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A note on geometric theories of fields

Will Johnson and Jinhe Ye

Let T be a complete theory of fields, possibly with extra structure. Suppose that
model-theoretic algebraic closure agrees with field-theoretic algebraic closure, or
more generally that model-theoretic algebraic closure has the exchange property.
Then T has uniform finiteness, or equivalently, it eliminates the quantifier ∃

∞.
It follows that very slim fields in the sense of Junker and Koenigsmann are the
same thing as geometric fields in the sense of Hrushovski and Pillay. Modulo
some fine print, these two concepts are also equivalent to algebraically bounded
fields in the sense of van den Dries.

From the proof, one gets a one-cardinal theorem for geometric theories of
fields: any infinite definable set has the same cardinality as the field. We investi-
gate whether this extends to interpretable sets. We show that positive dimensional
interpretable sets must have the same cardinality as the field, but zero-dimensional
interpretable sets can have smaller cardinality. As an application, we show that
any geometric theory of fields has an uncountable model with only countably
many finite algebraic extensions.

1. Introduction

Throughout the paper, T denotes a complete theory. We use acl( – ) to denote
the model-theoretic algebraic closure. When T expands the theory of fields, we
use ( – )alg to denote the field-theoretic algebraic closure. Following [Hrushovski
and Pillay 1994; Gagelman 2005], we say that T is geometric if (1)–(2) hold and
pregeometric if (1) holds:

(1) acl( – ) satisfies the exchange property.

(2) T eliminates ∃
∞, or equivalently, T has uniform finiteness.

A (pre)geometric structure is a structure M whose complete theory is (pre)geometric.
Using a simple argument, we show that pregeometric fields are geometric

(Theorem 2.5). This seems to not be well-known. For example, it is implicitly
unknown in [Hrushovski and Pillay 1994, Remark 2.12], and a special case of
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this implication is asked as an open problem in [Junker and Koenigsmann 2010,
Question 1].

As a consequence of Theorem 2.5, several concepts in the literature are equivalent,
namely the very slim fields of Junker and Koenigsmann [2010, Definition 1.1], the
geometric fields of Hrushovski and Pillay [1994, Remark 2.10], and (modulo some
fine print) the algebraically bounded fields of van den Dries [1989].

Our method also shows that in a geometric field, any infinite definable set has the
same cardinality as the field (Proposition 3.1), which may be of independent interest.
It is natural to ask whether this extends to interpretable sets. In Proposition 3.6, we
show that if X is an interpretable set of positive dimension, then |X | = |K |, but
there are models where all the zero-dimensional interpretable sets satisfy |X |< |K |.
As an application, there is an uncountable model K with only countably many finite
algebraic extensions (Corollary 4.3), which may be of interest to field theorists. In
the special case of ω-free perfect PAC fields, this recovers examples such as [Bary-
Soroker and Paran 2013, Example 2.2].

2. Uniform finiteness from the exchange property

If M is a geometric structure, there is a well-established dimension theory on M
defined as follows. If A ⊆ M and a is a tuple, we define dim(a/A) to be the
length of the maximal aclA-independent subtuple of a. This is well-defined by the
exchange property. If X is an A-definable subset of Mn , we define

dim(X)= max{dim(x/A) : x ∈ X (U)}

for some monster model U ⪰ M .

Fact 2.1. Let M be a pregeometric structure, and X, Y be definable sets.

(1) dim(X) is well-defined, independent of the choice of A.

(2) dim(X) > 0 ⇐⇒ |X | = ∞.

(3) dim(X × Y )= dim(X)+ dim(Y ).

(4) dim(Mn)= n unless M is finite.

(5) If f : X → Y is a definable injection or surjection, then dim(X)≤ dim(Y ) or
dim(X)≥ dim(Y ), respectively.

Gagelman observed that the dimension theory can also be extended to Meq. If
a ∈ Meq, then dim(a/A) is defined to be dim(b/Aa)− dim(b/A) for any tuple
b with a ∈ acleq(Ab). If X is an interpretable set, then dim(X) is defined as for
definable sets. By [Gagelman 2005, Lemma 3.3], these definitions are well-defined,
and all of Fact 2.1 holds except for (4) and the ⇐ direction of (2) [Gagelman 2005,
Proposition 3.4 and p. 321].
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Lemma 2.2. Let K be a pregeometric field. Then K is perfect.

