved the independence theorem, we first note some useful
immediate consequences in Corollary 7.10. After that, the rest of this section will be
devoted to proving a stronger version of the independence theorem, Theorem 7.15.

Definition 7.8. Let I be a linear order. We say that (ai )i∈I is a |⌣
K
M -independent

sequence if ai |⌣
K
M a<i for every i ∈ I . We say that (ai )i∈I is |⌣

K
M -Morley if it is

|⌣
K
M -independent and M-indiscernible.

Lemma 7.9. Let T be thick NSOP1 with an e.c. model M , and let a, b, c be any
tuples of parameters and x a tuple of variables. Then there exists a (partial) type
6(x, y) over Mab such that for any x and y we have that

|H6(x, y) ⇐⇒ (y ≡Mb c)∧ (xa |⌣
K
M yb).

In particular, taking y = ∅, we get that the condition xa |⌣
K
M b is type-definable

over Mab in the variable x.
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Proof. Let q(y, z) be a global M-Ls-invariant type extending tp(cb/M). Then, by
Kim’s lemma, for any y ≡Mb c and any x , the condition xa |⌣

K
M yb is equivalent to

∃(yi zi )i<ω
(
q⊗ω|M((yi zi )i<ω) and y0z0= yb and (yi zi )i<ω is Max-indiscernible

)
,

which is clearly a type-definable over Mab condition by thickness. □

In particular, we get that being an |⌣
K
M -independent sequence in a fixed type

over M is type-definable over M in thick NSOP1 theories. That is, for a linear
order I , we can use the type ⋃

i∈I

6(x<i , xi ),

where 6 is as in Lemma 7.9. Then, by symmetry, Theorem 6.5, this (partial) type
expresses exactly what we wanted.

Corollary 7.10. Suppose T is thick NSOP1 with an e.c. model M.

(i) If a |⌣
K
M b and a ≡Ls

M b then there exists an infinite M-indiscernible sequence
starting with (a, b).

(ii) If a ≡Ls
M b then a and b are at Lascar distance at most 2 over M. In particular,

Lascar equivalence over e.c. models is type-definable.

(iii) Generalised independence theorem: Let (ai )i<κ be an |⌣
K
M -independent se-

quence. Suppose bi ≡
Ls
M b and bi |⌣

K
M ai for every i < κ . Then there exists b′

such that b′ai ≡
Ls
M bi ai for every i < κ and b′ |⌣

K
M (ai )i<κ .

Proof. (i) We can inductively find a sequence (ci )i<ω such that c0c1= ab, ci ≡
Ls
M b,

ci |⌣
K
M c<i and ci c j ≡M ab for all i < j < ω: indeed, if we have constructed c≤i

then by the independence theorem we can choose ci+1 such that ci+1 ≡
Ls
Mc<i

ci ,
ci ci+1 ≡

Ls
M ab and ci+1 |⌣

K
M c≤i .

By compactness we can find a sequence (c′i )i<λ|T |+|Ma| with c′i c
′

j ≡M ab for
all i < j < λ|T |+|Ma|. Choose an M-indiscernible sequence (di )i<ω based on
(c′i )i<λ|T |+|Ma| over M . Then d0d1 ≡M ab, so we conclude that the pair (a, b) starts
an M-indiscernible sequence.

(ii) By extension (Corollary 4.14) we can choose c ≡Ls
M a with c |⌣

K
M ab. By (i)

we get that (a, c) and (b, c) both start M-indiscernible sequences.

(iii) We choose inductively a sequence (b′j ) j≤κ such that b′j ai ≡
Ls
M bi ai for every

i < j and b′j |⌣
K
M (ai )i< j , so that we can put b′ := bκ . The successor step follows

directly by the independence theorem, and the limit step follows by type-definability
of Lascar equivalence over M , Lemma 7.9 and compactness. □

Definition 7.11. We will say that a tree (cη)η∈ω≤k is spread-out over M if (c⊵η⌢i )i<ω

is a Morley sequence in some global M-Ls-invariant type for every η ∈ ω≤k−1.
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There are two differences between being spread-out over M and being q-spread-
out over M (see Definition 5.12 for the latter). In the latter the global M-Ls-invariant
type involved has to be q , while the former just requires some global M-Ls-invariant
type. The second difference is in the sequence in the tree that is required to be a
Morley sequence. In the former we consider a sequence of subtrees above some
fixed node, all at the same level. In the latter we consider a sequence of nodes in
the tree, one in every level (except for the root), as pictured in Figure 1.

The following lemma follows from the independence theorem exactly as in
[Kaplan and Ramsey 2020, Lemma 6.2/Remark 6.3], so we omit the proof.

Fact 7.12. Suppose that T is thick NSOP1, M is an e.c. model, a |⌣
K
M b, (bη)η∈ω≤k

(with k<ω) is a spread-out over M tree such that bη |⌣
K
M b▷η and bη≡Ls

M b for every
η ∈ ω≤k . Then, writing p(x, b) = tp(a/Mb), there exists a′ |H

⋃
η∈ω≤k p(x, bη)

with a′ |⌣
K
M (bη)η∈ω≤k and a′ ≡Ls

M a.

Lemma 7.13. Suppose that T is thick NSOP1, M is an e.c. model, b ≡Ls
M b′,

b |⌣
K
M b′ and I is a linear order with two distinct elements 0 and 1. Then there is a

|⌣
K
M -Morley parallel-Morley in tp(b/M) sequence (bi )i∈I with b0 = b and b1 = b′.

Proof. By extension (Corollary 4.14) there is a λT -saturated model N ⊇ Mb with
N |⌣

K
M b′. Then there is a λT -saturated model N ′ ⊇ Mb′ with N ′ ≡Ls

M N . Hence,
again by extension, we can find N ′′≡Ls

Mb′ N ′ with N |⌣
K
M N ′′. So replacing b and b′

by N and N ′′ we may assume without loss of generality that b and b′ are λT -
saturated models containing M . Put λ= |b| and (using Lemma 6.3) choose a global
M-Ls-invariant extension q of Lstp(b′/M) satisfying (∗)λ.

We claim that it is enough to show that for any 1 < k < ω there is a |⌣
K
M -

independent parallel-Morley sequence (ai )i<k in q over M with ai ≡
Ls
M b′ and

ai a j ≡M bb′ for all i < j < k: indeed, if we show this, then, as all these conditions
are type-definable by Lemma 7.9 and Corollary 7.10(ii), we can find by compactness
a |⌣

K -independent over M parallel-Morley sequence (ai )i<λ|T |+|b| in q over M with
ai a j ≡M bb′ for each i < j , and then taking an M-indiscernible sequence indexed
by I which is based on (ai )i<λ|T |+|Mb| over M and moving it by an automorphism to
guarantee that b0b1 = bb′ (note this may change q) will do the job.

So fix any 1 < k < ω and put p = tp(b′/Mb). By backward induction on
k ′= k+1, k, . . . , 1 we will define trees (cη)η∈Sk′

where Sk′ := {ξ ∈ω
≤k
: 0k′−1 ⊴ ξ}

such that for each k ′ the tree (cη)η∈Sk′
is spread-out over M and satisfies the following

conditions:

(A1)k′ cηcν ≡M bb′ for any ν, η ∈ Sk′ with ν ◁ η and cη ≡Ls
M b′ for any η ∈ Sk′ .

(A2)k′ (cη)η∈Sk′
is q-spread-out over M .

(A3)k′ cη |⌣
K
M c▷η for every η ∈ Sk′ .



KIM-INDEPENDENCE IN POSITIVE LOGIC 93

For k ′ = k + 1 putting c0k = b′ works. Now suppose we are done for some
k ′ ≤ k + 1. By Fact 7.12 we can find c′ |H

⋃
η∈Sk′

p(x, cη) with c′ ≡Ls
M b′ and

c′ |⌣
K
M (cη)η∈Sk′

. By (A1)k′ there is a tuple d such c0k′−1(cη)η∈S∗k′
≡

Ls
M b′d. Now,

by (∗)λ there is some global M-Ls-invariant type r(x, z) ⊇ q(x) which extends
Lstp(b′d/M)= Lstp(c0k′−1(cη)η∈S∗k′

/M). Also, as c′ |⌣
K
M (cη)η∈Sk′

and cη’s are λT -
saturated models (as b′ is), we get by Corollary 4.10 that Lstp(c′/M(cη)η∈Sk′

) does
not r(x, z)-Ls-divide over M . Hence, there is an Mc′-indiscernible Morley sequence
I := ((cη,i )η∈Sk′

)i<ω in r(x, z) over M with cη,0 = cη for each η ∈ Sk′ . By the chain
condition (Lemma 6.1) we have that c′ |⌣

K
M I . Thus, putting c0k′−2⌢i⌢ζ := c0k′−1⌢ζ,i

for all i < ω, ζ ∈ ω≤k+1−k′ , and c0k′−2 := c′, we immediately get that the tree
(cη)η∈Sk′−1

satisfies (A3)k′−1. (A1)k′−1 follows from (A1)k′ , the choice of c′ and
Mc′ indiscernibility of I . (A2)k′−1 follows from (A2)k′ and Lemma 5.13(i). This
completes the inductive construction.