Proof. Otherwise, K is an infinite field of characteristic p. Take a ∈ K \ K p. Then
the map

f (x, y) 7→ x p
+ ay p

is a definable injection f : K × K → K . But dim(K 2)= 2> dim(K )= 1, as K is
infinite. □

Lemma 2.3. Let K be a field and X be a subset. Then one of the following holds:

(1) The set S = {(y − y′)/(x ′
− x) : x, y, x ′, y′

∈ X, x ̸= x ′
} equals K .

(2) There is an injection f : X2
→ K of the form f (x, y)= ax + y.

Proof. If a ∈ K \ S, then the function f (x, y)= ax + y is injective on X2. □

Lemma 2.4. Let K be an infinite pregeometric field, and let X ⊆ K be definable.
Then X is infinite if and only if K = {(y − y′)/(x ′

− x) : x, y, x ′, y′
∈ X, x ̸= x ′

}.

Proof. If X is infinite, then dim(X) > 0, so dim(X2)≥ 2> dim(K )= 1 and there
are no definable injections f : X2

→ K . Therefore, case (2) of Lemma 2.3 cannot
hold, so (1) holds. Conversely, if X is finite, then case (1) of Lemma 2.3 cannot
hold, as the set S would be finite. □

Theorem 2.5. Let T be a complete theory of fields, possibly with extra structure. If
T is pregeometric, then T is geometric.

Proof. It suffices to eliminate ∃
∞. If models of T are finite, then ∃

∞ is trivially
eliminated. If the models of T are infinite, then Lemma 2.4 gives a first-order
criterion for telling whether a definable set X ⊆ K is infinite. □

The proof of Theorem 2.5 is the same argument used in [Johnson 2018, Obser-
vation 3.1].

Remark 2.6. Let (K ,+ , · , . . .) be a field, possibly with extra structure. If acl( – )
agrees with field-theoretic algebraic closure, then acl( – ) satisfies exchange.

Definition 2.7 [Junker and Koenigsmann 2010, Definition 1.1]. A field K is very
slim if acl( – ) agrees with field-theoretic algebraic closure in any elementary
extension of K .

Definition 2.8 [Hrushovski and Pillay 1994, Remark 2.10]. A strongly geometric
field is a perfect field (K ,+ , · ) with a geometric theory that is very slim.

Hrushovski and Pillay call these geometric fields, but we prefer the term strongly
geometric to distinguish strongly geometric fields from the more general case of
fields that are geometric (as structures). There are geometric fields that are not
strongly geometric (Remark 2.16).

Corollary 2.9. A field K is very slim if and only if it is strongly geometric.



124 WILL JOHNSON AND JINHE YE

Proof. If K is very slim, then K is pregeometric, hence geometric by Theorem 2.5
and perfect by Lemma 2.2 (or [Junker and Koenigsmann 2010, Proposition 4.1]). □

Definition 2.10 [van den Dries 1989]. Let (K ,+ , · , . . .) be an expansion of a
field, and F be a subfield. Then K is algebraically bounded over F if for any
formula ϕ(x̄, y), there are finitely many polynomials P1, . . . , Pm ∈ F[x̄, y] such
that for any ā, if ϕ(ā, K ) is finite, then ϕ(ā, K ) is contained in the zero set of
Pi (ā, y) for some i such that Pi (ā, y) does not vanish. Following the convention in
[van den Dries 1989; Junker and Koenigsmann 2010] we say that K is algebraically
bounded if it is algebraically bounded over K .

Lemma 2.11. Suppose K is algebraically bounded over some subfield F.

(1) If A is a subset of K , then acl(AF) is the field-theoretic relative algebraic
closure (AF)alg

∩ K .

(2) K has uniform finiteness.

(3) If K ∗ is an elementary extension of K , then K ∗ is algebraically bounded
over F.

Proof. (1) Clearly (AF)alg
∩K ⊆ acl(AF). Conversely if b ∈ acl(AF), then b is in a

finite set ϕ(ā, K ) for some tuple ā from AF . By algebraic boundedness, ϕ(ā, K ) is
contained in a finite zero set of some polynomial P(ā, y), where P(x̄, y)∈ F[x̄, y].
Therefore b is field-theoretically algebraic over AF .

(2) For a fixed formula ϕ(x̄, y), let P1, . . . , Pm ∈ F[x̄, y] be polynomials as in
Definition 2.10. Then the cardinality of finite sets of the form ϕ(ā, K ) is bounded
by the maximum of the degrees of the Pi ’s.