Letting (c′η)η∈ω≤k be an s-indiscernible over M tree which is EMs-based on
(cη)η∈ω≤k over Mb′, we get that (c′η)η∈ω≤k satisfies (A1)1 and (A3)1 (by Lemma 7.9
and Corollary 7.10(ii)) and is weakly q-spread-out over M by Lemma 5.13(ii).

Put ai := c′0k−i for i < k. Then by Lemma 5.13(iii) we have that (ai )i<k is
parallel-Morley in q over M . Also, ai a j ≡M bb′ for all i < j < k by (A1)1, and
(ai )i<k is |⌣

K
M -independent over M by (A3)1. This completes the proof. □

Lemma 7.14 (chain condition for |⌣
K -Morley sequences). Suppose T is thick

NSOP1 with an e.c. model M , (di )i∈I is an infinite |⌣
K
M -Morley sequence and

a |⌣
K
M di0 for some i0 ∈ I . Then there exists a∗di0 ≡

Ls
M adi0 such that (di )i∈I is

indiscernible over Ma∗ and a∗ |⌣
K
M (di )i∈I .

Proof. By compactness, there exists a |⌣
K
M -Morley sequence (d ′′i )i<λ such that

(di )i∈I ⌢ (d ′′i )i<λ is M-indiscernible, where λ = λ|T |+|Mad0|+|I |. As di0 ≡
Ls
M d ′′0 ,

a |⌣
K
M di0 and (d ′′i )i<λ is |⌣

K -independent over M , we get by Corollary 7.10(iii) that
there exists a′ with a′d ′′i ≡

Ls
M adi0 for every i < λ and a′ |⌣

K
M (d

′′

i )i<λ. Let (d ′i )i∈I

be an Ma′-indiscernible sequence based on (d ′′i )i<λ over Maa′(di )i∈I . Therefore
(by finite character and invariance of |⌣

K ), a′ |⌣
K
M (d ′i )i∈I , (d ′i )i∈I ≡

Ls
M (di )i∈I

(as (di )i∈I ⌢ (d ′i )i∈I is indiscernible over M), and a′d ′i0
≡

Ls
M adi0 . Hence, letting f

be a Lascar strong automorphism over M sending (d ′i )i∈I to (di )i∈I and putting
a∗ = f (a′) we get that a∗ |⌣

K
M (di )i∈I and (di )i∈I is Ma∗-indiscernible. Also

a∗di0 ≡
Ls
M a′d ′i0

≡
Ls
M adi0 , as required. □

Theorem 7.15 (strong independence theorem). Suppose T is thick NSOP1 with
an e.c. model M , a0 |⌣

K
M b, a1 |⌣

K
M c, b |⌣

K
M c, and a0 ≡

Ls
M a1. Then there exists

an a such that a ≡Ls
Mb a0, a ≡Ls

Mc a1, a |⌣
K
M bc, b |⌣

K
M ac and c |⌣

K
M ab.

Proof. By a similar trick as at the start of the proof of Theorem 7.7 we may assume
that b and c enumerate λT -saturated models containing M .
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By the independence theorem there is a2 with a2 ≡
Ls
Mb a0, a2 ≡

Ls
Mc a1 and

a2 |⌣
K
M bc. By extension (Corollary 4.14) there is b′≡Ls

Mc b such that b |⌣
K
M b′c, and

thus b′c |⌣
K
M b by symmetry. By extension again, there is c′≡Ls

Mb c with b′c |⌣
K
M bc′.

As b′c ≡Ls
M bc ≡Ls

M bc′, we get by Lemma 7.13 that there is a |⌣
K
M -Morley parallel-

Morley in tp(bc/M) sequence I = (bi , ci )i∈Z with b0c0 = bc′ and b1c1 = b′c. As
a2 |⌣

K
M bc, we get by Lemma 7.14 that there is some a such that abc′ ≡Ls

M a2bc, I
is Ma-indiscernible and a |⌣

K
M I .

Then, by monotonicity, a |⌣
K
M bc. We also have ab ≡Ls

M a2b ≡Ls
M a0b, and by

indiscernibility, ac ≡Ls
M ac′ ≡Ls

M a2c ≡Ls
M a1c. Since b and c were assumed to

enumerate λT -saturated models we get a ≡Ls
Mb a0 and a ≡Ls

Mc a1. Also, (bi )i≤0 is
an Mac-indiscernible parallel-Morley sequence in tp(b/M) with b0 = b, which
gives b |⌣

K
M ac by Corollary 5.11. Similarly, as (ci )i≥1 is an Mab-indiscernible

parallel-Morley sequence in tp(c/M) with c1 = c, we get that c |⌣
K
M ab. □

8. Transitivity

Lemma 8.1. If M ⊆ N are e.c. models of a thick NSOP1 theory, a |⌣
K
M N , and µ is

a small cardinal, then there is a parallel-Morley in tp(a/N ) sequence (ai )i∈µ with
a0 = a such that ai |⌣

K
M Na<i for every i < µ.

Proof. Put λ= |Na| +ℵ0 and (using Lemma 6.3) choose a global N -Ls-invariant
extension q of Lstp(a/N ) satisfying (∗)λ.

By Lemma 7.9, compactness, finite character of Kim-independence, and an
automorphism, it is enough to find for any given k < ω a parallel-Morley sequence
(ai )i<k in q over N such that ai |⌣

K
M Na<i for every i < k.

So fix any k<ω. By backward induction on k ′= k+1, k, . . . , 1 we will construct
trees (cη)η∈Sk′

, where Sk′ := {ξ ∈ ω
≤k
: 0k′−1 ⊴ ξ}, such that for each k ′ the tree

(cη)η∈Sk′
satisfies the following conditions:

(A1)k′ For any η ∈ Sk′ we have cη |⌣
K
M Nc▷η and cη ≡Ls

N a.

(A2)k′ (cη)η∈Sk′
is q-spread-out over N .

For k ′ = k + 1 we let c0k = a. For the inductive step, suppose we are done
for some k ′. By (A1)k′ we have c0k′−1 ≡

Ls
N a, so by (∗)λ there is a global N -Ls-

invariant type r(x, y) ⊇ q(x) extending Lstp(c0k′−1, (cη)η∈S∗k′
/N ) where x corre-

sponds to c0k′−1 . Choose a Morley sequence I := ((cη,i )η∈Sk′
)i<ω in r(x, y) over N

with cη,0 = cη for each η ∈ Sk′ . By extension (Corollary 4.14) there is c′ ≡Ls
N a with

c′ |⌣
K
M N I . Put c0k′−2⌢i⌢ζ := c0k′−1⌢ζ,i for all i <ω, ζ ∈ ω≤k+1−k′ , and c0k′−2 := c′.

Then (A2)k′−1 follows by Lemma 5.13(i), whereas (A1)k′−1 with η ∈ S∗k′−1 follows
by invariance of Kim-independence, and (A1)k′−1 with η = 0k′−2 follows by the
choice of c0k′−2 = c′. Thus the inductive step, and hence the construction of the tree
(cη)η∈ω≤k = (cη)η∈S1 , is completed.
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Letting (c′η)η∈ω≤k be an s-indiscernible over N tree that is EMs-based on (cη)η∈ω≤k

over Na, we get that (c′η)η∈ω≤k satisfies (A1)1 by Lemma 7.9 and Corollary 7.10(ii),
and is weakly q-spread-out over N by Lemma 5.13(ii). Thus, by Lemma 5.13(iii),
putting ai = c′0k−i for i < k we get a parallel-Morley sequence (ai )i<k in q over N
satisfying the requirements. □

Lemma 8.2. Suppose T is thick NSOP1 and M ⊆ N are e.c. models of T . If
a |⌣

K
M N and c |⌣

K
M N then there is c′ ≡Ls

N c such that ac′ |⌣
K
M N and a |⌣

K
N c′.

Proof. By Lemma 7.9 there is a type 0(x; N , a) that is equivalent to the condition
ax |⌣

K
M N . By Lemma 8.1 there is a parallel-Morley in tp(a/N ) sequence (ai )i<λT

with a0 = a such that ai |⌣
K
M Na<i for every i < λT . Replacing (ai )i<λT with an

N -indiscernible sequence based on it over N and moving by an automorphism (to
keep a0 = a), we may assume (ai )i<λT is N -indiscernible.

Claim.
⋃

i<λT
0(x; N , ai ) has a realisation c′′ such that c′′ ≡Ls

N c.

Proof of claim. By induction on n<ω we will find cn ≡
Ls
N c such that cn |⌣

K
M Na<n

and cn |H
⋃

i<n 0(x; N , ai ), which is enough by compactness, N -indiscernibility
of (ai )i<λT and Corollary 7.10(ii). For n = 0 put c0 = c. Assume we have
found cn and find by extension (Corollary 4.14) some c′ ≡Ls

M c such that c′ |⌣
K
M an .

By Theorem 7.15, there exists cn+1 with cn+1a<n ≡
Ls
N cna<n , cn+1an ≡

Ls
M c′an ,

cn+1 |⌣
K
M Na<n+1 and ancn+1 |⌣

K
M Na<n . In particular, cn+1 ≡

Ls
N cn ≡

Ls
N c and

cn+1 |H
⋃

i<n+1 0(x; N , ai ). □

Let c′′ be given by the claim, and let (a′i )i<ω be an Nc′′-indiscernible sequence
based on (ai )i<λT over Nc′′a. Then a′0 ≡

Ls
N a (as ai ≡

Ls
N a for every i < λT ),

so there is a Lascar strong automorphism f over N sending a′0 to a = a0. Put
c′ := f (c′′). Then ( f (a′i ))i<ω is an Nc′-indiscernible parallel-Morley sequence in
tp(a/N ) starting with a, so c′ |⌣

K
N a by Corollary 5.11. Also, c′ |H 0(x; N , a), so

ac′ |⌣
K
M N by the choice of 0, and we are done. □

Lemma 8.3. Suppose T is thick NSOP1 with e.c. models M ⊆ N and a |⌣
K
M N.

Then there is a |⌣
K
N -Morley parallel-Morley in tp(a/M) sequence (ai )i<ω with

a = a0.

Proof. By extension (Corollary 4.14) we may assume that a is a λT -saturated
model extending M . By Lemma 6.3 there is a global M-Ls-invariant extension
q(x) ⊇ tp(a/M) satisfying the property (∗)λ with λ = |a| + ℵ0. We claim that
it is enough to find for any given k < ω a parallel-Morley sequence (ai )i<k in q
over M such that ai |⌣

K
N a<i and ai ≡N a for every i < k: indeed, if we prove this,

then, since the condition (ai ≡N a)∧ (ai |⌣
K
N a<i ) is type-definable by Lemma 7.9,

we can find by compactness such a sequence of length λ|T |+|Na|. Then taking
an N -indiscernible sequence based on (ai )i<λ|T |+|Na| over N and moving it by an
automorphism we obtain a desired sequence.



96 JAN DOBROWOLSKI AND MARK KAMSMA

So fix any k < ω. By backward induction on k ′ = k+ 1, k, . . . , 1 we will define
trees (cη)η∈Sk′

, where Sk′ := {ξ ∈ ω
≤k
: 0k′−1 ⊴ ξ}, such that for each k ′ the tree

(cη)η∈Sk′
satisfies the following conditions:

(A1)k′ For any η ∈ Sk′ we have cη |⌣
K
N c▷η and cη ≡Ls

N a.

(A2)k′ (cη)η∈Sk′
is q-spread-out over M .

(A3)k′ (cη)η∈Sk′
|⌣

K
M N .

For k ′ = k + 1, we let c0k = a. For the inductive step, suppose we are done
for some k ′. By (∗)λ and (A1)k′ there is a global M-invariant type r(x, y) extend-
ing Lstp(c0k′−1, (cη)η∈S∗k′

/M) and q(x). As cη’s are λT -saturated models, we get,
by (A3)k′ and Corollary 4.10, that Lstp(N/(cη)η∈Sk′

) does not r -Ls-divide over M .
Thus there is an N -indiscernible Morley sequence I = ((cη,i )η∈Sk′

)i<ω in r(x, y)
over M with cη,0 = cη for each η ∈ Sk′ and I |⌣

K
M N . By Lemma 8.2 there is

a′≡Ls
N a such that a′ |⌣

K
N I and a′ I |⌣

K
M N . Put c0k′−2⌢i⌢ζ := c0k′−1⌢ζ,i for all i <ω,

ζ ∈ ω≤k+1−k′ , and c0k′−2 := a′. Then we get (A2)k′−1 by Lemma 5.13(i), we get
(A1)k′−1 using that a′ |⌣

K
N I , and (A3)k′−1 holds as a′ I |⌣

K
M N . Thus the inductive

step, and hence the construction of the tree (cη)η∈ω≤k = (cη)η∈S1 , is completed.
Letting (c′η)η∈ω≤k be an s-indiscernible over N tree which is EMs-based on

(cη)η∈ω≤k over Na, we get that (c′η)η∈ω≤k is weakly q-spread-out over M by
Lemma 5.13(ii) and satisfies (A1)1 by Lemma 7.9 and Corollary 7.10(ii). Thus
putting ai = c′0k−i for i < k we get by Lemma 5.13(iii) a parallel-Morley sequence
(ai )i<k in q over M satisfying the requirements. □

Theorem 8.4 (transitivity). Suppose T is thick NSOP1 with models M ⊆ N. If
a |⌣

K
M N and a |⌣

K
N c, then a |⌣

K
M Nc.

Proof. By Lemma 8.3 there is a |⌣
K
N -Morley parallel-Morley in tp(a/M) se-

quence I = (ai )i<ω with a0 = a. Because a |⌣
K
N c, we get by Lemma 7.14 an

Nc-indiscernible sequence I ′ = (a′i )i<ω ≡Na I . As I ′ is also parallel-Morley in
tp(a/M) and a′0 = a, we get by Corollary 5.11 that Nc |⌣

K
M a, so, by symmetry,

we are done. □

9. Kim–Pillay style theorem

Theorem 9.1. Let T be a thick positive theory. Then T is NSOP1 if and only if there
is an automorphism invariant ternary relation |⌣ on small subsets of the monster
model, only allowing e.c. models in the base, satisfying the following properties:

FINITE CHARACTER If a |⌣M b0 for all finite b0 ⊆ b, then a |⌣M b.

EXISTENCE a |⌣M M for any model M.

MONOTONICITY aa′ |⌣M bb′ implies a |⌣M b.

SYMMETRY a |⌣M b implies b |⌣M a.
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LOCAL CHARACTER Let a be a finite tuple and κ > |T | be regular. Then
for every continuous chain (Mi )i<κ with |Mi | < κ

for all i , there is i < κ such that a |⌣Mi
M , where

M =
⋃

i<κ Mi .

INDEPENDENCE THEOREM If a |⌣M b, a′ |⌣M c and b |⌣M c with a ≡Ls
M a′, then

there is a′′ such that a′′b ≡Ls
M ab, a′′c ≡Ls

M a′c and
a′′ |⌣M bc.

EXTENSION If a |⌣M b, then for any c there is a′ ≡Mb a such that
a′ |⌣M bc.

TRANSITIVITY If a |⌣M N and a |⌣N b with M ⊆ N , then a |⌣M Nb.

Furthermore, in this case, |⌣ = |⌣
K .

The properties in Theorem 9.1 are not as strong as they could be. For example, we
actually proved the strong independence theorem for |⌣

K ; see Theorem 7.15. The
slightly simpler formulation of the properties in Theorem 9.1 is easier to verify for
an arbitrary independence relation |⌣ . Then it follows immediately from |⌣ = |⌣

K

that such an independence relation |⌣ also satisfies the stronger formulations.

Remark 9.2. In the existing Kim–Pillay style theorems for full first-order logic,
[Kaplan and Ramsey 2020, Theorem 9.1; 2021, Theorem 6.11] and [Chernikov
et al. 2020, Theorem 5.1], there are still various properties that mention syntax.
Our Theorem 9.1 is completely syntax-free. One syntax-dependent property is
mentioned in all of the above theorems, and is called STRONG FINITE CHARACTER:
if a ̸ |⌣M b then there is ϕ(x, b,m) ∈ tp(a/Mb) such that for any a′ |H ϕ(x, b,m)
we have a′ ̸ |⌣M b.

We could replace FINITE CHARACTER and LOCAL CHARACTER in Theorem 9.1
by STRONG FINITE CHARACTER. Obviously STRONG FINITE CHARACTER

implies FINITE CHARACTER and modulo the other properties it also implies LOCAL

CHARACTER by Lemmas 9.5 and 9.6.