(3) By (2), the theory of K has uniform finiteness, and so ∃
∞ is uniformly eliminated

across elementary extension of K . It follows that for fixed ϕ, P1, . . . , Pm , the
following condition is preserved in elementary extensions:

For any ā, if ϕ(ā, y) defines a finite set, then there is i ∈ {1, . . . ,m} such
that Pi (ā, y) has finitely many zeros and ϕ(ā, y)→ Pi (ā, y)= 0.

Thus, algebraic boundedness transfers from K to any elementary extension K ∗. □

Lemma 2.12. Let K = (K ,+ , · , . . .) be a field or an expansion of a field. Let F
be a subfield. The following are equivalent:

(1) In any elementary extension K ∗
⪰ K , field-theoretic algebraic closure over

F agrees with model-theoretic algebraic closure over F : if A ⊆ K ∗ and
b ∈ acl(AF), then b ∈ (AF)alg.

(2) Condition (1) holds and K has uniform finiteness, or equivalently, ∃
∞ is

eliminated in elementary extensions of K .

(3) K is algebraically bounded over F.



A NOTE ON GEOMETRIC THEORIES OF FIELDS 125

Proof. (1)=⇒(2). Field-theoretic algebraic closure satisfies the exchange property.
Therefore acl(– ) satisfies exchange (after naming the elements of F as parameters).
By Theorem 2.5, elementary extensions of K eliminate ∃

∞.

(2)=⇒(3). Suppose (2) holds but K fails to be algebraically bounded over F ,
witnessed by some formula ϕ(x̄, y). Using elimination of ∃

∞, we may assume
that there is n ∈ N such that |ϕ(ā, K )| ≤ n for every ā. For any finite set of
polynomials P1, . . . , Pm ∈ F[x̄, y], there is ā ∈ K such that ϕ(ā, K ) is finite, but is
not contained in the zero set of Pi (ā, y) unless Pi (ā, y)≡ 0. By compactness, there
is an elementary extension K ∗

⪰ K and a tuple ā ∈ K ∗ such that ϕ(ā, K ∗) is finite,
but is not contained in the zero set of P(ā, y) for any P ∈ F[x̄, y] except those
with P(ā, y)≡ 0. Then ϕ(ā, K ∗) contains a point not in F(ā)alg, contradicting (2).

(3)=⇒(1). Lemma 2.11 shows that if K ∗ is an elementary extension of K , then

• K ∗ is algebraically bounded over F , and

• field-theoretic and model-theoretic algebraic agree over F .

Therefore (1) holds. □

Specializing to the case where K is a pure field and F is the prime field, we get
the following:

Theorem 2.13. Let K be a pure field. Then K is algebraically bounded over the
prime field if and only if K is very slim.

We have thus answered [Junker and Koenigsmann 2010, Question 1] positively.

Remark 2.14. If (K ,+ , · , . . .) is an expansion of a field, and (K ,+ , · , . . .) is
algebraically bounded over the prime field, then the reduct (K ,+ , · ) is also alge-
braically bounded over the prime field, and so the underlying field (K ,+ , · ) is
very slim.

Remark 2.15. Reducts of geometric structures are geometric structures. This is
folklore, but we include a proof for completeness. Let N be a geometric structure
and M be a reduct. Without loss of generality, N and M are highly saturated.
Uniform finiteness transfers from N to M in a trivial way: if M fails uniform
finiteness, the same definable family fails uniform finiteness in N . Suppose aclM(–)
does not satisfy exchange. Then there are some a, b ∈ M and C ⊆ M such that
a /∈ aclM(C), b /∈ aclM(Ca), but a ∈ aclM(Cb). Let p(x) and q(x, y) be tpM(a/C)
and tpM(a, b/C). The number of realizations of p(x) is large, so we may find
a′

|H p with a′ /∈ aclN (C). Similarly, the number of realizations of q(a′, y) is
large, so we may find a realization b′ /∈ aclN (Ca′). Then a′b′

≡C ab in M , so
a′

∈ aclM(Cb′)⊆ aclN (Cb′). Then a′ and b′ contradict the exchange property in N .
Therefore, any reduct of an algebraically bounded field is geometric, though not

necessarily strongly geometric.
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Remark 2.16. In future work, we will give an example of a pure field (K ,+ , · )
of characteristic 0 with a subfield K0 such that

(1) Field-theoretic algebraic closure and model-theoretic algebraic closure agree
over K0, and this remains true in elementary extensions.

(2) acl(∅) contains elements of K0 that are transcendental over Q. In particular,
field-theoretic algebraic closure and model-theoretic algebraic closure do not
agree over Q.