Remark 9.3. To conclude that a theory is NSOP1 it is enough to find an indepen-
dence relation with the properties STRONG FINITE CHARACTER, EXISTENCE,
MONOTONICITY, SYMMETRY and INDEPENDENCE THEOREM; see [Haykazyan
and Kirby 2021, Theorem 6.4]. However, that does not guarantee that the in-
dependence relation is also Kim-independence; see [Kaplan and Ramsey 2020,
Remark 9.39] for an example (already in full first-order logic). We also point out that
[Haykazyan and Kirby 2021, Theorem 6.4] says nothing about the properties that
Kim-independence generally has in NSOP1 theories. Finally, our proof is also differ-
ent because we do not rely on the syntactic property STRONG FINITE CHARACTER.

Remark 9.4. We point out a minor difference between Theorem 7.7 and INDE-
PENDENCE THEOREM in Theorem 9.1. In the former we get a′′ ≡Ls

Mb a, which is
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generally stronger than the a′′b ≡Ls
M ab in the latter (and similar for c). Again, the

reason is that the latter is easier to verify. Definitely in semi-Hausdorff theories,
because then a′′b ≡Ls

M ab is equivalent to a′′b ≡M ab, so we do not have to worry
about Lascar strong types. For a concrete example of this, see Fact 10.3(i). The
only place where INDEPENDENCE THEOREM is used, namely, to get consistency
along a certain sequence, we only need this weaker version.

Lemma 9.5. Let |⌣ satisfy STRONG FINITE CHARACTER, EXISTENCE, MONO-
TONICITY and SYMMETRY. Then a |⌣

u
M b implies a |⌣M b.

Proof. Exactly as in [Chernikov and Ramsey 2016, Proposition 5.8]. □

Lemma 9.6. Let |⌣ be as in Lemma 9.5. Then it satisfies LOCAL CHARACTER.

Proof. By Lemma 9.5, the proof from [Kaplan et al. 2019, Theorem 3.2] applies.
Our formulation of local character then follows. □

Corollary 9.7 (local character). In a thick NSOP1 theory Kim-independence satis-
fies LOCAL CHARACTER.

Remark 9.8. In [Kaplan et al. 2019] there are also different formulations of LOCAL

CHARACTER, for example in terms of club sets of [M]|T |. Since their arguments
apply directly, these formulations also hold for Kim-independence in any thick
NSOP1 theory.

The next definition is based on the notion of isi-dividing from [Kamsma 2020].

Definition 9.9. We say that a type p(x, b)= tp(a/Cb) long divides over C if there
is µ such that for every λ≥µ there is a sequence (bi )i<λ with bi ≡C b for all i <λ
such that for some κ < λ and every I ⊆ λ with |I | ≥ κ we have that

⋃
i∈I p(x, bi )

is inconsistent. We write a |⌣
ld
C b if tp(a/Cb) does not long divide over C .

There is a close connection between long dividing and dividing. Even though we
do not need this connection in our proofs, it is still interesting to explore it. Dividing
implies long dividing. Given an indiscernible sequence that witnesses dividing
of a type p, we can use compactness to make it as long as we wish. So we find
arbitrarily long sequences where p is inconsistent along any infinite subsequence,
so p long divides. The converse is not so clear to us.

Question 9.10. Does long dividing imply dividing?

At least if we assume the existence of a proper class of Ramsey cardinals then
the answer is positive. To see this, suppose that p long divides, and let λ be a big
enough Ramsey cardinal. Then there is some sequence (bi )i<λ witnessing that p
long divides. Since we assumed λ to be Ramsey there is a cofinal I ⊆ λ such
that (bi )i∈I is indiscernible. By the definition of long dividing,

⋃
i∈I p(x, bi ) is

then inconsistent and so we conclude that p divides.



KIM-INDEPENDENCE IN POSITIVE LOGIC 99

Lemma 9.11. We have that a |⌣
iLs
C b implies a |⌣

ld
C b.

Proof. Let p(x, y)= tp(ab/C), and let λ be any regular cardinal bigger than the num-
ber of Lascar strong types over C (compatible with b). Let (bi )i<λ be any sequence
in tp(b/C). By choice of λ there must be I ⊆ λ such that bi ≡

Ls
C b j for all i, j ∈ I

and |I | = λ. Pick some i0 ∈ I , and let a′ be such that a′bi0 ≡C ab. By assumption
a |⌣

iLs
C b, so a′ |⌣

iLs
C bi0 . Let q ⊇ tp(a′/Cbi0) be a global C-Ls-invariant extension,

and let α |Hq . Then αbi ≡
Ls
C αbi0 for all i ∈ I , so

⋃
{p(x, bi ) : i ∈ I } is consistent. □

Definition 9.12. Let |⌣ be some independence relation, and let (ai )i<κ be some
sequence. Suppose furthermore that there is a continuous chain (Mi )i<κ of e.c.
models, with M ⊆ M0, such that a<i ⊆ Mi and ai |⌣M Mi for all i < κ . Then we
call (Mi )i<κ an |⌣M -independence chain (for (ai )i<κ ).

Remark 9.13. Let |⌣ be an independence relation satisfying EXISTENCE and
EXTENSION, let a be any tuple, and let M be any model. Then as usual we can induc-
tively build arbitrarily long sequences (ai )i<κ together with an |⌣M -independence
chain (Mi )i<κ , such that a ≡M ai for all i < κ .

The following is adapted from one half of the original Kim–Pillay theorem, and
occurs in [Kamsma 2020, Theorem 1.1]. We just have to check that the use of
base-monotonicity can be replaced with our more carefully formulated form of
local character.

Proposition 9.14. Let |⌣ be as in Theorem 9.1. Then a |⌣
ld
M b implies a |⌣M b.

Note that we will actually not need INDEPENDENCE THEOREM here.

Proof. It follows directly from the definition of long dividing that |⌣
ld has mono-

tonicity on the left side. So by FINITE CHARACTER and SYMMETRY we may
assume a to be finite.

By Remark 9.13 we find a sequence (bi )i<κ with an |⌣M -independence chain
(Mi )i<κ such that b ≡M bi for all i < κ . Picking the right κ > (|T | + |M |)+, there
must be I ⊆ κ with order type (|T | + |M |)+ such that

⋃
i∈I p(x, bi ) is consistent,

where p(x, y)= tp(ab/M). Let a′ be a realisation of this set. By MONOTONICITY

and downward Löwenheim–Skolem, we may assume that (Mi )i∈I is a continuous
chain with |Mi | ≤ |T | + |M | for all i ∈ I . Then by LOCAL CHARACTER there
is i0 ∈ I such that a′ |⌣Mi0

MI , where MI =
⋃

i∈I Mi . By MONOTONICITY we have
a′ |⌣Mi0

bi0 and by construction we also have bi0 |⌣M Mi0 . So by SYMMETRY and
TRANSITIVITY we obtain a′ |⌣M bi0 . The result now follows since a′bi0 ≡M ab. □

We note that in the above proof it is relevant that we work with long dividing
instead of dividing. This is because the application of LOCAL CHARACTER only
really makes sense if the chain consists of e.c. models, as we only allow e.c. models
in the base. At the same time we need those e.c. models to form an independence
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chain for the rest of the proof to work. If we would try to follow the same proof just
for dividing then we would have to work with indiscernible sequences. Finding an
indiscernible |⌣-independent sequence is not an issue. This can be done as usual:
we first build a very long |⌣-independent sequence and then base an indiscernible
sequence on it. This preserves being |⌣-independent due to FINITE CHARACTER,
but it does not carry over the independence chain. In long dividing this is not an
issue, because we work directly with the very long sequence we constructed. So
any “decorations”, such as the independence chain, are then at our disposal.

The following lemma and its proof are a weaker version of the chain condition for
|⌣

K -Morley sequences (Lemma 7.14) that works for long enough |⌣
K -independent

sequences.

Lemma 9.15. Let T be a thick NSOP1 theory. Suppose that a |⌣
K
M b. Let (bi )i<κ

be an |⌣
K
M -independent sequence, where κ is a regular cardinal larger than the

number of Lascar strong types over M (compatible with b) and where b ≡M bi

for all i < κ . Then there is I ⊆ κ with |I | = κ such that
⋃

i∈I p(x, bi ) does not
Kim-divide (and is thus consistent), where p(x, y)= tp(ab/M).

Proof. By the choice of κ there is I ⊆κ with |I |=κ such that bi ≡
Ls
M b j for all i, j ∈ I .

We conclude by the generalised independence theorem (Corollary 7.10(iii)). □

Proof of Theorem 9.1. We already proved that |⌣
K has all the listed properties if T

is NSOP1. So now we assume that we have an abstract independence relation |⌣
satisfying the listed properties and we prove that |⌣ = |⌣

K and that T is NSOP1.