It follows that this field K is algebraically bounded over K0, but not over Q. In
particular, K is algebraically bounded (over K ) but not very slim and not a strongly
geometric field.1 Additionally, the field K is geometric (by Remark 2.15) but not
strongly geometric.

Failure of acl(∅) to be algebraic over the prime field is the only way an alge-
braically bounded field can fail to be very slim:

Proposition 2.17. If K = (K ,+ , · , . . .) is algebraically bounded, then K is alge-
braically bounded over the subfield F = dcl(∅).

Proof. We use the criterion of Lemma 2.12(1) to show that K is algebraically
bounded over F . Embed K into a monster model K. Suppose b, c̄ ∈ K and
b ∈ acl(Fc̄). We must show b ∈ F(c̄)alg. By Remark 2.15, Th(K ) is geometric,
because it is geometric after naming parameters from F . Replacing c̄ by a basis
of c̄ in the acl-pregeometry, we may assume that the tuple c̄ is field-theoretically
algebraically independent over F . Now suppose for the sake of contradiction that
b /∈ F(c̄)alg. Then (c̄, b) is also field-theoretically algebraically independent over F .

As b ∈ acl(Fc̄)= acl(c̄), there is a 0-definable set D ⊆ Kn with (b, c̄) ∈ D and
Dc̄′ finite for each c̄′. By algebraic boundedness over K , there are finitely many
nonzero polynomials P1, . . . , Pi ∈ K [x, ȳ] such that D is contained in the union
of the zero-sets of the Pi .

Let M = Kalg and let V be the Zariski closure of D in Mn+1. The polynomials
Pi show that V ⊊ Mn+1, and so dim(V ) < n + 1. By elimination of imaginaries
in ACF, there is a finite tuple e in M which codes V . Recall that K is perfect by
Lemma 2.2. If σ ∈ Aut(M/K)= Gal(K), then σ(D)= D, σ(V )= V , and σ(e)= e.
As the tuple e is fixed by Gal(M/K), it must be in the perfect field K.

If σ is any automorphism of K, then σ can be extended to an automorphism
σ ′ of M . The fact that D is 0-definable implies that σ ′(D) = σ(D) = D, which
then implies σ ′(V )= V and σ(e)= σ ′(e)= e. Thus e is Aut(K)-invariant, which
implies that e is in F = dcl(∅). Therefore, in the structure M , the e-definable
set V is in fact F-definable. However, the tuple (b, c̄) ∈ D ⊆ V is algebraically

1This contradicts the claim in [Junker and Koenigsmann 2010, p. 482] that algebraically bounded
fields are very slim.
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independent over F , so this implies dim(V )= n + 1, contradicting the earlier fact
that dim(V ) < n + 1. □

Remark 2.18. Algebraically bounded fields are closely related to fields of size
at most S in the sense of [Junker and Koenigsmann 2010]. For fields of size at
most S, [Junker and Koenigsmann 2010, Proposition 3.4] and Lemma 2.12 show
that they are algebraically bounded over dcl(∅). On the other hand, by Lemma 2.12
and Proposition 2.17, any algebraically bounded field with tr.deg(dcl(∅)) ∈ N is of
size at most S.

Question 2.19. Is there a pure field K that is geometric, but not algebraically
bounded?

3. Cardinalities

Fix a complete geometric theory T expanding the theory of fields, not necessarily
algebraically bounded.

Proposition 3.1. If K |H T and X ⊆ K n is an infinite definable set, then |X | = |K |.

Proof. Clearly |X | ≤ |K |. We must show |X | ≥ |K |. Replacing X with a projection
onto one of the coordinate axes, we may assume X ⊆ K 1. By Lemma 2.4,

K = {(y − y′)/(x ′
− x) : x, y, x ′, y′

∈ X, x ̸= x ′
}.

Therefore |K | ≤ |X |
4
= |X |. □

Proposition 3.1 does not generalize to interpretable sets, as exhibited by the
example of the value group Z in the geometric field Qp. In Proposition 3.6 below,
we will see that the obstruction is precisely the zero-dimensional interpretable sets.
Before proving this, we need a few general lemmas on geometric structures.

Lemma 3.2. Suppose M is a geometric structure and X is an interpretable set in
M with dim(X)= d > 0.

(1) There is an interpretable set Y in M and finite-to-one interpretable functions
f : Y → X and g : Y → Md such that the image g(Y ) has dimension d.

(2) There is an infinite definable set D with |X | ≥ |D|.