The direction a |⌣M b=⇒a |⌣
K
M b holds. This proof is based on the proof of the same

direction in [Kaplan and Ramsey 2020, Theorem 9.1]. Let p(x, b)= tp(a/Mb), and
let q be any global M-Ls-invariant extension of tp(b/M). Then a Morley sequence
(bi )i<ω in q is a |⌣M -Morley sequence by Lemma 9.11 and Proposition 9.14. By
the standard INDEPENDENCE THEOREM argument we thus find that

⋃
i<ω p(x, bi )

is consistent, and thus a |⌣
K
M b.

The theory T is NSOP1. We prove weak symmetry as in Theorem 6.7. So suppose
a |⌣

iLs
M b. Then combining Lemma 9.11 and Proposition 9.14 again we get a |⌣M b.

So by SYMMETRY we have b |⌣M a and then b |⌣
K
M a follows from the above.

The direction a |⌣
K
M b =⇒ a |⌣M b holds. This proof is based on the proof of the

same direction in [Chernikov et al. 2020, Theorem 5.1]. By Remark 9.13 we obtain
a long enough sequence (bi )i<κ with an |⌣M -independence chain (Mi )i<κ and
bi ≡M b for all i <κ . By the above (Mi )i<κ is also an |⌣

K
M -independence chain. So

by Lemma 9.15 there is I ⊆κ with order type κ such that
⋃

i∈I p(x, bi ) is consistent,
where p(x, b)= tp(a/Mb). Let a′ be a realisation of this set. By deleting an end
segment, MONOTONICITY and downward Löwenheim–Skolem we may assume
that (Mi )i∈I is a continuous chain with |Mi | ≤ |T |+|M | for all i ∈ I and I has order
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type (|T | + |M |)+. By LOCAL CHARACTER there is i0 ∈ I such that a′ |⌣Mi0
MI ,

where MI =
⋃

i∈I Mi , and therefore a′ |⌣Mi0
bi0 . We also have bi0 |⌣M Mi0 , and

thus by SYMMETRY and TRANSITIVITY we get a′ |⌣M bi0 , and hence a |⌣M b. □

10. Examples

In this section we present some examples of thick NSOP1 theories. First, we
recall Poizat’s example of a thick non-semi-Hausdorff theory (which is bounded
hence NSOP1). Next, we look at (the JEP refinements of) the positive theory of
existentially closed exponential fields, which was shown to be NSOP1 in [Haykazyan
and Kirby 2021] by constructing a suitable independence relation. We deduce from
the known results that this theory is Hausdorff (hence thick), and then we show
that Kim-independence coincides in it with the independence relation studied in
[Haykazyan and Kirby 2021]. Finally, we show that NSOP1 is preserved under
taking hyperimaginary extensions; in particular, the hyperimaginary extension of
an arbitrary NSOP1 theory in full first-order logic is a Hausdorff NSOP1 theory.

Let us also briefly mention the class of nonsimple NSOP1 thick theories found
recently in [d’Elbée et al. 2021]. For any integral domain R, the authors consider
in the language of rings enriched by a predicate P and constants for elements of R
the theory FR-module: the theory of fields together with the quantifier-free diagram
of R and where P defines an R-submodule. By [d’Elbée et al. 2021, Theorem 4.2,
Theorem 4.8], for any integral domain R, the theory FR-module is nonsimple and
NSOP1 in the sense of positive logic. Also, by [d’Elbée et al. 2021, Remark 4.9] it
is thick and Kim-independence in the sense of our paper coincides there with weak
independence, as defined in [d’Elbée et al. 2021, Definition 4.4]. In the particular
case R = Z this shows that the theory of algebraically closed fields of characteristic
zero with a generic additive subgroup, which is known to be noncompanionable
by [d’Elbée 2021a, Remark 1.20], is nonsimple and NSOP1 in positive logic (see
also [d’Elbée 2021b, Remark 5.35]).

10A. A thick, non-semi-Hausdorff theory. The following is an example of a thick
non-semi-Hausdorff theory from [Poizat 2010, Section 4]. Consider a language L =
{Pn, Rn : n<ω}∪{r} where Pn’s and Rn’s are unary relation symbols and r a binary
relation symbol. Let M = {an, bn : n <ω} be an L-structure with a0, b0, a1, a2, . . .

pairwise distinct, in which Pn is interpreted as {an, bn}, Rn as the complement
of Pn , and r as the symmetric antireflexive relation {(an, bn), (bn, an) : n < ω}.
Let T be the h-inductive theory of the structure M . Then the models of T are
bounded (in fact any e.c. extension of M adds at most two new points), so T
is thick (and also NSOP1). However, T is not semi-Hausdorff. In fact, it was
observed by Rosario Mennuni that the unique nonalgebraic maximal type over M
does not have any global M-invariant extensions. This shows that, in the definition



102 JAN DOBROWOLSKI AND MARK KAMSMA

of Kim-independence in thick theories, it is necessary to work with Ls-invariant
types rather than just invariant types. This is also an example where having the
same type over an e.c. model does not guarantee having the same Lascar strong
type (over that model).

10B. Existentially closed exponential fields. In [Haykazyan and Kirby 2021] the
class of existentially closed exponential fields is studied using positive logic. They
prove that this is NSOP1 by providing a nice enough independence relation. We
verify that this independence relation is indeed Kim-independence.

Definition 10.1. An exponential field or E-field is a field of characteristic zero
with a group homomorphism E from the additive group to the multiplicative group.
We call such a field an EA-field if it is also an algebraically closed field. We
can axiomatise EA-fields by a positive theory and call this theory TEA-field. The
existentially closed exponential fields are then the e.c. models of TEA-field.

Our definition is slightly different from [Haykazyan and Kirby 2021] where they
consider the class of e.c. models of just the theory of E-fields. However, these
classes of e.c. models coincide; see [Haykazyan and Kirby 2021, Proposition 3.3]
and the discussion after it.

There are also many different JEP-refinements; see [Haykazyan and Kirby 2021,
Corollary 4.6]. To work in a monster model we need to fix one such JEP-refinement.
This is not an issue, since everything we discuss here works in any JEP-refinement.

Definition 10.2 [Haykazyan and Kirby 2021, Definition 5.1]. For any set A write
⟨A⟩EA for the smallest EA-subfield containing A. We define an independence
notion |⌣ by

A |⌣C B ⇐⇒ ⟨AC⟩EA
|⌣

ACF
⟨C⟩EA ⟨BC⟩EA,

where |⌣
ACF is the usual independence relation in algebraically closed fields.

Note that the independence relation |⌣ actually makes sense over arbitrary sets.
It would be interesting to compare this once Kim-independence over arbitrary sets
has been developed in positive logic (see Question 10.21 below). For now we will
restrict ourselves to working over e.c. models.

Fact 10.3. We recall the following facts about TEA-field.

(i) The independence relation |⌣ satisfies STRONG FINITE CHARACTER, EXIS-
TENCE, MONOTONICITY, SYMMETRY, INDEPENDENCE THEOREM.

(ii) Any span F1← F→ F2 of embeddings of EA-fields can be amalgamated in
such a way that, after embedding the result into the monster model, F1 |⌣ F F2.

(iii) For EA-fields F1 and F2, if qftp(F1)= qftp(F2) then tp(F1)= tp(F2).
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Proof. (i) This is [Haykazyan and Kirby 2021, Theorem 6.5]. They do not mention
Lascar strong types in their formulation of INDEPENDENCE THEOREM. However,
as we will see in Proposition 10.4, the theory is Hausdorff, so the types over e.c.
models are Lascar strong types.

(ii) This is [Haykazyan and Kirby 2021, Theorem 4.3]. The fact that F1 |⌣ F F2 is
not mentioned there, but it is direct from their proof.

(iii) This follows directly from (ii). □

To apply our theorem, Theorem 9.1, we need to verify a few more things.

Proposition 10.4. The theory TEA-field is Hausdorff.

Proof. Let Tk be the set of all h-inductive sentences that are true in all e.c. models
of TEA-field. By [Poizat and Yeshkeyev 2018, Theorem 8], being Hausdorff is equiv-
alent to the models of Tk being amalgamation bases. By Fact 10.3(ii), the models
of TEA-field are already amalgamation bases, so the models of Tk are in particular
also amalgamation bases. So we conclude that TEA-field is indeed Hausdorff. □

Note that Hausdorff is the best we can get, because [Haykazyan and Kirby 2021,
Corollary 3.8] tells us that TEA-field cannot be Boolean. They prove this by showing
that in every e.c. model F of TEA-field we have for all a ∈ F that

a ∈ Z ⇐⇒ F |H ∀x(E(x)= 1→ E(ax)= 1),

so if the theory were Boolean this would contradict compactness.

Proposition 10.5. The independence relation |⌣ in TEA-field satisfies EXTENSION

and TRANSITIVITY.

Proof. We first prove TRANSITIVITY. Let A |⌣ B C and A |⌣C D with B ⊆ C . So
we have ⟨AB⟩EA

|⌣
ACF
⟨B⟩EA ⟨BC⟩EA, which is just

⟨AB⟩EA
|⌣

ACF
⟨B⟩EA ⟨C⟩

EA.

We also have ⟨AC⟩EA
|⌣

ACF
⟨C⟩EA ⟨C D⟩EA, and therefore, by monotonicity of ACF-

independence,
⟨AB⟩EA

|⌣
ACF
⟨C⟩EA ⟨C D⟩EA.

Then by transitivity of ACF-independence the result follows.
Now we prove EXTENSION. Let a |⌣C b and let d be arbitrary. From the definition,

we get a |⌣C Cb. We apply Fact 10.3(ii) to ⟨Cab⟩EA
⊇ ⟨Cb⟩EA

⊆ ⟨Cbd⟩EA, and we
can embed the amalgamation in the monster in such a way that ⟨Cbd⟩EA remains the
same. So we get some EA-field F with qftp(F/⟨Cb⟩EA)= qftp(⟨Cab⟩EA/⟨Cb⟩EA)

and F |⌣ ⟨Cb⟩EA ⟨Cbd⟩EA, which simplifies to F |⌣Cb Cbd. By Fact 10.3(iii) and
restricting ourselves to the copy a′ ∈ F of a we thus have tp(a′/Cb)= tp(a/Cb).
So we get a′ |⌣C Cb and a′ |⌣Cb Cbd , and a′ |⌣C bd follows from TRANSITIVITY

and MONOTONICITY. □
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Corollary 10.6. The independence relation |⌣ in TEA-field is the same as Kim-
independence over e.c. models.

Proof. This is a direct application of Theorem 9.1, using Remark 9.2 to replace
LOCAL CHARACTER by STRONG FINITE CHARACTER. □

10C. Hyperimaginaries. One of the main motivations for studying positive logic
in [Ben-Yaacov 2003a] was to be able to add hyperimaginaries in the same way we
usually add imaginaries. It is well known that by doing so we leave the framework of
full first-order logic, for example because we might get a bounded infinite definable
set. However, we do stay within the framework of positive logic. We show that
adding hyperimaginaries as real elements does not essentially change anything. So
working with hyperimaginaries in positive logic requires no special treatment.

The construction in this section is based on [Ben-Yaacov 2003a, Example 2.16],
but we work things out in far greater detail. This then allows us to prove that certain
properties are invariant under adding hyperimaginaries.

We fix the following things throughout the rest of this section. First, we fix
a positive theory T in a signature L with monster model M. For simplicity we
assume L is single sorted (extending this to the multisorted setting is straightforward).
Let E be a set of partial types (over ∅) E(x, y), where x and y are (possibly infinite
but small) tuples of variables, such that each E defines an equivalence relation in M.

Definition 10.7. We define the hyperimaginary language LE as a multisorted
extension of L. The sort of L will be called the real sort and is denoted by Sreal.
Then for each E ∈ E we add a sort SE , called a hyperimaginary sort. For a variable y
of sort SE we denote by yr a tuple of variables of the real sort, matching the length
of the representatives of the E-equivalence classes.

For all E1, . . . , En ∈ E we add a relation symbol Rϕ(x, y1, . . . , yn) of sort
S|x |real× SE1 × · · ·× SEn for each L-formula ϕ(x, y1,r , . . . , yn,r ).

In the above definition, not all variables in ϕ(x, y1,r , . . . , yn,r ) need to actually
appear in the formula. In particular, it is not problem for the yi,r to be infinite tuples.
Similarly, when we write something like ∃yrϕ(yr ), then we really only quantify
over the variables that actually appear in ϕ.

Definition 10.8. We extend M to an LE -structure ME as follows. The real sort Sreal

is just M, and for each E ∈ E the sort SE is Mα/E , where α is the length of the
tuples of free variables in E . From now on we will use the shorthand notation M/E
and not mention α. For E1, . . . , En ∈ E and ϕ(x, y1,r , . . . , yn,r ) we interpret the
relation symbol Rϕ as follows. We let ME

|H Rϕ(a, c1, . . . , cn) if and only if there
are representatives b1, . . . , bn of c1, . . . , cn such that M |H ϕ(a, b1, . . . , bn).

For a real tuple b and some E ∈ E we will write [b] for the corresponding
hyperimaginary in M/E . To prevent cluttering of notation, we will actually also
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use the notation [b] for a tuple of hyperimaginaries. This notation leaves implicit
which sort(s) [b] belongs to, but that should not be a problem in what follows.

Definition 10.9. We define the LE -theory T E as the set of all h-inductive LE -
sentences true in ME .

In this construction, ME will be a monster model of T E (Theorem 10.15).
Being Hausdorff/semi-Hausdorff/thick is preserved under adding hyperimaginaries
(Theorem 10.17). We have that T is NSOP1 if and only if T E is NSOP1 (Theorem
10.18). So in particular this means that if we start with an NSOP1 theory T in
full first-order logic, viewed as a positive theory, then T E is a Hausdorff (and thus
thick) NSOP1 theory, and all our results apply. Finally, we also have that T satisfies
the existence axiom for forking if and only if T E satisfies the existence axiom for
forking (Theorem 10.20).

We set up our construction in such a way that we can add any set E of hyper-
imaginaries. If we wish to study Mheq, where we have added all hyperimaginaries,
we would have to add a proper class of hyperimaginaries. We can formalise this by
taking E to be the set of all equivalence relations E(x, y) where |x | ≤ |T |. Then, by
[Ben-Yaacov 2003c, Corollary 3.3], every possible hyperimaginary is interdefinable
with a set of hyperimaginaries in E . So we can take Mheq and T heq to be ME and T E .

Lemma 10.10. Let ϕ(x, y) be an LE -formula, where x is a tuple of real variables
and y is a tuple of hyperimaginary variables. Then there is a set of L-formulas
6ϕ(x, yr ) such that M |H6ϕ(a, b) if and only if ME

|H ϕ(a, [b]).

Proof. We first assume that ϕ(x, y) is of the form

∃wz
(
ψ(x, w)∧ ε(y, z)∧

∧
i∈I Rχi (x, w, y, z)

)
.

Here w is a tuple of real variables and z a tuple of hyperimaginary variables. The
formula ψ(x, w) is an L-formula and ε(y, z) is a conjunction of equalities of
hyperimaginaries.

We define the partial type 0ϕ as follows. For each i ∈ I we introduce tuples
of real variables yi and zi matching yr and zr respectively. We let Eε(yr , zr ) be
the union of partial types in E expressing ε([yr ], [zr ]), and we close Eε under
conjunctions. Then we set

0ϕ(x, yr , w, zr , (yi )i∈I , (zi )i∈I )

=

{
ψ(x, w)∧ ϵ(yr , zr )∧

∧
i∈Iχi (x, w, yi , zi ) : ϵ ∈ Eε

}
(1)

∪

⋃
{Ey(yr , yi ) : i ∈ I } (2)

∪

⋃
{Ez(zr , zi ) : i ∈ I }. (3)

Here Ey and Ez are the equivalence relations corresponding to the hyperimaginary
variables y and z respectively.
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Let 6ϕ(x, yr ) express the following:

∃wzr (yi )i∈I (zi )i∈I0ϕ(x, yr , w, zr , (yi )i∈I , (zi )i∈I ).

Now suppose that a and b are such that M |H6ϕ(a, b). Then we find realisations
such that

M |H 0ϕ(a, b, c, d, (bi )i∈I , (di )i∈I ).

Then (2) and (3) tell us that [b] = [bi ] and [d] = [di ] for all i ∈ I , while (1)
guarantees that ME

|H ϕ(a, [b]). This proves the forward direction and the converse
is straightforward by just taking representatives of the hyperimaginaries that are
involved.

We assumed ϕ to be of a particular form. Since every formula can be written as a
disjunction of regular formulas (i.e., formulas built using conjunction and existential
quantification), we are only left an induction step for disjunction. So let ϕ1(x, y)
and ϕ2(x, y) with 6ϕ1(x, yr ) and 6ϕ2(x, yr ) be given. We define 6ϕ1∨ϕ2(x, yr ) as

{ψ1 ∨ψ2 : ψ1 ∈6ϕ1, ψ2 ∈6ϕ2}.