Proof. Note that (1) implies (2), by taking D = g(Y ). We prove (1). Embed M
into a monster model M ⪰ M . Take e ∈ X with dim(e/M) = d. Then e ∈ Meq.
Every imaginary is definable from a real tuple, so there is a real tuple ā ∈ Mm with
e ∈ acleq(Mā). Replacing ā with a subtuple, we may assume that ā is independent
over M . By [Gagelman 2005, Lemma 3.1], acl( – ) continues to satisfy exchange
after naming the parameter e. Therefore, we can meaningfully talk about real tuples
being independent over eM . Write ā as b̄c̄, where b̄ is a maximal subtuple that is
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independent over eM . Then c̄ ∈ acl(b̄eM). At the same time, e ∈ acl(b̄c̄M), so e is
interalgebraic with c̄ over b̄M .

Meanwhile, dim(b̄/eM) = dim(b̄/M) = |b̄|, because b̄ is an independent tu-
ple over eM . Then b̄ and e are independent from each other over M , implying
dim(e/b̄M)= dim(e/M)= d by symmetry. As e and c̄ are interalgebraic over b̄M ,
we have dim(c̄/b̄M)= d. But b̄c̄ is an independent tuple over M , so dim(c̄/b̄M)
is the length of c̄. Thus c̄ ∈ Md .

As e and c̄ are interalgebraic over b̄M , there is a b̄M-interpretable set Y0 ⊆ X×Md

such that (e, c̄) ∈ Y0, and the projections f0 : Y0 → X and g0 : Y0 → Md have finite
fibers. By saturation, there is a uniform bound N on the fiber size. The image
g0(Y0) is b̄M-definable and contains the point c̄ with dim(c̄/b̄M)= d. Therefore
g0(Y0) has dimension d.

Now we have the desired configuration (Y0, f0, g0), but defined over the parame-
ter b̄ outside M . Because M ⪯ M and dimension is definable in families [Gagelman
2005, Fact 2.4], we can replace the parameter b̄ with something in M , getting an
M-definable configuration (Y, f, g) in which the fibers of f and g are still bounded
in size by N . □

Definition 3.3. Let M be a structure. A definable notion of largeness2 on M is a
partition of the M-definable sets into two classes — large and small — such that the
following axioms hold:

(1) Any finite set is small.

(2) Any definable subset of a small set is small.

(3) If Y is small and {Xa}a∈Y is a definable family of small sets, then the union⋃
a∈Y Xa is small.

(4) Smallness is definable in families: if {Xa}a∈Y is a definable family, then the
set {a ∈ Y : Xa is small} is definable.

If N ⪰ M , then any definable notion of largeness on M extends in a canonical
way to a definable notion of largeness on N by extending the definition according
to (4) above.

Fact 3.4. Let M be a countable structure in a countable language. Fix a definable
notion of largeness on M. Then there is an elementary extension N ⪰ M such that
if X is definable in N , then X is uncountable if and only if X is large.

Fact 3.4 is essentially Keisler’s completeness theorem for L(Q) [Keisler 1970,
Section 2], but the translation between these settings is sufficiently confusing that
we give the details.

2This is a purely model-theoretic notion and should not be confused with the notion of large fields.
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Proof of Fact 3.4. Let T be the elementary diagram of M . Let L be the language
of T , and let L(Q) be the language obtained by adding a new quantifier (Qx). Let
ψ 7→ ψ∗ be the map from L(Q)-formulas to L-formulas interpreting (Qx)ϕ(x, ȳ)
as “the set of x such that ϕ(x, ȳ) holds is large.” More precisely,

• ϕ∗
= ϕ if ϕ doesn’t involve the quantifier Q.

• (ϕ ∧ψ)∗ = ϕ∗
∧ψ∗, and similarly for the other logical operators including ∃

and ∀.

• ((Qx)ϕ(x, ȳ))∗ is the formula ψ(ȳ) such that in models N |H T ,

N |H ψ(b̄)⇐⇒ (ϕ∗(N , b̄) is large).

Let T ′ be the set of L(Q)-sentences ϕ such that T ⊢ ϕ∗. It is straightforward to
verify that T ′ is closed under the rules of inference on pages 6–7 of [Keisler 1970].
For example, the “axioms of L(Q)” [Keisler 1970, p. 6] correspond to the axioms
in Definition 3.3. By the completeness theorem for L(Q) [Keisler 1970, Section 2],
there is an L-structure N which satisfies the sentences T ′, when (Qx) is interpreted
as

“there are uncountably many x such that. . . ”.