One easily checks that M |H 6ϕ1∨ϕ2(a, b) precisely when M |H 6ϕ1(a, b) or
M |H6ϕ2(a, b) or both, and the result follows. □

Lemma 10.11. Let 0(x, y) be a set of LE -formulas, where x is a tuple of real
variables and y is a tuple of hyperimaginary variables. Then there is a set of
L-formulas 60(x, yr ) such that M |H60(a, b) if and only if ME

|H 0(a, [b]).

Proof. Define
60(x, yr )=

⋃
ϕ∈0

6ϕ(x, yr ),

where 6ϕ is as in Lemma 10.10. □

Lemma 10.12. If tp(a[b])= tp(a′[b′]) then there is b′′ such that tp(ab)= tp(a′b′′)
and [b′] = [b′′].

Proof. Define
6(x, y)= tpL(ab)∪ E(b′, y).

It is enough to prove that6(a′, y) is finitely satisfiable. Let ϕ(x, y)∈ tpL(ab). Then
ME
|H Rϕ(a, [b]), so ME

|H Rϕ(a′, [b′]). So there is b′′ ∈M with M |H E(b′, b′′)
and M |H ϕ(a′, b′′), as required. □

Lemma 10.13. For every tuple of hyperimaginary variables y there is a partial
LE -type 4(yr , y) such that ME

|H4(a, [a′]) if and only if [a] = [a′].

Proof. We define
4(yr , y)= {Rε(yr , y) : ε ∈ E},

where E is the equivalence relation corresponding to y. The right-to-left direction
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is clear. For the forward direction we suppose that ME
|H4(a, [a′]). Consider the

partial type
0(yr )= E(a, yr )∪ E(yr , a′).

For any ε(a, yr ) ∈ E(a, yr ) we have ME
|H Rε(a, [a′]). So there must be a∗ ∈M

such that [a∗] = [a′] and M |H ε(a, a∗). Therefore, M |H ε(a, a∗)∧ E(a∗, a′). We
thus see that 0 is finitely satisfiable, so there is a realisation a′′. We conclude that
[a] = [a′′] = [a′]. □

Lemma 10.14. Any automorphism f :M→M uniquely extends to an automor-
phism f E :ME

→ME by setting f E([b])= [ f (b)].

Proof. It is straightforward to check that f E is well defined and bijective. We
need to show that f E preserves and reflects truth of the new relation symbols
in LE (preservation of equality is just saying that f E is well defined). Suppose that
ME
|H Rϕ(a, [b]). By definition there is b′ such that [b′] = [b] and M |H ϕ(a, b′).

Then M |H ϕ( f (a), f (b′)) and hence ME
|H Rϕ( f (a), [ f (b′)]), which is just

ME
|H Rϕ( f E(a), f E([b])). The converse follows in a similar way.

Finally we check uniqueness of f E . Suppose that g :ME
→ME also extends f .

For [b]∈ME we have ME
|H4(b, [b]) by Lemma 10.13. So if g is an automorphism

we must have ME
|H4(g(b), g([b])), which means that g([b])= [g(b)] = [ f (b)],

as required. □

Theorem 10.15. The structure ME is a monster model of T E .

Proof. We prove that ME is e.c. and is just as saturated and homogeneous as M. So
let κ be such that M is κ-saturated and κ-homogeneous. Note that this means that κ
is definitely bigger than the length of any tuple representing a hyperimaginary.

Existentially closed: We will use Definition 2.5(iii). Suppose that ME
̸|H ϕ(a, [b]).

Then M ̸|H 6ϕ(a, b), where 6ϕ is from Lemma 10.11. Therefore, there exists
ψ(x, yr ) ∈6ϕ(x, yr ) such that M ̸|H ψ(a, b). Because M is e.c. we find χ(x, yr )

with T |H ¬∃xyr (ψ(x, yr )∧χ(x, yr )) and M |H χ(a, b). Thus ME
|H Rχ (a, [b]).

We will conclude by proving that ME
|H ¬∃xy(ϕ(x, y)∧ Rχ (x, y)). Suppose for

a contradiction that there are a′ and b′ such that ME
|H ϕ(a′, [b′])∧ Rχ (a′, [b′]).

Then there is b′′ with [b′] = [b′′] and M |H χ(a′, b′′). So ME
|H ϕ(a′, [b′′]) and

thus M |H6ϕ(a′, b′′). We then get that M |H ψ(a′, b′′)∧χ(a′, b′′), which cannot
happen.

Saturation: Let 0(x, y, c, [d]) be a finitely satisfiable partial LE -type with |c[d]|<κ .
Let 60(x, y, c, d) be the set of L-formulas from Lemma 10.11. By the construction
there we have

60(x, y, c, d)=
⋃
ϕ∈0

6ϕ(x, y, c, d),

where 6ϕ is as in Lemma 10.10. So finite satisfiability of 0(x, y, c, [d]) implies
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finite satisfiability of60(x, y, c, d). We thus find a, b∈M with M |H60(a, b, c, d)
and hence ME

|H 0(a, [b], c, [d]).

Homogeneity: If tp(a[b]) = tp(a′[b′]), then by Lemma 10.12 there is b′′ such
that [b′′] = [b′] and tp(ab) = tp(a′b′′). Let f : M → M be an automorphism
with f (ab) = a′b′′. Then, by Lemma 10.14, we find f E : ME

→ ME with
f E(a[b])= f (a)[ f (b)] = a′[b′′] = a′[b′], as required. □

Lemma 10.16. A sequence (ai [bi ])i∈I is indiscernible if and only if there are
representatives b′i of [bi ] such that (ai b′i )i∈I is indiscernible.

Proof. We first prove the left-to-right direction. By compactness we may assume I
to be long enough. We can find indiscernible (a∗i b∗i )i∈I based on (ai bi )i∈I . Let
p((xi yi,r )i∈I )= tp((a∗i b∗i )i∈I ) and define the type

0 = p((ai yi,r )i∈I )∪ {4(yi,r , [bi ]) : i ∈ I }.

Then a realisation of 0 is precisely what we need, so we prove that 0 is finitely satisfi-
able. That is, for i1< · · ·< in ∈ I , we will produce a realisation of 0 restricted to the
variables yi1,r , . . . , yin,r and parameters ai1, . . . , ain , [bi1], . . . , [bin ]. By construc-
tion there are j1 < · · ·< jn ∈ I such that tp(a∗i1

b∗i1
· · · a∗in

b∗in
)= tp(a j1b j1 · · · a jn b jn ).

As tp(ai1[bi1] · · · ain [bin ])= tp(a j1[b j1] · · · a jn [b jn ]), by Lemma 10.12 we can find
b′i1
· · · b′in

with tp(ai1b′i1
· · · ain b′in

)= tp(a j1b j1 · · · a jn b jn ) while also [b′ik
] = [bik ] for

all 1≤ k ≤ n. So b′i1
· · · b′in

is the desired realisation of 0 restricted to yi1,r , . . . , yin,r

and ai1, . . . , ain , [bi1], . . . , [bin ].
For the right-to-left direction, we note that, for any i1 < · · · < in ∈ I and

j1 < · · ·< jn ∈ I , we have

6tp(ai1 [bi1 ]···ain [bin ])
⊆ tp(ai1b′i1

· · · ain b′in
)= tp(a j1b′j1 · · · a jn b′jn ).

So tp(ai1[bi1] · · · ain [bin ])⊆ tp(a j1[b j1] · · · a jn [b jn ]), and the claim follows by max-
imality of types. □

Theorem 10.17. The following properties of T are preserved when adding hyper-
imaginaries:

• Hausdorff ,

• semi-Hausdorff ,

• thick.

That is, if T has the property then T E has it as well.

Proof. Hausdorff: Let a[b] ̸≡ a′[b′]. Then there exists ϕ ∈ tp(a[b]) such that
ϕ ̸∈ tp(a′[b′]). So there is a negation ψ ∈ tp(a′[b′]) of ϕ. By Lemma 10.11 we
have that 6ϕ and 6ψ are consistent while 6ϕ ∪6ψ is inconsistent.
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Fix some type q of T such that 6ψ ⊆ q. We will produce formulas αq and βq

such that 6ϕ ∪ {αq} is inconsistent, βq ̸∈ q and T |H ∀xyr (αq(x, yr )∨ βq(x, yr )).
Let p ⊇ 6ϕ be a type of T . Then because T is Hausdorff there are formulas
χp and θp such that χp ̸∈ p and θp ̸∈ q, while T |H ∀xyr (χp(x, yr )∨ θp(x, yr )).
Then 6ϕ ∪ {χp : p ⊇6ϕ} is inconsistent, and therefore there are p1, . . . , pn such
that 6ϕ∪{χp1∧· · ·∧χpn } is inconsistent. We can now take αq to be χp1∧· · ·∧χpn

and βq to be θp1 ∨ · · · ∨ θpn .
Now 6ψ ∪ {βq : q ⊇ 6ψ } is inconsistent. So there are q1, . . . , qk such that

6ψ∪{βq1∧· · ·∧βqk } is inconsistent. We set β=βq1∧· · ·∧βqk and α=αq1∨· · ·∨αqn .
We then also have that 6ϕ ∪{α} is inconsistent and T |H ∀xyr (α(x, yr )∨β(x, yr )).

Now consider the formulas Rα(x, y) and Rβ(x, y). By construction we have
T E
|H ∀xy(Rα(x, y) ∨ Rβ(x, y)). We claim that Rα ̸∈ tp(a[b]). Suppose for a

contradiction that ME
|H Rα(a, [b]). Then there is b∗ with [b∗] = [b] such that

M |H α(a, b∗). Since ϕ ∈ tp(a[b]) = tp(a[b∗]), we also have M |H 6ϕ(a, b∗),
contradicting that 6ϕ ∪ {α} is inconsistent. So indeed Rα ̸∈ tp(a[b]). Analogously
we get that Rβ ̸∈ tp(a′[b′]), which concludes the proof that T E is Hausdorff.

Semi-Hausdorff: Suppose that equality of L-types is type-definable by a partial
L-type �. Then for a tuple x of real variables and a tuple y of hyperimaginary
variables, we consider the partial LE -type�E(xy, x ′y′) that expresses the following:

∃yr y′r (4(yr , y)∧4(y′r , y′)∧�(xyr , x ′y′r )).

We claim that �E expresses equality of LE -types.
If ME

|H�E(a[b], a′[b′]) then we find c and c′ such that

ME
|H4(c, [b])∧4(c′, [b′])∧�(ac, a′c′).

By Lemma 10.13, [c] = [b] and [c′] = [b′]. Therefore, ϕ ∈ tp(a[b]) = tp(a[c]) if
and only if 6ϕ ⊆ tp(ac) = tp(a′c′) if and only if ϕ ∈ tp(a′[c′]) = tp(a′[b′]). So
tp(a[b])= tp(a′[b′]), as required.

Conversely, if tp(a[b])= tp(a′[b′]) then by Lemma 10.12 we find b′′ such that
[b′′] = [b′] and tp(ab)= tp(a′b′′). Hence, |H4(b, [b])∧4(b′′, [b′])∧�(ab, a′b′′).

Thick: Let 2 express indiscernibility of a sequence of real tuples. Then

∃(yi,r )i<ω

(
2((xi yi,r )i<ω)∧

∧
i<ω4(yi,r , yi )

)
expresses indiscernibility of (xi yi )i<ω in T E . Here we use that a sequence in ME is
indiscernible if and only if there is an indiscernible sequence of real representatives;
see Lemma 10.16. □

Theorem 10.18. The theory T is NSOP1 if and only if T E is NSOP1.



110 JAN DOBROWOLSKI AND MARK KAMSMA

The technique in the proof of Theorem 10.18 can also be applied to other
combinatorial properties, such as the order property, TP, TP2, IP, etc. Of course,
to do this, one first needs to write down a proper definition of these properties for
positive logic, such as Definition 2.26 for SOP1 or [Haykazyan and Kirby 2021,
Definition 6.1] for TP2.

Proof. One direction is trivial: if T has a formula with SOP1, then so has T E .
We prove the other direction: supposing that T E has a formula with SOP1, we

will show that T already has a formula with SOP1. So let ϕ(x, y;w, z) be an
LE -formula with SOP1. Here x and w are tuples of real variables, and y and z are
tuples of hyperimaginary variables. Let (aη[bη] : η ∈ 2<ω) and ψ(w1, z1;w2, z2)

be witnesses of SOP1. Let 6ϕ(x, yr ;w, zr ) and 6ψ(w1, z1,r ;w2, z2,r ) be as in
Lemma 10.10. Then

6ψ(w1, z1,r ;w2, z2,r )∪6ϕ(x, yr , w1; z1,r )∪6ϕ(x, yr , w2; z2,r )

is inconsistent. Hence there are finite ϕ′ ∈ 6ϕ and ψ ′ ∈ 6ψ that are inconsistent
with each other. That is,

T |H ¬∃xyrw1z1,rw2z2,r
(
ψ ′(w1, z1,r , w2, z2,r )∧ϕ

′(x, yr , w1, z1,r )

∧ϕ′(x, yr , w2, z2,r )
)
. (4)

As usual, any variables not actually appearing in the formulas should be ignored
in the existential quantifier. We claim that ϕ′ has SOP1, which is witnessed by
(aηbη : η ∈ 2<ω) and ψ ′. We check the items in Definition 2.26.

(i) Let σ ∈ 2ω. Then {ϕ(x, y, aσ |n , [bσ |n ]) : n < ω} is consistent. So there are
c and [d] such that |H ϕ(c, [d], aσ |n , [bσ |n ]) for all n < ω. That is, we have
6ϕ(c, d, aσ |n , bσ |n ) for all n < ω. In particular, {ϕ′(x, yr , aσ |n , bσ |n ) : n < ω}
is consistent.

(ii) By construction; see (4).

(iii) Let η, ν ∈ ω<ω such that η⌢0 ⪯ ν. Then |H ψ(aη⌢1, [bη⌢1], aν, [bν]), so
|H6ψ(aη⌢1, bη⌢1, aν, bν) and in particular |H ψ ′(aη⌢1, bη⌢1, aν, bν). □

Definition 10.19. We say that a theory satisfies the existence axiom for forking
if tp(a/B) does not fork over B for any a and B.

Theorem 10.20. The theory T satisfies the existence axiom for forking if and only
if T E satisfies the existence axiom for forking.

Proof. One direction is immediate: anything witnessing forking in T will also be
in T E . We prove the other direction. So assume there is tp(a[b]/C[D]) that forks
over C[D]. That is, it implies a (possibly infinite) disjunction

∨
i∈I ϕi (xy, ei

[ f i
])

with ϕi (xy, ei
[ f i
]) dividing over C[D] for each i ∈ I . For each i ∈ I we let

(ei
j [ f

i
j ]) j∈J be a long enough C[D]-indiscernible sequence with ei

0[ f
i
0 ] = ei

[ f i
]
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such that {ϕi (xy, ei
j [ f

i
j ]) : j ∈ J } is inconsistent. By Lemma 10.12 we may assume

that ei
j f i

j ≡ei f i for every j ∈ J . We claim that6ϕi (x, yr , ei , f i ) (see Lemma 10.10)
divides over C D for all i ∈ I . Note that 6ϕi may contain parameters from C D.

To prove the claim let k be such that {ϕi (xy, ei
j [ f

i
j ]) : j ∈ J0} is inconsistent for

all J0 ⊆ J with |J0| = k. So
⋃

j∈J0
6ϕi (x, yr , ei

j , f i
j ) is inconsistent for all such J0.

Let (en fn)n<ω be a C D-indiscernible sequence based on (ei
j f i

j ) j∈J over C D. Then
there are j1< · · ·< jk ∈ J such that e1 f1 · · · ek fk≡C D ei

j1 f i
j1 · · · e

i
jk f i

jk , and therefore⋃
n<ω6ϕi (x, yr , en, fn) is inconsistent. We conclude that6ϕi (x, yr , ei , f i ) divides

over C D, as claimed.
By the claim there is ψi (x, yr , ei , f i ) that is implied by 6ϕi (x, yr , ei , f i ) such

that ψi (x, yr , ei , f i ) divides over C D, for all i ∈ I . Let p = tp(a[b]C[D]). Then
6p(x, yr ,C, D) implies

∨
i∈I 6ϕi (x, yr , ei , f i ). We thus have that6p(x, yr ,C, D)

implies
∨

i∈I ψi (x, yr , ei , f i ). So 6p(x, yr ,C, D) forks over C D. □

In the discussion following Definition 4.1 in [Kim 2021] it is stated that one
may produce results for Kim-independence for the hyperimaginary extension Mheq

of a first-order structure M parallel with those for first-order structures, provided
that Mheq satisfies the existence axiom for forking (which, by the above theorem,
is equivalent to the assumption that T satisfies this axiom). More generally, one
can ask if our results on Kim-independence over models in thick NSOP1 theories
can be extended to arbitrary base sets assuming the existence axiom for forking:

Question 10.21. Suppose T is a thick positive NSOP1 theory satisfying the ex-
istence axiom for forking. Can |⌣

K be extended to an automorphism-invariant
ternary relation between arbitrary small sets which satisfies the properties listed
in Theorem 9.1?
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