Ignoring the sentences involving Q, we see that N |H T , and so N ⪰ M . Finally,
suppose X = ϕ(N , b̄) is definable in N . Let ψ(ȳ) be the L-formula such that ψ(b̄)
holds iff ϕ(N , b̄) is large. Then T ′ contains the sentence

(∀ȳ)[ψ(ȳ)↔ (Qx)ϕ(x, ȳ)],

because its image under ( – )∗ is the tautology

(∀ȳ)[ψ(ȳ)↔ ψ(ȳ)].

Therefore,

ϕ(N , b̄) is uncountable ⇐⇒ N |H ψ(b̄)⇐⇒ ϕ(N , b̄) is large. □

Lemma 3.5. Let T be a complete geometric theory in a countable language. Then
there is a model N |H T such that for any interpretable set X ,

dim(X) > 0 ⇐⇒ |X |> ℵ0.

Proof. Take a model M |H T . There is a definable notion of largeness on Meq

in which X is large iff dim(X) > 0. The requirements of Definition 3.3 hold by
properties of dimension in Meq [Johnson 2022, Propositions 2.8, 2.9, and 2.12].
Applying Fact 3.4, we get an elementary extension N eq

⪰ Meq such that if X is
definable in N eq, then X is uncountable iff dim(X) > 0. □
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Proposition 3.6. Let T be a complete, geometric theory of infinite fields, possibly
with extra structure.

(1) If K |H T and X is an interpretable set of positive dimension, then |X | = |K |.

(2) If the language is countable, there is a model K |H T of cardinality ℵ1 such
that every zero-dimensional interpretable set is countable.

Proof. (1) Suppose X has positive dimension. Lemma 3.2 shows that |X | ≥ |D| for
some infinite definable set D. Then |D| ≥ |X | ≥ |K | by Proposition 3.1. Finally,
|K | ≥ |X | is clear.

(2) Lemma 3.5 gives an uncountable model K in which every zero-dimensional
interpretable set is countable. By downward Löwenheim–Skolem, we can replace
K with an elementary substructure of cardinality ℵ1. □

4. Finite extensions

Let T be a complete, geometric theory of fields, possibly with extra structure, not
necessarily algebraically bounded.

Proposition 4.1. If K |H T and n ∈ N>0, then the (interpretable) set of degree n
finite extensions has dimension zero.

Proof. By Lemma 2.2, K is perfect. Hence any finite extension of K is a simple
extension. Let X be the set of irreducible monic polynomials of degree n. We can
regard X as a definable subset of K n by identifying a polynomial

P(x)= xn
+ cn−1xn−1

+ · · · + c0

with the n-tuple (c0, c1, . . . , cn−1). Let Y be the interpretable set of degree n finite
extensions. Let f : X → Y be the map sending P(x) to the extension K [x]/(P(x)).

Note that dim(X)≤dim(K n)=n. By the definition of dimension for interpretable
sets, it suffices to show that each fiber of f has dimension at least n. Fix some b ∈ Y
corresponding to a degree n extension L/K . We claim f −1(b) has dimension n.
By identifying L with K n , we can regard L as a definable set with dim(L) = n.
Because K is perfect, there are only finitely many fields between K and L . Let U
be the union of the intermediate fields. Then U has lower dimension than n, so
dim(L \ U )= n. The elements of L \ U are generators of L . The fiber f −1(b) is
the set of minimal polynomials of elements of L \U . Let ρ : (L \U )→ f −1(b) be
the map sending a ∈ L \ U to its minimal polynomial. Then ρ is finite-to-one, so
dim( f −1(b))≥ dim(L \ U )= n. □

We recover the following corollary, which is presumably well-known (for exam-
ple, it follows from [Gagelman 2005, Corollary 3.6] and [Pillay and Poizat 1995,
Théorème]).
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Corollary 4.2. If T eliminates imaginaries, then models of T have bounded Galois
group — there are only finitely many extensions of degree n for each n.

Proof. Zero-dimensional definable sets are finite. If elimination of imaginaries
holds, then zero-dimensional interpretable sets are finite. □

Combining Propositions 3.6 and 4.1, we have the following.

Corollary 4.3. If T is a geometric theory of infinite fields in a countable language,
then there is an uncountable model K |H T with countably many finite extensions of
degree n for each n.

For example, since perfect PAC fields are geometric [Chatzidakis and Hrushovski
2004], Corollary 4.3 recovers results such as [Bary-Soroker and Paran 2013, Ex-
ample 2.2]. The fact that all very slim fields satisfy this property might have some
field-theoretic consequences.
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